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Abstract

Recurrent climate-induced mass-mortalities have been recorded in the Mediterranean Sea over the past 15 years. Cladocora
caespitosa, the sole zooxanthellate scleractinian reef-builder in the Mediterranean, is among the organisms affected by
these episodes. Extensive bioconstructions of this endemic coral are very rare at the present time and are threatened by
several stressors. In this study, we assessed the long-term response of this temperate coral to warming sea-water in the
Columbretes Islands (NW Mediterranean) and described, for the first time, the relationship between recurrent mortality
events and local sea surface temperature (SST) regimes in the Mediterranean Sea. A water temperature series spanning
more than 20 years showed a summer warming trend of 0.06uC per year and an increased frequency of positive thermal
anomalies. Mortality resulted from tissue necrosis without massive zooxanthellae loss and during the 11-year study, necrosis
was recorded during nine summers separated into two mortality periods (2003–2006 and 2008–2012). The highest necrosis
rates were registered during the first mortality period, after the exceptionally hot summer of 2003. Although necrosis and
temperature were significantly associated, the variability in necrosis rates during summers with similar thermal anomalies
pointed to other acting factors. In this sense, our results showed that these differences were more closely related to the
interannual temperature context and delayed thermal stress after extreme summers, rather than to acclimatisation and
adaption processes.

Citation: Kersting DK, Bensoussan N, Linares C (2013) Long-Term Responses of the Endemic Reef-Builder Cladocora caespitosa to Mediterranean Warming. PLoS
ONE 8(8): e70820. doi:10.1371/journal.pone.0070820

Editor: Fabiano Thompson, Universidade Federal do Rio de Janeiro, Brazil

Received February 20, 2013; Accepted June 24, 2013; Published August 12, 2013

Copyright: � 2013 Kersting et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support was provided by the projects BioRocK (CTM2009-08045) and SMART (CGL2012-32194) from the Spanish MICINN and MINECO and the
Catalan Government grant (2009SGR-174) for Consolidated Research Groups. C.L. was supported by a "Ramón y Cajal" research contract (RYC-2011-08134). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have the following interest: Nathaniel Bensoussan is employed by the scientific cooperative IPSO FACTO. There are no
patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and
materials, as detailed online in the guide for authors.

* E-mail: diegokersting@gmail.com

Introduction

Since the late 20th century, global warming has been enhanced

by human activities [1]. In this ongoing climatic change, climatic

models predict that the Mediterranean Sea will be among the

regions that are most affected by the warming trend and the

increase of extreme events [2,3]. In fact, warming trends in the last

decades are well documented for the Mediterranean Sea, in both

deep and coastal waters [4–7].

In the Mediterranean Sea, the frequency of abnormally warm

summers has increased, resulting in unprecedented mass-mortality

events. Although some early mortalities were detected in the 1970s

and 1980s (e.g., [8,9]), the first multispecies mass-mortality event

was described in the NW Mediterranean in the summer of 1999

[10–12]. In the summer of 2003, a new mass-mortality episode

occurred in NW Mediterranean coastal waters, this time over a

larger geographic area [13]. Both events affected over 30 species of

benthic invertebrates, mostly cnidarians, sponges and bryozoans

[13,14].

While the relationship of these mortalities to water temperature

was unequivocal [11,13], different factors, such as energetic

constraints due to prolonged summer stratification of the water

column [5] and pathogens [15], have been linked to the direct

cause of death of the organisms. To date, several studies have

examined the direct relationship between sea-water temperature

and the mortality patterns of affected species; however, these

studies are basically field studies encompassing one or a few years

of observations [13,16,17] or laboratory experiments [5,18].

Hence, there is an important lack of long-term studies assessing

the long-term responses of temperate species to ongoing warming.

Cladocora caespitosa, the sole zooxanthellate scleractinian reef-

builder in the Mediterranean, is among the organisms affected by

these mortalities [12,13,19,20]. Although it can be considered a

conspicuous species, extensive bioconstructions of this endemic

coral (i.e., banks; [21]) are very rare at the present time and are

threatened by global change-related disturbances, such as the

above-mentioned mortalities as well as the presence of invasive

species [22,23]. Although an important effort has been made to

study the thermal tolerance of this species in aquaria [20,24,25],

no study has assessed the long-term effects of warming-induced

mortalities on natural C. caespitosa populations, especially on the

endangered micro-reefs of this coral.

Here, we provide, for the first time, an analysis of the

relationship between seawater warming and mortality in a C.

caespitosa population over an 11-year period. We do so using data

on the local water temperature regime for the period from 1991 to

2012 in the Columbretes Islands; this data set can also provide

additional information on Mediterranean warming trends. The
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objectives of the present work are to study the existence of

correlative evidence between the occurrence and intensity of the

necrosis events and the local sea surface temperature (SST) regime

and to compare the response of C. caespitosa throughout the

recurrent mortality events in the Columbretes Islands to obtain

information on the long-term effects of thermal anomalies on

Mediterranean benthic species.

Materials and Methods

Ethics Statement
This study was conducted according to the permitting

requirements of the Columbretes Islands Marine Reserve

Authority (Secretarı́a General de Pesca, MAGRAMA). The

Secretarı́a General de Pesca specifically issued the required

permission for the C. caespitosa study in the Columbretes Islands

Marine Reserve.

