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Energy-momentum tensor for scalar fields coupled to the dilaton in two dimensions
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We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for
guantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the
energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly.
We discuss different approximations for the calculation of the energy-momentum tensor and show how to
obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum
corrections to the Newtonian potentif$0556-282(199)05104-§

PACS numbegps): 04.60.Kz, 04.62+v, 04.70.Dy

I. INTRODUCTION f=f(x?*, a,b=0,1, (©)]

In semiclassical and quantum gravity it is of interest tothe action reduces to
compute the back reaction of quantum fields on the space-
time geometry. Given that a complete four-dimensional cal- 1 1
culation is obviously a complicated problem, one may first S=J d?x\ge 2? E(RJF 2(9¢)?+2e*?)— E(ﬁf)z}-
try to investigate it in two-dimensional models, where non- 4)
spherical degrees of freedom are truncated. The two-
dimensional model of Callast al. [1] consists of a metric ypjike model(1), matter fields originating from four dimen-
coupled to a dilaton fieldp and conformal matter fields  gjons are coupled to the dilaton field.

The action is given by Similarly, starting with nonminimally coupled scalar
024 fields with the action

s=f dzx\/E[ = [R+4(a¢)2+4A2]—%(af)2’.

& Smate= 3 | agrenzsror, @

By virtue of the conformal symmetry of the classical action, . . .
the quantum effects of the matter fields are essentially giveRN® 9€ts the following action upon reduction:
by the trace anomalyT3) = R/24sr. The mean value of the 1
energy-momentum tensor is determined by this anomaly and —_ _f 2 —2¢ 24 ¢gf2
the conservation layT2%).,=0. By including(T,,) in the Smone? 2 dPxlge (o) £
equations of motion, it is possible to study back reaction
effects on the spacetime geometry.

In order to make contact with four dimensions, one may hich. in t f— ot d
consider the usual Einstein-Hilbert action and minimallyW ich, In terms ofjy=e" "1, reads
coupled scalar fields

X[R@+40¢—6(dp)%+ 2?1}, (6)

1
L L Smater™ ~ 5 f Vgl (99)*+ V2, v
_ 4 @ _—_ R4 _ Z (82
S jdx g [1677R 2(07 f)=]. (2) .
with
For spherically symmetric configurations
phernicaly sy ! gurat V=¢(RP+ (46— 10+ (1-6£)(dd)>+2¢£e??. (8)

ds?=g,,,dx“dx"= gup(x?) dx2dx" _ o
Special cases ag=0 andé=1/6. Foré=1/6, the action is
+e 260%(d g2+ sintfd?), conformal invariant in four dimensions, i.e., invariant under
9,,—€*™Mg,, and f—e “™f. From a two-dimensional
viewpoint, this implies[cf. EQ. (8)] gap—€?"Xgap, ¢

*Electronic address: lombardo@df.uba.ar —¢—o, and y— ¢ (or f—e ?™f). The matter action in
"Electronic address: fmazzi@df.uba.ar Eq. (4), corresponding tg=0, is conformal invariant in two
*Electronic address: jrusso@ic.ac.uk dimensions, i.e., under the transformationg,y
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.—>e2"(x)g_ab, ¢—¢, andf—f. For any otheg#0,1/6, there VAT =22 T — €24 ap T4y +sin 200, T),
is no invariance involving Weyl scalings in the two- (1)
dimensional model.

Let us now consider the modéd). Due to the conformal which, after usingT;)=3,f3,f—3g,,(f)? and f=f(x?),
symmetry, the trace of the energy-momentum tensor of theeproduces Eq(10).
scalar fields vanishes classically. There is, however, an Atthe quantum level, the mean val(iE,;) is a divergent
anomaly at the quantum level. This anomaly has been conmguantity that must be renormalized. In view of the above
puted by a number of authotsee Refs[2—7]). Some new, discussion, we expect that a covariant renormalization will
interesting effects have been discussed, including(@m)  produce a nonconserved energy-momentum tensor with a
evaporation of Schwarzschild—de Sitter black ho[@.  trace anomaly. To check this, we must calculate the effective
However, it has also been claimgbased on an energy- action. The matter action in Eq7) can be written as
momentum tensor obtained by using the conservation law
that quantum effects due to the anomaly producégoin 1
HaWEing radiation for Schwarzschild bIa%:IF() hoI[éZsS].gThig Sy=-— Ef d2x\gl (ay)2+ Py?], (12
seems in contradiction with the expectation that the outgoing
energy-density flux of Hawking radiation in four dimensions whereP = (d¢)%— [ ¢.
is positive definite, even in thewave sector. The confusion The Euclidean effective action can be computed using the
was partly clarified in a recent paper by Balbinot and Fabbrfact that, at the quantum level, the trace of the energy-
[9], who pointed out that, due to the coupling between themomentum tensor is given byT=2g3?(8S/8g2P)
scalar field and the dilaton, the two-dimensional energy—=(1/24x)(R—6P) [2,5,7]. Integrating this equation we ob-
momentum tensor of matter is not conserved and thereforgin
the knowledge of the anomaly is not enough to determine the
full energy-momentum tensor. In the same paper they have 1
also raised new puzzles concerning divergences in the mean Seff= QJ dZX\/af d’y\g
value of the energy-momentum tensor.

