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Abstract

Background: Patients with cervical dystonia (CD) present with an impaired performance of voluntary neck movements,
which are usually slow and limited. We hypothesized that such abnormality could involve defective preparation for task
execution. Therefore, we examined motor preparation in CD patients using the StartReact method. In this test, a startling
auditory stimulus (SAS) is delivered unexpectedly at the time of the imperative signal (IS) in a reaction time task to cause a
faster execution of the prepared motor programme. We expected that CD patients would show an abnormal StartReact
phenomenon.

Methods: Fifteen CD patients and 15 age matched control subjects (CS) were asked to perform a rotational movement (RM)
to either side as quick as possible immediately after IS perception (a low intensity electrical stimulus to the II finger). In
randomly interspersed test trials (25%) a 130 dB SAS was delivered simultaneously with the IS. We recorded RMs in the
horizontal plane with a high speed video camera (2.38 ms per frame) in synchronization with the IS. The RM kinematic-
parameters (latency, velocity, duration and amplitude) were analyzed using video-editing software and screen protractor.
Patients were asked to rate the difficulty of their RMs in a numerical rating scale.

Results: In control trials, CD patients executed slower RMs (repeated measures ANOVA, p,0.1025), and reached a smaller
final head position angle relative to the midline (p,0.05), than CS. In test trials, SAS improved all RMs in both groups
(p,0.10214). In addition, patients were more likely to reach beyond their baseline RM than CS (x2, p,0.001) and rated their
performance better than in control trials (t-test, p,0.01).

Conclusion: We found improvement of kinematic parameters and subjective perception of motor performance in CD
patients with StartReact testing. Our results suggest that CD patients reach an adequate level of motor preparation before
task execution.
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0021620849, by the Charles University in Prague: research project PRVOUK-P26/LF1/4 and by a grant from Marató TV3 (PI110930) to JVS. TS was supported by
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Background

Dystonia is characterized by excessive involuntary movements

that interfere with willed actions, leading to abnormal postures and

unwanted muscle activity [1]. Patients with cervical dystonia (CD)

present with an impaired performance of voluntary neck

movements [2], which are usually limited, slow and most of the

times also painful [2–5]. The mechanisms accounting for such

limitation in voluntary movements are incompletely understood

[6–8]. Apart from other factors, excessive co-contraction of agonist

and antagonist muscles, a characteristic feature of dystonia, should

lead to slowness of movement [6]. Co-contraction, like other

disorders of motor control in dystonic patients, may be due to an

abnormal configuration of the motor programme.

The execution of purposeful movements implies the activation

of a motor plan, which should set appropriate motor structures to

the adequate level of excitability in preparation for the perfor-

mance [9,10]. In simple reaction time tasks, subjects can fully

prepare the motor programme before delivery of the imperative

signal (IS) for fast execution of the pre-defined task [9]. If subjects

in such condition are presented with a loud startling auditory

stimulus (SAS) together with the IS, their reaction times become

significantly shorter, reaching latencies typical of a startle reaction,

but maintaining the structure of the motor programme [11,12].
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The effect, termed the StartReact phenomenon, has been

examined in various tasks and conditions in healthy subjects

[11–14]. From these research studies, it is clear that a key aspect

for the phenomenon to take place is preparation of motor circuits.

This should imply an enhancement of excitability along all the

structures of the motor pathway leading to task execution, ranging

from premotor brain areas to the alpha motoneurons at the spinal

cord. The exact point at which the SAS activates the motor system

to trigger task execution in the StartReact test is unknwon but it

has been shown that the motor cortex is implied [15].

The StartReact phenomenon has been examined also in

patients. Valldeoriola et al. (1998) found it absent in patients with

progressive supranuclear palsy, a disease in which the startle

reaction is abnormally reduced [16]. Conversely, Anzak et al.