Study site
The Columbretes Islands emerge 30 nautical miles off the coast of

Castelló (Spain, NW Mediterranean). A marine reserve encircles the

archipelago covering an area of 5,500 ha. Illa Grossa (39u53.8259N,

0u41.2149E), the largest of the islets in the Columbretes (14 ha), is a

C-shaped, drowned, Quaternary volcanic caldera (Fig. 1). The

studied C. caespitosa population occurs in the central area of the bay

formed by this islet (150,000 m2, 5–30 m depth range); with the

highest coral cover values in the NW and SE parts. The cumulative

coral cover in the bay reaches 2,900 m2 in a mixed bank-bed colony

distribution [22].

C. caespitosa mortalities
The impact of tissue necrosis on the C. caespitosa colonies was

studied each year over the period 2002–2012. Mortalities were

described and quantified by combining annual random transects

and long-term monitoring of individually identified colonies. In

the random transects, a total of 110 to 160 colonies were surveyed

annually during the autumn (October – November). The long-

term annual monitoring of identified colonies began in 2002 with

26 individually marked and mapped colonies; which were

increased to 250 in 2006. The surveyed colonies occurred at a

depth range of 5 to 20 m, and their maximum diameters ranged

from 5 to 150 cm. Schemes and photographs of each colony were

used in each survey to depict the areas affected by necrosis.

In each surveyed colony the following data were obtained:

depth, percentage of the colony area affected by necrosis (in

increments of 10% and differentiating recent or old necrosis) and

the size of the colony through its maximum axis. The percentage

of necrosis was always related to the living area of the colony.

Necrosed areas below 10% were not considered to prevent

confusion with other sources of natural mortality, such as those

eventually induced by depredation by the gastropod Babelomurex

cariniferus (Kersting DK, pers. obs.).

To detect delayed necrosis in the C. caespitosa colonies,

additional surveys were undertaken four to five months after the

first necrosis was detected.

Kolmogorov-Smirnov two-sample tests were used to determine

whether there were significant differences in necrosis for the

following comparisons: (i) along the depth gradient (5–15 m vs.

15–20 m; because vertical temperature profiles showed weak

vertical gradients (,1uC) in the upper 15 m of depth during the

warmest period), (ii) between the two main mortality periods

(2003–2006 vs. 2008–2012) and (iii) during the second mortality

period, between colonies that were previously unaffected (,10%

necrosis) or affected ($10% necrosis) during the first mortality

period. This last test explored the existence of any degree of

acclimatisation over time.

Kruskal-Wallis analysis was used to test for differences in

necrosis depending on colony size (maximum diameter size classes:

,25 cm, 25–50 cm, .50 cm).

Temperature measurements
The SST data have been recorded daily in the Columbretes

Islands Marine Reserve since 1991 at depths of 1 m using a

calibrated mercury-in-glass thermometer (Thies Clima, model

2.2141.00.64, Göttingen, Germany). The temperature was mea-

sured between 8:00 and 9:00 a.m. by the Marine Reserve wardens

following the same protocol (bucket sampling in the first meter of

water and direct measurement with the thermometer). Overall,

Figure 1. Map of the study site. A. The Columbretes Islands (NW Mediterranean, Spain). B. Illa Grossa Bay.
doi:10.1371/journal.pone.0070820.g001

C. caespitosa Long-Term Responses to SST Warming
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6,028 daily measurements of SST were collected, which covers

75% of the 1991–2012 period, with a mean value of 274 data logs

per year and a mean temporal cover of 87% during the summer

(June-September). However, with only 27 data logs during the

summer, the year 2000 was not considered in the statistical

analyses.

Uncertainty in SST from bucket measurement is on the order of

a few tenths of a degree C [26]. Comparisons with hourly records

recorded by autonomous data loggers (Water Temp pro v2,

ONSET, Cape Cod, MA, USA; accuracy: 0.21uC, resolution:

0.02uC) at 1 m depth from June 2011 to October 2012 yielded

very good results, indicating that these punctual measurements

reflected the near surface thermal environment (T1m = 0.97 SST

+ 0.64, r = 0.99, p,0.001, N = 446). Additional temperature

profiles (0–20 m) were recorded monthly in the Illa Grossa Bay

from 2004 to 2007 using an SBE 39 temperature and pressure

sensor (Sea-Bird Electronics, Bellevue, WA, USA). Since 2007, the

bay was equipped with Stowaway Tidbits (ONSET, Cape Cod,

MA, USA; accuracy: 0.2uC, resolution: 0.14uC) autonomous

sensors set at depths of 5, 10, 15 and 20 m (1 hour data-sampling

frequency). These sensors were installed in the same area as the

permanent C. caespitosa transects.

Data obtained from the temperature profiles and the autono-

mous sensors were used to obtain information on the vertical

gradients during the summer (June-September). Data from the

autonomous sensor located at a depth of 15 m (average depth of

the C. caespitosa population; [22]) were compared to the SST data

for the summers from 2007 to 2012 to validate the use of the latter

longer temperature series for the posterior necrosis-temperature

correlation analyses (T15m = 1.13 SST – 4.74 , r = 0.76, p,0.001,

N = 678). Summer SST anomalies (i.e., the temperature obtained

in the studied summer minus the average of the summers from the

original data set (1991–2012)) were obtained for the studied

summers (June-September, 2002–2012). Differences in summer

SST anomalies among years were analysed using a one-way

ANOVA and a Scheffé test for multiple comparison.