The aim of this paper is to clarify these puzzles and some
confusion existing in the literature about the calculation of
the energy-momentum tensor of the matter fields in the A
spherically reduced models. We will compute the effective = Sgi+ Seft - (13
action and the energy momentum tensor using different ap- ] ) )
proximations, and discuss the validity of each approxima-The first term in the above equatidy produces the ex-
tion. It will be shown that the energy-momentum tensor carPected anomaly, whereas the second term is Weyl invariant
be written as the sum of two terms: an anomalous conservedld nontrivial due to the coupling between dilaton and scalar
part and a traceless, non-conserved contribution. As we wilfields.
see, the last term is relevant for quantum effects on black Working in the conformal gauge, the invariant term can
holes and cosmological spacetimes. be written as

1 1 1 |
X 1—ZR(x)ER(y)—P(x)ER(y) + Sert

Il. THE EFFECTIVE ACTION e~ Ser=def — [+ pf]ﬂ/z:/\ff Dy V2 Pxu(~Opy

At the classical level the energy-momentum tensor of the o r a2
matter fields is given by X @ M2l dxPy, (14)

_ 24 1 ) where the subindex indicates that the quantity must be
Tap=€ " daf dpf — 5 Gan(df)”|. (9 evaluated in a flat metric, antl'is a normalization constant.
In some previous works, the invariant term was simply omit-
It is important to note that this energy-momentum tensor iged[10]. A possibility is to compute it using an expansion in
traceless and not conserved. Indeed, after using the classigadwers ofP; [11]:
equation of motion fof, the divergence is given by

Sl [ axPi0D100+ [ a7 @yP0Dax I P(y)

VaT = — %aa(e—w)(af)% (10
+.on, (15)

Of course, the quantity that is conserved by Noether theorem ) i
in this theory is the complete energy-momentum tensor. COmparing terms of the same order in E(s}) and(15) we

The reason whyT,, is not conserved is also clear from OPtIND1(X)=2G(x,x), Da(x,y)=3G%(x,y), whereGis
the four-dimensional origin of ,,. Indeed, from the flat Euclidean propagator. Therefore, to second order in

the expansion in powers & the effective action is given by
veTi=0,

1
e R 2 2
and using Eq(3), one obtains Seft 4j d Xf d7yPr () G(x,y)Py(y), (16
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where we have omitted a local divergent term, which can bén this approximation. It is worth noting that this calculation

removed by a counterterm. of S,y is valid up to second order iR, but no expansion in
The square of the propagat6r was derived in Ref,12]. powers of the curvatur® has been performed; in this sense,
It is given by this derivation differs from the one given in R¢L1].

To avoid infrared divergences, in Ré2] S'eff has been
G¥(p)= — —In p 17) computed by assuming that the mass term in @4) is a
P 21 p7 ,7 constant. This approximation corresponds to neglecting the
back scattering of the geometry on the dynamics of the mat-
Taking this into account, the result up to second ordeP4n ter fields. In this approximation the effective action reads
is

2

| 1 2 Pi
_ Seﬁ=—% d“xPs 1—Iog;2

| 1 2 2 L s
Seff:_S_Tr d“x dfo(x)D—fln?Pf(y)

