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The most general black M5-brane solution of eleven-dimensional supergravity~with a flat R4 spacetime in
the brane and a regular horizon! is characterized by charge, mass and two angular momenta. We use this metric
to construct general dual models of large-N QCD ~at strong coupling! that depend on two free parameters. The
mass spectrum of scalar particles is determined analytically~in the WKB approximation! and numerically in
the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from
lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the
two dimensional parameter space except along a special line. We also examine the mass spectrum of the
supergravity Kaluza-Klein~KK ! modes and find that the KK modes along the compact D-brane coordinate
decouple from the spectrum for large angular momenta. There are however KK modes charged under a
U(1)3U(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for
the string tension and action are also given.@S0556-2821~99!00116-2#

PACS number~s!: 04.65.1e, 04.70.Bw, 11.25.2w, 12.38.2t
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I. INTRODUCTION

The conjectured dualities between gauge and string th
ries @1# have been recently exploited in@2–9# to construct
and investigate models of pure QCD in 311 dimensions,
whose main component is the black M5-brane solution
eleven-dimensional supergravity, which near the branes
responds to an anti–de Sitter~AdS! space. The no-hair theo
rem implies that the most general model of this kind that c
be constructed~i.e. based on a regular geometry with M
brane charge! is obtained from a rotating black M5-bran
parametrized by its charge, mass and two angular mome
The scope of this paper is to calculate the mass spectru
scalar modes of this general model in the supergravity
proximation, and study its behavior in the parameter spa
The parameter space is four dimensional, but the mass
rameter can be set to 1 by a choice of mass units; the ch
is related to the ’t Hooft couplingl5g2N ~whereg is the
Yang-Mills coupling andN is the number of branes!. It is
assumed thatl is very large so that the radius of curvature
much larger than the string scale; this is necessary for su
gravity to be a good approximation to string theory~M
theory!. In this regime glueball masses are independent ol,
so what remains is a two-dimensional space spanned by
angular momentum parameters. When one of the ang
momenta vanishes, the model reduces to the one ang
momentum model examined in Refs.@6,8#. In our investiga-
tion we will use both analytic methods~within the WKB
approximation, as developed in Refs.@9,10#! as well as nu-
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merical ones based on Ref.@4#.
The static M5-brane has anSO(5) symmetry associated

with the internalS4. Turning on the angular momentum pa
rameters, this symmetry group breaks down to the Ca
subgroup asSO(5)˜SO(2)3SO(2);U(1)3U(1). The
spectrum of the supergravity field fluctuations can be or
nized in representations ofSO(5) or SO(2)3SO(2). The
proposal of Refs.@2–4# is to identify the SO(5)-singlet
modes propagating on the Minkowski boundary of the spa
time with large-N QCD glueballs. The dilaton modes corre
spond toJPC5011 glueballs (J, P, andC being the spin,
parity and charge conjugation quantum numbers!. In non-
supersymmetric, pureSU(N) Yang-Mills theory, there is no
counterpart of theSO(5) global symmetry, so one would
expect that at weak Yang-Mills coupling those Kaluza-Kle
~KK ! particles which transform non-trivially under thi
group are very massive and decouple. This problem w
studied for QCD3 in @11# where it was shown that the firs
correction~beyond thel5` limit ! to the masses of thes
states does not lead to their decoupling in the case of v
ishing angular momenta. A general study for QCD3 super-
gravity models with three angular momenta was recen
given in @10#. In this paper, using both analytic~within the
WKB approximation! and numerical methods, we calcula
the spectrum of glueballs and of KK states. We find that
KK modes onS4 do not decouple in the largel regime in
any region of the two dimensional parameter space~within
the supergravity approximation!. In contrast, the KK modes
on the circle associated with the compact Euclidean time~on
the M5-brane worldvolume! decouple in the limit of large
angular momentum.

Some interesting effects concerning thermodynamical
pects of rotating D-branes have been recently pointed ou
Refs.@12–14#. Here we will be considering the slightly dif
ferent construction of Refs.@2,6# for zero-temperature QCD
where the Euclidean time parametrizes an internal circle,
the Minkowski time is one of the brane volume coordinat
©1999 The American Physical Society01-1
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II. THE SUPERGRAVITY MODEL

A. The metric

The maximal number of angular momentum parame
for the rotating M5-brane@dictated by the rank of the
l

t-
m

04400
rs

SO(5) isometry group of rotations of the static M5-brane# is
equal to two. This metric was constructed in@15#, though the
expression given there contains a few minor mistakes wh
we correct below. The metric of the rotating M5-brane
given by1
ds11
2 5 f 21/3~2hdt21dx1

21•••1dx5
2!1

f 2/3

h̃
dr21 f 2/3r 2F S 11

l 1
2cos2u

r 2
1

l 2
2sin2u sin2c

r 2 D du21S 11
l 2
2cos2c

r 2 D cos2udc2

22
l 2
2

r 2
cosu sinu cosc sincdudc24m

coshd

r 5D f
dt~ l 1sin2udw11 l 2cos2u sin2cdw2!

1
4ml1l 2cos2u sin2u sin2c

r 5D f
dw1dw21sin2uS 11

l 1
2

r 2
1

2ml1
2sin2u

r 5D f
D dw1

2

1cos2u sin2cS 11
l 2
2

r 2
1

2ml2
2cos2u sin2c

r 5D f
D dw2

2G , ~2.1!
ven
where

D511
l 1
2

r 2
cos2u1

l 2
2

r 2
~sin2u1cos2u cos2c!

