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J. G. Russo
Theory Division, CERN, CH-1211 Geneva 23, Switzerland
(Received 22 February 1996; revised manuscript received 16 September 1996

We investigate a model where the quantum dynamics of black hole evaporation is determined by imposing
a boundary on the apparent horizon with suitable boundary conditions. An unconventional scenario for the
evolution emerges: only an insignificant fraction of energy of orde®] ~* is radiated out; the outgoing wave
carries a very small part of the quantum-mechanical information of the collapsed body, the bulk of the
information remaining in the final stable black hole geom€i80556-282(97)00202-6

PACS numbes): 04.70.Dy, 04.20.Gz

I. INTRODUCTION similar, the Hawking process terminates and the information
remains stored in the final black hole geometry.

It has been argued that, due to backreaction effects, the
HaWking model of black hole evaporatidﬂ] may break II. INFORMATION LOSS PROBLEM
down long before the evaporation is complg?¢. Because
of the exponential redshift, the outgoing modes arise from a In order for a black hole to be able to evaporate a signifi-
reservoir of trans-Planckian energies, with frequencies evefiant part of its mass, the Hawking model needs to be ex-
higher than the total black hole mass. If a Planck-scale cutoffrapolated up to retarded times which are causally connected
is imposed before the horizon, it seems that there would bwith exponentially small proper distancesexp(— GM?)
only a scarce amount of outgoing modes, and black hole§om the event horizon. Because of the redshift, an outgoing
would lose an insignificant mass by evaporafigh Lacking ~mode of average frequenay~(MG) " would have a fre-
the fundamental short-distance theory, by the time the outquency MG) ~'exp(GM?) at the moment it arises from the
going modes arise with Planck frequencies, some extra a§orizon, which physically seems unacceptalieparticular,
sumption is needed. Extrapolating the Hawking radiationfor M?>1/G, higher than the black hole masso backreac-
into this region leads to paradoxes, e.g., loss of quanturtion effects should be important. The critical time at which
coherence. However, a concrete alternative scenario to theorrections to the Hawking model may be expected is when
Hawking model has been elusive so far. a distant observer enters in causal contact with a surface

Recently, there have been some indications on how th#ocated about one Planck unit of proper distance away from
problem should be formulatef,5]. The idea is that the the event horizon(This is called thestretched horizorin
description of physics which is appropriate to external ob{8,4]; for a discussion of the different regions which are rel-
servers may require imposing a phenomenological boundar§vant to the evaporation problem, sg#.) The outgoing
on a surface located about one Planck unit away from th&odes arising from this surface have Planck-scale frequen-
event horizon, where gravitational self-interactions becomeies, i.e., of order 1/G. Clearly, lacking knowledge of
very strong[4]. In this paper we will attempt a more precise Planck-scale physics, some assumptions are needed in order
construction. A novel theory of black hole evaporation will to calculate the radiation beyond this point. This is a crucial
be examined, which is based on the assumption that the adtep, since until this time only an energy of ord&N) ~*
equate framework for outside observers is a quantum theorfjas been evaporated. The justifications underlying
with a boundary on the apparent horizon. The outgoing fluxhe Hawking theory are more or less the followihg.
of energy in this model will coincide with the one predicted For large black holes the curvature is very small at the hori-
by the Hawking model only in the region which is not caus-zon (i.e., much less than Planck-scale curvatures,
ally connected with the apparent horizon. By that retardedR<G 1), so no quantum gravity effects should be expected
time the Hawking radiation flux is still negligible. In the in this region; the appearance of an outgoing mode is a glo-
region in causal contact with the boundary the total flux willbal effect and it is meaningless to assign it a frequency
be very small and it will exponentially go to zero. As a ~(GM) lexp(GM?), an inertial observer falling into the
result, the final state will contain a stable geometry withblack hole sees no strong quantum gravity effects at the mo-
approximately the same mass as the Arnowitt-Derer-Misnement it crosses the horizon. This picture leads however to
(ADM) mass of the original configuration. Only an energy of several problems. The most serious one is probably loss of
order (nG) " will be evaporated. guantum coherence: if the initial state was a pure state, the

