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Supergravity models for (3+ 1)-dimensional QCD
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The most general black M5-brane solution of eleven-dimensional supergtanttya flat R* spacetime in
the brane and a regular horizde characterized by charge, mass and two angular momenta. We use this metric
to construct general dual models of latyeQCD (at strong couplingthat depend on two free parameters. The
mass spectrum of scalar particles is determined analyti¢allihe WKB approximatiojpand numerically in
the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from
lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the
two dimensional parameter space except along a special line. We also examine the mass spectrum of the
supergravity Kaluza-KleifKK) modes and find that the KK modes along the compact D-brane coordinate
decouple from the spectrum for large angular momenta. There are however KK modes charged under a
U(1)XU(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for
the string tension and action are also gives0556-282(199)00116-3

PACS numbgs): 04.65:+e, 04.70.Bw, 11.25:w, 12.38-t

I. INTRODUCTION merical ones based on Réf].
The static M5-brane has &Q(5) symmetry associated
The conjectured dualities between gauge and string thedvith the internalS*. Turning on the angular momentum pa-
ries [1] have been recently exploited [2—9] to construct rameters, this symmetry group breaks down to the Cartan
and investigate models of pure QCD in+3 dimensions, Subgroup asSQ(5)—S0(2)XSO(2)~U(1)xU(1). The
whose main component is the black M5-brane solution ofPectrum of the supergravity field fluctuations can be orga-
eleven-dimensional supergravity, which near the branes coftiZed in representations EQ(5) or S(2) X SQ(2). The
responds to an anti—de SittexdS) space. The no-hair theo- Proposal of Refs[2—4] is to identify the SO(5)-singlet
rem implies that the most general model of this kind that caJ'°des Propagating on the Minkowski boundary of the space-
be constructedi.e. based on a regular geometry with M5- time with 'S‘ége‘\ﬂ 9CD glueballs. The dilaton modes corre-
brane chargeis obtained from a rotating black M5-brane spond to)™*=0"" glueballs 0, P, andC heing the spin,

. . arity and charge conjugation quantum numpehs non-
parametrized by its charge, mass and two angular momemgppersymmetric, ours U(N) Yang-Mills theory, there is no

The scope of this paper is to calculate the mass spectrum %ounterpart of theSQ(5) global symmetry, so one would

Sca'?“ m_odes of this ge_neral mo_del_ln the supergravity apéxpect that at weak Yang-Mills coupling those Kaluza-Klein
proximation, and study its behavior in the parameter SPacqyk) particles which transform non-trivially under this

The parameter space is four d|n_1en5|onal, but .the Mass Proup are very massive and decouple. This problem was
rameter canbesetto 1l bya chome ofzmass umts;.the charg® died for QCR in [11] where it was shown that the first

is related to the 't Hooft coupling =g°N (whereg is the  correction (beyond theh=co limit) to the masses of these
Yang-Mills coupling andN is the number of brangsit is  states does not lead to their decoupling in the case of van-
assumed that is very large so that the radius of curvature is jshing angular momenta. A general study for QC&per-
much larger than the string scale; this is necessary for supegravity models with three angular momenta was recently
gravity to be a good approximation to string thediy given in[10]. In this paper, using both analytigvithin the
theory). In this regime glueball masses are independent,of WKB approximation and numerical methods, we calculate
so what remains is a two-dimensional space spanned by thbe spectrum of glueballs and of KK states. We find that the
angular momentum parameters. When one of the anguldtK modes onS* do not decouple in the large regime in
momenta vanishes, the model reduces to the one angulany region of the two dimensional parameter spagighin
momentum model examined in Ref§,8]. In our investiga- the supergravity approximatianin contrast, the KK modes
tion we will use both analytic methodavithin the WKB  on the circle associated with the compact Euclidean tiome

approximation, as deve'oped in Re[§’10:|) as well as nu- the M5-brane W0r|dV0|um)edeC0up|e in the limit of Iarge
angular momentum.

Some interesting effects concerning thermodynamical as-
pects of rotating D-branes have been recently pointed out in
Refs.[12—-14. Here we will be considering the slightly dif-
ferent construction of Ref$2,6] for zero-temperature QCD,
where the Euclidean time parametrizes an internal circle, and
the Minkowski time is one of the brane volume coordinates.
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[l. THE SUPERGRAVITY MODEL SQ(5) isometry group of rotations of the static M5-bréaie
equal to two. This metric was constructed ib], though the
expression given there contains a few minor mistakes which

The maximal number of angular momentum parametersve correct below. The metric of the rotating M5-brane is
for the rotating M5-brang[dictated by the rank of the given by