(2011) found that patients with Parkinson’s disease improved their

performance when they were presented with the StartReact test to

execute a gripping force dynamometer task [17]. With this

background in mind, we wanted to find out what was the behavior

of patients with cervical dystonia in the StartReact test. We

hypothesized that, because of disturbed integration of sensory

inputs in motor programmes, patients with dystonia might not be

able to reach an appropriate level of preparation at the time of task

execution. There is indeed evidence for an abnormal excitability in

brainstem, spinal cord and motor cortex in dystonia [18,19]. In

CD, abnormal findings have been reported in various neurophys-

iological tests involving subcortical pathways and their relation

with descending control inputs [20–23]. Therefore, we expected to

find abnormalities in the StartReact phenomenon, either decrease

or absence of the effect or, alternatively, distortion of the intended

movement in the presence of a SAS. Patients with CD were

selected because of their known difficulty in performing willed

head movements and the possibility to compare those towards and

against the predominating dystonic thrust. We tested our

hypothesis by examining the effects of SAS on horizontal head

rotational movements (RM) in patients and healthy controls.

Materials and Methods

Subjects
The study was carried out in 15 patients with primary CD, 8

male and 7 female, with a mean age of 47.1 years (ranging from 22

to 66). They were selected for the study if they presented with

predominantly rotational dystonia with limitation for neck

movements. The diagnosis of CD was based on the presence of

abnormal posture or movements of the head and neck. We

excluded patients with secondary forms as well as those with

suspected psychogenic CD. We also excluded patients with severe

dystonic tremor, because of the expected difficulties in the

assessment of relevant movement parameters. Severity of the

disorder was assessed by using the Toronto Western Spasmodic

Torticollis Rating Scale [24] for CD. Demographical and clinical

data of CD patients are detailed in Table 1. Patients who were on

regular botulinum toxin treatment were studied at least three

months after they received the treatment. The study protocol was

approved by the local Ethics Committee and all subjects gave their

informed consent for conducting the study and video recording.

Fifteen healthy age and gender matched subjects (46.3 (24–66)

years, 6 male and 9 female) served as controls (CS).

Stimuli
The IS was a weak electrical shock delivered to the second

finger of the right hand through a pair of ring electrodes at an

intensity 2 times the perception threshold. A verbal forewarning

preceeded always the IS by a variable period of 1–2 seconds. The

SAS, of an intensity of 130 dB (sound pressure level), was

produced by the discharge of the coil of a magnetic stimulator

on top of a metallic platform at a distance of approximately 2 m

from the subject [11].

The IS was issued from an electromyograph Synergy (CareFu-

sion, Surrey, London), prepared for sending out simultaneously

with the electrical stimulus a trigger pulse to switch on a 5 V light

emitting diode in all trials, and to activate the stimulator for the

delivery of SAS in test trials. The diode was positioned such that it

was visible in the video recordings (see below) to indicate time 0 for

all videotaped events.

Recording
A high speed video camera (Exilim FX25, Casio America, Inc.),

which was able to record 420 frames per second, i.e. 2.38 ms per

frame, was used to film head rotational movements (RM) from a

zenithal position. The video camera was located 40 cm above the

subjects head, oriented vertically downwards, focusing to the

subjects’ Cz. Subjects wore on their head an elastic cap with

markers indicating the nasion-inion and the bi-auricular line. The

nasion-inion line was further marked with a hatched stick attached

to the cap (Figure 1). Another two markers were attached to the

shoulders (acromions) for better visualization of shoulder move-

ments and analysis of eventual head shifts relative to shoulders.

We also recorded the EMG activity using pairs of surface

recording electrodes attached over the sternocleidomastoid (SCM)

of both sides and the orbicularis oculi of the right side, as well as

the head movement using an accelerometer attached to the lateral

aspect of the chin. Band-pass frequency filters for EMG was 20 to

1000 Hz and for the accelerometer were 0.1 to 10 Hz. The

sampling rate for signal storage was 2000 Hz. Recordings were

done with a Synergy EMG machine (CareFusion, Surrrey,

London).

Procedure
Subjects were sitting on a chair where they were asked to keep a

comfortable but steady upright posture in such a way that the

mediosagittal plane relative to their pelvis was perpendicular to

backrest. The subjects were left to adopt the head position in

which they felt more comfortable while keeping the pelvis and

trunk aligned with the armchair backrest. Patients were instructed

not to compensate for their dystonic posture, which in most cases

led to a deviation of the head towards one side (the ‘dystonic side’).

