
PHYSICAL REVIEW D 66, 076002 ~2002!
Flavor mixing, gauge invariance, and wave-function renormalization

D. Espriu,* J. Manzano,† and P. Talavera‡
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We clarify some aspects of the LSZ formalism and wave-function renormalization for unstable particles in
the presence of electroweak interactions when mixing andCP violation are considered. We also analyze the
renormalization of the Cabibbo-Kobayashi-Maskawa~CKM! mixing matrix which is closely related to wave-
function renormalization. We critically review earlier attempts to define a set of ‘‘on-shell’’ wave-function
renormalization constants. With the aid of extensive use of the Nielsen identities complemented by explicit
calculations we corroborate that the counterterm for the CKM mixing matrix must be explicitly gauge inde-
pendent and demonstrate that the commonly used prescription for the wave-function renormalization constants
leads to gauge parameter dependent amplitudes, even if the CKM counterterm is gauge invariant as required.
We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting
wave-function renormalization constants necessarily possess absorptive parts, but we verify that they comply
with the expected requirements concerningCP and CPT. The results obtained using this prescription are
different ~even at the level of the modulus squared of the amplitude! from the ones neglecting the absorptive
parts in the case of top decay. The difference is numerically relevant.
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I. INTRODUCTION

One of the pressing open problems in particle physic
to understand the origin of theCP violation phase and fam
ily mixing. In the minimal standard model~SM! the infor-
mation about these quantities is encoded in the Cabib
Kobayashi-Maskawa~CKM! mixing matrix. In this work we
shall denote this matrix byKi j .

As is well known, some of the entries of this matrix a
remarkably well measured, while others~such as theKtb ,
Kts , andKtd elements! are poorly known and the only rea
experimental constraint comes from unitarity requiremen
A lot of effort in the last decade has been invested in t
particular problem and this dedication will continue in t
foreseeable future aiming to precision in the charged cur
sector comparable to that already reached in the neutral
tor. As a guide, let us mention that the expected accurac
sin 2b after the CERN LHCb is expected to be beyond t
1% level, and a comparable accuracy is expected by
time from the ongoing generation of experiments~BaBar,
Belle! @1#.

In the neutral sector it is totally mandatory to includ
electroweak radiative corrections to bring theory and exp
ment into agreement. Tree level results are incompatible w
experiment by many standard deviations@2#. Obviously we
are not there yet in the charged current sector, but in a
years electroweak radiative corrections will be required
the studies analyzing the ‘‘unitarity’’ of the CKM matrix.1

*Electronic address: espriu@ecm.ub.es
†Electronic address: manzano@ecm.ub.es
‡Electronic address: pere@ecm.ub.es
1The CKM matrix is certainly unitary, but the physical obser

ables that at tree level coincide with these matrix elements certa
do not necessarily fulfil a unitarity constraint once quantum corr
tions are switched on.
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These corrections are of several types. With an on-s
scheme in mind, we need counterterms for the elec
charge, Weinberg angle, and wave-function renormaliza
~WFR! for the W gauge boson. We shall also require WF
for the external fermions and counterterms for the entries
the CKM matrix. The latter are in fact related in a way th
will be described below@3#. Finally, one needs to comput
the one particle irreduceble~1PI! vertex parts of the differen
processes one is interested in.

In the on-shell scheme, all counterterms can be expres
as combinations of self-energies@4#. These are standard an
well known at one loop in perturbation theory, and in som
cases, at least for the leading pieces, up to two loops in
SM. However, a long standing controversy exists in the
erature concerning the appropriate way to define both an
ternal WFR and CKM counterterms. The issue becomes
volved because we are dealing with particles which
unstable~and therefore the self-energies develop branch c
even gauge dependent ones in the SM! and because of mix-
ing.

Several proposals have been put forward in the literat
to define appropriate counterterms both for the external l
and for the CKM matrix elements. The original prescriptio
for a WFR diagonalizing the on-shell propagator was int
duced in@5#. In @6# the WFR ‘‘satisfying’’ the conditions of
@5# was derived. However, since@6# does not take care abou
the branch cuts present in the self-energies those results
be considered only consistent up to absorptive terms. Lat
was realized@7# that the on-shell conditions defined in@5#
were inconsistent and in fact impossible to satisfy for a mi
mal set of renormalization constants2 due to the imaginary
branch cuts present in the self-energies. The author of@7#
circumvented this problem by introducing a prescription th

ly
-

2By minimal set we mean a set where the WFR ofC̄05C̄Z̄1/2 and

C05Z1/2C are related byZ̄1/25g0Z1/2†g0.
©2002 The American Physical Society02-1
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de factoeliminates such branch cuts, but at the price of
diagonalizing the propagators in flavor space.

Ward identities based on the SU(2)L gauge symmetry re
late WFR and counterterms for the CKM matrix eleme
@3#. In @8# it was seen that if the prescription of@6# was used
in the counterterms for the CKM matrix elements, the resu
were in violation of gauge invariance. As we have just me
tioned, the results in@6# do not deal properly with the ab
sorptive terms appearing in the self-energies; which in ad
tion happen to be gauge dependent. In spite of the probl
with the prescription for the WFR given in@6#, the conclu-
sions reached in@8# are correct: a necessary condition f
gauge invariance of the physical amplitudes is that coun
terms for the CKM matrix elementsKi j are by themselves
gauge independent. This condition is fulfilled by the CK
counterterm proposed in@8# as it is in minimal subtraction
@3,9#.

Other proposals to handle CKM renormalization exist
the literature@9–11#. In all this work either the external WFR
proposed originally in@6# or @7# is used, or the issue is side
stepped altogether. In either case the absorptive part of
self-energies~and even the absorptive part of the 1PI vert
part in one particular instance@10#! is not taken into account
As we shall see doing so leads to physical amplitude
S-matrix elements—which are gauge dependent, and th
irrespective of the method one uses to renormalizeKi j pro-
vided the redefinition ofKi j is gauge independent and pr
serves unitarity.

Because of the structure of the imaginary branch cut
turns out, however, that the gauge dependence present i
amplitude using the prescription of@7# cancels in the modu
lus squared of the physicalSmatrix element in the SM. This
cancellation has been checked numerically by the author
@12#. In this work we shall provide analytical results showin
that this cancellation is exact. However, the gauge dep
dence remains at the level of the amplitude.

Is this acceptable? We do not think so. Diagrams cont
uting to the same physical process outside the SM e
troweak sector may interfere with the SM amplitude and
veal the unwanted gauge dependence. Furthermore, g
independent absorptive parts are also discarded by the
scription in@7#. These parts, contrary to the gauge depend
ones, do not drop in the squared amplitude as we shall sh
In addition, one should not forget that the scheme in@7# does
not deliver on-shell renormalized propagators that are d
onal in flavor space.

This work is dedicated to substantiating the above clai
We shall compute the gauge dependence of the absor
parts in the self-energies and the vertex functions. We s
see how the requirements of gauge invariance and pr
on-shell conditions~including exact diagonalization in flavo
space! single out a unique prescription for the WFR Th
problem is presented in detail in the next section. The
plicit expressions for the renormalization constants are gi
in Secs. III and IV. Implementation forW and top decay are
shown in Sec. V. A technical discussion where extended
of the Nielsen identities has been done to extract the ga
dependence of all absorptive terms is presented in Sec
and it can be omitted by readers not interested in these
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tails. In Sec. VII and VIII we return toW and top decay to
implement the previous results, and finally we conclude
Sec. IX.