A. The metric

213 I2co6 |3sirgsir? |2cog
dszil:f—l/s(_hdt2+dx§+...+dx§)+Tdr2+f2/3r2 1+ 2 — + 2 > v de2+| 1+ 2 . v cos ody?
r r r
13 . , coshé ) )
—2-7c0s6 sin 6 cosy sinyd fdyy—4m oY dt(l;sirf@de; +1,c080 sifyde,)
r r
4mlyl,co 0 sintd sirfy 12 2ml2sir?e
+ de,de,+sirfg| 1+ = +——— | dg?
(5Af P2 2 fsaf |t
12 2ml2cog6 sir?
+coosirty 1412, 2MIZCOSOSITY de?|, 2.9
r2 roAf

where _VeV@a), L s V(Q,) = 8’
ADM — 47TGN m 4S|n a |, ( 4)_ 3 y
% 2os B0 2
A=1+—c0S 6+ — (sin 0+ cos 0 cos i)
r r
VsV(Q,)
212 S= 4—GN2mrHcosha, (2.8
+ 1—42c032ecos’-¢, (2.2
r
VsV(Q,)
2msintfa 1 amG, M oS 29
f=14 ——, (2.3
Ar3
Kil 9
— T _04_7
om Gy o 2075, (2.10
h=1- e 2.4
whereGy is Newton’s constant in 11 dimensions, dpds
2 12 1212 om the 11 dimensional Planck length. The parametés related
1+ _; + _"; + 1_42 -= to the (magneti¢ chargeN andm by
~ r< r r r
h= A . (2.5

sinl”?aZ%(\/(ﬂ'NIg/m)an 1-1). (2.11)

The horizon is located at=r,,, wherer, is the largest real
root of The Hawking temperature and angular velocities are given
by

(r?+1%)(r2+15)—2mr=0. (2.6)
This differs from Eq.(12) of [15] in the expression foA (called

One can obtain the following formulas for the Arnowitt- f;* there, the power ofr in the componentsl, , G,

B« P
Deser-MisnefADM) mass, entropy and angular momentum:and a factor sifi in Ote,- o
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3ré+(12+12)r3—1212 s Let us now go to Euclidean space= —it, |;,—il;,,
= > 1= 5 and take the field theory limit as ir1,6]:
8mmrycosha " cosha(rg+17,)
(2.12
— 3 —_11619 _ 213
These quantities satisfy the first law of black hole thermody- r=U%p 2m=Uglp, li=ajjdp, (214
namics:
dMapm =THdS+Q;dJ; +Q,dJ;. (213 50 that nsinffa—aNI3. We obtain the metric
Al/?»u2||23 Ug Al/3(7TN)2/34d U2 |2(’7TN)2/3
= 1- dr?+dxl+ - dx2 | +12 z A1d6%+ A,cogad P
(AN usA ! T at at) Ut aze |7t 2 v
4 2U3 4
+220050 sin @ cosy sinyd gdy— ————— (aZsirtod rd o, + a§cos’-esin21pdrd<p2)+sin20( 1- ﬁ) de?
U4 U4(7TN)1/2 U4
a4
+cos’-03in2¢,//< 1— U—i)dgug , (2.19
|
where where we have introduced the coordinate by U

ajcogd  assirt e sirty

1=1- 0 U , (2.16
4
ascosy

Ap=1-—, (2.17

ajcogd  aj(sirf6+cog cosy)
ot Ul

aja;cog6 coSy
—_—

8 (2.18

Note that the componery, . vanishes in the field theory

limit, and so do the last terms @, ,, andg,_ ..
The coordinater describes a circle of radiug,, whereR,

is related to the Hawking temperaturdy by R,
=(27Ty) "L, with
T, = o 2.1
H— 27TA’ ( . 9
upug
AZ—1 1
uf - 3 (ad+au - gada
3ugu?
o (2.20

T2 2.2 2,2 2
(Ufy—Ujy) (U —up) (Ui —u3)

=2(wN)¥2u, and rescaleda, ,—2(7N)Y%a,,. The con-
stantsu? ,u3, ,us,u3 represent the four different solutions
for u? of the equation

(u*—a?)(u*—aj)—uSu?=0. (2.20)
There are two positiveu?, u?,, u3>u3,), and two nega-
tive (or complex solutions (1,u3), with uj; anduf, repre-
senting the outer and inner horizons respectively. Wagn
=a,=a, the equation simplifies to

ut—a*==+udy, (2.22
where the signst corresponds to the inner and outer hori-
zons. From Eq(2.22 one sees that whea>u, the two
positive solutions get closer to each other, thus the inner
horizon approaches the outer horizon.

The gauge coupIingf1 in the (3+1)-dimensional Yang-
Mills theory is given by the ratio between the periods of the
eleven-dimensional coordinatgs and 7, i.e.,

2

g A
! Ro01=Rob1,

T:Roez, XSZE N

01'2: 01’24’ 2’77,

(2.23

where)\zgﬁN/ZW is the 't Hooft coupling. Dimensional re-
duction in 6, gives the type IIA metric representing the field
theory limit of the rotating D4-brane metric with two angular
momentum parameters:
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27TNA 472 ug 4du? A
dsis= UAYY 4U%(— @+ dxC +dx+dxd) + —Zuz( 1-—° )do§+ - e+ d6?
0 9u? 6 , a3 az\ u§| A
R R T A Sy
o -5
AZ 2 ag . . . U4 2 . U4 2
+Ico§0d1/; +ZTACOSGsm0cos¢rsm</;d0dd;+sm20 A d<p1+co§05|n21//Td<p2
u
AU, 2 o
BN (afsinf0d6,d e, +a5cos 0 sirfydb,de,) |, (2.29
u
|
where the dilaton field is given by where E=M apm — M extremanr M extrema= M apm (Up=0). Us-
ing that the M5-brane coordinate; is compactified on a
e2¢_87TA3)\3u3A1/2 (2.25 circle with radiusRo\ /N, one has the relation
- 3n2 )
27ugN o VoA .
In these coordinates, the metric is independerit,oind the ST TUN” (2.29

string coupling is of order N, as expected. The 't Hooft
coupling A appears as an overall factor of the metric. ForExpressingiy in terms of the string tensiof2.26) we obtain
up,# 0, curvature invariants have a finite value at the horizonthe intriguing relation
and they are suppressed by inverse powers.of