Before starting data collection, subjects were requested to rotate

their head to the extreme left and right positions at their own pace,

in order to measure the individual’s baseline range of head

rotational movements (BRM), defined as the angle width between

the two extreme positions. Then, they were asked the question:

Table 1. Clinical characteristics of patients (N = 15).

Disease duration (years) 16.1 (11.6)

BTX treatment duration (years) 10.6 (7.6)

TWSTRS total score (max. = 85) 31.1 (12.4)

Torticollis severity Scale (max. = 35) 15.9 (4.2)

Disability scale (max. = 30) 9.6 (6.5)

Pain scale (max. = 20) 5.6 (5.3)

Values are expressed as means, with the standard deviation within parenthesis.
TWSTRS, Toronto Western Spasmodic Torticollis Rating Scale; BTX, Botulinum
Toxin.
doi:10.1371/journal.pone.0046586.t001
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‘How difficult is it for you to perform this movement?’, and they

were instructed to describe the difficulty using a numerical rating

scale where 0 was such difficulty that the subject perceived that ‘no

movement was possible’ and 10 was no difficulty at all and, hence,

the subject perception was that of ‘normal movement perfor-

mance’.

Data collection began when subjects felt comfortable with the

task after a few preliminary trials. They were instructed to be

ready to react as quickly as possible at the perception of IS by

rotating their head. The direction of head movement (either left or

right sides, chosen pseudo-randomly at 50% chance) was clearly

stated before forewarning but they were not informed on trial

condition (whether or not there was going to be a SAS together

with the IS). They were specifically instructed not to move their

trunk during head RM. If such movement was observed during

the experiment, the trial was repeated. A total of 15 trials were

collected for each side per subject. Four of them contained the

SAS (test trials). Trials of each condition (control and test) were

presented in random order with an interval of 10–15 s between

two consecutive trials. Randomly, we also applied the SAS with no

warning in order to examine the startle reaction on its own. After

the experiment, patients were asked the question: ‘Do you feel the

same difficulties in performing the movement when the sound is

present as when the sound is absent?’ If the answer indicated that

there were differences between the two conditions, subjects were

asked to rate separately the difficulties with performing the

movement ‘when the sound was present’ and ‘when the sound was

absent’, using the numerical rating scale in the same way as

described above.

Data analysis
The main outcome measure was the video-recordings for

determination of head movement kinematics. For each trial, we

identified three frames: Frame0, OnsetFrame and EndFrame.

Frame0 was the first frame in which the light diode was seen to

switch on. OnsetFrame was the frame in which the subject was

seen to start the intended movement, i.e., the first frame with a

detectable change in the hashed stick position in the intended

direction of RM that was progressive in successive frames.

EndFrame was the frame in which the movement reached its

maximum in the intended direction of the RM.

In each frame the head position indicated by the nasion-inion

line was related to the midline, defined as a line plotted

perpendicular to the armchair backrest. Angles between the

nasion-inion line and the midline were measured in degrees using

a goniometer software (MB-Ruler 5.0, Markus Bader, Iffezheim,

Germany). The starting head position angle (SHA) was measured

between the inion-to-nasion line and the midline at frame0,

considering as positive value the deviation towards the side of the

intended movement and a negative value the deviation towards

the opposite side. We defined three parameters for each trial. RM

latency, calculated in ms as the number of frames from Frame0 to

OnsetFrame times 2.38 (the duration of each frame), RM

duration, calculated in ms by multiplying the number of frames

counted between OnsetFrame and EndFrame times 2.38, and RM

amplitude, calculated in degrees by substracting the RM angle at

the OnsetFrame from that at the EndFrame. Mean angular

velocity was derived in each trial from the change in head position

in degrees as a function of time [RMamplitude (u)/RMduration

(s)]. We also determined the final, most extreme, head position

angle (FHA) by measuring the RM angle at EndFrame with

respect to the midline, regardless of the individual SHA. Figure 2

shows a schematic diagram of all measures. Trunk stability during

head movements was assessed by measuring the angle between the

bi-acromial line and a line parallel to the backrest in the same

frames in which we measured RM. Trials in which this angle

changed more than 5u were excluded from statistical analysis.

