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Energy-momentum tensor for scalar fields coupled to the dilaton in two dimensions
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We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for
quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the
energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly.
We discuss different approximations for the calculation of the energy-momentum tensor and show how to
obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum
corrections to the Newtonian potential.@S0556-2821~99!05104-8#
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I. INTRODUCTION

In semiclassical and quantum gravity it is of interest
compute the back reaction of quantum fields on the spa
time geometry. Given that a complete four-dimensional c
culation is obviously a complicated problem, one may fi
try to investigate it in two-dimensional models, where no
spherical degrees of freedom are truncated. The t
dimensional model of Callanet al. @1# consists of a metric
coupled to a dilaton fieldf and conformal matter fieldsf.
The action is given by

S5E d2xAgH e22f

16p
@R14~]f!214L2#2

1

2
~] f !2J .

~1!

By virtue of the conformal symmetry of the classical actio
the quantum effects of the matter fields are essentially gi
by the trace anomalŷTa

a&5R/24p. The mean value of the
energy-momentum tensor is determined by this anomaly
the conservation laŵTab& ;b50. By including ^Tab& in the
equations of motion, it is possible to study back react
effects on the spacetime geometry.

In order to make contact with four dimensions, one m
consider the usual Einstein-Hilbert action and minima
coupled scalar fields

S5E d4xAg~4!F 1

16p
R~4!2

1

2
~]~4! f !2G . ~2!

For spherically symmetric configurations

ds25gmndxmdxn5gab~xa!dxadxb

1e22f~xa!~du21sin2udw2!,
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f 5 f ~xa!, a,b50,1, ~3!

the action reduces to

S5E d2xAge22fF 1

16p
„R12~]f!212e2f

…2
1

2
~] f !2G .

~4!

Unlike model~1!, matter fields originating from four dimen
sions are coupled to the dilaton field.

Similarly, starting with nonminimally coupled scala
fields with the action

Smatter52
1

2E d4xAg~4!@~]~4! f !21jR~4! f 2#, ~5!

one gets the following action upon reduction:

Smatter52
1

2E d2xAge22f$~] f !21j f 2

3@R~2!14hf26~]f!212e2f#%, ~6!

which, in terms ofc5e2f f , reads

Smatter52
1

2E d2xAg@~]c!21Vc2#, ~7!

with

V5jR~2!1~4j21!hf1~126j!~]f!212je2f. ~8!

Special cases arej50 andj51/6. Forj51/6, the action is
conformal invariant in four dimensions, i.e., invariant und
gmn→e2s(x)gmn and f→e2s(x) f . From a two-dimensiona
viewpoint, this implies @cf. Eq. ~8!# gab→e2s(x)gab , f
→f2s, and c→c ~or f→e2s(x) f ). The matter action in
Eq. ~4!, corresponding toj50, is conformal invariant in two
dimensions, i.e., under the transformationgab
©1999 The American Physical Society07-1
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→e2s(x)gab, f→f, and f→ f . For any otherjÞ0,1/6, there
is no invariance involving Weyl scalings in the two
dimensional model.

Let us now consider the model~4!. Due to the conformal
symmetry, the trace of the energy-momentum tensor of
scalar fields vanishes classically. There is, however,
anomaly at the quantum level. This anomaly has been c
puted by a number of authors~see Refs.@2–7#!. Some new,
interesting effects have been discussed, including the~anti!
evaporation of Schwarzschild–de Sitter black holes@8#.
However, it has also been claimed~based on an energy
momentum tensor obtained by using the conservation l!
that quantum effects due to the anomaly produce aningoing
Hawking radiation for Schwarzschild black holes@2,5#. This
seems in contradiction with the expectation that the outgo
energy-density flux of Hawking radiation in four dimensio
is positive definite, even in thes-wave sector. The confusio
was partly clarified in a recent paper by Balbinot and Fab
@9#, who pointed out that, due to the coupling between
scalar field and the dilaton, the two-dimensional ener
momentum tensor of matter is not conserved and there
the knowledge of the anomaly is not enough to determine
full energy-momentum tensor. In the same paper they h
also raised new puzzles concerning divergences in the m
value of the energy-momentum tensor.