II. STATEMENT OF THE PROBLEM AND ITS SOLUTION

We want to define an on-shell renormalization sche
that guarantees the correct properties of the fermionic pro
gator in thep2→mi

2 limit and at the same time renders th
observable quantities calculated in such a scheme gauge
rameter independent. In the first place up- and down-t
propagators have to be family diagonal on shell. The con
tions necessary for that purpose were first given by A
et al. in @5#. Let us introduce some notation in order to wri
them down. We renormalize the bare fermion fieldsC0 and

C̄0 as

C05Z1/2C, C̄05C̄Z̄1/2. ~2.1!

For reasons that will become clear through the discuss
we shall allowZ and Z̄ to be independent renormalizatio
constants.3 These renormalisation constants contain flav
family and Dirac indices. We can decompose them into

Z1/25Zu 1/2tu1Zd 1/2td, Z̄1/25Z̄u 1/2tu1Z̄d 1/2td,
~2.2!

with tu and td the up and down flavor projectors, and fu
thermore each piece in left and right chiral projectorsL and
R, respectively,

Zu 1/25ZuL 1/2L1ZuR 1/2R, Z̄u 1/25Z̄uL 1/2R1Z̄uR 1/2L.
~2.3!

Analogous decompositions hold forZd 1/2 and Z̄d 1/2. Be-
cause of radiative corrections the propagator mixes ferm
of different family indices. Namely

iS21~p!5Z̄1/2@p”2m2dm2S~p!#Z1/2,

where the bare self-energyS is nondiagonal and is given b
2 iS5(1PI. Within one-loop accuracy we can writeZ1/2

511 1
2 dZ etc. Introducing the family indices explicitly we

have

iSi j
21~p!5~p”2mi !d i j 2Ŝ i j ~p!,

where the one-loop renormalized self-energy is given by

Ŝ i j ~p!5S i j ~p!2
1

2
dZ̄i j ~p”2mj !

2
1

2
~p”2mi !dZi j 1dmid i j . ~2.4!

Since we can project the above definition for up- and dow
type quarks, flavor indices will be dropped in the followin

3This immediately raises some issues about Hermiticity, which
shall deal with below.
2-2
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and will only be restored when necessary. Recalling the
lowing on-shell relations for Dirac spinors (p2→mi

2)

~p”2mi !ui
(s)~p!50,

ūi
(s)~p!~p”2mi !50,

~p”2mi !v i
(s)~2p!50,

v̄ i
(s)~2p!~p”2mi !50, ~2.5!

the conditions@5# necessary to avoid mixing will be4

Ŝ i j ~p!uj
(s)~p!50 ~p2→mj

2!

~ incoming particle!, ~2.6!

v̄ i
(s)~2p!Ŝ i j ~p!50 ~p2→mi

2!

~ incoming antiparticle!, ~2.7!

ūi
(s)~p!Ŝ i j ~p!50 ~p2→mi

2!

~outgoing particle!, ~2.8!

Ŝ i j ~p!v j
(s)~2p!50 ~p2→mj

2!

~outgoing antiparticle! ~2.9!

where no summation over repeated indices is assumed
iÞ j . These relations determine the nondiagonal parts oZ

and Z̄ as will be proven in the next section. Here, as a s
remark, let us point out that the need of different ‘‘incomin
and ‘‘outgoing’’ WFR constants was already recognized
@13#. Nevertheless, that paper was unsuccessful in reco
ing the on-shell prescription with the presence of absorp
terms in the self-energies. However, since its results are
cerned with the leading contribution of an effective Lagran
ian, no absorptive terms are present and therefore the
clusions still hold.

To obtain the diagonal partsZii , Z̄ii , and dmi one im-
poses mass pole and unit residue conditions~to be discussed
below!. Here it is worth making one important comment r
garding the above conditions. First of all we note that in
literature the relation

Z̄1/25g0Z(1/2)†g0 ~2.10!

is taken for granted. This relation is tacitly assumed in@5#
and explicitly required in@7#. Imposing Eq.~2.10! would
guarantee Hermiticity of the Lagrangian written in terms
the renormalized physical fields. However, we are at t
point concerned with external leg renormalization, for whi
it is perfectly possible to use a different set of renormali
tion constants@even ones that do not respect the requirem
~2.10!#, while keeping the Lagrangian Hermitian. In fact, u

4Notice that, as a matter of fact, in@5# the conditions over anti-
fermions are not stated.
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ing two sets of renormalization constants is a standard p
tice in the on-shell scheme@4#, so one should not be con
cerned by this factper se. In case one is worried about th
consistency of using a set of WFR constants not satisfy
Eq. ~2.10! for the external legs while keeping a Hermitia
Lagrangian, it should be pointed out that there is a comp
equivalence between the set of renormalization constants
shall find below and a treatment of the external legs wh
diagrams with self-energies~including mass counterterms!
are inserted instead of the WFR constants; provided,
course, that the mass counterterm satisfies the on-shell
dition. Proceeding in this way gives results identical to ou
and different from those obtained using the WFR propose
@7#, which do satisfy Eq.~2.10!. Further consistency check
are presented in the following sections.

In any case, self-energies develop absorptive terms
this makes Eq.~2.10! incompatible with the diagonalizing
conditions~2.6!–~2.9!. Therefore in order to circumvent thi
problem one can give up diagonalization conditions~2.6!–
~2.9! or alternatively the Hermiticity condition~2.10!. The
approach taken originally in@7# and work thereafter was th
former alternative, while in this work we shall advocate t
second one. The approach of@7# consists in dropping ou
absorptive terms from conditions~2.6!–~2.9!. That is, for i
Þ j ,

Rẽ@Ŝ i j ~p!#uj
(s)~p!50 ~p2→mj

2!

~ incoming particle!,

v̄ i
(s)~2p!Rẽ@Ŝ i j ~p!#50 ~p2→mi

2!

~ incoming antiparticle!,

ūi
(s)~p!Rẽ~Ŝ i j ~p!!50 ~p2→mi

2!

~outgoing particle!,

Rẽ@Ŝ i j ~p!#v j
(s)~2p!50 ~p2→mj

2!

~outgoing antiparticle!,

~2.11!

where Rẽincludes the real part of the logarithms arising
loop integrals appearing in the self-energies but not of
rest of coupling factors of the Feynmann diagram. This
proach is compatible with the hermiticity condition~2.10!
but on the other hand has several drawbacks. These d
backs include the following:

~1! Since only the Re˜ part of the self-energies enters in
the diagonalizing conditions the on-shell propagator rema
nondiagonal.

~2! The very definition of Re˜ relies heavily on the one
loop perturbative calculation where it is applied. In oth
words Rẽis not a proper function of its argument~in contrast
to Re! and it is presumably cumbersome to implement
multiloop calculations.
2-3
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~3! As will become clear in the next sections, the on-sh
scheme based in the Re˜ prescription leads to gauge param
eter dependent physical amplitudes. The reason for this
wanted dependence is the dropping of absorptive gauge
rameter dependent terms in the self-energies that
necessary to cancel absorptive terms appearing in the v
ces. As mentioned in the Introduction, in the SM, the gau
dependence drops in the modulus squared of the amplit
but not in the amplitude itself, and it could be eventua
observable.

Having stated the unwanted features of the Re˜ approach
let us briefly state the consequences of dropping condi
~2.10!

~1! Conditions ~2.6!–~2.9! readily determine the off-

diagonalZ and Z̄ WFRs which coincide with the ones ob
tained using the Re˜ prescription up to finite absorptive gaug
parameter dependent terms.

~2! The renormalized fermion propagator becomes exa
diagonal on shell, unlike in the Re˜ scheme.