In the EMG recordings, we measured onset latency as the time

elapsed between IS and the onset of EMG activity in the agonist

SCM or, if there was background activity, at the point where a

significant increase was noted (more than 50% of baseline) and

Figure 1. The experimental set up. A) Subjects were sitting comfortably under the focus of a high speed camera with a zenithal view. B) View
from the camera. Note the stick marking the inion-to-nasion line and the shoulder markers. The subject is wearing the recording electrodes in the
SCM and OO and the accelerometer attached to the chin.
doi:10.1371/journal.pone.0046586.g001
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was consistent for at least 50 ms. We also measured the EMG area

using the automatic measurement feature of the electromyograph

for the first 200 ms after onset latency. Since we were mainly

interested in measuring the amount of co-contraction between

antagonist SCM muscles, we calculated the ratio between SCM

muscles by dividing the area measured in the agonist (contralateral

to the direction of the requested movement) by that measured in

the antagonist (ipsilateral to the direction of the requested

movement). Data from the orbicularis oculi were used for

monitoring the response to the startle and data from the

accelerometer were used to assess the initial direction of the

movement.

As all the parameters (RM latency, duration, velocity, relative

amplitude, FHA) followed a normal distribution, parametric tests

were applied. For normalization of data on RM amplitude, we

expressed the values as percentages of the individual’s BRM. As

there was no a priori hypothesis which kinematic factor would be

critical to reject the null hypothesis we entered all five kinematic

parameters into a single multivariate general linear model (GLM)

with repeated measures. Results were subsequently tested post hoc

using univariate analyses of variance with repeated measures

(ANOVA). Data from each trial were analyzed from the

perspective of three factors: RM DIRECTION (right and left

for CS, and ‘towards’ and ‘against’ the dystonic thrust for CD),

experimental CONDITION (control, in which only the IS was

presented, and test, in which the IS was presented together with

the SAS) and subjects’ GROUP (CS and CD). The x2 test was

used for analysis of nominal parameters. All statistical analyses

were done with SPSS 14.0.1 software (Chicago, IL).

Results

All subjects (CS and CD) were able to perform the task and

complete the experiment with no difficulties although a few

patients complained of neck pain and mild discomfort with

repeating head movements (generally in RM against the dystonic

thrust). We excluded a total of 15 trials because of significant trunk

movement unnoticed during the experiment (3 in CS and 12 in

CD, with no more than 2 in any single subject). As expected,

because of the intrinsic limitation of neck movements in patients

with cervical dystonia, we found statistically significant differences

between groups in BRM, which mean value was 110.4u
(SD = 20.3u) in CD and 139.0u (SD = 16.8u) in CS (ANOVA,

between subjects factor: GROUP, F = 18.5, P,0.0001). When

measured for each side separately relative to the midline, we found

an effect of DIRECTION on the BRM in patients. This was

significantly smaller against (50.6u, SD = 12.2u) than towards

(59.8u, SD = 10.3u) dystonia (ANOVA, within subjects factor:

DIRECTION, F = 12.7, P,0.01). No significant differences were

found in BRM towards right (69.1u, SD = 9.4u) and left (69.9u,
SD = 8.3u) sides in CS (ANOVA, within subjects factor: DIREC-

TION, F = 0.3, P = 0.6).

Mean SHA was obtained by averaging control and test trials

together, since it was determined at a time in which subjects did

not know about the experimental condition. In CS, SHA showed a

slight deviation towards the intended movement direction, while in

patients, it showed a deviation towards the rotational component

of the dystonia regardless of the intended movement direction

(Figure 3). The statistical analysis showed that SHA was

significantly different between CS and CD (ANOVA, between

subjects factor: GROUP, F = 12.8, P,0.001). All subjects

exhibited a response to the first SAS applied on its own, when

subjects were not prepared to react (no IS and no warning). This

caused a head flexion movement with no apparent differences

between CS and CD. No RM was observed in those trials.

Comparison between CS and CD patients
All parametric data extracted from video recordings in regard to

control and test trials in CS and CD are summarized in Figure 4.