A scenario where the Hawking radiation stops leaving dinal state, after the black hole disappearance, will be a
macroscopic black hole was contemplated i as a pos- mixed state and will contain no quantum-mechanical infor-
sible solution of the information probleffor a discussion of mation of the wave function of the collapsing object. A sec-
its weak points see, e.q7]). There it was suggested that the
radiation should stop when a certain bound on the informa=—
tion content is saturated. This is not what the present modelFor a general review on the information loss problem see, e.g.,
predicts, but the way the information paradox is resolved i§7].
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ond problem is that at the end point of the evaporation d@ion of the quantum-mechanical information. As we shall
naked singularity remains exposed to outside observers. Igee, in the spherical symmetric case everything is calculable
all dynamical situations that have been studied singularitiegy |eading order inM2/m?. In particular, the total emitted
have always managed to remain hidden behind a horizonynerqy can be very accurately predicted in terms of the de-
Acceptmg naked singularities leads to a number of problemstails of the incoming energy. There agepriori two prob-

in particular, to a conflict with predictabilitj10]. Either one lems: (1) The apparent horizo.n as a boundary is put by hand

is to give up quantum mechani¢and cosmic censorship AL . .
: o : ; . A further justification would be desirablé2) The physics of
hypothesis or else revisite the t f th
v > assumptions of ignoring ethe external world is describeas if there was a wall at the

problem of Planck frequencies. ) S . ;
There is a loophole in the above reasoning which has le@PpParent horizon. This is in contrast with the idea that noth-