The aim of this paper is to clarify these puzzles and so
confusion existing in the literature about the calculation
the energy-momentum tensor of the matter fields in
spherically reduced models. We will compute the effect
action and the energy momentum tensor using different
proximations, and discuss the validity of each approxim
tion. It will be shown that the energy-momentum tensor c
be written as the sum of two terms: an anomalous conse
part and a traceless, non-conserved contribution. As we
see, the last term is relevant for quantum effects on bl
holes and cosmological spacetimes.

II. THE EFFECTIVE ACTION

At the classical level the energy-momentum tensor of
matter fields is given by

Tab5e22fF]af ]bf 2
1

2
gab~] f !2G . ~9!

It is important to note that this energy-momentum tenso
traceless and not conserved. Indeed, after using the clas
equation of motion forf, the divergence is given by

¹aTab52
1

2
]a~e22f!~] f !2. ~10!

Of course, the quantity that is conserved by Noether theo
in this theory is the complete energy-momentum tensor.

The reason whyTab is not conserved is also clear from
the four-dimensional origin ofTab . Indeed, from

¹mTmn
~4!50,

and using Eq.~3!, one obtains
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¹aTab
~4!52]afTab

~4!2e2f~]bfTuu
~4!1sin22u]bfTww

~4!!,
~11!

which, after usingTmn
(4)5]m f ]n f 2 1

2 gmn(] f )2 and f 5 f (xa),
reproduces Eq.~10!.

At the quantum level, the mean value^Tab& is a divergent
quantity that must be renormalized. In view of the abo
discussion, we expect that a covariant renormalization w
produce a nonconserved energy-momentum tensor wi
trace anomaly. To check this, we must calculate the effec
action. The matter action in Eq.~7! can be written as

Sc52
1

2E d2xAg@~]c!21Pc2#, ~12!

whereP5(]f)22hf.
The Euclidean effective action can be computed using

fact that, at the quantum level, the trace of the ener
momentum tensor is given byT52gab(dS/dgab)
5(1/24p)(R26P) @2,5,7#. Integrating this equation we ob
tain

Seff52
1

8pE d2xAgE d2yAg

3H 1

12
R~x!

1

h
R~y!2P~x!

1

h
R~y!J 1Seff

I

[Seff
A 1Seff

I . ~13!

The first term in the above equationSeff
A produces the ex-

pected anomaly, whereas the second term is Weyl invar
and nontrivial due to the coupling between dilaton and sca
fields.

Working in the conformal gauge, the invariant term c
be written as

e2Seff
I

5det@2h f1Pf #
21/25NE Dce21/2*d2xc~2h f !c

3e21/2*d2xPfc
2
, ~14!

where the subindexf indicates that the quantity must b
evaluated in a flat metric, andN is a normalization constant
In some previous works, the invariant term was simply om
ted @10#. A possibility is to compute it using an expansion
powers ofPf @11#:

Seff
I 5E d2xPf~x!D1~x!1E d2xE d2yPf~x!D2~x,y!Pf~y!

1••• . ~15!

Comparing terms of the same order in Eqs.~14! and~15! we
obtain D1(x)5 1

2 G(x,x), D2(x,y)5 1
4 G2(x,y), whereG is

the flat Euclidean propagator. Therefore, to second orde
the expansion in powers ofP, the effective action is given by

Seff
I 5

1

4E d2xE d2yPf~x!G2~x,y!Pf~y!, ~16!
7-2
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where we have omitted a local divergent term, which can
removed by a counterterm.

The square of the propagatorG2 was derived in Ref.@12#.
It is given by

G2~p!5
1

2p

1

p2 ln
p2

m2 . ~17!

Taking this into account, the result up to second order inPf
is

Seff
I 52

1

8pE d2xE d2yPf~x!
1

h f
ln

2h f

m2 Pf~y!