The multivariate repeated analysis showed significant differences

between CS and CD when all kinematic parameters were

considered (between subjects factor: GROUP, F = 9.9,

P,0.0001). Group differences were still significant even if

direction of RM (interaction: GROUP x DIRECTION, F = 7.4,

P,0.001) or condition (interaction: GROUP x CONDITION,

F = 5.2, P,0.01) were considered. In the case of direction,

differences were found in CD patients between RMs towards

and against the dystonic thrust. In the case of condition, although

the SAS presentation had a strong impact on kinematic

parameters in both groups of subjects (within subject factor:

CONDITION, F = 55.7, P,10212), the effect seen in CD was

significantly larger than in CS (interaction: GROUP x CONDI-

TION, F = 5.2, P,0.01). To explore each of the parameters in

more detail, a post hoc repeated measures ANOVA was performed

separately for each variable (Figure 4).

Figure 2. Schematic representation of the kinematic measures taken from the analysis of video-recordings. SHA = Starting head
position angle; measured as the inion-to-nasion line angle with respect to the midline at frame0 BRM = Baseline range of head rotational movements,
defined as the angular width between the two extreme positions reached in self-paced rotational movements towards each side. FHA = Final head
position angle, measured as the inion-to-nasion line angle with respect to the midline at EndFrame. RM = Rotational movement. The scheme
represents the RM amplitude, defined as the angular difference of the inion-to-nasion lines between OnsetFrame and EndFrame. Dotted
line = midline See text for more details.
doi:10.1371/journal.pone.0046586.g002
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Latency
There was no significant effect of group on RM latency

(between subject factor: GROUP, F = 0.5, P = 0.47). However,

there was a strong effect of condition (within subject factor:

CONDITION, F = 210.4, P,10214), which consisted on a

significantly earlier start in test trials than in control trials. The

mean latency shortening was 87 ms (SD = 35 ms) in CD and

86 ms (SD = 33 ms) in CS. There was no significant effect of

direction on latency, and there was no significant interaction

between factors.

Duration
There was a significant effect of group, which was due to a

longer duration of RM in CD than in CS (between subject factor:

GROUP, F = 17.0, P,0.001). The RM duration shortened in test

trials in both groups of subjects (within subject factor: CONDI-

TION, F = 22.4, P,0.0001). In addition, there was also a

significant GROUP x CONDITION interaction (F = 9.2,

P,0.01) implying that RM duration was affected differently in

both groups. The mean shortening was 26 ms (SD = 35 ms), in

CS, and 117 ms (SD = 122 ms) in CD. The GROUP x

CONDITION x DIRECTION interaction was significant as well

(F = 4.5, P,0.05). In CS during test trials we observed a similar

shortening in both directions (28 ms, SD = 38 ms for right RM

and 24 ms, SD = 32 ms for left RM), but in CD, we observed

more shortening against dystonia (141 ms, SD = 128 ms) than

towards dystonia (93 ms, SD = 111 ms).

Velocity
There was a significant effect of group, which was due to CD

patients being slower than CS (between subject factor: GROUP,

F = 29.2, P,1025). Velocity significantly increased similarly in

both groups in test trials (within subject factor: CONDITION,

F = 41.9, P,1026). In CD, there was non-significant trend for

faster RM against dystonia (46u/s, SD = 24u/s) than towards

dystonia (33u/s, SD = 25u/s) (interaction: GROUP x CONDI-

TION x DIRECTION, F = 3.3, P = 0.08).

Relative amplitude
There was no effect of group on relative RM amplitude

(between subject factor: GROUP, F = 2.7, P = 0.11). In patients,

there was a significant effect of direction, with smaller amplitude

towards dystonia (38.0, SD = 9.5%) than against dystonia (53.0,

SD = 9.9%) (interaction: GROUP x DIRECTION, F = 14.5,

P,0.001). In addition, there was a significant effect of condition,

with increased relative amplitude in test with respect to control

trials in both groups of subjects (within subject factor: CONDI-

TION, F = 22.8, P,0.0001). The percentage increase was similar

in both groups (2.7%, SD = 4.1% in CD and 4.6%, SD = 5.6% in

CS).