1 1 -0 =—%f dzxfgp(x)(l—mgiz)
=—§f de\/af dzy\/ap(X)Em?P(Y) K

1 1
. - o= | @xa [ ey e SRy, 9
2 2
+a- f d?x\g f d?z\g
The last term in Eq(19) will cancel against a similar term in
1 1 Shy [see Eq.(13)]. The explicit covariant expression above
XJ’ dzy\/EP(x)ER(z)EP(y), (18 has been obtained by noting that, in the conformal gauge,
log(vg)=—D0"'R. As has been shown in Ref2], it is
where we have performed the Fourier transform of @&4). possible to go beyond the no-back-scattering approximation
In the second line we have written the effective action in arby doing perturbations in powers of derivativeskof
explicitly covariant way using thaP;=+/gP and that the In both approximations the effective action can be written
Green function I7; is Weyl invariant. The parameter is  asS=Shy+ Skir. Therefore, a similar decomposition holds
an infrared cutoff, and the effective action is dependent for the energy-momentum tens¢F ;) =(T4,)+(T5,). The
because we are computing perturbations around massleaaomalous part is independent of the approximation and is
fields in two dimensions. Physical results will dependgn  given by

1 1
(Tan= 77 f d?yVG[VaVs—Gas I P(Y) 5

1 1
- EJ d2y\g[VaVh— a1 R(Y) =]

1 1
e KRG AT AR e e RO e

1 R(X)  R(y) RX)  R(y)
567 Vg f dzy@{Z‘%TﬁbT‘gaWT%T}

1 P(x R P(x R
_ﬂf dzx\/af dzyﬁ[zaa(ﬁ)ab(?y)—gabac%ac%}. (20)

Note that(T4,) has the correct trace anomaly and also contains a traceless, nonconserved part.
In the approximation obtained by expanding in power®gothe nonanomalous part of the energy-momentum tensor reads,
up to linear order irP, as

1
(Ta == 7= f Ay Vo[ 9apV BV e~ 2V 0Vt Gan(96)° = 2V adb Vb )

X

1 -0 ’ 1 1
Em?P(Y)—j d“z=R(2) 5P(Y) |, (21

while in the no-back-scattering approximation it is given by
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| 1 c 2 P
(Tan) = g[gabV ¢V =2V, Vp+Jap(dp) _Zvaqbqub]loql?
1 (., 1
~ 52 0aP— 3 | PVNUITaTe— 0010 PY)
1 2 c 2 1
~ 57 | YOGV BV 2VadbV ot Gan(96)° — 2Vad Vo] R(Y) 5

1 P(x R P(x R
+§f dzx\/ﬁf dzy\/ﬁ[zaa(T)ab(Tw—gabac(T)ac(Tw : (22)

Due to the presence of a term proportional toF?og(TLb> panding in powers oP, where no pathology appears Rt
given by Eq.(22) has a singularity wheR— 0. In particular, =0. The origin of theP=0 singularity in Eq.(22) is quite

this seems to imply thdfT},) is singular even in Minkowski  clear: it is associated with the infrared divergence produced
space, wherd®=0. To elude this problem, the authors of by the two-dimensional field) which becomes massless
Ref. [9] proposed a different energy-momentum tensor dewhenP=0. In the approximation in powers & (just as in
fined ad hoc However, we would like to stress that this the case of a free scalar figldthis is regularized by the
singularity is an artifact of the no-back-scattering approxima-infrared cutoffu.

tion, since the effective action was obtained by assuming that In both approximations the energy-momentum tensor is
P has a nonzero constant value. In situations wiereD, the  not conserved. Indeed, using the expansion in powers bf
no-back-scattering approximation breaks down, and it ids easy to check that the divergence of the energy momentum
more appropriate to use the effective action derived by extensor is honzero:

1
VTap) =g - [VP4VaVo = VPVahV =2V - VoV ag Vo= Vag ¢y

1 1 -0 1 1
xf dzyfg( R(y)a—25|n7|3(y)+2f dzz\/aaR(z)EP(y) . (23

On the other hand, in the no-back-scattering approximatiommas been computed in RdfL3] and recently discussed in

we have Ref. [9]. The calculation can be easily extended to more
1 1 general(asymptotically flax backgrounds. Let us consider
VY Topy=— 8_Va|:>+ 8—[Vb¢VaVb—VbVa¢Vb the case of a general black hole, formed by gravitational
o v

collapse of a shock wave at=v,. Forv<wv,, the geometry
is given by the Minkowski metric, i.e.,

—2V,¢pO0-V°V V-V, pO ] Iog;Pz.
(24)

As in the classical case Eq10), the stress tensor is not
conserved when the dilaton field is not constant.