The metric(2.24 has aU(1)® isometry associated with _Action 1 N_2 5 22
translations iné,,¢,¢,. This should appear as a global V, 12w \ 7 2.29
symmetry in the corresponding dual Yang-Mills theory.
Since the pureSU(N) QCD has no such symmetries, one that generalizes the result found [i8] for the case of one
may expect that states which have charges with respect @ngular momentum. Thus, in terms of the string tension, the
U(1)® have a large mass compared to the glueball masses. bttion is independent a@f; ,. It would be very interesting to
Sec. IV we calculate the different mass spectra and investihave a derivation of Eq2.29 from the Yang-Mills side as a

gate this possibility. non-perturbative contribution to the partition functipre-
lated to the expectation value of the gluon condensate
B. String tension and action (11495 TrF2,(0))].
The string tension is given by 142times the coefficient S
of =dx?, evaluated at the horizon, at the angles where it C. The supersymmetric limit uo=0
takes its minimum valu¢2,6]. This follows by minimizing Metrics of rotating branes with non-extremality parameter
the Nam_bL_J-Goto action of the string conflguratl_on. The ab-m=0 greatly simplify upon introducing Cartesian-type coor-
solute minimum occurs &= =0 or 7. We obtain dinates[6]. For the extremalri=0) M5-brane metrig2.1),
4 one introduce$13]
_ 2

7=z AW, (2.26 y1=r2+lisin6 cose,,

String excitations should have masses of oke¥f. The spin Vo= msinesingol,

<2 (glueballs that remain in the supergravity
approximation—whose masses are determined from the

2 .
Laplace equation—have masses which are independent of y3=\r?+15c0s6 siny cose,,
In the field theory limit, the free energ¥ (= Action
X Ty) takes the simple form ya=\r?+l5cosésinysing,,

(2.30

Vs
F:E_THS_QlJl_QZJZI_FNS up, (2.27) Ys=Tr COS6 COS.
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Using these coordinates we obtain 1 (477)\A)6
27\

Jg=Cu°A cofdsindsing, C=-— 30
0

5
3.3
+f1/2j§=‘,ldyj2, (2.31) 33

4

dﬁAzfl’z[—dngrE dx?
=1

In addition to the 0 * glueballs we consider particles with

where f is obtained from Eq(2.3) by taking the limita  NON-vanishingJ(1) charge associated with the circle param-
—», m—0 at fixedN using Eq.(2.11): f:1+7TN|g/Ar3, etrized by#,. The corresponding solutions of E.2) will
with r, 6, ¢ expressed in terms of, by Eq.(2.30. In this be of the form

limit the Bogomol'nyi-Prasad-Sommerfiel@PS bound is

saturatedM apy =const N. It can be shown that the func- V= g(u)e*en’2, (3.9
tion f(y;) satisfies the equatiof)d'f=0, i.e. it is a harmonic

function in the 5-space parametrized fy. The metric

(2.31) has unbroken supersymmetries, which can also be unVe Will show both analytically(within the WKB approxi-
derstood by interpreting the metri@.31) as a multicenter mation and numerically that these states do decouple for a

distribution of BPS D4-branes, by constructing the harmonid®@rticular range of parameters. We will a;;o consider the KK
function f as a linear superposition of harmonic functions States associated with the 1 modes of thes". For the static

corresponding to each D4-brafts3,16. (a;=a,=0) M5 metric, these transform in tierepresenta-

The field theory limit of Eq.(2.31) can be obtained by tion of SO(5).. After introducing angular momentum, this
replacingf—f—1, and properly rescaling coordinates. Al- décomposes inta(1)&(1,2)&(1,1) of the Cartan subgroup
ternatively, we can return to the metri@.24 written in ~ SQ(2)XS(2). According to this decomposition, the corre-
spherical coordinates, and se§=0. The resulting metric spondmg solutions of E(3.2) for the two doublets will be
has a curvature singularity in=a, (we are assuming,  9iven by
>a,>0), which cannot be removed by any choice of peri-
odicity in the 7 coordinates(the horizon region of the ex- _ COSp;
tremaluy=0 metric is not a Rindler spageBecause of the ¥ =¢(u)e'**sin 6( . ) (3.5
singularity, the supergravity approximation breaks down in Siney
the uy=0 case; in order to understand the corresponding
supersymmetric gauge theory, one needs to understand the
full string theory. At the supergravity level, it is meaningless ¥ =¢(u)e'* *cosd siny
to associate a temperature to this metric.