1
l 1
2l 2

2

r 4
cos2u cos2c, ~2.2!

f 511
2m sinh2a

Dr 3
, ~2.3!

h512
2m

Dr 3
, ~2.4!

h̃5

11
l 1
2

r 2
1

l 2
2

r 2
1

l 1
2l 2

2

r 4
2

2m

r 3

D
. ~2.5!

The horizon is located atr 5r H , wherer H is the largest rea
root of

~r 21 l 1
2!~r 21 l 2

2!22mr50. ~2.6!

One can obtain the following formulas for the Arnowit
Deser-Misner~ADM ! mass, entropy and angular momentu
 :

MADM5
V5V~V4!

4pGN
2mS 11

3

4
sinh2a D , V~V4!5

8p2

3
,

~2.7!

S5
V5V~V4!

4GN
2mrHcosha, ~2.8!

J1,25
V5V~V4!

4pGN
m l1,2cosha, ~2.9!

GN5
k11

2

8p
524p7l P

9 , ~2.10!

whereGN is Newton’s constant in 11 dimensions, andl P is
the 11 dimensional Planck length. The parametera is related
to the ~magnetic! chargeN andm by

sinh2a5
1

2
„A~pNlP

3/m!21121…. ~2.11!

The Hawking temperature and angular velocities are gi
by

1This differs from Eq.~12! of @15# in the expression forD ~called
f D

21 there!, the power ofr in the componentsgtw1
, gtw2

, gw1w2
,

and a factor sin2c in gtw1
.
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TH5
3r H

4 1~ l 1
21 l 2

2!r H
2 2 l 1

2l 2
2

8pmrH
2 cosha

, V1,25
l 1,2

cosha~r H
2 1 l 1,2

2 !
.

~2.12!

These quantities satisfy the first law of black hole thermo
namics:

dMADM5THdS1V1dJ11V2dJ2 . ~2.13!
04400
-

Let us now go to Euclidean spacet52 i t , l 1,2˜ i l 1,2,
and take the field theory limit as in@1,6#:

r 5U2l P
3, 2m5U0

6l P
9 , l 1,25a1,2

2 l P
3 , ~2.14!

so that 2m sinh2a˜pNlP
3 . We obtain the metric
ds11
2 5

D1/3U2l P
2

~pN!1/3 F S 12
U0

6

U6D
D dt21dx1

21•••dx5
2G1 l P

2 D1/3~pN!2/34dU2

U2F S 12
a1

4

U4D S 12
a2

4

U4D 2
U0

6

U6G
1

l P
2~pN!2/3

D2/3 FD1du21D2cos2udc2

12
a2

4

U4
cosu sinu cosc sincdudc2

2U0
3

U4~pN!1/2
~a1

2sin2udtdw11a2
2cos2u sin2cdtdw2!1sin2uS 12

a1
4

U4D dw1
2

1cos2u sin2cS 12
a2

4

U4D dw2
2G , ~2.15!
s
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where

D1512
a1

4cos2u

U4
2

a2
4sin2u sin2c

U4
, ~2.16!

D2512
a2

4cos2c

U4
, ~2.17!

D512
a1

4cos2u

U4
2

a2
4~sin2u1cos2u cos2c!

U4

1
a1

4a2
4cos2u cos2c

U8
. ~2.18!

Note that the componentgw1w2
vanishes in the field theory

limit, and so do the last terms ingw1w1
andgw2w2

.

The coordinatet describes a circle of radiusR0, whereR0
is related to the Hawking temperatureTH by R0
5(2pTH)21, with

TH5
3u0

2pA
, ~2.19!

A5
uH

4 u0
4

uH
8 2

1

3
~a1

41a2
4!uH

4 2
1

3
a1

4a2
4

5
3u0

4uH
2

~uH
2 2uIH

2 !~uH
2 2u1

2!~uH
2 2u2

2!
, ~2.20!
where we have introduced the coordinateu by U
52(pN)1/2u, and rescaleda1,2˜2(pN)1/2a1,2. The con-
stantsuH

2 ,uIH
2 ,u1

2 ,u2
2 represent the four different solution

for u2 of the equation

~u42a1
4!~u42a2

4!2u0
6u250. ~2.21!

There are two positive (uH
2 , uIH

2 , uH
2 .uIH

2 ), and two nega-
tive ~or complex! solutions (u1

2 ,u2
2), with uH

2 anduIH
2 repre-

senting the outer and inner horizons respectively. Whena1
5a25a, the equation simplifies to

u42a456u0
3u, ~2.22!

where the signs6 corresponds to the inner and outer ho
zons. From Eq.~2.22! one sees that whena@u0 the two
positive solutions get closer to each other, thus the in
horizon approaches the outer horizon.