52
1

8pE d2xAgE d2yAgP~x!
1

h
ln

2h

m2 P~y!

1
1

8pE d2xAgE d2zAg

3E d2yAgP~x!
1

h
R~z!

1

h
P~y!, ~18!

where we have performed the Fourier transform of Eq.~17!.
In the second line we have written the effective action in
explicitly covariant way using thatPf5AgP and that the
Green function 1/h f is Weyl invariant. The parameterm is
an infrared cutoff, and the effective action ism dependent
because we are computing perturbations around mas
fields in two dimensions. Physical results will depend onm
06400
e

n

ss

in this approximation. It is worth noting that this calculatio
of Seff

I is valid up to second order inP, but no expansion in
powers of the curvatureR has been performed; in this sens
this derivation differs from the one given in Ref.@11#.

To avoid infrared divergences, in Ref.@2# Seff
I has been

computed by assuming that the mass term in Eq.~14! is a
constant. This approximation corresponds to neglecting
back scattering of the geometry on the dynamics of the m
ter fields. In this approximation the effective action reads

Seff
I 52

1

8pE d2xPf S 12 log
Pf

m2D
52

1

8pE d2xAgP~x!S 12 log
P

m2D
2

1

8pE d2xAgE d2yAgP~x!
1

h
R~y!. ~19!

The last term in Eq.~19! will cancel against a similar term in
Seff

A @see Eq.~13!#. The explicit covariant expression abov
has been obtained by noting that, in the conformal gau
log(Ag)52h21R. As has been shown in Ref.@2#, it is
possible to go beyond the no-back-scattering approxima
by doing perturbations in powers of derivatives ofP.

In both approximations the effective action can be writt
asSeff5Seff

A 1Seff
I . Therefore, a similar decomposition hold

for the energy-momentum tensor^Tab&5^Tab
A &1^Tab

I &. The
anomalous part is independent of the approximation an
given by
ads,
^Tab
A &5

1

4pE d2yAg@¹a¹b2gabh#~x!P~y!
1

h

2
1

24pE d2yAg@¹a¹b2gabh#~x!R~y!
1

h

1
1

8pE d2yAg@gab¹
cf¹c22¹af¹b1gab~]f!222¹af¹bf#~x!R~y!

1

h

1
1

96pE d2xAgE d2yAgH 2]a

R~x!

h
]b

R~y!

h
2gab]

c
R~x!

h
]c

R~y!

h J
2

1

8pE d2xAgE d2yAgH 2]a

P~x!

h
]b

R~y!

h
2gab]

c
P~x!

h
]c

R~y!

h J . ~20!

Note that^Tab
A & has the correct trace anomaly and also contains a traceless, nonconserved part.

In the approximation obtained by expanding in powers ofP, the nonanomalous part of the energy-momentum tensor re
up to linear order inP, as

^Tab
I &52

1

4pE d2yAg@gab¹
cf¹c22¹af¹b1gab~]f!222¹af¹bf#~x!

3S 1

h
ln

2h

m2 P~y!2E d2z
1

h
R~z!

1

h
P~y! D , ~21!

while in the no-back-scattering approximation it is given by
7-3
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^Tab
I &5

1

8p
@gab¹

cf¹c22¹af¹b1gab~]f!222¹af¹bf# log
P

m2

2
1

8p
gabP2

1

4E d2yAg@¹a¹b2gabh#~x!P~y!
1

h

2
1

8pE d2yAg@gab¹
cf¹c22¹af¹b1gab~]f!222¹af¹bf#~x!R~y!