Cosg,
sing, |’

One can have control over the string-theory corrections if (3.6
we regularize the metric by takingy# 0 and consider the
limit of small uy (or equivalently,a; ,/uy large. For any  whereas for the singlet it is of the form
value ofa; ,/ug, one can choosk sufficiently large so that
all curvature invariants are arbitrarily small. This is the tech- W = ¢(u) e *cosh cosy. 3.7

nigue used in the next section when discussing the large
ay »/ug limit. Note that in this limit Ty,—o. However, the
spectrum of thaiy=0 theory must be supersymmetric with In ordinary (finite \,N) Yang-Mills theory there is no
the usual degeneracy between fermions and bosons. We shgl(2) X SO(2) symmetry, so one would expect that at least
return to this point in our conclusions. the states which transform non-trivially undeO(2)
XS0O(2) become very massive and decouple in the weak-
coupling limit. It is clear that the singlet stat8.7) should
also decouple. If it did not decouple at smgllit would then
The 0" glueballs are related to spherically symmetric be represented by sontgluon field operator in the gauge

Ill. GLUEBALLS AND THE RELATED KK MODES

modes of the dilaton fluctuations, of the form theory. In the zero angular momentum case, this state com-
bines with the other four components to form a multigket
V= g(u)ek (3.1 5 of SQ(5). Thus the singlet state cannot correspond to a

purely gluonic operatofsince the gluon field is a singlet

where M?=—k? [2]. The differential equation determining underS(5)], and must decouple,

the mass eigenvalues is obtained by substituting this into the Finally, we shal élso con~5|der U glueballs, which
dilaton equation of motion couple to the operata®,=TrFF. On the D4-brane world-

volume, the field that couples to this operator is the Ramond-

Ramond(R-R) 1-form A ,, which satisfies the equation of

1 _ motion
—=d,[e **\Jgg""3,¥]=0, (3.2
\/6 e
9.0N9gg" (9,A,— 3,A,)1=0,  um,v=1,...,10.
using the background metri@.24), and the formula (3.9

044001-5
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Finding angular-independent solutions is complicated, be-

cause of the non-diagonal components of the metric. Th@,=|r,—1| or gB,= (r1—1)2—4%

metric becomes diagonal in the two opposite limég, 2

<Ug anda, > Uo. In these cases one can consider solutions (if ry—rz—2=0). (3.16
of the form

- ik x _ ; Consistency requires that,; and B, are strictly positive
Ao, = Xo(WETT, A=0 E u# 0 B9 npers whereas;—s;+2 andr;—rz—2 can be either
positive or zero. Typically the validity of the WKB approxi-

: : . mation requires that the quantum numloebe much larger

these states obtained in the WKB approximation, and th\%\wan 1 (for . i
. . . precise conditions sdd.0]).
the same spectra obtained by using numerical methods. We
present tables for each state comparing the WKB with the
numerical results and find that they are in a very good agree-
ment. We also compare them to the lattice results for the The masses of the'0" glueballs are determined from the
glueball states which were computed fér=3 and small\. differential equation3.2) with the ansatZ3.1). Introducing
p=u? one gets Eq(3.10 with?

In the following we will first present the mass spectra of

1. Masses of th@** glueballs

A. Mass spectrum in the WKB approximation

— 2 2 2 2 3
In the following we use the WKB approach ¢f0] f(p)=(p==b1)(p°=b3) = pgp=(p—pn)(p—p1)(p—p2)
(which generalizes the WKB approach [#]) to calculate

X - L
the different mass spectréncluding KK mode$ in the (p=p3)
present case of QCDwith two angular momenta. Consider
differential equations of the form p
q h(p)=7. P(p)=0. (3.17)

d,(F(p)d,#)+(M?h(p)+p(p)¢=0,  (3.10

whereM represents a mass parameter, &), h(p) and  This gives for the various constants
p(p), pelpn,*), are three arbitrary functions which are
independent oM and have the following behavior: $1=1, s$,=0, r;=4, r,=1,

f~fi(p—pn)*, h=hi(p—pn)%

3.1
p~pi(p—pu)=, @ p—py, (3.11 (3.18

f~fp't, h~h,p'2, p~p,p" Using Eq.(3.13 one obtains the following mass spectrum:

2
a
as p= (312 M2=?—m(m+2)+(’)(m°), m=1,
wherer; ,3, S;23, f12, hyp andpy, are (rea) numerical
constants. For large masskf the WKB method can be
applied to obtain the approximate spectrum. One firids . }j” dp\p
2 o B 2)ouN(p=pu)(p—p1)(p—p2)(p—p3)
M?=zzm m+(—l+ a—2+ —2) +o(m%), m=1, (3.19
1 1

(3.13

This formula implies that mass ratios between resonances

are, in the WKB approximation, independent of the angular

momentum parameterb,,b,. This is similar to QCDQ,

" h where the general rotating D3-brane solution with three an-
dp \ﬁ

PH f

where

(3.14 gular momenta parameters was ugéd]. As in [10], the
WKB approximation breaks down in the region ndas
:bz, UOIO.

g:

is a constant which scales like a length, and
2. The KK modes on the circle

a1=S,—S$1+t2, B1=r1—r,—2, (3.19 . o
v v For the KK modes with non-vanishing(1) charge cor-
responding to the periodic variabby we look for solutions
_ _ 2 pl
a2—|Sl—l| or Ap= (Sl_l) _4f_
1
(if s3—s;+2=0), ?In the rest of Sec. Ill A we will use the notatiat ,=b; ,.
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(3.10 with M? replaced byM?—47?n?TZ and

of Eq. (3.2) with the ansat3.4). In this case we obtain Eq. M giueb m(m+2)
——=126\—
n

f(p)=(p?—b7)(p*>—b3)—pip,

3

2
7npoThp?

hp)=3 PP)=—"

This gives for the various constants
Slzl, 52=O, ng_l, r1=4, I’2=l,

3/2

Po 3/2
—) y fOI’ b1:4b2>p0,
by

(3.28

showing that in this case there is also decoupling with the
same power law as in E¢3.25 (up to a slightly different
numerical factor.