The gauge couplingg4
2 in the (311)-dimensional Yang-

Mills theory is given by the ratio between the periods of t
eleven-dimensional coordinatesx5 andt, i.e.,

t5R0u2 , x55
g4

2

2p
R0u15

l

N
R0u1 , u1,25u1,212p,

~2.23!

wherel[g4
2N/2p is the ’t Hooft coupling. Dimensional re

duction inu1 gives the type IIA metric representing the fie
theory limit of the rotating D4-brane metric with two angul
momentum parameters:
1-3



dsIIA
2 5

2plA

3u
uD1/2 4u2~2dx0

21dx1
21dx2

21dx3
2!1

4A2

2
u2S 12

u0
6

6 D du2
21

4du2

4 4 6
1

D1

D
du2

CSÁKI, RUSSO, SFETSOS, AND TERNING PHYSICAL REVIEW D60 044001
0 F 9u0 u D
u2S S 12

a1

u4D S 12
a2

u4D 2
u0

u6D
1

D2

D
cos2udc212

a2
4

u4D
cosu sinu cosc sincdudc1sin2u

S 12
a1

4

u4D
D

dw1
21cos2u sin2c

S 12
a2

4

u4D
D

dw2
2

2
4Au0

2

3u4D
~a1

2sin2udu2dw11a2
2cos2u sin2cdu2dw2!G , ~2.24!
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where the dilaton field is given by

e2F5
8pA3l3u3D1/2

27u0
3N2

. ~2.25!

In these coordinates, the metric is independent ofN, and the
string coupling is of order 1/N, as expected. The ’t Hoof
coupling l appears as an overall factor of the metric. F
u0Þ0, curvature invariants have a finite value at the horiz
and they are suppressed by inverse powers ofl.

The metric~2.24! has aU(1)3 isometry associated with
translations inu2 ,w1 ,w2. This should appear as a glob
symmetry in the corresponding dual Yang-Mills theor
Since the pureSU(N) QCD has no such symmetries, on
may expect that states which have charges with respec
U(1)3 have a large mass compared to the glueball masse
Sec. IV we calculate the different mass spectra and inve
gate this possibility.

B. String tension and action

The string tension is given by 1/2p times the coefficient
of (dxi

2 , evaluated at the horizon, at the angles where
takes its minimum value@2,6#. This follows by minimizing
the Nambu-Goto action of the string configuration. The a
solute minimum occurs atu5c50 or p. We obtain

s5
4

3
lAu0

2 . ~2.26!

String excitations should have masses of orders1/2. The spin
<2 glueballs that remain in the supergravi
approximation—whose masses are determined from
Laplace equation—have masses which are independentl.

In the field theory limit, the free energyF(5Action
3TH) takes the simple form

F5E2THS2V1J12V2J252
V5

3p3 N3 u0
6 , ~2.27!
04400
r
,

.

to
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ti-
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-

e

where E5MADM2Mextremal,Mextremal5MADM(u050). Us-
ing that the M5-brane coordinatex5 is compactified on a
circle with radiusR0l/N, one has the relation

V55
V4l

THN
. ~2.28!

Expressingu0 in terms of the string tension~2.26! we obtain
the intriguing relation

2
Action

V4
5

1

12p

N2

l
s2, ~2.29!

that generalizes the result found in@8# for the case of one
angular momentum. Thus, in terms of the string tension,
action is independent ofa1,2. It would be very interesting to
have a derivation of Eq.~2.29! from the Yang-Mills side as a
non-perturbative contribution to the partition function@re-
lated to the expectation value of the gluon condens
^(1/4gY M

2 )Tr Fmn
2 (0)&#.

C. The supersymmetric limit u050

Metrics of rotating branes with non-extremality parame
m50 greatly simplify upon introducing Cartesian-type coo
dinates@6#. For the extremal (m50) M5-brane metric~2.1!,
one introduces@13#

y15Ar 21 l 1
2sinu cosw1 ,

y25Ar 21 l 1
2sinu sinw1 ,

y35Ar 21 l 2
2cosu sinc cosw2 ,

y45Ar 21 l 2
2cosu sinc sinw2 ,

~2.30!

y55r cosu cosc.
1-4
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Using these coordinates we obtain

dsIIA
2 5 f 21/2F2dx0

21(
i 51

4

dxi
2G1 f 1/2(

j 51

5

dyj
2 , ~2.31!

where f is obtained from Eq.~2.3! by taking the limit a
˜`, m˜0 at fixedN using Eq.~2.11!: f 511pNlP

3/Dr 3,
with r , u, c expressed in terms ofyj by Eq. ~2.30!. In this
limit the Bogomol’nyi-Prasad-Sommerfield~BPS! bound is
saturated,MADM5const N. It can be shown that the func
tion f (yj ) satisfies the equation] j]

j f 50, i.e. it is a harmonic
function in the 5-space parametrized byyj . The metric
~2.31! has unbroken supersymmetries, which can also be
derstood by interpreting the metric~2.31! as a multicenter
distribution of BPS D4-branes, by constructing the harmo
function f as a linear superposition of harmonic functio
corresponding to each D4-brane@13,16#.

The field theory limit of Eq.~2.31! can be obtained by
replacing f˜ f 21, and properly rescaling coordinates. A
ternatively, we can return to the metric~2.24! written in
spherical coordinates, and setu050. The resulting metric
has a curvature singularity inu5a1 ~we are assuminga1
.a2.0), which cannot be removed by any choice of pe
odicity in the t coordinates~the horizon region of the ex
tremalu050 metric is not a Rindler space!. Because of the
singularity, the supergravity approximation breaks down
the u050 case; in order to understand the correspond
supersymmetric gauge theory, one needs to understand
full string theory. At the supergravity level, it is meaningle
to associate a temperature to this metric.

One can have control over the string-theory correction
we regularize the metric by takingu0Þ0 and consider the
limit of small u0 ~or equivalently,a1,2/u0 large!. For any
value ofa1,2/u0, one can choosel sufficiently large so that
all curvature invariants are arbitrarily small. This is the tec
nique used in the next section when discussing the la
a1,2/u0 limit. Note that in this limit TH˜`. However, the
spectrum of theu050 theory must be supersymmetric wi
the usual degeneracy between fermions and bosons. We
return to this point in our conclusions.