1

h

1
1

8pE d2xAgE d2yAgH 2]a

P~x!

h
]b

R~y!

h
2gab]

c
P~x!

h
]c

R~y!

h J . ~22!
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Due to the presence of a term proportional to logP, ^Tab
I &

given by Eq.~22! has a singularity whenP→0. In particular,
this seems to imply that̂Tab

I & is singular even in Minkowski
space, whereP[0. To elude this problem, the authors
Ref. @9# proposed a different energy-momentum tensor
fined ad hoc. However, we would like to stress that th
singularity is an artifact of the no-back-scattering approxim
tion, since the effective action was obtained by assuming
P has a nonzero constant value. In situations whereP>0, the
no-back-scattering approximation breaks down, and it
more appropriate to use the effective action derived by
tio
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panding in powers ofP, where no pathology appears atP
50. The origin of theP50 singularity in Eq.~22! is quite
clear: it is associated with the infrared divergence produ
by the two-dimensional fieldc which becomes massles
whenP50. In the approximation in powers ofP ~just as in
the case of a free scalar field!, this is regularized by the
infrared cutoffm.

In both approximations the energy-momentum tenso
not conserved. Indeed, using the expansion in powers ofP, it
is easy to check that the divergence of the energy momen
tensor is nonzero:
¹b^Tab&5
1

8p
@¹bf¹a¹b2¹b¹af¹b22¹afh2¹b¹af¹bf2¹afhf#~x!

3E d2yAgH R~y!
1

h
22

1

h
ln

2h

m2 P~y!12E d2zAg
1

h
R~z!

1

h
P~y!J . ~23!
n
re
r
nal

es
On the other hand, in the no-back-scattering approxima
we have

¹b^Tab&52
1

8p
¹aP1

1

8p
@¹bf¹a¹b2¹b¹af¹b

22¹afh2¹b¹af¹bf2¹afhf# log
P

m2 .

~24!

As in the classical case Eq.~10!, the stress tensor is no
conserved when the dilaton field is not constant.

It will be shown below that if the energy-momentum te
sor is computed by neglecting the invariant part of the eff
tive action, so that̂Tab&5^Tab

A &, one obtains wrong result
for quantum effects in black hole and cosmological metri
The same happens if̂Tab& is determined from the trac
anomaly by imposing a conservation law.

III. HAWKING RADIATION

The Hawking radiation for a Schwarzschild black ho
formed by gravitational collapse starting from the vacuu
n

-

.

has been computed in Ref.@13# and recently discussed i
Ref. @9#. The calculation can be easily extended to mo
general~asymptotically flat! backgrounds. Let us conside
the case of a general black hole, formed by gravitatio
collapse of a shock wave atv5v0 . Forv,v0 , the geometry
is given by the Minkowski metric, i.e.,

dsin
2 52duindv in , uin5t2r , v in5t1r . ~25!

For v.v0 , the geometry is

ds252l~r !dudv,

u5t2r * , v5t1r * ,
dr

dr*
5l~r !, ~26!

where l(r ) vanishes at the event horizonr 5r 1 . For ex-
ample, for a Reissner-Nordstro¨m black hole l(r )51
22M /r 1q2/r 2. The relation between in and out coordinat
follows by matching the geometries at the infalling linev
5v0 :
7-4
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v5v in ,
duin

du
5lS 1

2
~v02uin! D . ~27!

Let us first assume thatP(r )5(1/r )l8(r ) is different from
zero everywhere outside the event horizonr .r 1 ~this is the
case for non extremal black holes!. We can therefore use th
no-back-scattering approximation. Adding Eqs.~13! and~19!
the complete effective action reads

Seff52
1

96pE d2xAgR
1

h
R1 local terms, ~28!

i.e., up to local terms this effective action coincides with t
ones for uncoupled scalar fields. In the calculation of Haw
ing radiation, only nonlocal terms in the effective action a
relevant.

The four-dimensional energy-momentum tensor is giv
by

^Tab
~4!&5

1

2p
e2f

1

Ag

dSeff

dgab
,

^Ti j
~4!&5

1

8p
e2f

1

Ag

dSeff

df
gi j , ~29!

where thei andj indices denote the angular coordinates. T
information about Hawking radiation is contained in t
componentŝTab

(4)&, which are in turn determined by the two
dimensional energy-momentum tensor^Tab&. From Eq.~28!,
and dropping the variation of the local terms, we have

^Tab&52
1

24pE d2yAg@¹a¹b2gabh#~x!R~y!
1

h

1
1

96pE d2xAgE d2yAgH 2gab]
c
R~x!

h
]c

R~y!

h

12]a

R~x!

h
]b

R~y!

h J , ~30!

and only the last term contributes to the Hawking radiat
@13#. The formal expression (1/h)R in the equation above
denotes the retarded propagatorGret acting on the Ricci sca
lar.