~3! Incoming and outgoing particles and antiparticles
quire different renormalization constants when computin
physical amplitude. Annihilation of particles and creation
antiparticles are accompanied by the renormalization c
stantZ, while creation of particles and annihilation of an

particles are accompanied by the renormalization constanZ̄.

~4! These constantsZ and Z̄ are in what relates to thei
dispersive parts identical to the ones in@7#. They differ in
their absorptive parts. This might suggest to the alert rea
that there could be problems with fundamental symmet
such asCP or CPT. We shall discuss this issue at the end
the paper. Our conclusion is that everything works out c
sistently in this respect.

For explicit expressions forZ and Z̄ the reader should
consult formulas~3.3!, ~3.4! and ~4.10! in the next two sec-
tions. As an example of how to implement them see Sec
The explicit dependence on the gauge parameter~for sim-
plicity only the W gauge parameter is considered! of the
absorptive parts is given in Sec. VII.

III. OFF-DIAGONAL WAVE-FUNCTION
RENORMALIZATION CONSTANTS

This section is devoted to a detailed derivation of t
off-diagonal renormalization constants derived entirely fro
the on-shell conditions~2.6!–~2.9! and allowing for Z̄1/2

Þg0Z(1/2)†g0. First of all we decompose the renormalize
self-energy into all possible Dirac structures

Ŝ i j ~p!5p” @Ŝ i j
gR~p2!R1Ŝ i j

gL~p2!L#

1Ŝ i j
R~p2!R1Ŝ i j

L ~p2!L, ~3.1!

and use Eqs.~2.3!, ~2.4!, and~3.1! to obtain
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Ŝ i j ~p!5p”RS S i j
gR~p2!2

1

2
dZ̄i j

R2
1

2
dZi j

RD
1p”LS S i j

gL~p2!2
1

2
dZ̄i j

L 2
1

2
dZi j

L D
1RS S i j

R~p2!1
1

2
~dZ̄i j

L mj1midZi j
R!1d i j dmi D

1LS S i j
L ~p2!1

1

2
~dZ̄i j

Rmj1midZi j
L !1d i j dmi D .

~3.2!

Repeated indices are not summed over. Hence from E
~3.2!, ~2.5!, and~2.6! we obtain

S i j
gR~mj

2!mj2
1

2
dZi j

Rmj1S i j
L ~mj

2!1
1

2
midZi j

L 50,

S i j
gL~mj

2!mj2
1

2
dZi j

L mj1S i j
R~mj

2!1
1

2
midZi j

R50.

Exactly the same relations are obtained from Eqs.~3.2!,
~2.5!, and~2.9!. Analogously, Eqs.~3.2!, ~2.5!, and~2.7! @or
Eq. ~2.8!# lead to

miS i j
gR~mi

2!2
1

2
midZ̄i j

R1S i j
R~mi

2!1
1

2
dZ̄i j

L mj50,

miS i j
gL~mi

2!2
1

2
midZ̄i j

L 1S i j
L ~mi

2!1
1

2
dZ̄i j

Rmj50.

Using the above expressions we immediately obtain

dZi j
L 5

2

mj
22mi

2 @S i j
gR~mj

2!mimj1S i j
gL~mj

2!mj
2

1miS i j
L ~mj

2!1S i j
R~mj

2!mj #,

dZi j
R5

2

mj
22mi

2 @S i j
gL~mj

2!mimj1S i j
gR~mj

2!mj
2

1miS i j
R~mj

2!1S i j
L ~mj

2!mj #, ~3.3!

and

dZ̄i j
L 5

2

mi
22mj

2 @S i j
gR~mi

2!mimj1S i j
gL~mi

2!mi
2

1miS i j
L ~mi

2!1S i j
R~mi

2!mj #,

dZ̄i j
R5

2

mi
22mj

2 @S i j
gL~mi

2!mimj1S i j
gR~mi

2!mi
2

1miS i j
R~mi

2!1S i j
L ~mi

2!mj #. ~3.4!

At the one-loop level in the SM we can define

S i j
R~p2![S i j

S~p2!mj , S i j
L ~p2![miS i j

S~p2!,
2-4
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and therefore

dZ̄i j
L 2dZi j

L†5
2

mi
22mj

2 $@S i j
gR~mi

2!2S j i
gR* ~mi

2!#mimj

1@S i j
gL~mi

2!2S j i
gL* ~mi

2!#mi
21~mi

21mj
2!

3@S i j
S~mi

2!2S j i
S* ~mi

2!#%Þ0,

and a similar relation holds fordZ̄i j
R2dZi j

R† . The above non-
vanishing difference is due to the presence of branch cut
the self-energies that invalidate the pseudo-Hermiticity re
tion

S i j ~p!Þg0S i j
† ~p!g0. ~3.5!

Equation~3.5! is assumed in@5# and if we temporarily ignore
those branch cut contributions our results reduce to the o
depicted in@6# or @7#. In the SM these branch cuts are g
nerically gauge dependent as a cursory look at the appro
ate integrals shows at once.

IV. DIAGONAL WAVE-FUNCTION RENORMALIZATION
CONSTANTS

Once the off-diagonal WFRs are obtained we focus
attention on the diagonal sector. Near the on-shell limit
can neglect the off-diagonal parts of the inverse propag
and write

iSi j
21~p!5@p”2mi2Ŝ i i ~p!#d i j

5@p” ~aL1bR!1cL1dR#d i j , ~4.1!

and therefore after some algebra

2 iSi j ~p!5
p” ~aL1bR!2dL2cR

p2ab2cd
d i j ;

in our case we have

a512S i i
gL~p2!1

1

2
dZ̄ii

L 1
1

2
dZii

L ,

b512S i i
gR~p2!1

1

2
dZ̄ii

R1
1

2
dZii

R ,

~4.2!

c52S i i
L ~p2!2S 11

1

2
dZ̄ii

R1
1

2
dZii

L Dmi2dmi ,

d52S i i
R~p2!2S 11

1

2
dZ̄ii

L 1
1

2
dZii

RDmi2dmi .
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In the limit p2→mi
2 the chiral structures in the numerato

have to cancel (a→b andc→d); this requirement leads to

dZ̄ii
R2dZ̄ii

L 5S i i
gR~mi

2!2S i i
gL~mi

2!1
S i i

R~mi
2!2S i i

L ~mi
2!

mi
,

dZii
R2dZii

L 5S i i
gR~mi

2!2S i i
gL~mi

2!2
S i i

R~mi
2!2S i i

L ~mi
2!

mi
.

~4.3!

After this, we require the inverse propagator to have a zer
its real part asp2→mi

2

lim
p2→mi

2

Re~p2b2cda21!50, ~4.4!

from which dmi is obtained,

dmi52
1

2
Re$miS i i

gL~mi
2!1miS i i

gR1S i i
L ~mi

2!1S i i
R~mi

2!%.

~4.5!

This condition defines a mass and a width that agree at
one-loop level with the ones given in@14#, @15#, @16#, and
@17#. The mass and width are defined as the real and im
nary parts of the propagator pole in the complex plane
spectively. Note also that from Eqs.~4.2!, ~4.3!, and~4.5! we
have

lim
p2→mi

2

~2ca21!5mi1
i

2
Im~S i i

gR~mi
2!mi

1S i i
gL~mi

2!mi1S i i
R~mi

2!1S i i
L ~mi

2!!, ~4.6!

and therefore

lim
p2→mi

2

p” ~aL1bR!2dL2cR

p2ab2cd
5

p”1mi2 iG/2

imiG
,

where the width is defined as

G[2Im~S i i
gR~mi

2!mi1S i i
gL~mi

2!mi1S i i
R~mi

2!1S i i
L ~mi

2!!.