III. GLUEBALLS AND THE RELATED KK MODES

The 011 glueballs are related to spherically symmet
modes of the dilaton fluctuations, of the form

C5f~u!eik•x, ~3.1!

whereM252k2 @2#. The differential equation determinin
the mass eigenvalues is obtained by substituting this into
dilaton equation of motion

1

Ag
]m@e22FAggmn]nC#50, ~3.2!

using the background metric~2.24!, and the formula
04400
n-

c

-

n
g
the

if

-
e

all

e

Ag5Cu9D cos2u sinu sinc, C5
1

2plS 4plA

3u0
D 6

.

~3.3!

In addition to the 011 glueballs we consider particles wit
non-vanishingU(1) charge associated with the circle para
etrized byu2. The corresponding solutions of Eq.~3.2! will
be of the form

C5f~u!eik•xeinu2. ~3.4!

We will show both analytically~within the WKB approxi-
mation! and numerically that these states do decouple fo
particular range of parameters. We will also consider the
states associated with thel 51 modes of theS4. For the static
(a15a250) M5 metric, these transform in the5 representa-
tion of SO(5). After introducing angular momentum, thi
decomposes into (2,1) % (1,2) % (1,1) of the Cartan subgroup
SO(2)3SO(2). According to this decomposition, the corre
sponding solutions of Eq.~3.2! for the two doublets will be
given by

C5f~u!eik•xsinuS cosw1

sinw1
D , ~3.5!

C5f~u!eik•xcosu sincS cosw2

sinw2
D ,

~3.6!

whereas for the singlet it is of the form

C5f~u!eik•xcosu cosc. ~3.7!

In ordinary ~finite l,N) Yang-Mills theory there is no
SO(2)3SO(2) symmetry, so one would expect that at lea
the states which transform non-trivially underSO(2)
3SO(2) become very massive and decouple in the we
coupling limit. It is clear that the singlet state~3.7! should
also decouple. If it did not decouple at smalll, it would then
be represented by some~gluon field! operator in the gauge
theory. In the zero angular momentum case, this state c
bines with the other four components to form a multiplet~a
5) of SO(5). Thus the singlet state cannot correspond to
purely gluonic operator@since the gluon field is a single
underSO(5)#, and must decouple.

Finally, we shall also consider 021 glueballs, which
couple to the operatorÕ45Tr FF̃. On the D4-brane world-
volume, the field that couples to this operator is the Ramo
Ramond~R-R! 1-form Am , which satisfies the equation o
motion

]n@Aggmrgns~]rAs2]sAr!#50, m,n51, . . .,10.

~3.8!
1-5
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Finding angular-independent solutions is complicated,
cause of the non-diagonal components of the metric.
metric becomes diagonal in the two opposite limitsa1,2
!u0 anda1,2@u0. In these cases one can consider solutio
of the form

Au 2
5xu2

~u!eik•x, Am50 if mÞu2 . ~3.9!

In the following we will first present the mass spectra
these states obtained in the WKB approximation, and t
the same spectra obtained by using numerical methods.
present tables for each state comparing the WKB with
numerical results and find that they are in a very good ag
ment. We also compare them to the lattice results for
glueball states which were computed forN53 and smalll.

A. Mass spectrum in the WKB approximation

In the following we use the WKB approach of@10#
~which generalizes the WKB approach of@9#! to calculate
the different mass spectra~including KK modes! in the
present case of QCD4 with two angular momenta. Conside
differential equations of the form

]r„f ~r!]rf…1„M2h~r!1p~r!…f50, ~3.10!

whereM represents a mass parameter, andf (r), h(r) and
p(r), rP@rH ,`), are three arbitrary functions which ar
independent ofM and have the following behavior:

f ' f 1~r2rH!s1, h'h1~r2rH!s2,

p'p1~r2rH!s3, as r˜rH , ~3.11!

f ' f 2r r 1, h'h2r r 2, p'p2r r 3,

as r˜`, ~3.12!

where r 1,2,3, s1,2,3, f 1,2, h1,2 and p1,2 are ~real! numerical
constants. For large massesM, the WKB method can be
applied to obtain the approximate spectrum. One finds@10#

M25
p2

j2 mS m1S 211
a2

a1
1

b2

b1
D D1O~m0!, m>1,

~3.13!

where

j5E
rH

`

drAh

f
, ~3.14!

is a constant which scales like a length, and

a15s22s112, b15r 12r 222, ~3.15!

a25us121u or a25A~s121!224
p1

f 1

~ if s32s11250!,
04400
-
e

s

f
n
e

e
e-
e

b25ur 121u or b25A~r 121!224
p2

f 2

~ if r 12r 32250!. ~3.16!

Consistency requires thata1 and b1 are strictly positive
numbers whereass32s112 and r 12r 322 can be either
positive or zero. Typically the validity of the WKB approxi
mation requires that the quantum numberm be much larger
than 1~for precise conditions see@10#!.

1. Masses of the011 glueballs

The masses of the 011 glueballs are determined from th
differential equation~3.2! with the ansatz~3.1!. Introducing
r5u2 one gets Eq.~3.10! with2

f ~r!5~r22b1
2!~r22b2

2!2r0
3r[~r2rH!~r2r1!~r2r2!

3~r2r3!,

h~r!5
r

4
, p~r!50. ~3.17!