In the conformal gaugeds252e2rdx1dx2 we have
22hr5R, therefore r is formally given by 22r
5(1/h)R. The retarded propagator gives22r in5GretR
wherer in is one half the logarithm of the scale factor in th
in coordinates. The relation between the in and out sc
factors is

e2r in5e2rout
du

duin

dv
dv in

5e2rout
du

duin
. ~31!

The energy flux throughI 1 is given by

^Tuu& I 152
1

12pF ]2r in

]u2
2S ]r in

]u D 2G
I 1

. ~32!
06400
-

n

e

n
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Using Eqs.~31! and ~27! we obtain

2@r in# I 15 log
du

duin
1const52 logFlS 1

2
~v02uin! D G1const.

Combining the above equations we obtain

^Tuu& I 15
1

192p
l82, ~33!

wherel85l8(r 1). This flux corresponds to a temperatu
@^Tuu&5(p/12)TH

2 #

TH5
1

4p
l8~r 1!. ~34!

Note that the above derivation applies for any asympt
cally flat black hole with metric ds252l(r )dt2

1l21(r )dr2. Indeed, the Hawking temperature for a g
neric black hole of this form~as obtained by going to Eu
clidean space and compactifying the time direction! is given
by TH5(1/4p)l8(r hor), in agreement with the flux~33! ob-
tained above.

The lesson from this calculation is that, as long asP is
different from zero, we can apply the no-back-scattering
proximation in order to compute Hawking radiation. Th
main contribution comes from the Polyakov term in the
fective action and the result for the Hawking temperatu
agrees with the well known four-dimensional expressio
The next to leading order contribution can be computed
described in Sec. V of Ref.@2#.

Let us now consider a background geometry such thaP
vanishes at the horizon, as is the case for the Reiss
Nordström black holes in the extremal limit. In this situatio
the no-back-scattering approximation still gives the corr
result for the Hawking radiation. Moreover, althoughP van-
ishes at the horizon, it is easy to check from Eq.~22! that
there is no divergence in the energy-momentum tensor.
ternatively, one can compute the Hawking radiation for e
tremal black holes using the expansion in powers ofP. Near
the horizon the leading contribution in Eq.~13! is given by
the nonlocal Polyakov term. Therefore the Hawking te
perature is, to leading order inP, again given by Eq.~34!.

It is important to stress that the expansion in powers oP
is not useful to compute the Hawking radiation f
Schwarzschild black holes. Indeed, for this geometryP and
R are of the same order of magnitude, and one should add
contribution of an infinite number of nonlocal terms in ord
to obtain the correct radiation.

As a final remark, we stress that if the Weyl invariant p
Seff

I is neglected, the relevant terms for the Hawking rad
tion are@see Eq.~20!#

1

48pE d2xAgE d2yAg

3H ]a

R~x!

h
]b

R~y!

h
212]a

P~x!

h
]b

R~y!

h J .

~35!
7-5
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Since P5R/2 for the Schwarzschild collapsing geometr
the term proportional toP produces an infalling flux tha
exceeds by a factor 6 the outgoing one. Thus, ifSeff

I is not
taken into account, one would incorrectly obtain a negat
energy-density flux of Hawking radiation. This problem a
peared in Refs.@2,5#.