M circ.

3. The KK modes of &
Let us now compute the mass spectrum for the KK states

rg=—2, with non-trivial angular dependence @t. The two equa-

tions corresponding to the doublets must be related by an

2mnpy puTh interchange oh; anda,, whereas the one corresponding to
a;=1, a2=(p o) (Pr—pa) (pr—pa)’ the singlet should be invariant under such an interchange.
HOPLAPHF2APH S For the @,1) doublet we make the ansd5). Inserting into
Bi=1, B,=3. (3.21) Eq. (3.2 one finds Eq(3.10 with
Using Egs.(2.19 and(2.20 we see thatw,=n. Then Eq. £(0)= (02— b2)( p2—b3) — p3 h(p)="
(3.13 (with M>—M?—472n?T2) gives the following mass (P)=(p=b)(p"=b2) = pop,  h(p)=7.
spectrum: , , -
2 P(p)= 4p2(1 2 ) —b1p4( bz)
. - _ 2 _ 2
M2=4w2n2Tﬁ+?m(m+2+ n+o(md), m=1. 2p°]  f(p) p* (3.29
(3.22 '
) ] For the various constants we find
We would like to examine the way that these states decouple
in two limiting cases. First consider the case vitf*» p, and s;=1, $,=0, S3=—1, r,=4, r,=1, ry=2,
b,. Then we see from Ed2.19 that
b2 fi=(pu=pI)(pn—p2)(pu=ps), =1,
1
Th=—%. 3.2
: wpglz (323 bipﬁ bg ?
p1=— 1-—, (3.30
f1 PH

On the other hand, in the same limit,

131

Therefore the ratios of the masses of the glueballs to those of

the U(1) charged particles behave as

M glueb.z 1.20 /m(m+ 2)
Mcirc. n

Po

by

(3.29

3/2
_) f f0r bl>PO and b2.
(3.25

p2:_4, a1=1, Ayp=~L—

,81: 1, 2:5.
Hence, the mass is given by

2

77 2b,p? b3
Mzz?m m+4+ flpH<1——22 +0(m°%), m=1,
1 PH

(3.3)

Hence, the KK modes on the circle decouple with a power

law. Now consider the cade,=4b,>p,. Then
. 1502
H™ 167-rp8’2

and

1.33

where¢ is given by Eq(3.19. Consider the mass formula in
the regionb;>py, where the KK modes on the circle de-
couple, as in the case of one angular moment@y@]. Using

(3.26 pu=Db,, the mass formula takes the form

77_2
Mzz?m(m+5)+(’)(m°), m=1. (3.32

(3.27) This shows that fob;>p, the mass of these KK states is of

the same order as the glueball mas&x49.
For the (,2) doublet we make the ansd&.6). We obtain

Therefore the ratios of the masses of the glueballs to those dfie same results as Eq8.29—(3.31) with b; andb, inter-

the U(1) charged particles behave as

changed. For completeness we include the mass formula
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1.594
1.592
a
2 4 6 8 10
1.588
1.586
FIG. 2. The ratio of the 0** mass to the 0 mass along a

generic direction, chosen here to bg=2a,=a. Note, that the
change in the ratio is tiny, and the asymptotic value of the ratio is

0 2 4 6 8 10 the same as in Ref8] in the case ofh;—x, a,=0.
ai
2
FIG. 1. The unnormalized values of thé 0 glueball mas§the M2=?m(m+4) +0(m%, m=1, (3.37)

lowest eigenvalues of E@3.42] as a function of the two angular

momenta. Note that this function is smooth everywhere except in . L .
the regiona, = a,—. where¢ is again given in Eq(3.19. Clearly, the masses of

these modes are of the same order as the glueball masses
(3.19, albeit slightly heavier.

2 2 2
T 2b,p
M2=—ym| m+4+— H(l | |+om, m=1. ~
I3 fy P 4. Masses of thé®~* glueballs
(333 Let us finally also consider 0" glueballs. As we have
For py=b; this becomes mentioned, finding angular-i_ndependent solutions is compli_—
cated, because of the non-diagonal components of the metric.
2 The metric becomes diagonal in the two opposite limits
M2=—m(m+4)+O(m°), m=1, (3.39 b, ,<po andb, > py. In these cases one can consider solu-
§ tions of the form(3.9). Substituting this into Eq(3.8), we