This quantity is ultraviolet finite. In order to find the residu
in the complex plane we expand the propagator around
physical mass, obtaining forp2;mi

2

Si j ~p!5
i @p”1mi2 iG/21O~p22mi

2!#

imiG1~p22mi
2!a21@ab1mi

2~a8b1ab8!2~c8d1cd8!#
1O~~p22mi

2!2!, ~4.7!
2-5
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where a5b and c5d are evaluated atp25mi
2 . Hereafter

primed quantities denote derivatives with respect
p2
•O@(p22mi

2)n# stands for nonessential corrections of o
der (p22mi

2)n. Note that theO(p22mi
2) corrections in the

numerator do not mix with the ones of the same order in
denominator since the first ones are of orderG21 and the
second ones are of orderG22. Taking into account these
comments the unit residue condition amounts to requirin

15
a1b

2
1mi

2~a81b8!1~mi2 iG/2!~c81d8!, ~4.8!

from which

1

2
~dZ̄ii

L 1dZ̄ii
R!5S i i

gL~mi
2!1S i i

gR~mi
2!2

1

2
~dZii

L 1dZii
R!

12mi
2~S i i

gL8~mi
2!1S i i

gR8~mi
2!!

12mi~S i i
L8~mi

2!1S i i
R8~mi

2!!. ~4.9!

We have already required all the necessary conditions to
the correct properties of the on-shell propagator but s
there is some freedom left in the definition of the diago
Z’s. This freedom can be expressed in terms of a set of fi
coefficientsa i given by

1

2
~dZii

L 1dZii
R!5

1

2
~dZ̄ii

L 1dZ̄ii
R!1a i .

Bearing in mind that ambiguity and using Eqs.~4.3! and
~4.9! we obtain

dZ̄ii
L 5S i i

gL~mi
2!2X2

a i

2
1D,

dZ̄ii
R5S i i

gR~mi
2!1X2

a i

2
1D,

dZii
L 5S i i

gL~mi
2!1X1

a i

2
1D,

dZii
R5S i i

gR~mi
2!2X1

a i

2
1D, ~4.10!

where

X5
1

2

S i i
R~mi

2!2S i i
L ~mi

2!

mi
,

D5mi
2~S i i

gL8~mi
2!1S i i

gR8~mi
2!!

1mi~S i i
L8~mi

2!1S i i
R8~mi

2!.

Note that sinceX50 at the one-loop level and choosinga i

50 we obtain dZ̄ii
L 5dZii

L and dZ̄ii
R5dZii

R . However, we
have the freedom to choosea iÞ0. This does not affect the
mass terms or neutral current couplings, but changes
charged coupling currents by multiplying the CKM matrixK
07600
o

e

x
ll
l
te

he

by diagonal matrices. These redefinitions do not change
physical observables provided thea i are pure imaginary
numbers. This ambiguity corresponds in perturbation the
to the well known freedom in phase redefinitions of t
CKM matrix. Except for this last freedom, the on-shell co
ditions determine one unique solution, the one presen
here, withZ̄1/2Þg0Z(1/2)†g0.

V. W¿ AND TOP DECAY

Let us now apply the above mechanism toW1 and top
decay. We write

W1~q!→ f i~p1! f̄ j~p2!, ~5.1!

f i~p1!→W1~q! f j~p2!, ~5.2!

wheref indicates particle andf̄ antiparticle. The latin indices
are reserved for family indices. Leptonic and quark chann
can be considered with the same notation, and confus
should not arise. For the process~5.1! there are at next-to-
leading order two different types of Lorentz structure:

ML
(1)5ūi~p1!«” ~q!Lv j~p2! ~L↔R!,

~5.3!
ML

(2)5ūi~p1!Lv j~p2!p1•«~q! ~L↔R!,

where « stands for the vector polarization of theW1.
Equivalently, for the process~5.2! we shall use

ML
(1)5ū j~p2!«” * ~q!Lui~p1! ~L↔R!,

~5.4!
ML

(2)5ū j~p2!Lui~p1!p1•«* ~q! ~L↔R!.

The transition amplitude at tree level for the processes~5.1!
and ~5.2! is given by

M052
eKi j

2sW
ML

(1) ,

where Eq.~5.3! is used forML
(1) in W1 decay and Eq.~5.4!

instead forML
(1) in t decay. The one-loop corrected transitio

amplitude can be written as

M152
e

2sW
ML

(1)FKi j S 11
de

e
2

dsW

sW
1

1

2
dZWD

1dKi j 1
1

2 (
r

~dZ̄ir
LuKr j 1Kir dZr j

Ld!G
2

e

2sW
~dFL

(1)ML
(1)1ML

(2)dFL
(2)

1MR
(1)dFR

(1)1MR
(2)dFR

(2)!. ~5.5!

In this expressiondFL,R
(1,2) are the electroweak form factor

coming from one-loop vertex diagrams. The renormalizat
constants are given by
2-6
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de

e
52

1

2
@~dZ2

A2dZ1
A!1dZ2

A#

52
sW

cWMZ
2

PZA~0!1
1

2

]PAA

]k2
~0!,

dsW

sW
52

cW
2

2sW
2 S dMW

2

MW
2

2
dMZ

2

MZ
2 D

52
cW

2

2sW
2

ReS PWW~MW
2 !

MW
2

2
PZZ~MZ

2!

MZ
2 D ,

dZW52
]PWW

]k2
~MW

2 !,

and the fermionic WFR constants are depicted in Eqs.~3.3!,
~3.4!, and~4.10! where the indicesu or d must be restored in
the masses. The indexA refers to the photon field.

As for thedKi j renormalization constants, a SU~2! Ward
identity @8# fixes these counterterms to be

dK jk5
1

4
@~dẐuL2dẐuL†!K2K~dẐdL2dẐdL†!# jk , ~5.6!

where Ẑ means that the WFR constants appearing in
above expression are not necessarily the same ones us
renormalize and guarantee the proper on-shell residue fo
external legs, as has already been emphasised. One ma
instance, use minimal subtractionZ’s for the former.

We know @18# that the combinationde/e2dsW /sW is
gauge parameter independent. All the other vertex functi
and renormalization constants are gauge dependent. Fo
reasons stated in the Introduction we want the amplit
~5.5! to be exactly gauge independent—not just
modulus—so the gauge dependence must cancel betwee
the remaining terms.

In the next section we shall make use of the Nielsen id
tities @19–22# to determine that three of the form facto
appearing in the vertex~5.5! are by themselves gauge ind
pendent, namely,

]jdFL
(2)5]jdFR

(1)5]jdFR
(2)50.

j is the gauge fixing parameter. We shall also see that
gauge dependence in the remaining form factordFL

(1) can-
cels exactly with the one contained indZW and in dZ and
dZ̄. Therefore to guarantee a gauge fixing parameter in
pendent amplitudedK must be gauge independent as wel

The difficulties related to a proper definition ofdK were
first pointed out in@8,19#, where it was realized that usin
the on-shellZ’s of @6# in Eq. ~5.6! led to a gauge dependen
K and amplitude. Those authors suggested a modificatio
the on-shell scheme based on a subtraction atp250 for all
flavors that ensured gauge independence. We want to s
that the choice fordK is not unique and different choice
may differ by gauge independent finite parts@12#. Note that
07600
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the gauge independence ofdK is in contradistinction with
the conclusions of@10# and in addition these authors have
nonunitary bare CKM matrix which does not respect t
Ward identity.