This gives for the various constants

s151, s250, r 154, r 251,

a151, a250, b151, b253.
~3.18!

Using Eq.~3.13! one obtains the following mass spectrum

M25
p2

j2 m~m12!1O~m0!, m>1,

j5
1

2ErH

` drAr

A~r2rH!~r2r1!~r2r2!~r2r3!
.

~3.19!

This formula implies that mass ratios between resonan
are, in the WKB approximation, independent of the angu
momentum parametersb1 ,b2. This is similar to QCD3,
where the general rotating D3-brane solution with three
gular momenta parameters was used@10#. As in @10#, the
WKB approximation breaks down in the region nearb1
5b2 , u050.

2. The KK modes on the circle

For the KK modes with non-vanishingU(1) charge cor-
responding to the periodic variableu2 we look for solutions

2In the rest of Sec. III A we will use the notationa1,2
2 5b1,2.
1-6
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of Eq. ~3.2! with the ansatz~3.4!. In this case we obtain Eq
~3.10! with M2 replaced byM224p2n2TH

2 and

f ~r!5~r22b1
2!~r22b2

2!2r0
3r,

h~r!5
r

4
, p~r!52

p2n2r0
3TH

2 r2

f ~r!
.

~3.20!

This gives for the various constants

s151, s250, s3521, r 154, r 251, r 3522,

a151, a25
2pnr0

3/2rHTH

~rH2r1!~rH2r2!~rH2r3!
,

b151, b253. ~3.21!

Using Eqs.~2.19! and ~2.20! we see thata25n. Then Eq.
~3.13! ~with M2

˜M224p2n2TH
2 ) gives the following mass

spectrum:

M254p2n2TH
2 1

p2

j2 m~m121n!1O~m0!, m>1.

~3.22!

We would like to examine the way that these states deco
in two limiting cases. First consider the case withb1@r0 and
b2. Then we see from Eq.~2.19! that

TH.
b1

2

pr0
3/2

. ~3.23!

On the other hand, in the same limit,

j.
1.31

b1
1/2

. ~3.24!

Therefore the ratios of the masses of the glueballs to thos
the U(1) charged particles behave as

Mglueb.

M circ.
.1.20Am~m12!

n S r0

b1
D 3/2

, for b1@r0 and b2 .

~3.25!

Hence, the KK modes on the circle decouple with a pow
law. Now consider the caseb154b2@r0. Then

TH.
15b1

2

16pr0
3/2

~3.26!

and

j.
1.33

b1
1/2

. ~3.27!

Therefore the ratios of the masses of the glueballs to thos
the U(1) charged particles behave as
04400
le

of

r

of

Mglueb.

M circ.
.1.26Am~m12!

n S r0

b1
D 3/2

, for b154b2@r0 ,

~3.28!

showing that in this case there is also decoupling with
same power law as in Eq.~3.25! ~up to a slightly different
numerical factor!.

3. The KK modes of S4

Let us now compute the mass spectrum for the KK sta
with non-trivial angular dependence onS4. The two equa-
tions corresponding to the doublets must be related by
interchange ofa1 anda2, whereas the one corresponding
the singlet should be invariant under such an interchan
For the (2,1) doublet we make the ansatz~3.5!. Inserting into
Eq. ~3.2! one finds Eq.~3.10! with

f ~r!5~r22b1
2!~r22b2

2!2r0
3r, h~r!5

r

4
,

p~r!524r2S 12
b2

2

2r2D 2
b1

2r4

f ~r!
S 12

b2
2

r2D 2

.

~3.29!

For the various constants we find

s151, s250, s3521, r 154, r 251, r 352,

f 15~rH2r1!~rH2r2!~rH2r3!, f 251,

p152
b1

2rH
4

f 1
S 12

b2
2

rH
2 D 2

, ~3.30!

p2524, a151, a252
b1rH

2

f 1
S 12

b2
2

rH
2 D ,

b151, b255.

Hence, the mass is given by

M25
p2

j2 mS m141
2b1rH

2

f 1
S 12

b2
2

rH
2 D D 1O~m0!, m>1,

~3.31!

wherej is given by Eq.~3.19!. Consider the mass formula i
the regionb1@r0 where the KK modes on the circle de
couple, as in the case of one angular momentum@6,8#. Using
rH>b1, the mass formula takes the form

M2.
p2

j2 m~m15!1O~m0!, m>1. ~3.32!

This shows that forb1@r0 the mass of these KK states is o
the same order as the glueball masses~3.19!.

For the (1,2) doublet we make the ansatz~3.6!. We obtain
the same results as Eqs.~3.29!–~3.31! with b1 andb2 inter-
changed. For completeness we include the mass formula
1-7
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M25
p2

j2 mS m141
2b2rH

2

f 1
S 12

b1
2

rH
2 D D 1O~m0!, m>1.

~3.33!

For rH>b1 this becomes

M2.
p2

j2 m~m14!1O~m0!, m>1, ~3.34!

wherej is given by Eq.~3.19!. This shows that forb1@r0
the mass of these KK states is of the same order as glue
masses and a little lighter than the modes correspondin
the KK doublet~3.5!. As a general rule~which applies in
particular to QCD3 @10#!, states withw-dependence corre
sponding to the largest angular parameter are slig
heavier. In addition to the two doublets there is also a sin
(1,1), represented by Eq.~3.7!. We find that the function
f(r) obeys Eq.~3.10! with

f ~u!5~r22b1
2!~r22b2

2!2r0
3r, h~r!5

r

4
,

p~r!52~b1
21b2

222r2!. ~3.35!