L : obtain a second order ordinary differential equation which,
where¢ is given by Eq.(3.19)._Th|s shows that fob,>pg ypon introducing = u2 and writingai ,=b, ,, can be writ-
the mass of these KK states is of the same order as queba[len as Eq(3.10 [with ¢(p)— xo.( )]'with :
masses and a little lighter than the modes corresponding to Qls. P17 Xo,\P

the KK doublet(3.5. As a general ruléwhich applies in

particular to QCR [10]), states withe-dependence corre- f(p)=(p?=b3)(p?~b3), p(p)=0,

sponding to the largest angular parameter are slightly

heavier. In addition to the two doublets there is also a singlet ho) 1 p(p?>—b2)(p?—b3)

(1,1), represented by Eq3.7). We find that the function P)= 7 (pz_bi)(pz_bg)_pgp-

¢(p) obeys Eq(3.10 with (3.39

TABLE |. The masses of the first few'0 glueballs in GeV.
The first column gives the available lattice resyli8—2Q, the
second the asymptotic value of the supergravity calculation using
p(p)=2(b?+b5—2p?). (3.35  the numerical methodthe point is chosen to ba; =2a,=20uy),
while the third column the WKB result for the same supergravity

f(W)= (o>~ b3 (p*~b2)~plp, hip)=",

For the various constants necessary to compute the corr@8PProximation.
sponding masses we find

State Lattice Numerical WKB

$1=1, $,=0, s$3=0, ry;=4, r,=1, r3=2, o+ 1.61+0.15 1.61(input) 1.55
o+t 2.8 2.57 2.53

p2:_4! f2:11 al:11 aZZO! QF T - 3.49 3.46
QF ok - 4.40 4.37

B1=1, pB,=5. (3.39  Qf - 5.30 5.28

0+ R T T

- 6.20 6.18

Using Eq.(3.13 the mass formula for the singlé3.7) reads
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L n s L L L a

50 100 150 200 250 300 FIG. 4. The ratio of the lowest 0" mass to the lowest 0
mass along a generic direction, chosen here ta,be2a,=a. Note

that the ratio is very stable against the variations of the parameters.
nThe actual change in the ratio is sizeable, and independent of the
gjrection chosen in theag,a;) parameter spacgexcept the line
a;=a,) and agrees with the ratio found in R¢8] for the case of
a;—», a,=0. As explained in the text, this figure is only reliable
for the regionsa<<uy and a>ugy which are shown by solid lines,
while for the intermediate region denoted by a dashed line there are
corrections due to the non-vanishing off-diagonal components of
the metric.

FIG. 3. The behavior of the ratip of the mass of the excited
0*** glueball mass to the 0" mass along the lina;=a,. Note,
that along this direction the solutions behave very differently tha
anywhere else in the parameter space and depart significantly fro
the lattice results.

This gives for the various constants
Sl:O, 32:_1, I’1=4, r2:l,

a1=1, ay,=1, pB1=1, B,=3. 1. Masses of thé@** glueballs

(3.39

The equation for the 0* glueballs can also be written as

Using Eq.(3.13 one obtains the following mass spectrum: 1
, a, G((u“—a‘l‘)(u“—a‘g)—uzug)auf(u)}—k2u3f(u)=0.

M2=g2—m(m+3)+(’)(m0), m=1,  (3.40 (3.42

This equation is symmetric under the interchangapfind
where, it turns out, the constagtis still given by the corre- a,, and reproduces Eq2.14 of Ref.[8] for a,—0. This
sponding expression in E¢3.19. In the limit whenb,,b, differential equation can be solved numerically using the
> p,, the singularity structure of Ed3.10 changed9]. In  shooting method as described in Ref]. We require that the
this limit however, the equation coincides with the equationsolution be normalizablghat is foru—c f(u) should van-
for the 0" * glueballs, and therefore the mass formula shouldsh], and regular at the horizam, . These conditions restrict
be changed to the possible values df1? to a discrete set, which can be

identified with the glueball masses. The analysi§&fdem-

) w2 0 onstrated that the 0" glueball masses are very stable
M =?(m+1)(m+3)+(9(m), m=1, (3.4)

r

corresponding to the mass formua19 of the 0" * glue- 1 a5
balls shifted by ongsince the lowest state should correspond ~ N\
to the zero mode of Eq3.10 and not to a glueball state 1-225 N
[17]]. This will be the formula used for comparison to the ; 5
numerical results foa>uj. \
1.175
B. Numerical evaluation of the mass spectra 1.15

In the following, we present the results of the numerical 1-125
evaluation of the mass spectra corresponding to the state a
described in Sec. lll A. For every state, we will illustrate the
dependence of the masses on the angular momentum pararjn'—
eter along a generic directigehosen to be; =2a,), along FIG. 5. The behavior of the ratip of the mass of the lowest
the special directiom; =a,, and a table comparing the nu- 0~* glueball mass to the lowest'd’ mass along the line,=a,.
merical and WKB resultg¢and the lattice results for glueball As explained in the text, this figure is only reliable for the regions
states. a<ug anda>ug which are shown by solid lines.

075
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TABLE II. The masses of the first few 0" glueballs in GeV. Unlike 0* glueballs, the supergravity
masses for these glueballs are sensitive to the valueg @f,. Two cases are displayed, illustrating the
typical values that one gets for small and laegea, (the asymptotic values for largg ,a, are the same for
any generic direction, i.e. with; #a,). The lattice results are frofl9,20.