The persistence of high water temperatures during the studied

summers was recorded as the number of days in which the SST

exceeded certain temperature thresholds (from 24 to 28uC).

Correlation between mortality and water temperature
Three mortality descriptors were selected to study the relation-

ship between mortality events and SST anomalies: 1) The mean

percentage of the coral’s injured surface (hereafter, ‘‘necrosis’’); 2)

the percentage of colonies that were affected in their entirety by

the necrosis (hereafter, ‘‘total mortality’’) and 3) the percentage of

colonies that were affected by the necrosis to some extent

(hereafter, ‘‘affected colonies’’).

Pearson’s product-moment correlation was used to examine the

relationship among the three descriptors (necrosis-affected colo-

nies: r = 0.97, p,0.001; necrosis-total mortality: r = 0.81,

p,0.005; affected colonies-total mortality: r = 0.70, p,0.05;

N = 11). Necrosis was chosen as the principal mortality descriptor

because its use has been generalised in previous mortality studies

(e.g. [12,13,20,27–29]).

The SST descriptors used were as follows: 1) summer SST

anomalies and 2) persistence of temperature thresholds (i.e., the

number of days over temperature thresholds 24, 25, 26, 27 and

28uC).

Multiple linear correlation analyses were performed to explore

the relationship between the temperature and mortality descrip-

tors. These analyses were performed for the whole studied period

(2002–2012) and for the different mortality periods separately, in

order to search for differences between them. The correlation

analyses were also performed without the non-mortality years in

order to study the role of the necrosis intensity in the correlation

with the temperature descriptor.

Results

C. caespitosa mortalities: pattern of necrosis and inter-
annual incidence

Old basal necrosis (i.e., accumulated necrosis prior to 2002) of

approximately 3% was registered during the first colony surveys in

2002 and 2003. The first mass-mortality event affecting C.

caespitosa was detected in September 2003. Recurrent mortalities

were then detected at the end of the summers of 2004, 2005 and

2006. No mortality was detected in 2007. Although less virulent,

necrosis events occurred again during every summer from 2008 to

2012.

The polyp mortality was always characterised by direct tissue

necrosis without massive loss of zooxanthellae (i.e., the polyps

never lost the brownish-green colour given by the zooxanthellae).

Tissue necrosis began at the basal part of the polyps; in these first

stages, the polyps often remained expanded. Necrosis gradually

affected polyp structure until all tissue disappeared, leaving the

bare skeleton (Fig. 2). When colonies were only partially affected

by necrosis, the dead polyps were always adjacent to each other,

and the colony necrosis had a patched appearance. The evaluation

of the accumulated occurrence of the necrosis patches in each

colony showed that necrosis occurred both in the upper part and

lower sides of the colony in 89.5% of all cases. The first signs of

mortality were always detected during August and the beginning

of September.

No delayed necrosis was ever detected, when the event was

over, the necrosed areas of the colonies remained unchanged, and

epibionts rapidly covered the damaged parts.

Recovery of these necrosed areas was never detected. However,

in the last years of the survey (2010, 2011 and 2012), the

recolonisation of dead colony areas was registered; this occurred

through the recruitment of new C. caespitosa colonies on the old,

dead polyps (Fig. 3). This colony-on-colony recruitment was

recorded in 16.26% of the colonies that had experienced partial or

complete mortality (average necrosis 80.60620.3% (6 SD)).

Through this process, the recolonised colonies gained between

10 and 30% of new, living colony area.

Over the studied period, 80% of the monitored colonies

(N = 250) were affected to some extent (partially or totally) by

multiple mortality events. Considering the information from the

fixed and random colony transects, the total colony area that was

affected by the accumulated, recurrent necrosis was estimated to

range between 55 and 80%.

The highest necrosis values were recorded during the 2003

event, during which 13.39% of the surveyed colonies died

completely and necrosis reached an average of 25%

(24.94637.82%). Important mortalities occurred after the follow-

ing summers (2004–2006), with necrosis values ranging between

12.91627.46% and 19.62629.49%. The recurrent mortality

events that followed from 2008 to 2012 registered much smaller

percentages of necrosis (ranging between 1.95610.78% and

6.67618.11%). See Figure 4 and Table 1. Generally, necrosis

rates showed high variability between colonies, and affected and

unaffected colonies were commonly found one beside each other.

Total mortality (100% of necrosed surface) was mostly due to a

single mortality event rather than to accumulated necrosis from

multiple, recurrent events. In this sense, 26.7% of the studied

colonies experienced total mortality following a single event (half

C. caespitosa Long-Term Responses to SST Warming
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of these colonies died in 2003), while 6.9% experienced total

mortality as a result of repeated necrosis events.

Significant differences were found in necrosis over the entire

study period among the selected depth ranges (Kolmogorov-

Smirnov test, p,0.001). In contrast, no significant differences were

found between necrosis and colony size (Kruskal-Wallis test,

p = 0.415).