to 't Hooft to formulate the problem in another way. Indeed,ng SO drastic should happen to a free-falling object when
the inertial infalling observer cannot be used to argue thagncountering the apparent horizon.
outgoing radiation at sub-Planckian distances from the hori- Concerning the first point, there is a justification in
zon is not affected by quantum gravity effects, since thisl+1 dimensions: the boundary at the apparent horizon fol-
observer sees no Hawking radiation at all. The speculation dbws automatically if one assumes that&matrix exists and
't Hooft and Susskind is that the quantum gravity effects inthat it describes the usual semiclassical theory below the
this region should be such that radiation still exists but it isthreshold for black hole formation11]. Indeed, in the
no longer exactly thermal; it should contain all the original S-matrix formalism, the physics above thresholds is gov-
guantum-mechanical information encoded in subtle correlaerned by analytic continuation. IrH11 dimensions, it can be
tions, so that unitarity of the evolution is preserved. Thisshown that the supercritical regime which is obtained from
interesting approach nevertheless has some problems.  the subcritical regime by analytic continuation is mathemati-
(1) There is no concrete model implementing this picture cally equivalent to the black hole theory with a boundary at
despite some attempts. In particular, there are no testabtbe apparent horizofiL1]. (In 3+ 1 dimensions, the dynam-
predictions. For the time being it remains a speculation. ics is more complicated, because tBenatrix may also be
(2) There is no unique evolution of the information: for defined by analytic continuation in the transverse variables
the out observer the information is absorbed by the horizosuch as the impact parameter or its conjugate, the momentum
and then reemitted; for an ingoing observer the informatiortransfert.) In any case, it would be more satisfactory to have
goes into the black hole undisturbed. In this picture the hoa derivation of this boundary from first principles, which
rizon acts as a “quantum xerox,” duplicating the quantum-presently, lacking a fundamental short-distance theory,
mechanical information. seems an untractable problem. Why should the correct for-
(3) As in the Hawking model, one has to accept nakedmalism exclude the region where the contoussconst are
singularities. By the end of the evaporation, Planckian curspacelike? What would be the nature of Planck-scale physics
vatures are exposed to the outside world. which could justify the boundary? Here trans-Planckian
In order to understand what other kind of physics could bemodes are suppressed, implying an ultraviolet softening at
expected in this conflictive region, now we explore anotherthe Planck scale, which is consistent with what is generally
possible assumption. The basic idea is that the out observexpected in quantum gravity. Indeed, the boundary has es-
does not need to know all the details of the physics inside theentially the same effect as imposing a cutoff at a Planck-
black hole up to the singularity in order to describe the outscale frequency, which leads to a termination of the Hawking
physics. One can imagine that the correct quantum theory fgorocesq 3].
external observers requires a boundary at a suitable place. Concerning the second point, we recall that an outside
There is a natural place where a boundary can be imposedbpserver reaches infinite time before the collapsing macro-
namely the apparent horizon, whitfor spherically symmet- scopic matter reaches the apparent horizon, so for him the
ric configurationg simply amounts to exclude the region question has no physical significance. The question is
where the contours= const are spacelikésee, e.g.[9]).  whether, to an inertial ingoing observer, free-falling matter
This would mean that there would be a change of the ouwill pass undisturbed through the apparent horizon. The de-
physics in the region causally connected with the apparergcription of physics in the infalling frame, where there is no
horizon. This is precisely what is desired, since the radiatiodHawking radiation at all, clearly has to be different. For suf-
received in this region originates from about one Planck unificiently large black holes, curvature is very small at the
of proper distance away from the horizon, so it as well sepahorizon, so in this region physics should be described by the
rates the Planck physics zone. Reflecting boundary condirdinary Einstein equations. We will adopt the viewpoint
tions can be straightforwardly imposed when the apparerthat the “barrier” at the apparent horizon is just an artifact
horizon is timelike. The resulting formulas can then be easilyof the out description. Both descriptions should be comple-
continued to the regime where the apparent horizon is spaceentary in the sense of quantum mechanics. The notion of
like by a continuous deformation of the apparent horizoncomplementarity in this picture is in fact weaker than in
curve. The predictions of this model is that the Hawking[2,4], where one needs to assume that the information of the
radiation essentially stops in the region causally connectedbjects going inside the black hole must also come out in the
with the trapped surface. The final state is a stable black holelawking radiation. Indeed, while as [2,4] we need to as-
plus minor emission carrying a total energy of ordersume that outgoing modes, before leaving the horizon re-
(mG) 1. It resolves the problem of information loss and thegion, undergo strong gravitational effects, in those works
singularity is never exposed to outside observers. It alsthese effects must “destroy” the infalling object, extract its
avoids loss of quantum coherence with no need of invokingiuantum-mechanical information, and transfer it to the out-
“duplication of information;” here there is a logical evolu- going modes, even before this reaches the apparent horizon.
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Here “complementarity” just means that the quantum-field Using Eqgs.(3.2), (3.3), and(3.4), the functionsM (V) and
theoretical description which is appropriate to an outside obP(V) can be related to the incoming energy-momentum ten-
server does not need to be extrapolated up to the singularitgpor. In particular, evaluating tRéV constraint(3.2) near the
instead, simple Dirichlet-, or Neumann-type boundary con-apparent horizon, the second term can be dropped, and one
ditions should be imposed to the quantum fields at the appafinds
ent horizon.
dP(V) Ty
I1l. DETERMINATION OF THE APPARENT HORIZON dv V)’
FOR GENERAL COLLAPSING MATTER

TV)=[167eGM?(V)] L. (3.5

To fix the notation, let us consider the static Schwarzschild
Let us restrict our attention to spherically symmetric con-geometry. The standard connection with Kruskal coordi-

figurations: nates,U,V is given by
ds?=g;;(x%,xHdx'dx +r?3(x°,x1dQ?, i,j=0,1. 2mG(r—2m@G)e?M=-Vv(U+p), p=2mG,
(3.2 (3.6
In this spherically symmetric space-time, the location U+p=-2mGe Y4mC  v=2mGe/*mC
of the apparent horizon is determined §yd;r9;r =0 (see,
e.g., [9). In the conformal gauge,g;;(x%x")dx dx! v,u=t+r*, r*=r+2mGin(r—-2mG). (3.7