Figure 3. Schematic representation of data obtained in measuring the starting head angle. Data obtained in measuring the starting head
angle (SHA) in control subjects (CS) and patients with cervical dystonia (CD) are shown for rotational movements (RMs) intended for left and right
sides in CS and ‘towards’ and ‘against’ dystonia in CD.
doi:10.1371/journal.pone.0046586.g003
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FHA
There was a significant effect of group on FHA, which was

lower in CD than in CS (between subject factor: GROUP, F = 6.0,

P,0.05). There was also a significant effect of direction

(interaction: GROUP x DIRECTION, F = 5.6, P,0.05), which

was due to patients reaching a larger FHA when rotating their

head towards dystonia (55u, SD = 12u) than when they performed

RM against dystonia (49u, SD = 11u). Test trials induced a

significant increase in FHA in both groups of subjects (within

subject factor: CONDITION, F = 24.3, P,0.0001). The relative

increase was not significantly different between groups (5.1u,
SD = 5.2u in CD vs. 4.0u, SD = 5.9u in CS), significant differences

appeared when the limits of the BRM were considered. In test

trials, the FHA was larger than the angle reached at the BRM

assessment in 7 patients (44%) with RM towards dystonia and in 9

patients (56%) with RM against dystonia. These percentages were

significantly larger than those expected with a probability range of

20%, as found in average in CS (44% vs. 20% probability: x2

test = 3.8, P,0.05; 56% vs. 20% probability: x2 test = 10.4,

P,0.001).

Data from EMG recordings
EMG activity was recorded from the SCM in all control and

test trials from CS and CD patients. However, the presence of

continuous activity before IS, the absence of well- defined bursts in

the agonist SCM and excessive movement artifacts prevented us

Figure 4. Schematic representation of data obtained in measuring the kinematic parameters of rotational head movements. Data on
kinematic parameters of rotational head movements (RM) were extracted from high-speed video-recordings, in control subjects (CS) and patients
with cervical dystonia (CD) in control and test trials. Data in CS are shown for right and left side RMs while data in CD are shown for RM ‘towards’ and
‘against’ the dystonic thrust. Significant differences are shown for factor (full lines) and interaction (dashed lines) according to the number of asterisks
(* = P,0.05, ** = P,0.01, *** = P,0.001). The whiskers represent standard deviations. Note the similarity of the effects occurring in test trials in all
kinematic parameters in both groups of subjects.
doi:10.1371/journal.pone.0046586.g004
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from obtaining reliable measurements of latency and area in 5

patients and in 2 control subjects. Data from suitable recordings in

the remaining 10 patients and 13 control subjects are summarized

in Table 2. There was a large inter- and intra-individual variability

in the data, which is reflected in the relatively large SD in both

groups of subjects. The multivariate repeated analysis of variance

showed no significant differences between CS and CD in the

latency of the EMG activity for agonist and antagonist SCM,

latency of the accelerometer signal and EMG area ratio between

both SCM (between subjects factor GROUP: F = 0.5, p = 0.73).

However, there were significant differences due to experimental

condition within groups (within subject factor: CONDITION,

F = 61.3, P,1028). None of the interactions was significant. The

significant differences found in CONDITION were due to a

latency shorter in test than in control trials in the accelerometric

signal (ANOVA, within subject factor: CONDITION, F = 200.6,

P,10210), the agonist SCM (F = 85.1, P,1027) and the

antagonist SCM (F = 96, P,1028). No differences were found in

the EMG area ratio (F = 0.8, P.0.05). Representative examples

from one healthy subject and one patient are shown in Figure 5.

Subjective rating of performance
CS did not report any difficulty in performing the RM in

control or test trials. However, some of them reacted spontane-

ously after the first test trials, manifesting their surprise for having

done the intended movement somehow involuntarily, without

feeling the IS. A few patients made spontaneous comments after

application of some test trials in line with those of CS, adding

spontaneously that movement was easy to perform in trials

containing the SAS. Patients rated their difficulty in performing

RM at baseline with a mean of 7.3+/22.0. Changes after the test

were reported by 14 out of the 15 patients of the study (93.3%). In

these patients, the mean rating in test trials was significantly higher

than in control trials (9.2+/21.1 vs 7.6+/21.6; t-test; p,0.01). A

total of 13 patients (92.8%) reported that movements were easier

to perform in trials with SAS, while only one patient, a female with

significant pain, reported more difficulties with performing RM in

test (score of 8) than in control trials (score of 6).