The average percentage of necrosis was significantly higher

during the first period than the second one: 19.07631.45%

between 2003 and 2006 vs. 3.96614.52% between 2008 and 2012

(Fig. 5a; Kolmogorov-Smirnov test, p,0.01). In contrast, similar

necrosis rates were recorded during the second period from

colonies that were unaffected or affected during the first period

(4.59617.06% vs. 3.57612.84%, respectively) (Fig. 5b; Kolmo-

gorov-Smirnov test, p.0.1).

Water temperature regime: annual cycle, warming trend
and thermal anomalies

Annual cycles showed a minimum of ca. 12uC in mid-February

and a maximum between 24.9 and 29.6uC in August (Fig. 6a). The

seasonal warming typically had two phases: slow warming rates

until mid-April, followed by steeper gradients through the end of

June (0.19 vs. 0.87uC per week). SST cooling was observed from

the end of August to the end of year at a rate of 0.66uC per week.

Over the period studied, SST exhibited a warming trend of

0.04uC per year (r = 0.30, N = 227). Focusing only on summer

Figure 2. Mortality of C. caespitosa. A. C. caespitosa colony showing partial necrosis. B. Totally affected colony. C. The necrosis process in the
polyps of C. caespitosa.
doi:10.1371/journal.pone.0070820.g002

Figure 3. ‘‘Colony-on-colony’’ recruitment in a necrosis-affect-
ed C. caespitosa colony. Scale bar: 5 cm.
doi:10.1371/journal.pone.0070820.g003

C. caespitosa Long-Term Responses to SST Warming
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SST (June to September), the warming trend was even stronger,

reaching 0.06uC per year (r = 0.55, N = 21) (Fig. 6b).

The frequency of positive thermal anomalies during the summer

has increased markedly since 2003 (Fig. 4). In 1991–2002, all

averaged summer thermal anomalies were negative, except in

1998 and 1999. Contrarily, in the second decade, positive

anomalies were recorded during eight summers, occurring in

two periods of four consecutive years and only interrupted by the

2007 and 2008 negative anomalies.

The summer SST anomalies varied significantly over time (one-

way ANOVA, F10, 1215 = 14.802, p,0.001). The maximum

significant differences were found when comparing 2003 with all

but the warmest summers (i.e., 2006 and 2009). The summers with

marked negative thermal anomalies (2002 and 2007) were

significantly different from the warmest ones (Table S1).

The summer of 2003 was the warmest of the 20-year-long SST

data series, with an average positive anomaly of 1.83uC. During

this summer, SST maxima of over 29uC were registered in the Illa

Grossa Bay, and the average SST for the entire summer (June-

September) was 26.2062.06uC (Fig. 7). The following summers,

i.e., 2004 and 2005, were characterised by moderate positive

anomalies (0.42uC and 0.52uC, respectively). In the summer of

2006, high temperatures were reached again; temperature

maxima were similar to those recorded in 2003, and an average

Figure 4. C. caespitosa necrosis rates (2002–2012) and summer SST anomalies (1991–2012).
doi:10.1371/journal.pone.0070820.g004

Table 1. Mortality and temperature descriptors.

Necrosis (% 6 SD) Affected colonies (%) Total mortality (%) SST anomaly (uC) 24uC 25uC 26uC 27uC 28uC

2002 0 0 0 20.57 66 22 4 0 0

2003 24.94637.82 46.43 13.39 1.83 98 82 61 44 25

2004 19.62629.49 53.64 3.31 0.42 79 51 36 6 0

2005 12.91627.46 26.36 5.43 0.52 85 64 33 0 0

2006 19.30631.02 38.46 2.43 0.99 89 72 43 19 13

2007 0 0 0 20.52 63 27 8 0 0

2008 5.61618.50 12.34 0.43 20.12 75 47 25 7 0

2009 2.76610.26 11.69 0.43 0.94 90 75 61 22 11

2010 1.95610.78 4.78 0.43 0.27 87 66 43 2 0

2011 6.67618.11 17.47 0.87 0.19 86 52 27 8 3

2012 2.73611.93 10.55 0 0.43 81 66 37 12 2

Note that necrosis is given in reference to the remaining living colony area.
doi:10.1371/journal.pone.0070820.t001
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anomaly of 0.99uC was registered. A second cycle of positive

thermal anomalies began in 2009 and lasted until 2012. During

these years, the maximum positive anomaly was reached in 2009

(0.94uC); positive anomalies were moderate in the summers of

2010, 2011 and 2012 (0.27uC, 0.19uC and 0.43uC, respectively).

See Figs 4 and 7.

Average vertical temperature profiles attested to weak vertical

gradients (,1uC) in the upper 15 m of the water column during

the warmest period (August) and in the upper 10 m over the entire

summer (Fig. 8).

In the years with available data (2004–2012), water tempera-

tures remained over 25uC at depths of 15 m at least during

August. The only year without mortality during this time span

(2007) had 10 weeks over 24uC, 3 weeks over 25uC and 0.3 weeks

over 26uC at 15 m (Fig. 8b). In the years with mortality, water

temperatures at depths of 15 m remained over 25uC for between 5

and 10 weeks (Fig. 8c).