As we shall see, if instead of using our prescription fordZ

anddZ̄ one makes use of the WFR constants of@7# to renor-
malize the external fermion legs, it turns out that the gau
cancellation dictated by the Nielsen identities does not a
ally take place in the amplitude. The culprits are of cou
the absorptive parts. These absorptive parts of the s
energies are absent in@7# due to the use of the Re˜ prescrip-
tion, which throws them away. Notice, though, that the v
tex contribution has gauge dependent absorptive p
~calculated in the next section! and they remain in the fina
result.

One might think of absorbing these additional terms in
counterterm fordK. This does not work. Indeed one can s
from explicit calculations that WFR constants decompose

dZLu5AuL1 iBuL, dZ̄Lu5AuL†1 iBuL†

~L↔R,u↔d!, ~5.7!

where the matricesA and B contain the dispersive and ab
sorptive parts of the self-energies, respectively. Moreove
one substitutes Eq.~5.7! back into Eq.~5.5! one immediately
sees that a necessary requirement allowing theAu and Ad

(Bu andBd) contributions to be absorbed into a CKM matr
counterterm of the form given in Eq.~5.6! is thatAu andAd

(Bu and Bd) were anti-Hermitian~Hermitian! matrices. By
direct inspection one can conclude that allA’s or B’s are
neither Hermitian nor anti-Hermitian matrices and therefo
any such redefinitions are impossible unless one is willing
give up the unitarity of the bareK. A problem somewhat
similar to that was encountered in@10# ~but different in that
they did not consider absorptive parts at all; the incons
tency already showed up with the dispersive parts of
on-shell scheme of@6#!.

It turns out that in the SM these gauge dependent abs
tive parts, leading to a gauge dependent amplitude if they
dropped, do actually cancel, at least at the one-loop leve
the modulus of theS matrix element. Thus at this level th
use of Rẽis irrelevant. It is also shown in Sec. VII that gaug
independent absorptive parts do survive even in the mod
of the amplitude for top quark or top antoquark decay~and
only in these cases!. Therefore we have to conclude that th
difference between using Re˜, as advocated in@7#, or not, as
we do, is not just a semantic one. As we have seen,
difference cannot be attributed to a finite renormalization
K, provided the bareK remains unitary as required by th
Ward identity~5.6!.

VI. NIELSEN IDENTITIES

In this section we derive in detail the gauge depende
of the vertex three-point function. It is therefore rather tec
nical and it can be omitted by readers just interested in
physical conclusions. In order to have control on gauge
pendence, a useful tool is provided by the so-called Niel
2-7
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identities @20#. For such purpose in addition to the ‘‘class
cal’’ LagrangianLSM we have to take into account the gau
fixing term LGF, the Fadeev-Popov termLFP, and source
terms. Such source terms are the ones given by Bec
Rouet-Stora-Tyutin ~BRST! variations of matter
(h̄u,hu, . . . ) andgauge fields together with Goldstone a
ghost fields~not including antighosts!. We refer the reader to
@4,19# for notation and further explanations. We also inclu
source terms (x) for the composite operators whose BRS
variations generateLGF1LFP. Schematically,

L5LSM1LGF1LFP2
1

2j
x~~]mWm

22 i jMWG2!c̄1

1~]mWm
12 i jMWG1!c̄2!1

ig

A2
h̄ i

uKir Ldr

2
ig

A2
c̄1d̄rKr j

† Rh j
u1 s̄i

uui1ū jsj
u1 s̄i

ddi1d̄ jsj
d1•••,

where the ellipsis stands for the remaining source terms.
effective actionG is introduced in the standard manner,

G@x,h̄u,hu,ūcl,ucl, . . . #

5W@x,h̄u,hu,s̄u,su, . . . #

2~ s̄i
uui

cl1ū j
clsj

u1 s̄i
ddi

cl1d̄ j
clsj

d1••• !, ~6.1!

with

eiW5Z@x,h̄u,hu,s̄u,su, . . . #[E DF exp~ iL!. ~6.2!

From the above expressions and using~BRST! transforma-
tions we can extract the Nielsen identities for the three-po
functions~see@20# for details!:

]jGW
m
1ūidj

52GxW
m
1g

Wa

2 GW
a
1ūidj

2Gxūihr
uGW

m
1ūrdj

2GW
m
1ūidr

Gh̄
r
ddjx

2GxW
m
1g

Ga

2 GG
a
1ūidj

2Gxg
Ga

1 ūidj
GG

a
2W

m
12Gxg

Wa

1 ūidj
GW

a
2W

m
1

2GxW
m
1ūihr

dG d̄rdj
2G ūiur

GxW
m
1h̄

r
udj

, ~6.3!

where we have omitted the momentum dependence and
fined

Gxūih j
u[

dW

dx

dW

dūi
cl~p!

d

dh j
u~p!

G,

Gh̄
i
uujx

[
d

dh̄ i
u~p!

dW

duj
cl~p!

dW

dx
G.

In the rest of this section we shall evaluate the on-shell c
tributions to Eq. ~6.3!. Analogously, we can also deriv
Nielsen identities for two-point functions:
07600
hi-

he

t

e-
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]jGW
m
1W

b
2

(1)
522~GxW

m
1g

Wa

2
(1)

GW
a
1W

b
21GxW

m
1g

Ga

2
(1)

GG
a
1W

b
2!,

~6.4!

]jGW
m
1G

b
2

(1)
522~GxW

m
1g

Wa

2
(1)

GW
a
1G

b
21GxW

m
1g

Ga

2
(1)

GG
a
1G

b
2!.

~6.5!

On shell these reduce to

GxW1g
W
2

T(1)
~MW

2 !52
1

2
]j

]GW1W2
T(1)

]q2
~q2!uq25M

W
2 5

1

2
]jdZW ,

GxW1g
G
2

T(1)
~q!50, ~6.6!

where the superscriptT refers to the transverse part and t
superscript (1) makes reference to the one-loop order
rection.

Using these two sets of results and restricting Eq.~6.3! to
the 1PI function appropriate for~on-shell! top quark decay,

ūu~pi !e
m~q!]jGW

m
1ūidj

(1) vd~2pj !

5
g

A2
ūu~pi !H Gxūihr

uKr j e”L1Kir e”LGh̄
r
ddjx

1
1

2
]jdZWKi j e”LJ vd~2pj !. ~6.7!

At the one-loop level we also have the Nielsen identity

]jS i j
u ~p!5Gxūih j

u
(1)

~p!~p”2mj
u!1~p”2mi

u!Gh̄
i
uujx

(1)
~p!, ~6.8!

which is the fermionic counterpart of Eqs.~6.4! and~6.5!. A
similar relation holds interchangingu↔d. With the use of
Eq. ~6.8! and an analogous decomposition to Eq.~3.1! for G,

Gxūih j
u

(1)
~p!5p” ~Gxūih j

u
gR(1)

~p2!R1Gxūih j
u

gL(1)
~p2!L !

1Gxūih j
u

R(1)
~p2!R1Gxūih j

u
L(1)

~p2!L,

Gh̄
i
uujx

(1)
~p!5p” ~Gh̄

i
uujx

gR(1)
~p2!R1Gh̄

i
uujx

gL(1)
~p2!L !

1Gh̄
i
uujx

R(1)
~p2!R1Gh̄

i
uujx

L(1)
~p2!L, ~6.9!

we obtain after equating Dirac structures

]jS i j
ugR~p2!5Gxūih j

u
L(1)

~p2!2mjGxūih j
u

gR(1)
~p2!

1Gh̄
i
uujx

R(1)
~p2!2miGh̄

i
uujx

gR(1)
~p2!,

]jS i j
uR~p2!5p2Gxūih j

u
gL(1)

~p2!2mjGxūih j
u

R(1)
~p2!