dgzn:_duindvinr Uin=t—Tr, vjp=t+Tr. (25

Forv>uvg, the geometry is

It will be shown below that if the energy-momentum ten- ds’=—\(r)dudv,
sor is computed by neglecting the invariant part of the effec-
tive action, so tha{T,,)=(T4,), one obtains wrong results . , dr
for quantum effects in black hole and cosmological metrics. U=t=r*, v=t+re, o=, (26)

The same happens {fT,,) is determined from the trace

anomaly by imposing a conservation law. where \(r) vanishes at the event horizar=r, . For ex-
ample, for a Reissner-Nordstro black hole \(r)=1
—2M/r +q?/r?. The relation between in and out coordinates

The Hawking radiation for a Schwarzschild black hole follows by matching the geometries at the infalling line
formed by gravitational collapse starting from the vacuum=v:

Ill. HAWKING RADIATION

064007-4



ENERGY-MOMENTUM TENSOR FOR SCALAR FIELB. .. PHYSICAL REVIEW D 59 064007

du, 1 Using Eqgs.(31) and(27) we obtain
V=0, W_)\<E(Uo_uin)>- (27) —_— du . - )\(1( m t
in]i+=log—+const=—lo =(vg—U; const.

Let us first assume th&(r)=(1/r)\'(r) is different from Pindl duj, 9N 2o tn
zero everywhere outside the event horizosr . (this is the . h . .
case for non extremal black hojesVe can therefore use the COMbiINing the above equations we obtain
no-back-scattering approximation. Adding E¢k3) and(19) 1
the complete effective action reads (Toh+= M)\'Z, (33

1
Set= d?x \/ERE R+localterms, (28)  whereN’=\'(r.). This flux corresponds to a temperature

1
o6m [(Tou = (m/12)T2]

i.e., up to local terms this effective action coincides with the

ones for uncoupled scalar fields. In the calculation of Hawk- Tu= 1 N 34
: o : : . H (ry). (34)
ing radiation, only nonlocal terms in the effective action are 47

relevant.

The four-dimensional energy-momentum tensor is given Note that the above derivation applies for any asymptoti-
cally flat black hole with metric ds?=—\(r)dt?

+X"X(r)dr?. Indeed, the Hawking temperature for a ge-
1 1 8Sq neric black hole of this forn{as obtained by going to Eu-
<Tg‘g>=2—e2¢— o clidean space and compactifying the time directisngiven
m ‘/5 59 by Tu=(1/47)N'(rpo), in agreement with the flugd3) ob-
tained above.
(T-(-“)):iezd’i &fg” 29 The lesson from this calculation is that, as longPais
g 8w~ g ¢ different from zero, we can apply the no-back-scattering ap-
proximation in order to compute Hawking radiation. The
where thd andj indices denote the angular coordinates. Themain contribution comes from the Polyakov term in the ef-
information about Hawking radiation is contained in the fective action and the result for the Hawking temperature
componentgT{}), which are in turn determined by the two- agrees with the well known four-dimensional expression.
dimensional energy-momentum teng®t,,). From Eq.(28),  The next to leading order contribution can be computed as

and dropping the variation of the local terms, we have described in Sec. V of Ref2].
Let us now consider a background geometry such Ehat

1 1 vanishes at the horizon, as is the case for the Reissner-
(Tap)=— 24 dzy\/ﬁ[VaVb—gabD](x)R(y)E Nordstran black holes in the extremal limit. In this situation
L ROO R(Y) the no-back-scattering approximation still gives the correct
2 2 o (X y result for the Hawking radiation. Moreover, althougtvan-

+ Wf d X@f d y\/§{ ~Yavd T e ishes at the horizon, it is easy to check from E2p) that
there is no divergence in the energy-momentum tensor. Al-
ternatively, one can compute the Hawking radiation for ex-
tremal black holes using the expansion in power®.diear
the horizon the leading contribution in E@L3) is given by
and only the last term contributes to the Hawking radiationthe nonlocal Polyakov term. Therefore the Hawking tem-
[13]. The formal expression ()R in the equation above perature is, to leading order B, again given by Eq(34).
denotes the retarded propaga@g, acting on the Ricci sca- It is important to stress that the expansion in powerp of
lar. is not useful to compute the Hawking radiation for