Correlation between mortality and water temperature
Necrosis and SST anomalies showed a significant positive

correlation over the entire studied period (2002–2012; r = 0.75,

p,0.01) (Table S2). Similarly, the other mortality descriptors also

showed a positive relationship with SST anomalies (total mortality,

r = 0.75, p,0.01; affected colonies, r = 0.70, p,0.05).

When performing the analyses with the two mortality periods

separately, the relationship between mortality descriptors and SST

anomalies was highly correlated during the first period (necrosis-

SST anomalies, r = 0.94, p,0.01) but lost significance during the

second period. If the non-mortality years (2002 and 2007) were not

considered, the correlation between these variables over the entire

studied period lost significance (Table S2).

The correlation between necrosis and persistence of tempera-

ture thresholds over the whole studied period was significant only

for the warmest limits (necrosis-27uC, r = 0.61, p,0.05; necrosis-

28uC, r = 0.63, p,0.05), while during the first mortality period the

correlation was significant for the colder thresholds (necrosis-24uC,

r = 0.93, p ,0.01; necrosis-25uC, r = 0.92, p,0.01; necrosis-26uC,

r = 0.97, p,0.01). No correlation between necrosis and persistence

of temperature thresholds was found when analyzing the second

period separately (Table S2).

Discussion

Historically, mass coral bleaching has been linked to episodes of

thermal stress in tropical corals; this is an increasing concern

around the world (see [30] for a review). Nonetheless, monitoring

the mortalities in the temperate scleractinian reef-builder C.

caespitosa in the Columbretes Islands (NW Mediterranean Sea) over

an 11-year period allowed describing, for the first time, the

relationship between recurrent mortality events and local SST

regimes in the Mediterranean Sea.

Patterns of mortality
The observed necrosis process in the Columbretes Islands was

very similar to previous descriptions of C. caespitosa necrosis in the

Ligurian Sea [20]. In accordance with previous studies based on

field and laboratory data, C. caespitosa polyps died due to

progressive tissue necrosis with no signs of zooxanthellae loss

[20,25,31]. The absence of bleaching is most likely related to the

resistance to increases in temperature shown by the Symbiodinium

(clade temperate-A, [32]) in symbiosis with C. caespitosa [24].

Tissue regeneration after mortality episodes was not detected in

the Ligurian Sea [20] or in the present study. This could be due to

the phaceloid morphology of C. caespitosa colonies, built up by

independent polyps, which makes the regeneration of adjacent

damaged tissue by unaffected polyps difficult [20]. Conversely, the

autonomy of the C. caespitosa polyps could also be responsible for

the lack of delayed necrosis following mortality events as well as

the lack of correlation between colony size and necrosis, as has

been detected in temperate gorgonians [27–29]. Unexpectedly,

although tissue recovery was not observed, another indirect but

non-trivial mechanism of colony recovery was detected during the

last years of the study. C. caespitosa recruits settled on the newly

available space on the dead colony parts.

Decreases in necrosis rates with depth have been described for

species living at greater depths than C. caespitosa, e.g., the gorgonian

P. clavata [29]. Although the depth range of the studied C. caespitosa

colonies places them above the thermocline depth during most of the

summer, the relationship between necrosis and depth was consistent

with the fact that the summer conditions begin sooner for shallower

colonies because the thermocline typically reaches a depth of 15 m

at the beginning of August. Therefore, C. caespitosa colonies living at

shallower depths were more exposed to thermal stress and showed

Figure 5. A. Percentage of necrosis (mean6 SD) detected in each mortality period. B. Percentage of necrosis (mean6 SD) detected in the
second mortality period in colonies that were either affected or unaffected in the first mortality period.
doi:10.1371/journal.pone.0070820.g005

C. caespitosa Long-Term Responses to SST Warming
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greater mortality rates. As a result, changes in the depth distribution

of this population are expected in the future due to the

disappearance of the shallower colonies.

Relationship between mortality and temperature
Mortalities were recorded in the context of regional warming

and occurred concomitantly with a shift in the regime of positive

thermal anomalies in the Columbretes Islands. In particular, the

first mortality was triggered by exceptionally warm conditions

accompanied by the persistence for several days of extreme

(.28uC) temperatures.

However, it is worth mentioning that our results are not in

concordance with those found in the laboratory. During different

aquaria thermo-tolerance experiments with C. caespitosa polyps

(collected in the Ligurian Sea), the first signs of necrosis were

Figure 6. A. SST mean annual cycle in the Columbretes Islands (1991–2012). B. Mean summer SST (June-September, 1991–2012).
doi:10.1371/journal.pone.0070820.g006

C. caespitosa Long-Term Responses to SST Warming

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e70820



detected after 5–7 weeks at 24uC, and all polyps that were exposed

at 26uC and 28uC died after the treatments [20,25]. Based on

these experiments, the authors proposed that C. caespitosa is living

close to its thermal limit during the summer period in the Ligurian

Sea and a long-term increase at 24uC or above could be lethal for

it. In the Columbretes Islands, water temperatures at 15 m

remained over 24uC for 10 weeks during the summer of 2007,

which recorded negative thermal anomaly. This time span was 3

to 5 weeks longer than that reported in the mentioned experi-

ments and no necrosis was detected. Similarly, in the summer of

2009, the average extent of necrosis was approximately 3%, and C.