IV. QUANTUM CORRECTION TO THE NEWTONIAN
POTENTIAL

The different approximations can be tested by comput
another observable: the quantum corrections to the New
ian potential@14#. The four-dimensional semiclassical Ein
stein equations read

1

8pS Rmn2
1

2
gmnRD5 classTmn

~4!1^Tmn
~4!&, ~36!

where classTmn
(4) is the four-dimensional classical contributio

of a point particle of massM, classTmn
(4)52dm

0 dn
0Md3(xW ) and

^Tmn
(4)& is the energy-momentum tensor for a quantum ma

less scalar field.
To solve these equations we consider perturbati

around the flat spacetimegmn5hmn1hmn . For our purposes
it is enough to solve the equation for the trace ofhmn to find
the quantum corrections. In a perturbative expansionh
5h(0)1h(1), with h(0)54M /r coming from the classical so
lution. The equation forh(1) is

1

2p
¹2h~1!5gmn^Tmn

~4!&. ~37!

At large distances the trace of^Tmn
(4)& is given by@14#

^T~4!&52
M

8p2r 5 [
C

r 5 . ~38!

The perturbative solution to the semiclassical Einstein eq
tions is therefore

2
h

4
52

M

r
1

M

12p

1

r 3 1••• ~39!

from which it is possible to read the quantum corrections
the Newtonian potential. For a minimally coupled massl
four-dimensional~4D! scalar the stress tensor trace is st
dependent. Equation~38! corresponds to computing the trac
of the stress tensor in the Boulware state. The expres
~38! is in agreement with other calculations of quantum c
rections to the Newton potential@15#. This term seems to be
however, missing in the treatment of Ref.@16#. In this work
a comparison of numerical and analytic results was m
only near the horizon. A complete treatment valid at lar
distances as well must give a trace of the four-dimensio
energy-momentum tensor proportional toM /r 5 as r→` in
order to reproduce the correct answer for the quantum
rected potential@15#.

From the analysis above we see that in order to comp
the leading quantum corrections it is necessary to eval
06400
e
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the ~four-dimensional! trace of the energy momentum tens
in the Schwarzschild background. It is interesting to comp
it now in the reduced model Eq.~4!. On general grounds we
expectgmn^Tmn

(4)&5C/r 5 whereC5C(mr ). The sign ofC is
very important. Indeed, a negative value ofC implies that the
Newton constant grows withr, as suggested by the fact th
there is no screening of the gravitational interaction by qu
tum matter fields.

The no-back-scattering approximation is not adequate
describe the vacuum polarization in the asymptotically
region. Indeed, from Eq.~22! we see that for the Schwarzs
child metric the energy momentum tensor contains ter
proportional to (1/r 2)ln(M/m2r3) asr→`. These do not van-
ish ~in fact diverge @9#! as M→0. Therefore, the four-
dimensional tracê T(4)&5gmn^Tmn

(4)&5gab^Tab
(4)&1gi j ^Ti j

(4)&
must be computed using the expansion in powers ofP for the
effective action. In this approximation we must evaluate E
~20! and ~21! in the collapsing metric

ds25S 12
2M

r D ~2dt21dr!2!1r 2dV2, ~40!

wheredV2 is the line element of the unit two sphere, andr !

is given by

r !5r 12M lnU r

2M
21U. ~41!

In this metricR54M /r 3 and P5R/2. The nonlocal func-
tions R/h and P/h ln(2h/m2) are computed by means o
their Fourier transforms@17#, and they are given by

R

h
5

2M

r
and

P

h
ln

2h

m2 52
2M

r
ln m̃r .

The four-dimensional components of the energ
momentum tensor are given by Eqs.~29!. Evaluating Eqs.
~20!, ~21!, and taking the functional variation with respect
the dilaton field, we obtain the four-dimensional trace, up
linear order inM:

^T~4!&52
1

8p2

M

r 5 ln m̃r . ~42!

As expected, quantum corrections to the Newtonian poten
depend onm. This correction agrees qualitatively with th
four-dimensional result~38!, i.e., it has the correct sign
However, if the Weyl invariant part of the effective actio
were neglected, one would obtain

^T~4!&5
1

48p2

M

r 5 , ~43!

which would lead to quantum corrections to the Newton
potential with the wrong sign.
7-6
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V. COSMOLOGICAL PARTICLE CREATION

As another example, in this section we consider part
creation in cosmological backgrounds. Let us consider
metric

ds25a2~ t !@2dt21dr2#1a2~ t !r 2dV2 , ~44!

wherea(t)511d(t) with d!1 andd→0 in the far past and
future. We denote byt the conformal time.