For the various constants necessary to compute the c
sponding masses we find

s151, s250, s350, r 154, r 251, r 352,

p2524, f 251, a151, a250,

b151, b255. ~3.36!

Using Eq.~3.13! the mass formula for the singlet~3.7! reads

FIG. 1. The unnormalized values of the 011 glueball mass@the
lowest eigenvalues of Eq.~3.42!# as a function of the two angula
momenta. Note that this function is smooth everywhere excep
the regiona15a2˜`.
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M25
p2

j2 m~m14!1O~m0!, m>1, ~3.37!

wherej is again given in Eq.~3.19!. Clearly, the masses o
these modes are of the same order as the glueball ma
~3.19!, albeit slightly heavier.

4. Masses of the021 glueballs

Let us finally also consider 021 glueballs. As we have
mentioned, finding angular-independent solutions is com
cated, because of the non-diagonal components of the me
The metric becomes diagonal in the two opposite lim
b1,2!r0 andb1,2@r0. In these cases one can consider so
tions of the form~3.9!. Substituting this into Eq.~3.8!, we
obtain a second order ordinary differential equation whi
upon introducingr5u2 and writinga1,2

2 5b1,2, can be writ-
ten as Eq.~3.10! @with f(r)˜xu2

(r)# with

f ~r!5~r22b1
2!~r22b2

2!, p~r!50,

h~r!5
1

4

r~r22b1
2!~r22b2

2!

~r22b1
2!~r22b2

2!2r0
3r

.

~3.38!

in

FIG. 2. The ratio of the 011* mass to the 011 mass along a
generic direction, chosen here to bea152a25a. Note, that the
change in the ratio is tiny, and the asymptotic value of the ratio
the same as in Ref.@8# in the case ofa1˜`, a250.

TABLE I. The masses of the first few 011 glueballs in GeV.
The first column gives the available lattice results@18–20#, the
second the asymptotic value of the supergravity calculation us
the numerical method~the point is chosen to bea152a2520u0),
while the third column the WKB result for the same supergrav
approximation.

State Lattice Numerical WKB

011 1.6160.15 1.61~input! 1.55
011* 2.8 2.57 2.53
011** - 3.49 3.46
011*** - 4.40 4.37
011**** - 5.30 5.28
011***** - 6.20 6.18
1-8
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This gives for the various constants

s150, s2521, r 154, r 251,

a151, a251, b151, b253.
~3.39!

Using Eq.~3.13! one obtains the following mass spectrum

M25
p2

j2 m~m13!1O~m0!, m>1, ~3.40!

where, it turns out, the constantj is still given by the corre-
sponding expression in Eq.~3.19!. In the limit whenb1 ,b2
@r0, the singularity structure of Eq.~3.10! changes@9#. In
this limit however, the equation coincides with the equat
for the 011 glueballs, and therefore the mass formula sho
be changed to

M25
p2

j2 ~m11!~m13!1O~m0!, m>1, ~3.41!

corresponding to the mass formula~3.19! of the 011 glue-
balls shifted by one@since the lowest state should correspo
to the zero mode of Eq.~3.10! and not to a glueball stat
@17##. This will be the formula used for comparison to th
numerical results fora@u0.

B. Numerical evaluation of the mass spectra

In the following, we present the results of the numeric
evaluation of the mass spectra corresponding to the s
described in Sec. III A. For every state, we will illustrate t
dependence of the masses on the angular momentum pa
eter along a generic direction~chosen to bea152a2), along
the special directiona15a2, and a table comparing the nu
merical and WKB results~and the lattice results for glueba
states!.

FIG. 3. The behavior of the ratior of the mass of the excited
011* glueball mass to the 011 mass along the linea15a2. Note,
that along this direction the solutions behave very differently th
anywhere else in the parameter space and depart significantly
the lattice results.
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1. Masses of the011 glueballs

The equation for the 011 glueballs can also be written a

]uF1

u
„~u42a1

4!~u42a2
4!2u2u0

6
…]uf ~u!G2k2u3f ~u!50.

~3.42!

This equation is symmetric under the interchange ofa1 and
a2, and reproduces Eq.~2.14! of Ref. @8# for a2˜0. This
differential equation can be solved numerically using t
shooting method as described in Ref.@4#. We require that the
solution be normalizable@that is foru˜` f (u) should van-
ish#, and regular at the horizonuH . These conditions restric
the possible values ofM2 to a discrete set, which can b
identified with the glueball masses. The analysis of@8# dem-
onstrated that the 011 glueball masses are very stab

n
m

FIG. 4. The ratio of the lowest 021 mass to the lowest 011

mass along a generic direction, chosen here to bea152a25a. Note
that the ratio is very stable against the variations of the parame
The actual change in the ratio is sizeable, and independent o
direction chosen in the (a1 ,a2) parameter space~except the line
a15a2) and agrees with the ratio found in Ref.@8# for the case of
a1˜`, a250. As explained in the text, this figure is only reliab
for the regionsa!u0 and a@u0 which are shown by solid lines
while for the intermediate region denoted by a dashed line there
corrections due to the non-vanishing off-diagonal components
the metric.