In the conformal gaugeds’=—e*dx"dx~ we have Schwarzschild black holes. Indeed, for this geométrgnd
—20p=R, therefore p is formally given by —2p  Rare of the same order of magnitude, and one should add the
=(1O)R. The retarded propagator gives2p;,=GR  contribution of an infinite number of nonlocal terms in order
wherep;, is one half the logarithm of the scale factor in the to obtain the correct radiation.
in coordinates. The relation between the in and out scale As a final remark, we stress that if the Weyl invariant part
factors is Sy is neglected, the relevant terms for the Hawking radia-
tion are[see Eq(20)]

by

R(x) R(y)] (30

da o0 Jp O

_ du dv du
e2Pin= ezpoutd 0 do: = eZPoutd ™ (31 1
S " T f d?x\g f d?y\g
The energy flux through™ is given by
R(x) _R(y) P(x) . R(y)
1 &zpin ﬁpin 2 X{ a O &b O _12[961 0 ab 0
Twh=—T =2 | Zu ) | - (32
au '+ (35
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Since P=R/2 for the Schwarzschild collapsing geometry, the (four-dimensionaltrace of the energy momentum tensor
the term proportional td® produces an infalling flux that inthe Schwarzschild background. It is interesting to compute
exceeds by a factor 6 the outgoing one. ThusS,if is not it now in the reduced model E¢4). On general grounds we
taken into account, one would incorrectly obtain a negativeexpectg“”(Tﬁf,}FC/r5 whereC=C(ur). The sign ofC is
energy-density flux of Hawking radiation. This problem ap-very important. Indeed, a negative value®implies that the

peared in Refd2,5]. Newton constant grows with as suggested by the fact that
there is no screening of the gravitational interaction by quan-
IV. QUANTUM CORRECTION TO THE NEWTONIAN tum matter fields.
POTENTIAL The no-back-scattering approximation is not adequate to

. o _ describe the vacuum polarization in the asymptotically flat
The different approximations can be tested by computingegion. Indeed, from Eq22) we see that for the Schwarzs-
another observable: the quantum corrections to the Newtonthijld metric the energy momentum tensor contains terms
ian potential[14]. The four-dimensional semiclassical Ein- proportional to (1r2)In(M/x2r3) asr — . These do not van-

stein equations read ish (in fact diverge[9]) as M—0. Therefore, the four-
1 1 dimensional trace(T®) =g+ (T()=g™(T) + g (TLY)
_( Ry, — _gWR) = classp(4) 4 (T(3)y, (36)  must be computed using the expansion in powei foir the
8w 2 . . effective action. In this approximation we must evaluate Egs.

. . . _ I 20) and(21) in the collapsing metric
where C'assl'ﬁfy) is the four-dimensional classical contribution 20 @D psing

of a point particle of mas#t, @)= — 5% 59M 5°(x) and oM
(T is the energy-momentum tensor for a quantum mass- ds?= ( 1-—
less scalar field.

(—dt?+dr*?) +r2dQ?, (40)

To solve these equations we consider perturbations ) ) .
around the flat spaceting,,= ,,+h,, . For our purposes wheredQ? is the line element of the unit two sphere, arid
it is enough to solve the equation for the tracengf to find IS given by
the quantum corrections. In a perturbative expansion,

=h@+h®) with h{®=4M/r coming from the classical so- .
lution. The equation foh() is rr=r+2Min5-—1/. (41)
1
2—V2h<1)=g“V(T§fv)), (370  In this metricR=4M/r® and P=R/2. The nonlocal func-
au

tions R/0J and P/ In(—/x?) are computed by means of

(4 their Fourier transform§17], and they are given by

At large distances the trace 6T,

) is given by[14]

R 2M P -0 2M
(38) E: and iln7=—Tln,u,r.

C
=-z.

(4 — _
T 87r° r

T
The perturbative solution to the semiclassical Einstein equa- The four-dimensional components of the energy-

tions is therefore momentum tensor are given by Ed&9). Evaluating Egs.
h M M 1 (20), (21), and taking the functional variation with respect to
T T the dilaton field, we obtain the four-dimensional trace, up to
T L @9 .
r 12mr linear order inM:

from which it is possible to read the quantum corrections to

the Newtonian potential. For a minimally coupled massless <-|—(4)>: _ iz M5Inﬁr. (42)
four-dimensional(4D) scalar the stress tensor trace is state 8w r

dependent. Equatiof38) corresponds to computing the trace

of the stress tensor in the Boulware state. The expressiofs expected, quantum corrections to the Newtonian potential
(38) is in agreement with other calculations of quantum cor-depend ornw. This correction agrees qualitatively with the
rections to the Newton potentigl5]. This term seems to be, four-dimensional resul(39), i.e., it has the correct sign.