Discussion

The main findings of our study are the following: 1) Patients

with CD had an abnormal performance of RM in baseline and

control trials. The BRM was reduced in comparison to CS, with a

maximum angle with respect to midline smaller against than

towards the dystonic thrust. The RM velocity was lower, and the

FHA was smaller in comparison to CS. 2) The presence of a SAS

together with the sensory cue was accompanied with significant

improvement of all RM measures in both groups. For RM

duration, the effect was even larger in CD than in CS. In addition,

patients were more likely to reach beyond their baseline maximal

range of RM. 3) There was a higher degree of cocontraction

between agonist and antagonist muscles in CD than in CS in

control trials, but the differences did not reach statistical

significance and 4) Patients felt that they performed movements

easier when SAS accompanied the sensory cues.

Our findings suggest that CD patients are able to effectively

prepare the motor structures engaged in performance of a

voluntary movement in advance of its execution, with no

difference with respect to healthy subjects. This was an unexpected

finding since we hypothesized that patients would have difficulties

in setting the appropriate preparation because of the various

alterations described in sensorimotor integration [20,22]. Howev-

er, patients did not only well in the StartReact test but they did

better than in the control condition. One possible explanation for

these findings is that, with faster execution of the task in test trials,

less time was left for eventual corruption of the prepared motor

programme by interference of sensory inputs. It is known that

ballistic movements can be executed with no sensory feedback

[25]. However, the last part of the triphasic pattern of ballistic

movements is indeed affected by sensory input [26,27]. Since

Figure 5. Representative examples of EMG and accelerometer recordings. Representative examples of EMG and accelerometer recordings
from control (A and C) and test trials (B and D) in one control subject (CS) and one patient with cervical dystonia (CD).
doi:10.1371/journal.pone.0046586.g005
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physiological abnormalities in dystonia are particularly involving

the integration of sensory inputs into motor programmes [28], we

could speculate that the ballistic nature of the movement

performed in the StartReact test would have made it possible for

the motor programme to be executed before sensory inputs could

have intervened. Alternatively, the abnormal function of the basal

ganglia circuitry that takes place in dystonic patients [29,30] could

have been bypassed by the SAS-related activation of the

reticulospinal tract.

In fact, one of the theories explaining the StartReact

phenomenon is that SAS is able to induce a faster execution of

the preprogrammed movement by activating the brainstem

reticular formation [31]. In a study testing the startle reaction in

CD patients, Muller et al. (2003) found normal latency startle

reactions, indicating that the reticular formation responded to loud

auditory inputs [23]. The descending volley in the reticulospinal

tract would activate the brainstem and spinal cord motoneurons

involved in the requested task, which are already set at a high level

of excitability during premovement motor preparation, and the

task would be executed at a significant shorter latency than

expected in case of premovement processing of the sensory cue

[32]. However, recently Alibiglou and MacKinnon (2012) have

gathered evidence that the motor cortex is indeed mediating at

least part of the StartReact effect via a route that is faster than the

conventional route followed by the sensory cue [15]. Whether the

effects are mediated through the reticulospinal tract or through a

cortical loop, our findings indicate an adequate level of subcortical

motor preparation in CD patients.

Although EMG activity was recorded, we were unable to

analyze with enough detail the traces from one third of our

patients The CD patients exhibited large variability of EMG

activity patterns in the SCM muscles. In some patients the SCM

activity, either dystonic or compensatory, was already present at

the time of IS, while in others there were bursts of activity with

pauses that would not allow to clearly identify the onset of the

activity related to the RM, in some patients the EMG activity was

very poor. In the example given in Figure 5C, EMG activity is

rather poor with no well-defined bursts even if the movement was

indeed performed. It is possible that the EMG activity picked up

with the electrodes attached over the SCM was generated by other

not recorded synergistic muscles. Because of that, we preferred to

use video-recordings from a high-speed camera for more reliable

measurements of kinematic parameters. We considered that

frame-by-frame video analysis would be a more suitable method

of analysis of head RM in CD patients, even if the analysis was

rather time consuming. Nevertheless, surface EMG provided

relevant data when analyzed in the same individual in the two

different conditions. It was clear in control trials that patients

exhibited the already expected high level of co-contraction

between agonist and antagonist muscles and that this did not

change significantly in test trials. Therefore, even if SAS induced a

normal acceleration of execution, its presence did not change the

relationship between muscles. This is consistent with cocontraction

being part of the motor programme, which is known not to be

modified in the StartReact test.