FIG. 5. The behavior of the ratior of the mass of the lowes
021 glueball mass to the lowest 011 mass along the linea15a2.
As explained in the text, this figure is only reliable for the regio
a!u0 anda@u0 which are shown by solid lines.
1-9
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TABLE II. The masses of the first few 021 glueballs in GeV. Unlike 011 glueballs, the supergravity
masses for these glueballs are sensitive to the values ofa1 ,a2. Two cases are displayed, illustrating th
typical values that one gets for small and largea1 ,a2 ~the asymptotic values for largea1 ,a2 are the same for
any generic direction, i.e. witha1Þa2). The lattice results are from@19,20#.

State Lattice Num. (a1,250) Num. (a152a2520) WKB

021 2.5960.13 2.00 2.57 2.53
021* 3.6460.18 2.98 3.49 3.46
021** - 3.91 4.40 4.37
021*** - 4.83 5.30 5.28
021**** - 5.74 6.20 6.18
021***** - 6.64 7.10 7.09
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against the variation of a single angular momentum par
eter. The numerical solutions of Eq.~3.42! show that this
statement remains valid for the whole range of angular
rameters (a1 ,a2), except in the regiona15a2@u0. This is
consistent with the fact that in the WKB approximation~to
order 1/m) the ratio of masses are independent ofa1 ,a2
everywhere except ata15a2@u0, where the approximation
breaks down. As mentioned before,a15a2 , u050 is the
special region where the inner horizon coincides with
outer horizon. As a result, the factor multiplying the seco
derivative term in Eq.~3.42! has a double zero~instead of
simple zero!, and the behavior of the solutions is differen

In Fig. 1 we show the behavior of the lowest eigenva
of Eq. ~3.42!. The valley alonga15a2 is related to the fact
that the differential equation~and the physics of the mode!
is symmetric under the interchangea1↔a2. Note that the
function is smooth except at the pointa15a25` ~or a1
5a2 , u050). In Fig. 2 we show the behavior of the ratio
the glueball masses along the directiona152a2, which illus-
trates the fact that along a generic direction~by a generic
direction we mean that it does not asymptote toa15a2) the
glueball mass ratios behave just like for the case with o
one angular momentum, that is they change only slightly
take on their asymptotic value very quickly. The fact that t
behavior of the glueball masses does not change can be
comparing Fig. 2 to Fig.~2.1! of Ref. @8#. Table I contains
the comparison of the lattice results, the numerical soluti

FIG. 6. The mass ratior of the SO(2)3SO(2) singlet KK
mode to the lowest 011 glueball along the generic directiona1

52a2.
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and the WKB results along a generic direction~chosen to be
a152a2).

In Fig. 3 we show a ratio of masses along the spec
direction a15a2, where the inner and outer horizons com
together asa1 /u0˜` ~this is also the region where th
WKB approximation breaks down!. In this region the mass
ratios behave very differently than anywhere else and de
from the lattice results~for example, the weak-coupling lat
tice value forM011* /M011 for N53 is about 1.74, which
is notably bigger than the numbers of Fig. 3 at largea).

2. Masses of the021 glueballs

The differential equation for 021 glueballs can be written
as

1

u3 ]uF1

u
~u42a1

4!~u42a2
4!]uxu2

~u!G
52M2

~u42a1
4!~u42a2

4!

~u42a1
4!~u42a2

4!2u0
6u2 xu2

~u!. ~3.43!

The corresponding mass spectrum can be obtained usi
similar numerical method as for the 011 glueballs. The de-
pendence of the lightest 021 glueball mass on the angula
momentum along a generic direction~chosen again to be
a152a2) is given in Fig. 4. One can see that while th

FIG. 7. The mass ratior of the SO(2)3SO(2) singlet KK
mode to the lowest glueball mass 011 along the special direction
a15a2.
1-10
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masses are fairly stable against variations of the angular
mentum, just like in the case ofa250 discussed in@8#, the
actual values of the mass ratios compared to 011 increase by
a sizeable (;25%) value. The change is in the right dire
tion as suggested by recent improved lattice simulations@20#.
The actual asymptotic value of the mass ratiom021 /m011

51.59 is the same as for thea250 case everywhere excep
very close to the regiona15a2@u0. Table II contains the
comparison of the lattice results to the supergravity res
evaluated using the numerical and the WKB methods.

Just as for the case of the 011 glueballs, this ratio be-
haves very differently along the speciala15a2 direction,
and departs significantly from the lattice resu
(m021 /m011) latt ice51.46 as it can be seen in Fig. 5.

3. Masses of the KK modes of S4

In terms of u5Ar, Eq. ~3.29! for the first KK doublet
~3.5! reads

]uF1

u
„~u42a1

4!~u42a2
4!2u2u0

6
…]uf ~u!G

2u3S k21
4u2

h0
H~u! D f ~u!50, ~3.44!

FIG. 8. The mass ratior of the SO(2)3SO(2) doublet KK
mode to the lowest glueball masses along the generic directioa1

52a2.

FIG. 9. The mass ratior of the lightest glueball to theSO(2)
3SO(2) doublet KK modes along the special directiona15a2.
04400
o-

ts

where

h0~u!5S 12
a1

4

u4D S 12
a2

4

u4D 2
u0

6

u6 , ~3.45!

H~u!54h0~u!S 12
a2

4

2u4D 1
a1

4

u4S 12
a2

4

u4D 2

.

~3.46!

The components of the second doublet~3.6! give the same
equation witha1 anda2 interchanged. Finally, the equatio
that determines the mass spectrum of the singlet~3.7! is

u2]uF1

u
„~u42a1

4!~u42a2
4!2u2

…f 8~u!G
1u3~8a1

418a2
42k2u2216u4! f ~u!50. ~3.47!