caespitosa colonies at 15 m were exposed to temperatures greater

than 24uC for 68 days and to temperatures greater than 26uC for

34 days; this exposure was approximately three times longer than

Figure 7. Annual thermal regime (2003–2012) and average SST for the data series 1991–2012. Dotted vertical lines delimit the summer
period.
doi:10.1371/journal.pone.0070820.g007
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the exposure that caused necrosis in 100% of the polyps in the

aquaria experiment [25]. The differences found between the

mortalities in aquaria (Ligurian Sea) and in situ (Columbretes

Islands) could be related to two major points: differences in the

thermal acclimatisation of C. caespitosa between both sites, taking

into account that the colonies are naturally subjected to different

thermal regimes, and the fact that aquaria experiments can only

partially simulate the natural environmental conditions.

Another striking result is that the response of C. caespitosa to

summers with positive thermal anomalies changed between the

two mortality periods and particularly in relation to temperature

thresholds. The correlation between necrosis and the persistence of

water temperature thresholds for the entire data series was only

significantly positive when assessed using the 27uC and 28uC
threshold. However, a significant positive correlation between

necrosis and temperature thresholds of 24uC, 25uC and 26uC was

found when considering only the first mortality period, while no

correlation was found for the second period.

During this 11-year study, mortality events occurred in two

separated periods, i.e., 2003–2006 and 2008–2012. The average

necrosis diverged significantly in these two periods (19% vs. 4%,

respectively), and important differences in the average thermal

anomaly were also found (1.00uC and 0.39uC, respectively).

However, with the same positive thermal anomaly (approximately

1uC), different years such as 2006 and 2009 registered contrasting

necrosis (19% vs. 3%, respectively).

As our results prove, it is unequivocal that sea water

temperature is one of the main factors that triggered C. caespitosa

mortality events. Nevertheless, the differences found in necrosis

between years with similar thermal anomalies show that other

factors are also acting in this process.

Synergies with other factors
Water quality and ecosystem conservation has been ensured in

the Columbretes Islands Marine Reserve since its creation in 1990.

Furthermore, the location of the islands far from mainland

(60 Km) guarantees low interaction with nearshore waters.

Therefore, factors such as water quality or dysfunctions in trophic

interactions derived from overfishing, that might be relevant in

unprotected areas [33], were excluded in the present study.

Although irradiance, especially photosynthetically active radia-

tion (PAR), has been shown to be directly related to tropical coral

bleaching [34–36], we disregarded it as a possible factor acting in

the C. caespitosa mortalities. Depending on the depth and water

type, irradiance can be significantly attenuated [34,37]. Bearing in

mind the depth range of our studied C. caespitosa population we can

assume an important reduction in irradiance. Furthermore, the

zooxanthellae in symbiosis with C. caespitosa (Symbiodinium Clade A)

are considered light-adapted [38,39]. Finally, a pattern in the

necrosis scars related to the effects of irradiance, as reported in

tropical corals [34], was not observed in C. caespitosa.

Disease outbreaks have affected an increasing range of marine

organisms in different geographic regions worldwide [40]. In the

Mediterranean Sea, thermally dependent pathogens have been

considered co-responsible for mass-mortalities and coral bleaching

[15,41,42]. Although, as far as we know, no studies have dealt with

this issue in C. caespitosa, the type of necrosis (lysis) suffered by this

species could be related to a disease, such as that caused by V.

coralliilityticus, which synthesises a potent extracellular protease that

lyses coral tissue [43]. Although no analyses were conducted to

detect opportunistic pathogens in the C. caespitosa mortalities, the

possible role of pathogens or even polymicrobial consortiums as

recently suggested in other tropical coral species [44], should not

be disregarded. Previous studies have demonstrated that the

Figure 8. Thermal environment at a depth of 5 to 20 m. A. The
2007–2012 annual average B. Data from June to November in a summer
with negative SST anomaly, 2007. C. Data from June to November in a
summer with highly positive SST anomaly, 2009.
doi:10.1371/journal.pone.0070820.g008
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occurrence of Vibrio bacteria in the NW Mediterranean Sea is

climate linked, greatly increasing under the inuence of positive

temperature anomalies as the observed ones in Columbretes

Islands [45].

In tropical corals, greater energy reserves or greater access to

resources could compensate for decreased photosynthesis during

bleaching events [46,47]. In the Mediterranean Sea, temperature-

related mortalities have been associated with physiological stress

due to energetic constraints [5]. According to these data, Crisci

et al. [17] considered physiological status to be a primary factor

explaining differential mortality rates.

C. caespitosa has the ability to upregulate heterotrophy and

maintain symbiosis, even under suboptimal conditions [48]. These

authors detected maximum feeding effort when colonies were kept

under high light with an irregular food source (typical Mediter-

ranean summer conditions). Consequently, variation in the

availability of food previous to and during warm summers could

have an important effect in the energy budget of C. caespitosa.

Furthermore, the impact of extreme summers (like 2003) on the

energy budget of the polyps could be responsible for delayed

effects in their physiological status.