The total number of created particles is given by t
imaginary part of the in-out effective action. This effectiv
action can be obtained from the Euclidean effective act
replacing the Euclidean propagators by the Feynman o
As P'd̈, the approximation in powers ofP is adequate in
order to evaluate particle creation rate. Up to lowest orde
d, the Euclidean effective action is given by Eqs.~13! and
~18!, where the propagators are the flat spacetime ones.

In the conformal vacuum the terms present in the ano
lous part of the effective action (Seff

A ) are real and local for
cosmological metrics. The invariant partSeff

I is nonlocal and
contains an imaginary term that gives the particle creatio

Performing a Fourier transform of Eq.~18!, and replacing
p2→p22 i e we obtain

Seff
in-out5

1

16p2E d2puP̃~p!u2
1

p22 i e
ln

p22 i e

m2 1 local terms.

~45!

Using the fact that

ln
p22 i e

m2 5 ln Up2

m2U2 ipu~2p2!, ~46!

the total number of created particles is given by

nT5ImSeff
in-out52

1

16pE d2puP̃~p!u2
u~2p2!

p2 . ~47!

SinceP5P(t), nT takes the form

nT5ImSeff
in-out5

1

16VpE dp0uP̃~p0!u2
1

p0
2 , ~48!

whereV is the spatial volume.
Because the metric is asymptotically flat fort→6`, the

Fourier transformP̃(p0) vanishes asp0→0. As a result, the
total number of created particlesnT given in Eq.~48! is a
finite quantity. Equation~47! represents the precise two
dimensional analogue of the general expression for the t
number of created particles in four dimensions~in the case of
j50, m50, andCabcd50) given in Ref.@18#.

It is important to note that the effective action comin
from the no-back-scattering approximation~28! is not ad-
er

06400
e
e

n
s.

in

a-

.

tal

equate to evaluate the particle creation rate because
Polyakov term becomes real and local in the conform
vacuum. This would imply vanishing particle creation,
contradiction with the four dimensional result.

VI. FINAL REMARKS

To summarize, we have shown that the Weyl invaria
part of the effective action contains relevant informati
about quantum effects in black hole geometries. Neither
effective action nor the mean value of the energy momen
tensor can be completely determined by the trace anom
when the matter fields are coupled to the dilaton. Neglect
this term, or imposing the conservation law for the tw
dimensional energy-momentum tensor, leads to wrong
sults for black hole radiation, quantum corrections to t
Newtonian potential and cosmological particle creation.

We have discussed two different approximations in or
to compute the invariant part of the effective action: the n
back-scattering approximation introduced in Ref.@2#, and an
expansion in powers ofP. The no-back-scattering approx
mation assumes a constant, nonzero value ofP, and can be
improved by performing an expansion in powers of deriv
tives of P around this nonzero value. This was made in S
V of Ref. @2#, where a ‘‘back scattering’’ part of the effectiv
action was added to the no-back-scattering part to get
total s-channel effective action. One expects the no-ba
scattering approximation to be valid forP2@¹¹P, and
therefore it is not applicable for the evaluation of the me
value of the energy-momentum tensor for nearly flat metr
However, it is adequate in order to determine the Hawk
flux of black holes.

On the other hand, the expansion in powers ofP is ad-
equate in situations whereP2!¹¹P, such as nearly degen
erate Reissner-Nordstro¨m black holes, or to evaluate
^Tab(r )& outside a star whose radiusR is such thatR
.2M . Therefore it is useful to compute quantum correctio
to the Newtonian potential. It is also useful to compute c
mological particle creation for weak gravitational fields.
this approximation, the results depend on an infrared cu
that appears because the model contains massless fiel
two dimensions.
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