State Lattice Num. &; ,=0) Num. (a;=2a,=20) WKB

0~ 2.59+0.13 2.00 2.57 2.53
0 ** 3.64+0.18 2.98 3.49 3.46
0~ *trx - 3.91 4.40 4.37
Q THx* - 4.83 5.30 5.28
Q FHEEx - 5.74 6.20 6.18
Q FHwExx - 6.64 7.10 7.09

against the variation of a single angular momentum paramand the WKB results along a generic directi@mosen to be
eter. The numerical solutions of E(B.42 show that this a;=2a,).
statement remains valid for the whole range of angular pa- In Fig. 3 we show a ratio of masses along the special
rameters §,,a,), except in the regiom,;=a,>u,. This is  directiona;=a,, where the inner and outer horizons come
consistent with the fact that in the WKB approximatiio  together asa;/up—o (this is also the region where the
order 1fm) the ratio of masses are independentagfa, = WKB approximation breaks downln this region the mass
everywhere except a&;=a,> Uy, where the approximation ratios behave very differently than anywhere else and depart
breaks down. As mentioned befor@;=a,, uy=0 is the from the lattice result$for example, the weak-coupling lat-
special region where the inner horizon coincides with thetice value forMg++x /Mg++ for N=3 is about 1.74, which
outer horizon. As a result, the factor multiplying the secondis notably bigger than the numbers of Fig. 3 at lasge
derivative term in Eq(3.42 has a double zer@instead of
simple zer, and the behavior of the solutions is different. 2. Masses of thé®~* glueballs
In Fig. 1 we show the behavior of the lowest eigenvalue . . . + .
of Eq. (3.42. The valley alonga,— a, is related to the fact aSThe differential equation for 0" glueballs can be written
that the differential equatiofand the physics of the model
is symmetric under the interchangg«< a,. Note that the
function is smooth except at the poiat=a,== (or a i Z(ur—at(ut-a?
, P poiBg =a, 1 30y —(U"—ap)(u”—az)dyx,,(U)
=a,, Uy=0). In Fig. 2 we show the behavior of the ratio of Y~ [ U
the glueball masses along the directan=2a,, which illus- 4 4\ A A4
S ‘ . (u*—aj)(u*—ajy)
trates the fact that along a generic directidny a generic =—M? 7 53 Xo,(U). (3.43
direction we mean that it does not asymptotaie-a,) the (u"—ap)(u"—ay) —ugu”" "2
glueball mass ratios behave just like for the case with only
one angular momentum, that is they change only slightly andhe corresponding mass spectrum can be obtained using a
take on their asymptotic value very quickly. The fact that thesimilar numerical method as for the"0 glueballs. The de-
behavior of the glueball masses does not change can be see@ndence of the lightest 0 glueball mass on the angular
comparing Fig. 2 to Fig(2.1) of Ref.[8]. Table | contains momentum along a generic directidgohosen again to be
the comparison of the lattice results, the numerical solutiong;=2a,) is given in Fig. 4. One can see that while the

r r
1.44 1.4r
1.42
1.3}
a
2 4 6 8 10
1.38 1.2}
1.36
a
1.34 10 20 30 40
1.32
FIG. 6. The mass rati@ of the SO(2)XSO(2) singlet KK FIG. 7. The mass ratio of the SO(2)XS(O(2) singlet KK
mode to the lowest 0" glueball along the generic directica, mode to the lowest glueball mass 0 along the special direction
:2a2. a;=ap.
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r TABLE Ill. The masses of the first few singlet KK modes in
GeV. The first column gives the asymptotic value of the supergrav-
1.75 ity calculation using the numerical methdthe point is chosen to
1.7 be a;=2a,=20up), while the second column the WKB result for
L s the same supergravity approximation.
1.6 State Numerical WKB
1.55 KK 2.15 2.00
KK* 3.23 3.09
1.5 KK** 4.20 4,09
1.45 KK*** 5.15 5.05
KK**** 6.07 5.99
5 7 : 5 10 & KK 6.99 6.91

FIG. 8. The mass ratio of the SO(2)XSO(2) doublet KK
mode to the lowest glueball masses along the generic direation where

=28 4 4 6
a; az| Ug
masses are fairly stable against variations of the angular mo- ho(u)=| 1- AT El e (3.49
mentum, just like in the case af,=0 discussed i8], the
actual values of the mass ratios comparedté @ncrease by a’ a? a4\ 2
a sizeable £ 25%) value. The change is in the right direc- H(u)=4h0(u)( 1— _24) +5l1-—
tion as suggested by recent improved lattice simulatiank 2u u u
The actual asymptotic value of the mass ratig-+/mg++ (349

=1.59 is the same as for tfag=0 case everywhere except The components of the second doulg) give the same

very close to the regiom,=a,>Uo. Table Il contains the oqation witha, anda, interchanged. Finally, the equation
comparison of the lattice results to the supergravity result$, o+ qetermines the mass spectrum of the sin@ab is
evaluated using the numerical and the WKB methods.