1p2Gh̄
i
uujx

gR(1)
~p2!2miGh̄

i
uujx

R(1)
~p2!, ~6.10!

and analogous expressions exchangingL↔R and u↔d.
Moreover from Eqs.~6.7! and ~6.9! we obtain
2-8
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ūu~pi !e
m~q!]jGW

m
1ūidj

(1) vd~2pj !5
g

A2
H ūu~pi !~mi

uGxūihr
u

gR(1)
~mi

u2!1Gxūihr
u

R(1)
~mi

u2!!Kr j e”Lvd~2pj !1ūu~pi !Kir e”L~mj
dGh̄

r
ddjx

gR(1)
~mj

d2!

1Gh̄
r
ddjx

L(1)
~mj

d2!!vd~2pj !1
1

2
]jdZWūu~pi !Ki j e”Lvd~2pj !J . ~6.11!
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Using Eqs.~3.3!, ~3.4!, and~6.10! one arrives at

mj
uGh̄

i
uujx

gR(1)
~mj

u2!1Gh̄
i
uujx

L(1)
~mj

u2!5
1

2
]jdZi j

uL ~ iÞ j !,

~6.12!

mi
uGxūih j

u
gR(1)

~mi
u2!1Gxūih j

u
R(1)

~mi
u2!5

1

2
]jdZ̄i j

uL ~ iÞ j !,

~6.13!

and once more similar relations hold exchangingL↔R and
u↔d. Notice that absorptive parts are present in the
Green’s functions and hence indZ anddZ̄ too. If we forgot
about such absorptive parts we would have pseu
Hermiticity; namely,

Gxūih j
u

(1)
5g0Gh̄

i
uujx

(1)†
g0,

whereGh̄
i
uujx

†
means complex conjugatingGh̄

i
uujx

and inter-

changingbothDirac and family indices. However, the imag
nary branch cut terms prevent the above relation from ho
ing and then Eq.~2.10! does not hold.

At this point one might be tempted to plug expressio
~6.12!, ~6.13! into Eq. ~6.11!. However such relations ar
obtained only in the restricted caseiÞ j . For i 5 j Eqs.~6.10!
are insufficient to determine the combinations appearing
the left-hand side~LHS! of Eqs. ~6.12!, ~6.13! and further
information is required. That is also necessary even in
actual case where the RHSs of Eqs.~6.12!, ~6.13! are not
singular atmi→mj @11#. In the rest of this section we sha
proceed to calculate such diagonal combinations and
by-product we shall also cross-check the results already
tained for the off-diagonal contributions and in addition pr
duce some new ones.

By direct computation one finds generically

Gxūih j
u

(1)
5~p”mi

uBi j
u ~p2!1Ci j

u ~p2!1Ai j
u ~p2!!R,

~6.14!
Gh̄

i
uujx

(1)
5L~p”Bi j

u ~p2!mj
u1Ci j

u ~p2!1Ai j
u ~p2!!,

and analogous relations interchangingu↔d. TheA function
comes from the diagram containing a charged gauge bo
propagator andB and C from the diagram containing a
charged Goldstone boson propagator. From Eqs.~6.8! and
~6.14! we obtain

]jS i j
gR~p2!522miBi j ~p2!mj ,
07600
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]jS i j
gL~p2!52~Ai j ~p2!1Ci j ~p2!!,

]jS i j
R~p2!5~p2Bi j ~p2!2Ci j ~p2!2Ai j ~p2!!mj ,

]jS i j
L ~p2!5mi~p2Bi j ~p2!2Ci j ~p2!2Ai j ~p2!!. ~6.15!

The above system of equations is overdetermined and th
fore some consistency identities between bare self-ener
arise, namely,

]j~miS i j
R~p2!2S i j

L ~p2!mj !50, ~6.16!

and

]j~p2S i j
gR~p2!1S i j

gL~p2!mimj

1miS i j
R~p2!1S i j

L ~p2!mj !50. ~6.17!

These constraints must hold independently of any renorm
ization scheme and we have checked them by direct com
tation. Actually the former holds trivially since, at least at t
one-loop level in the SM,

miS i j
R~p2!2S i j

L ~p2!mj50. ~6.18!

Finally, projecting Eq.~6.14! over spinors we also have

ūu~pi !Gxūih j
u

(1)
5ūu~pi !~mi

u2Bi j
u ~mi

u2!1Ci j
u ~mi

u2!

1Ai j
u ~mi

u2!!R,

Gh̄
i
ddjx

(1) vd~2pj !5L~Bi j
d ~mj

d2!mj
d21Ci j

d ~mj
d2!

1Ai j
d ~mj

d2!!vd~2pj !. ~6.19!

The RHS of the previous expressions can be evaluate
terms of the WFR via the use of Eqs.~6.15!:
2-9
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]j~mj
umi

uS i j
ugR~p2!1p2S i j

ugL~p2!1mj
uS i j

uR~p2!1mi
uS i j

uL~p2!!

5Bi j
u ~p2!~p2~mj

u21mi
u2!22mj

u2mi
u2!1~2p22mj

u22mi
u2!~Ai j

u ~p2!1Ci j
u ~p2!!, ~6.20!

]j~S i j
dgR~p2!mi

dmj
d1S i j

dgL~p2!p21mi
dS i j

dL~p2!1S i j
dR~p2!mj

d!

5Bi j
d ~p2!~p2~mi

d21mj
d2!22mi

d2mj
d2!1~2p22mi

d22mj
d2!~Ai j

d ~p2!1Ci j
d ~p2!!. ~6.21!
.
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Hence, using the off-diagonal WFR expressions~3.3!, ~3.4!
we re-obtain

ūu~pi !
1

2
]jdZ̄i j

uLR5ū~pi !Gxūih j
u

(1)
,

~6.22!

L
1

2
]jdZi j

dLvd~2pj !5Gh̄
i
ddjx

(1) vd~2pj !.

For the diagonal WFR we use Eqs.~4.10! together with Eqs.
~6.15! and~6.19!, obtainingexactlythe same result as in Eq
~6.22! with i 5 j therein. Note, however, that since in E
~6.19! we have no derivatives with respect top2, obtaining
Eq. ~6.22! involves a subtle cancellation between thep2 de-
rivatives of the bare self-energies appearing in the defini
of the diagonal WFR.

Before proceeding let us make a side remark concern
the regularity properties of the gauge derivative in E
~6.20! and ~6.20! in the limit mi→mj . Note that in evaluat-
ing Eq. ~6.20! at p25mi

u2 and Eq. ~6.21! at p25mj
d2 , a

global factor (mi
u22mj

u2) appears in the first equation an
(mj

d22mi
d2) in the second one. Therefore it can be imme

ately seen that Nielsen identities together with the inform
tion provided by Eq.~6.14! assure the regularity of the gaug
derivative for the off-diagonal WFR constants whenmi
→mj . Moreover, we have seen that this limit is not on
regular but also equal to the expression obtained from
diagonal WFR which is not obviousa priori @8,11#.

Replacing Eq.~6.22! in Eq. ~6.7! we obtain

]j~ ūu~pi !e
m~q!GW

m
1ūidj

(1) vd~2pj !!

5
e

2sW
ML

(1)]j~dZ̄ir
uLKr j 1Kir dZr j

dL1dZWKi j !

52
e

2sW
]j~ML

(1)dFL
(1)1ML

(2)dFL
(2)

1MR
(1)dFR

(1)1MR
(2)dFR

(2)!, ~6.23!

where Eq.~5.5! and the gauge independence of the elec
charge and Weinberg angle have been used in the last e
ity. In the previous expressionML,R

( i ) are understood with the
physical momentap1 and p2 of Eq. ~5.3! replaced by the
diagrammatic momentapi and2pj , respectively. Note tha
Eq. ~6.23! states that the gauge dependence of the on-s
bare one-loop vertex function cancels out the renormal
tion counter terms appearing in Eq.~5.5! ~see Fig. 1!. This is
07600
n

g
.