however, missing in the treatment of REE6]. In this work  However, if the Weyl invariant part of the effective action
a comparison of numerical and analytic results was mad@ere neglected, one would obtain

only near the horizon. A complete treatment valid at large

distances as well must give a trace of the four-dimensional 1 M
energy-momentum tensor proportional Myr® asr—o in (TWy= 55, (43
order to reproduce the correct answer for the quantum cor- 48m° 1

rected potentia15].
From the analysis above we see that in order to computehich would lead to quantum corrections to the Newtonian
the leading quantum corrections it is necessary to evaluatgotential with the wrong sign.

064007-6



ENERGY-MOMENTUM TENSOR FOR SCALAR FIELB. ..

V. COSMOLOGICAL PARTICLE CREATION

As another example, in this section we consider particl
creation in cosmological backgrounds. Let us consider th

metric
d?=a?()[ —de+dr2]+ai(ridQ,, (44

wherea(t) =1+ §(t) with <1 andé—0 in the far past and
future. We denote by the conformal time.

PHYSICAL REVIEW D 59 064007

equate to evaluate the particle creation rate because the
Polyakov term becomes real and local in the conformal

Sacuum. This would imply vanishing particle creation, in
Rontradiction with the four dimensional result.

VI. FINAL REMARKS

To summarize, we have shown that the Weyl invariant
part of the effective action contains relevant information

The total number of created particles is given by theabout quantum effects in black hole geometries. Neither the

imaginary part of the in-out effective action. This effective effective action nor the mean value of the energy momentum
action can be obtained from the Euclidean effective actioriensor can be completely determined by the trace anomaly
replacing the Euclidean propagators by the Feynman one¥hen the matter fields are coupled to the dilaton. Neglecting

As P~ $, the approximation in powers &% is adequate in

order to evaluate particle creation rate. Up to lowest order i

S, the Euclidean effective action is given by E¢4$3) and
(18), where the propagators are the flat spacetime ones.

In the conformal vacuum the terms present in the anoma

lous part of the effective actiorSCﬁ) are real and local for
cosmological metrics. The invariant pé}’gﬁ is nonlocal and

contains an imaginary term that gives the particle creation.

Performing a Fourier transform of E(L8), and replacing
p2—p?—ie we obtain

Sl f d2p[P(p)|? In IOZ_i’5+local terms
et~ 1672 pP-ie u? '
(45
Using the fact that
p’—ie 2
In =In|—|—i7m0(— 2, 46
Mz /.L2 ( p ) ( )

the total number of created particles is given by

. 1 - 6(—p?)
nr=ImSg'= — Ef d?p|P(p)|? 0z (47
SinceP=P(t), n; takes the form
in-out. 1 D 2 1
N=IMS =16V dpolP(po)| vt (48

whereV is the spatial volume.

Because the metric is asymptotically flat tor =, the
Fourier transfornmP(p,) vanishes ap,—0. As a result, the
total number of created particles given in Eq.(48) is a

this term, or imposing the conservation law for the two-

rgimensional energy-momentum tensor, leads to wrong re-

sults for black hole radiation, quantum corrections to the
Newtonian potential and cosmological particle creation.

_ We have discussed two different approximations in order
to compute the invariant part of the effective action: the no-
back-scattering approximation introduced in Réfl, and an
expansion in powers dP. The no-back-scattering approxi-
mation assumes a constant, nonzero valu®,aind can be
improved by performing an expansion in powers of deriva-
tives of P around this nonzero value. This was made in Sec.
V of Ref.[2], where a “back scattering” part of the effective
action was added to the no-back-scattering part to get the
total s-channel effective action. One expects the no-back-
scattering approximation to be valid f®?>VVP, and
therefore it is not applicable for the evaluation of the mean
value of the energy-momentum tensor for nearly flat metrics.
However, it is adequate in order to determine the Hawking
flux of black holes.

On the other hand, the expansion in powerdPok ad-
equate in situations whe®?<VVP, such as nearly degen-
erate Reissner-Nordstro black holes, or to evaluate
(Tap(r)) outside a star whose radilR is such thatR
>2M. Therefore it is useful to compute quantum corrections
to the Newtonian potential. It is also useful to compute cos-
mological particle creation for weak gravitational fields. In
this approximation, the results depend on an infrared cutoff
that appears because the model contains massless fields in
two dimensions.
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