Just as for the case of the"0 glueballs, this ratio be- R
haves very differently along the special=a, direction, U“d,|—((u"—aj)(u”—az)—u)f’'(u)
and departs significantly from the lattice result

(Mo + /My++)jaice= 1.46 as it can be seen in Fig. 5. +ud(8aj+8a5—k?u?—16u*)f(u)=0. (3.4
3. Masses of the KK modes of*S This is symmetric under the interchangeayfanda,. One
In terms ofu=1/p, Eq. (3.29 for the first KK doublet Can again numerically determine the solutions of these equa-
(3.5) reads Vp. Eq. (329 tions using the shooting method. In Figs. 6 and 7 we show

the behavior of th&§(2) X SO(2) singlet mode first along
a generic direction(which was again chosen to be;
=2a,), and then along the special directiaf=a,. One can
see that this mode does not decouple on any region of the
5 4u? parameter space. Figures 8 and 9 show the similar plots for
ke h_OH(U) f(u)=0, (344 the non-singlet KK modefor Eq. (3.44)], which similarly
do not decouple anywhere in the parameter space. Tables llI

r and IV show the comparison of the first few KK modes

o 5 (U= ad)(u'~ad) - uud)a,f(u)

_u3

0.7 TABLE IV. The masses of the first few non-singlet KK modes
in GeV. The first column gives the asymptotic value of the super-
gravity calculation using the numerical methghe point is chosen
0.65 to be a;=2a,=20u,), while the second column the WKB result
for the same supergravity approximation.

0.6 State Numerical WKB
0 55 KK 2.84 2.19
' KK* 3.80 3.34
KK** 4.73 4.37

) N . ) N a *kk
20 40 60 80 100 120 KK 5.54 5.36
KK**** 6.57 6.31
FIG. 9. The mass ratio of the lightest glueball to th&0O(2) KK **H%* 7.47 7.25

X SO(2) doublet KK modes along the special directiap=a,.
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a

0.5 1 1.5 2 2.5 5 10 15 20 25 30
FIG. 11. The mass ratio of the lightest glueball to the KK

FIG. 10. The mass ratio of the lightest glueball to the KK : e Y
mode on the compact D-brane coordinatealong the special di-

mode on the compact D-brane coordin&tealong the generic di- !
rection a;=2a,=a. Just as for the case with only one angular "€Ctiona;=az.
momentum, these states decouple very quickly from the spectrum.

momentum parameters. The asymptotic values of these ratios

evaluated using the numerical and the WKB methods.  for large angular momenta are in good agreement with the
_ most recent lattice results everywhere in the parameter space
4. Masses of the KK modes on the circle except along a special lirs, = a,>u, (which is exactly the

Next we consider the KK modes coming from the com-region where the WKB approximation breaks down, and also

pact D-brane coordinate. These modes have the {8,  the region where the inner and outer horizons approach each
where ¢(u) obeys the differential equation othen. The KK modes on the compact D-brane coordinate

decouple for large angular momenta everywheseept per-
haps alonga;=a,, where our analysis of decoupling is in-
conclusive. The KK modes on th&* however do not de-
couple from the spectrum anywhere in the parameter space
9n?(aj—u*)(ag—u? ) in the supergravity approximation used in this paper.

dy

%((u“— ap)(u’—a;) ~u?)dyp(u)

= p(u)u’®| k?+ The masses evaluated in this paper in the supergravity
approximation can in principle get large corrections when
(3.48 extrapolating from the strong couplingarge \) regime to
the weak-coupling regime of the Yang-Mills theory. If the
One can again numerically solve these equations. For a g&pectrum of the corresponding string models at smnadlo
neric direction(chosen to be agaia;=2a,) we find that indeed reproduce the Yang-Mills spectrum, a natural ques-
these modes decouple very quickly from the spectrum, justion to ask is why the glueball massés perhaps only the
like in the case with one angular momentum parameter disglueball mass ratigswould get small corrections, while the
cussed in Refl8]. This is illustrated in Fig. 10. For the case KK masses get large corrections. Since in the limjta,
of the special directiom, =a,, the numerical analysis of the > u, the metric approaches the supersymmetric spa&d),
decoupling is inconclusive. The masses of these KK modet is possible that a subset of the masses may be protected by
grow much slower than for the generic case. At the pointsupersymmetry. A problem of interest is thus to investigate
when our numerical solutions become unreliable, these
modes are not decoupled yet, however one cannot rule out

the possibility that fora—« they eventually do decouple

A2(ut—u*(aj+aj)—u’+aja3)

TABLE V. The masses of the first few KK modes on the circle
in GeV. Along a generic direction these KK modes decouple, thus

(see Fig. 11 we have chosen an arbitrary poat=2a,=2.5u, for the compari-
son of the numerical and WKB results, which are given in the first
IV. CONCLUSIONS and second column.

In this paper we have presented a two-param_eter family o§;,e Numerical WKB
supergravity models of nonsupersymmetric HB)-
dimensionaSU(N) Yang-Mills theory, based on regular ge- KK 11.27 11.24
ometries with D4-brane charge. In these models, we hav&K* 11.48 11.45
evaluated the mass spectra of the scalar glueballs and sork&** 11.76 11.72
of the related KK modes everywhere on the two dimensionak K*** 12.09 12.06
parameter space using both numerical and analtikB) KK x5 12.48 12.45
methods(see Tables |-Y We find that the glueball mass K***** 12.92 12.89

ratios are very stable against the variation of the angulat
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