This is symmetric under the interchange ofa1 anda2. One
can again numerically determine the solutions of these eq
tions using the shooting method. In Figs. 6 and 7 we sh
the behavior of theSO(2)3SO(2) singlet mode first along
a generic direction~which was again chosen to bea1
52a2), and then along the special directiona15a2. One can
see that this mode does not decouple on any region of
parameter space. Figures 8 and 9 show the similar plots
the non-singlet KK modes@for Eq. ~3.44!#, which similarly
do not decouple anywhere in the parameter space. Table
and IV show the comparison of the first few KK mode

TABLE III. The masses of the first few singlet KK modes i
GeV. The first column gives the asymptotic value of the supergr
ity calculation using the numerical method~the point is chosen to
be a152a2520u0), while the second column the WKB result fo
the same supergravity approximation.

State Numerical WKB

KK 2.15 2.00
KK* 3.23 3.09
KK** 4.20 4.09
KK*** 5.15 5.05
KK**** 6.07 5.99
KK***** 6.99 6.91

TABLE IV. The masses of the first few non-singlet KK mode
in GeV. The first column gives the asymptotic value of the sup
gravity calculation using the numerical method~the point is chosen
to be a152a2520u0), while the second column the WKB resu
for the same supergravity approximation.

State Numerical WKB

KK 2.84 2.19
KK* 3.80 3.34
KK** 4.73 4.37
KK*** 5.54 5.36
KK**** 6.57 6.31
KK***** 7.47 7.25
1-11
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evaluated using the numerical and the WKB methods.

4. Masses of the KK modes on the circle

Next we consider the KK modes coming from the co
pact D-brane coordinate. These modes have the form~3.4!,
wheref(u) obeys the differential equation

]uF1

u
„~u42a1

4!~u42a2
4!2u2

…]uf~u!G
5f~u!u3S k21

9n2~a1
42u4!~a2

42u4!

A2
„u82u4~a1

41a2
4!2u21a1

4a2
4
…

D .

~3.48!

One can again numerically solve these equations. For a
neric direction~chosen to be againa152a2) we find that
these modes decouple very quickly from the spectrum,
like in the case with one angular momentum parameter
cussed in Ref.@8#. This is illustrated in Fig. 10. For the cas
of the special directiona15a2, the numerical analysis of th
decoupling is inconclusive. The masses of these KK mo
grow much slower than for the generic case. At the po
when our numerical solutions become unreliable, th
modes are not decoupled yet, however one cannot rule
the possibility that fora˜` they eventually do decoupl
~see Fig. 11!.

IV. CONCLUSIONS

In this paper we have presented a two-parameter famil
supergravity models of nonsupersymmetric (311)-
dimensionalSU(N) Yang-Mills theory, based on regular ge
ometries with D4-brane charge. In these models, we h
evaluated the mass spectra of the scalar glueballs and s
of the related KK modes everywhere on the two dimensio
parameter space using both numerical and analytic~WKB!
methods~see Tables I–V!. We find that the glueball mas
ratios are very stable against the variation of the ang

FIG. 10. The mass ratior of the lightest glueball to the KK
mode on the compact D-brane coordinateu2 along the generic di-
rection a152a25a. Just as for the case with only one angu
momentum, these states decouple very quickly from the spectr
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momentum parameters. The asymptotic values of these ra
for large angular momenta are in good agreement with
most recent lattice results everywhere in the parameter s
except along a special linea15a2@u0 ~which is exactly the
region where the WKB approximation breaks down, and a
the region where the inner and outer horizons approach e
other!. The KK modes on the compact D-brane coordina
decouple for large angular momenta everywhere~except per-
haps alonga15a2, where our analysis of decoupling is in
conclusive!. The KK modes on theS4 however do not de-
couple from the spectrum anywhere in the parameter sp
in the supergravity approximation used in this paper.

The masses evaluated in this paper in the supergra
approximation can in principle get large corrections wh
extrapolating from the strong coupling~large l) regime to
the weak-coupling regime of the Yang-Mills theory. If th
spectrum of the corresponding string models at smalll do
indeed reproduce the Yang-Mills spectrum, a natural qu
tion to ask is why the glueball masses~or perhaps only the
glueball mass ratios! would get small corrections, while th
KK masses get large corrections. Since in the limita1 ,a2
@u0 the metric approaches the supersymmetric space~2.31!,
it is possible that a subset of the masses may be protecte
supersymmetry. A problem of interest is thus to investig

.

FIG. 11. The mass ratior of the lightest glueball to the KK
mode on the compact D-brane coordinateu2 along the special di-
rectiona15a2.

TABLE V. The masses of the first few KK modes on the circ
in GeV. Along a generic direction these KK modes decouple, t
we have chosen an arbitrary pointa152a252.5u0 for the compari-
son of the numerical and WKB results, which are given in the fi
and second column.

State Numerical WKB

KK 11.27 11.24
KK* 11.48 11.45
KK** 11.76 11.72
KK*** 12.09 12.06
KK**** 12.48 12.45
KK***** 12.92 12.89
1-12
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the supersymmetric model withu050, and determine which
scalars belong to short BPS multiplets, and which ones ar
long multiplets. Since the masses of the scalars belongin
short multiplets should not be changed in thel!1 regime,
this could explain why the 021 glueball masses are so clos
to the lattice values, and it may be used as a highly n
trivial quantitative test of the conjectured relation of sup
gravity to non-supersymmetricSU(N) Yang-Mills theory.
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