Processes such as spawning that cause a reduction in tissue lipid

content could also have an important effect on the severity of

mortality [46]. Histological analyses showed that maximum

gonadal development in C. caespitosa is reached in August [49] in

coincidence with SST maxima, and spawning occurs at the end of

the summer. Consequently, the interaction between sexual

reproduction and necrosis could be reciprocal: necrosis could be

enhanced due to increased energy investment in gonad develop-

ment, and spawning could be affected by the mortality of the

polyps.

With this in mind, we hypothesise that delayed physiological

thermal stress could be the primary factor, acting together with

temperature, that would explain the differences in necrosis during

summers with similar thermal anomalies but with different

interannual contexts. This sensitisation hypothesis has also been

mentioned in regards to the mass-mortality of 1999 [11].

Searching for acclimatisation and adaption processes
The processes of acclimatisation (phenotypic response) and

adaption (genotypic response) have been extensively studied and

discussed in relation to thermal anomalies causing bleaching

events in tropical corals [30,50–54]. While some authors extend

hope for rapid evolution and adjustment [50,51], others question

the capacity of corals to adapt to rapid climate change [53].

Through comparisons of bleaching events in tropical corals,

several authors have found that corals were more resistant to

temperature stress as the bleaching events repeated [55–57] and

that the bleaching resistance shown by corals at sites dominated by

high-frequency SST variability could be a consequence of rapid

directional selection following an extreme event [57].

Although the SST series in the Columbretes Islands showed a

dramatic increase in the frequency of positive thermal anomalies,

as well as a positive warming trend, the differences in mortality

detected between summers with similar thermal anomalies did not

seem related directly to directional selection. C. caespitosa colonies

that survived the first mortality period were affected in the second

period, although the thermal anomalies had lower positive values

on average; therefore, survival was most likely not solely a result of

differential survival of more tolerant genotypes.

In this sense, we found that necrosis in the second mortality

period (2008–2012) showed no differences between colonies that

were unaffected or affected during the first mortality period.

Differences between these groups would have been expected if

selection was acting on thermal tolerance.

Nevertheless, it is remarkable that approximately 20% of the

surveyed colonies remained unaffected over the entire study period

and that a very low percentage experienced total mortality due to

accumulated recurrent necrosis. These results may indicate the

occurrence of more tolerant colonies or even parts of colonies;

however, as discussed above, selection for thermal tolerant

genotypes alone cannot explain the detected changes in necrosis.

In conclusion, these mortalities do not relate to previous necrosis

impacts on the same colonies; the occurrence of necrosis at the

colony level seems more closely related, in general terms, to

random processes involving the occurrence of pathogens or the

energetic status of the polyps, as previously discussed.

The importance of context-dependent effects
The summer of 2003 was likely the warmest summer in Europe

since 1500 [58] and affected 25 rocky benthic macroinvertebrate

species over several thousand kilometres of Mediterranean

coastline [13]. The mean SST anomaly registered in the summer

of 2003 in the Columbretes Islands (1.83uC) was 80% warmer

than the second positive SST anomaly recorded in the series (in

2006). During this summer, 25% of the area covered by C.

caespitosa in the Columbretes Islands was necrosed.

As discussed above, the extreme conditions of 2003 could have

been responsible for a delayed physiological stress in the colonies,

influencing the mortalities registered in the following summers

(2004 and 2005), which were quite important (approximately 20%

and 13% of necrosis, respectively); however, the positive SST

anomalies during these summers were relative low (0.42 and

0.52uC, respectively).

The second mortality period (2008–2012) began after a year

with negative SST anomalies and no necrosis (2007). This could

have given C. caespitosa enough rest to withstand the mortality

events of the next summers with much lower necrosis, in addition

to the fact that no extreme conditions (such as those observed in

2003) were present during the second period. In this period,

summers with similar or even higher SST anomalies than in the

first period exhibited mortality events with less than 7% necrosis.

Although the first mortality event of the second period (2008) was

registered after a summer with an average negative SST anomaly

(20.12uC), several weeks of strong positive anomalies were

recorded during the middle of this summer.

However, what could have happened prior to 2002? The

mortality of 2003 could be considered the first mass-mortality of C.

caespitosa in the Columbretes Islands in the last two decades.

Although necrosed colonies or sections of colonies were eventually

covered by epibionts, they were perfectly noticeable over many

years. Thus, a mass-mortality event prior to 2003 should have left

a high percentage of detectable bare skeletons in the colonies, but

the old necrosis detected was near 3%. This is consistent with the

thermal anomalies recorded in the available SST series during the

first decade of record (1991–2002), which were much lower and

less frequent than during the second decade. The summer of 1999

could have been the one in which some mortality would have been

expected because the SST anomaly reached 0.50uC; furthermore,

this summer triggered a multispecies mass-mortality event in the

NW Mediterranean [10,12,28]. That the summer of 1999 most

likely did not cause high necrosis rates reinforces our hypothesis

that some type of sensitisation or delayed stress occurred after the

summer of 2003 because the summers of 2004 and 2005 had

similar SST anomalies to those recorded for 1999 but triggered

high necrosis.
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Three important findings can be highlighted from the results

obtained in this study. First, a significant positive correlation

between mortality descriptors and SST anomalies was found over

the entire studied period. Second, significant differences between

the two mortality periods were found when correlation analyses

were performed separately. Third, when removing the years

without mortality (2002 and 2007) significance disappeared for the

whole studied period. Two main conclusions can be drawn from

these results. First, the significant, strong association between

mortality descriptors and SST anomalies, when looking at the

whole series, is more closely related to the concurrence of necrosis

events and SST anomalies than to the specific intensity of these

variables; as significance is lost when removing the years with no

mortality and necrosis was generally detected in years with a

positive SST anomaly, but summers with similar SST anomalies

showed different responses in C. caespitosa necrosis. Second, the

effects of the intensity of the SST anomalies on the necrosis rates

seem to have been enhanced during the first period, which would

be consistent with the delayed thermal stress hypothesis.