-
-

e

c
al-

ell
-

one of the crucial results and special care should be taken
to ignore any of the absorptive parts—including those in
WFR constants. As a consequence,

]jM152
e

2sW
ML

(1)]jdKi j ,

and if we want a gauge independent amplitude the coun
term for Ki j must be separately gauge independent, as or
nally derived in@8#.

Finally, since each structureML,R
( i ) must cancel separatel

we have that the Nielsen identities enforce

]jdFL
(2)5]jdFR

(1)5]jdFR
(2)50.

VII. ABSORPTIVE PARTS

Having determined in the previous section, thanks to
extensive use of the Nielsen identities, the gauge depend
of the different quantities appearing in top quark orW decay
in terms of the self-energies, we shall now proceed to list
absorptive parts of the WFR constants, with special atten
to their gauge dependence. The aim of this section is to s
the differences between the WFR constants given in
scheme and the ones in@7#. Recall that at one loop this
difference reduces to the absorptive (Im˜) contribution to the
dZ’s. In what concerns the gauge dependent part~with j
>0) the absorptive contribution (Im˜j) in the fermionicdZ’s
amounts to

i Im̃j~dZi j
uL!5(

h

iK ihKh j
†

8pv2mj
u2

u~mj
u2mh

d2AjMW!

3~mj
u22mh

d22jMW
2 !

3A~~mj
u2mh

d!22jMW
2 !~~mj

u1mh
d!22jMW

2 !,

FIG. 1. Pictorial representation of the on-shell Nielsen iden
given by Eq.~6.23!. The blobs in the LHS. represent bare one-lo
contributions to the on-shell vertex and the blobs in the RHS W
counterterms.
2-10
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i Im̃j~dZ̄i j
uL!5(

h

iK ihKh j
†

8pv2mi
u2

u~mi
u2mh

d2AjMW!

3~mi
u22mh

d22jMW
2 !

3A~~mi
u2mh

d!22jMW
2 !~~mi

u1mh
d!22jMW

2 !,

Im̃j~dZi j
uR!5Im̃j~dZ̄i j

uR!50,

whereu is the Heaviside function andv is the Higgs vacuum
expectation value. For the downdZ we have the same for
mulas replacingu↔d and K↔K†. Note that using these
results we can write

i ]jIm̃F(
r

~dZ̄ir
uLKr j 1Kir dZr j

dL!1dZWKi j G
5Ki j ]jH i

8pv2 F 1

mi
u2

u~mi
u2mj

d2AjMW!

3~mi
u22mj

d22jMW
2 !1

1

mj
d2

u~mj
d2mi

u2AjMW!

3~mj
d22mi

u22jMW
2 !G

3A~~mj
d2mi

u!22jMW
2 !~~mj

d1mi
u!22jMW

2 !

1 i Im̃j~dZW!J . ~7.1!

In the caseumi
u2mj

du<AjMW the above expression reduc
to

]j(
r

Im̃~dZ̄ir
uLKr j 1Kir dZr j

dL!50, ~7.2!

while for umi
u2mj

du>AjMW we have

i ]j(
r

Im̃~dZ̄ir
uLKr j 1Kir dZr j

dL!

5Ki j ]jH i

4pv2

umi
u22mj

d2u2jMW
2

mi
u21mj

d21umi
u22mj

d2u

3A~~mj
d2mi

u!22jMW
2 !~~mj

d1mi
u!22jMW

2 !J .

~7.3!

Moreover thej dependent absorptive contribution todZW

(Im̃j(dZW)) has no dependence on quark masses since
diagram with a fermion loop is gauge independent. Beca
of that we can conclude that the derivative in Eq.~7.1! does
not vanish. DefiningD i j as the difference between the vert
observable calculated in our scheme and the same in
scheme using Re˜ we have
07600
he
se

he

D i j ;uKi j u2Re~ i Im̃dZW!1ReH iK i j* (
r

@ Im̃~dZ̄ir
uL!Kr j

1Kir Im̃~dZr j
dL!#J .

In the case ofdZW one can easily check that Im˜(dZW)
5Im(dZW), obtaining

D i j ;ReH iK i j* (
r

@ Im̃~dZ̄ir
uL!Kr j 1Kir Im̃~dZr j

dL!#J . ~7.4!

Thus from Eq.~7.2!, ~7.3!, and~7.4! we immediately obtain

]jD i j ;ReH iK i j* (
r

@]jIm̃~dZ̄ir
uL!Kr j

1Kir ]jIm̃~dZr j
dL!#J 50. ~7.5!

However, gauge independent absorptive parts, include
our prescription is used but not if one uses that of@7#, which
makes use of the Re˜, do contribute to Eq.~7.4!. In order to
see that we can takej51 obtaining for the physical value
of the masses

Im̃j51~dZr j
dL!50,

Im̃j51~dZ̄ir
uL!5(

h

KihKhr
†

8pv2mi
u2

u~mi
u2mh

d2MW!

mi
u22mr

u2

3A~mi
u22~MW2mh

d!2!~mi
u22~MW1mh

d!2!

3S 1

2
~mr

u21mh
d212MW

2 !~mi
u21mh

2d2MW
2 !

2~mi
u21mr

u2!mh
d2D , ~7.6!

where only the results foriÞ j have been presented. No
that Im̃j51(dZ̄ir

uL)Þ0 only when i 53, that is, when the
renormalized up particle is a top quark. In addition, since
mr

u2 dependence in Eq.~7.6! does not vanish, CKM phase
do not disappear from Eq.~7.4!, and therefore

D3 j;ReH iK 3 j* (
r

@ Im̃~dZ̄3r
uL!Kr j 1K3r Im̃~dZr j

dL!#J Þ0.

~7.7!

Equations~7.5! and ~7.7! show that even though the differ
enceD3 j is gauge independent, it does not actually vani
There are genuine gauge independent pieces that contr
not only to the amplitude, but also to the observable.
discussed, these additional pieces cannot be absorbed
redefinition of Ki j . Numerically such gauge independe
corrections amount roughly toD3 j.531023Otree where
Otree is the observable quantity calculated at leading orde
2-11
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VIII. CP VIOLATION AND CPT INVARIANCE

In this section we want to show that using WFR consta
that do not satisfy a pseudo-Hermiticity condition does
lead to any unwanted pathologies. In particular,~a! no new
sources ofCP violation appear in addition to the ones a
ready present in the SM;~b! the total widths of particles and
antiparticles coincide, thus verifying theCPT theorem. Let
us start with the latter, which is not completely obvious sin
not all external particles and antiparticles are renormali
with the same constant due to the different absorptive pa

The optical theorem asserts that

G t;(
f
E dP f uM ~ t (n̂)~p!→ f !u2

52Im@M ~ t (n̂)~p!→t (n̂)~p!!#, ~8.1!