Similar to previously published findings, based on other means

of recording, we found normal RM latency in control trials in CD

patients [33,34]. However, CD patients performed RM much

slower than CS [4–6,26]. In order to avoid participation of

compensatory mechanisms, the patients were asked not to correct

the dystonic posture while waiting for the IS. This accounts for the

finding of a larger SHA in CD than in CS. The deviation that

patients had towards the side of the dystonia at Frame0 may

account for the decreased RM amplitude and RM velocity when

moving towards the dystonia. This, together with excessive co-

contraction, may account for a limited FHA with RM to the side

against dystonia, even though the amplitude of the RM to that side

was not different from the mean values obtained in CS.

There was an improvement of performance in test trials in

comparison to control trials. The mean angular velocity of RM

towards and against the dystonia was faster in test than in control

trials. The FHA increased more frequently beyond the maximal

voluntary BRM in patients than in CS. Interestingly, patients

reported spontaneously an improvement in their performance in

trials with SAS with respect to pre-test values. The differences

cannot be accounted for by learning or habituation since almost all

patients were able to differentiate between trials with SAS and

those without in regard to the effects on their performance. The

improvement of motor performance by strong external stimuli and

its clinical equivalent, the phenomenon of paradoxical kinesis, has

been observed in Parkinson’s disease patients [35,36].

Our findings in CD patients would be in line with the results of

other studies reporting improvement of motor performance with

SAS using reaction time paradigms [11–14], [37]. Our patients

reported a subjective improvement of their performance with SAS.

We cannot give to this information any relevance apart from its

subjective aspect. However, it indicates that patients performed

indeed the task that they wanted to perform and they felt they

performed it better than in control conditions. We can speculate

on the possibility that the strong SAS allows CD patients to access

Table 2. Parametric data in healthy subjects and patients, separated into movements towards the dystonia side and those against
the dystonia.

Control subjects (N = 15) Cervical dystonia patients (N = 15)

RM Left RM Right RM towards dystonia RM against dystonia

Trial Control Test Control Test Control Test Control Test

RM onset latency (ms) 211.4 (33.8) 127.7 (18.2) 207.5 (34.9) 120.3 (14.0) 217.9 (39.6) 133.5 (26.9) 215.4 (39.0) 124.8 (9.6)

RM amplitude (%) 40.6 (6.2) 43.6 (7.7) 39.9 (6.5) 42.5 (7.5) 35.7 (9.3) 40.2 (10.1) 50.0 (10.0) 55.2 (12.1)

RM duration (ms) 293.6 (57.3) 266.1 (36.7) 288.5 (59.9) 265.6 (42.1) 453.5 (170.2) 362.6 (103.7) 519.4 (197.8) 382.1 (110.6)

RM velocity (deg/s) 202.6 (56.4) 235.9 (65.2) 203.8 (51.6) 228.1 (50.1) 96.5 (32.7) 129.1 (41.4) 123.9 (52.2) 170.5 (50.4)

FHA (deg) 56.3 (9.6) 60.5 (12.0) 58.9 (11.4) 6201 (9.1) 53.2 (12.3) 57.8 (11.0) 45.9 (11.8) 51.2 (12.6)

FHA: Final head position angle, the angle between the inion-to-nasion line and the midline at the maximal angle reached in the RM.
RM: Rotational movements.
doi:10.1371/journal.pone.0046586.t002
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additional motor pathways, or activate more effectively and

consistently existing motor pathways, than they can do through

will alone. The implication is that these circuits seem to be

preserved in CD patients and accessible to indirect activation by

startling acoustic stimuli, which could be potentially considered in

therapeutic approaches.
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