The complexity of the factors influencing these mortalities

highlights the need for precise and continuous long-term

monitoring of biotic and abiotic factors to move forward in our

understanding of these events and their effects on the future

viability of the benthic communities threatened by the increase in

frequency and persistence of extreme events projected for the 21st

century in the Mediterranean [2,3]. Recurrent extraordinary

mortality episodes, such as the ones registered between 2003 and

2006, could likely be repeated and will threaten this species, which,

due to its slow dynamics, will most likely not be able to cope with

elevated mortality rates. Nevertheless, considering the less virulent

mortalities registered in the second mortality period, the high coral

cover in areas such as the Columbretes Islands [22], and the

potential for colony-on-colony recruitment as an indirect mech-

anism of recovery, there can still be some hope for C. caespitosa

banks in the Mediterranean Sea and particularly in the

Columbretes Islands.
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2. Déqué M (2007) Frequency of precipitation and temperature extremes over
France in an anthropogenic scenario: model results and statistical correction

according to observed values. Global Planet Change 57: 16–26.

3. Diffenbaugh NS, Pal JS, Giorgi F, Gao XJ (2007) Heat stress intensification in

the Mediterranean climate change hotspot. Geophys Res Lett 34: 1–6.

4. Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western

Mediterranean deep water. Nature 347: 660–662.

5. Coma R, Ribes M, Serrano E, Jimenez E, Salat J, et al. (2009) Global warming-
enhanced stratification and mass mortality events in the Mediterranean. P Ntl

Acad Sci USA 106: 6176–6181.

6. Romano JC, Lugrezi MC (2007) Marseilles tide-recorder series: sea-surface

temperature measurements from 1885 to 1967. CR Geosci 339: 57–64.

7. Vargas-Yanez M, Garcia M, Salat J, Garcia-Martinez M, Pascual J, et al. (2008)

Warming trends and decadal variability in the Western Mediterranean shelf.
Global Planet Change 63: 177–184.

8. Harmelin JG, Marinopoulos J (1994) Population structure and partial mortality

of the gorgonian Paramuricea clavata in the north-western Mediterranean. Mar

Life 4: 5–13.

9. Vacelet J (1994) The struggle against the epidemic which is decimating
Mediterranean sponges. FAO Technical Report, FAO, Rome.

10. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-vietti R, Bava S, et al. (2000) A
catastrophic mass-mortality episode of gorgonians and other organisms in the

Ligurian Sea (northwestern Mediterranean), summer 1999. Ecol Lett 3: 284–
293.

11. Romano JC, Bensoussan N, Younes WAN, Arlhac D (2000) Thermal anomaly
in the waters of the Gulf of Marseilles during summer 1999. A partial

explanation of the mortality of certain fixed invertebrates? CR Acad Sci Paris III
323: 415–427.

12. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, et al. (2000) Mass
mortality of marine invertebrates: an unprecedented event in the Northwestern

Mediterranean. CR Acad Sci Paris III 323: 853–865.

13. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, et al. (2009)

Mass mortality in Northwestern Mediterranean rocky benthic communities:
effects of the 2003 heat wave. Glob Change Biol 15: 1090–1103.

14. Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T

(2010) Climate change effects on a miniature ocean: the highly diverse, highly

impacted Mediterranean Sea. Trends Ecol Evol 25: 250–260.

15. Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass

mortalities in temperate benthic communities: a new case of emerging disease

linked to climate change. Glob Change Biol 13: 2078–2088.

16. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in

a warming Mediterranean Sea: Are cyanobacteria-harboring species worse off?

Plos One 6: e20211.

17. Crisci C, Bensoussan N, Romano JC, Garrabou J (2011) Temperature

anomalies and mortality events in marine communities: insights on factors

behind differential mortality impacts in the NW Mediterranean. Plos One 6:

e23814.

18. Ferrier-Pages C, Tambutte E, Zamoum T, Segonds N, Merle PL, et al. (2009)

Physiological response of the symbiotic gorgonian Eunicella singularis to a long-

term temperature increase. J Exp Biol 212: 3007–3015.

19. Kersting DK, Linares C (2009) Mass mortalities of Cladocora caespitosa in relation

to water temperature in the Columbretes Islands (NW Mediterranean).

Presented in ASLO Aquatic Sciences Meeting, Nice, France.

20. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and

mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72: 271–276.

21. Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora

caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean

Sea. Mem Descr Carta Geol d’It 52: 59–74.

22. Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the

Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution,

size structure and growth. Mar Ecol 33: 427–436.
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