G t̄;(
f
E dP f uM ~ t̄ (n̂)~p!→ f !u2

52Im@M ~ t̄ (n̂)~p!→ t̄ (n̂)~p!!#, ~8.2!

where we have considered, just as an example, top q

@ t (n̂)(p)# and anti-top quark (t̄ (n̂)(p)) decay, withp and n̂
l
q

d
R

do

op

ffe
n

m
to
er

07600
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rk

being their momentum and polarization. Recalling that
incoming fermion and outgoing antifermion spinors a
renormalized with a common constant@see Eq.~2.1!# as are
the outgoing fermion and incoming antifermion ones, it
immediately clear that

M ~ t (n̂)~p!→t (n̂)~p!!5ū(n̂)~p!A33~p!u(n̂)~p!,

M ~ t̄ (n̂)~p!→ t̄ (n̂)~p!!52 v̄ (n̂)~p!A33~2p!v (n̂)~p!,

where the minus sign comes from an interchange of t
fermion operators and where the subscripts inA indicate
family indices. Using the fact that

u(n̂)~p! ^ ū(n̂)~p!5
p”1m

2m

11g5n”

2
,

2v (n̂)~p! ^ v̄ (n̂)~p!5
2p”1m

2m

11g5n”

2
,

with n5@1/A(p0)22(pW •n̂)2#(pW •n̂,p0n̂) being the polariza-
tion four-vector and performing some elementary manipu
tions we obtain
ū(n̂)~p!A33~p!u(n̂)~p!5TrF S p”1m

2m

11g5n”

2 D @a~p2!p”L1b~p2!p”R1c~p2!L1d~p2!R!G
5

1

4
TrH p”1m

2m
$@a~p2!1b~p2!#p”1c~p2!1d~p2!%J

5
1

4
TrH 2p”1m

2m
$2@a~p2!1b~p2!#p”1c~p2!1d~p2!%J

5TrF2p”1m

2m

11g5n”

2
@2a~p2!p”L2b~p2!p”R1c~p2!L1d~p2!R#G

52 v̄ (n̂)~p!A33~2p!v (n̂)~p!,
not
her
ken
e.
ay

-

where we have decomposedA33(p) into its most genera
Dirac structure. We thus conclude the equality between E
~8.1! and ~8.2! verifying that the lifetimes of top quark an
top antiquark are identical. The detailed form of the WF
constants, or whether they have absorptive parts or not,
not play any role.

Even though total decay widths for top quark and t
antiquark are identical, the partial ones need not be ifCP
violation is present, and some compensation between di
ent processes must take place. This issue is discussed i
tail in @23#. Here we shall show that whenK5K* the CP
invariance of the Lagrangian manifests itself in a zero asy
metry between the partial differential decay rate of the
quark and itsCP conjugate process. The fact that the ext
s.

es

r-
de-

-
p
-

nal renormalization constants have dispersive parts does
alter this conclusion. This is of course expected on rat
general grounds, so the following discussion has to be ta
really as a verification that no unexpected difficulties aris

To illustrate this point let us consider the top quark dec
channelt(p1)→W1(p12p2)1b(p2) and itsCP conjugate
processt̄ ( p̃1)→W2( p̃12 p̃2)1b( p̃2). Let us denote the re
spective amplitudes byA andB, which are given as

A5«mū(s2)~p2!Amu(s1)~p1!,

B52 «̃mv̄ (s1)~ p̃1!Bmv (s2)~ p̃2!,
2-12
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where ãm5am5(a0,2ai) for any four-vector. Considering
contributions up to and including next-to-leading correctio
we have

Am52 i
e

A2sW

@~ Z̄bL 1/2K†ZtL 1/21K†dV1dK†!gmL1dFm#,

Bm52 i
e

A2sW

@~ Z̄tL 1/2KZbL 1/21KdV1dK !gmL1dGm#,

with dV5de/e2dsW /sW1 1
2 dZW and dFm and dGm are

given by the one-loop diagrams. From a direct computat
it can be seen that ifK5K* this implies

Z̄L 1/25~ZL 1/2!T, Z̄R 1/25~ZR 1/2!T,

«̃mdGm5«mg2dFm
Tg2, ~8.3!

where the superscriptT means transposition with respect
all indices~family indices in the case ofZL 1/2 andZR 1/2 and
Dirac indices in the case ofdFm). Using

ig2ū(s)T~p!5sv (s)~ p̃!,

u(s)T~p!ig252sv̄ (s)~ p̃!,

wheres561, depending on the spin direction on theẑ axis,
we obtain

A5
2 ie

A2sW

«mū(s2)~p2!@~ Z̄bL 1/2K†ZtL 1/21K†dV1dK†!gmL

1dFm#u(s1)~p1!

5
2 ie

A2sW

«mu(s1)T~p1!@L~~ZtL 1/2!TK* ~ Z̄bL 1/2!T1K* dV

1dK* !gm
T1dFm

T #ū(s2)T~p2!

5
2s1s2ie

A2sW

«mv̄ (s1)~ p̃1!g2@L~~ZtL 1/2!TK* ~ Z̄bL 1/2!T

1K* dV1dK* !gm
T1dFm

T #g2v (s2)~ p̃2!

5
2s1s2ie

A2sW

«mv̄ (s1)~ p̃1!@~~ZtL 1/2!TK* ~ Z̄bL 1/2!T1K* dV

1dK* !gm
† L1g2dFm

Tg2#v (s2)~ p̃2!,

Now, using Eq.~8.3! we see that if noCP violating phases
are present in the CKM matrixK @and therefore neither in
dK, Eq. ~5.6!# we obtain thatA52s1s2B and thus

uAu25uBu2.

Note again that whenCP violating phases are present w
can expect in general nonvanishing phase-space depen
07600
s

n

ent

asymmetries for the different channels. Once we sum ove
channels and integrate over the final state phase space a
pensation must take place, as we have seen, guarantee
unitarity andCPT invariance. Using a set of WFR constan
with absorptive parts as advocated here~and required by
gauge invariance! leads to different results from using th
prescription originally advocated in@7#; in particular, using

Eq. ~7.7! for KÞK* we expectD3 j
(t decay)2D3 j

( t̄ decay)Þ0.

IX. CONCLUSIONS

Let us recapitulate our main results. We hope, first of
to have convinced the reader thatthere is a problem with
what appears to be the commonly accepted prescription
dealing with wave-function renormalization when mixing
present. The situation is even further complicated by the
pearance ofCP violating phases. The problem has a twofo
aspect. On the one hand the prescription of@7# does not
diagonalize the propagator matrix in flavor space in w
pertains to the absorptive parts. On the other hand it yie
gauge dependent amplitudes, albeit gaugeindependent
moduli squared of the amplitudes. This is not satisfacto
interference with, e.g., strong phases may reveal an u
ceptable gauge dependence.

The only solution is to accept WFR constants that do
satisfy a pseudo-Hermiticity condition due to the presence
the absorptive parts, which are neglected in@7#. This imme-
diately brings about some gaugeindependentabsorptive
parts which appear even in the modulus squared of the
plitude and which are neglected in the treatment of@7#. Fur-
thermore, these parts~and the gauge dependent ones! cannot
be absorbed in unitary redefinitions of the CKM matr
which are the only ones allowed by Ward identities. We ha
checked that—although unconventional—the presence of
absorptive parts in the WFR constants is perfectly comp
ible with basic tenets of field theory and the standard mod
Numerically we have found the differences to be importa
at the order of 0.5%: small, but relevant in the future. Th
information will be relevant to extract the experimental va
ues of the CKM mixing matrix.

Traditionally, wave-function renormalization seems
have been the ‘‘poor relative’’ in the standard model ren
malization program. We have seen here that it is import
on two counts. First, because it is related to the counterte
for the CKM mixing matrix, although the on-shell values fo
wave-function constants cannot be directly used there. S
ond, because it is crucial to obtain gauge independentS ma-
trix elements and observables. While using our WFR c
stants~but not the ones in@7#! for the external legs is strictly
equivalent to considering reducible diagrams~with on-shell
mass counterterms!, the former procedure is considerab
more practical.
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