=e2r(UVdudyV, this equation takes the formyrdyr=0. . _ o _
For the part olJ,V space which is physically relevant in the In this case the apparent horizon coincides with the event
process of gravitational collapse, the apparent horizon wilhorizon. The solution ofdgyr=0 is U=—p. Expanding
be simply given by the equatiof,r =0. r(U,V) in Eq. (3.6) nearU= —p one obtains
Let r=r(U,V),p=p(U,V) be the classical solution of o 2 1 2
the Einstein equations for a given infalling spherically sym- r*=(2mG)°-2e"V(U+p)+O(U+p)9). (3.9
metrip configurgtionTM. For simplicity only massless mat- £ 5 dynamically formed black hole, assuming tiat,
tgr WI||. be congldered. In the conformal gauge, the classical,4nishes forv>V,,m=M(V,) will represent the total
E.msteln equations for thgyy and gyy components are 5pm mass of the collapsing body, ang=P(V,) will be
given by associated with the total infalling Kruskal momentum.
The equation of the apparent horizon in the absence of
incoming fluxes was determined [if]. It is easy to general-
(3.2 ize this calculation to incorporate infalling matter. The equa-
tion

0')6r —Z&Upﬁur = _47TG I’TUU :
(9\2/I’ - 2(9vp(9vr = _47TGrTV\/,

where Tyy and Ty, represent incoming and outgoing ar(U,V)
energy-density fluxes. Let the apparent horizon curve be —Qv 0
classically given by

can be written in terms of the total derivative on the apparent

U==PV). horizon curver =r4(U,V(U)),
It is easy to obtairr (U,V) in the neighborhood of the ap-

parent horizon. Expanding arout= —P(V), we have _dran_ 9ran_ dran L

=40 U - du " 2emac”

(3.9

ar?=f(U,V)=—F(V)[U+P(V)]+O([U+P(V)]?.
v ( ) Vil (V)] ( VP For a large Schwarzschild black holg=2MG, so that

By a conformal transformation one can always set

F(V)dV—const dV, so that the equation simply becomes v dran_, . dM

“2eMG_ du - 2%au

ayr?=—consX[U+P(V)]+---. _ o .
Let us determinelM/dU. In the vicinity of the horizon, the

It is convenient to choose the multiplicative constant equal tdnass loss is dictated by the Stefan-Boltzmann law, and the

2e! [cf. Egs.(3.6) and(3.9)]. By integration we obtain mass given is in terms of the incoming energy-density flux,
2 _ 2_ o1 dM 2
rA(U,V)=(2M(V)G)"~2e" V[U+P(V)] E=<—N%Tﬁ+TUU (4mr?), r=2M(V)G,
+O(U+P(V)]?), 3.3 (3.10
where ~a possible additive function f(U)=c[U  whereN represents the number of scalar field degrees of
+P(V)]+- - is removed by a shift o¥/, and a function  freedom(as shown below, in this model the mass loss will be
M (V) was introduced, defined by compensated with an extra negative-energy contribution

coming from the lower branch of the apparent horizon; an
external observer can only measure the sum of two fljuxes

,dMA(V)  dP(V)
' Using

26C—4v =V av

(3.9
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dv)?

Tuu:Tvv< m) 4.7

Let us now consider the quantum theory. Define the “in”
vacuum|0);, as being the state annihilated by the negative
frequency modes with respect to the “in” advanced and re-
tarded timest=r, and similarly for|0)y, in terms of the
“out” advanced and retarded times,u=t=*r*. Let T be
the energy-momentum tensor operator which is normal or-
dered with respect to the “out” vacuum, ie.,
ouf 0| Tuu|0)ou= 0, and letTyy, the operator associated with
incoming (advanced energy-momentum flux from7~,
which is normal ordered with respect to the “in” vacuum,
Ln<0|TVV|0>in=0. Any two composite operator$,, and
T(y differing only in the normal-ordering subtraction, will
be related in the formT|,,=Tyu—tuy. where, for free
fields,tyy will be ac number. Let us introduce the shorthand
notationTyy=in{0| Tyu|0)in @and Tyy=in{@| Tv\| @)in where

FIG. 1. Apparent horizon for an incident flux less than critical.

dM _ dM do dV(U)

dU  dv dV dU ° |@)in is the quantum state representing the collapsing matter.
Thus, in the quantum theory the reflection conditi@nl)
and Eqgs.(3.7), (3.9, and(3.10, one obtains can be generically written in the form
dvf_ _NeGm | Tw]_ 1 3.1 T = 2T 4.2
du _48077M2V2+T(V) =-1 (3.1 vu—tuu= dqu (Tyv—twy). 4.2

From Eqg.(3.11) [see also Eq(3.10] we see that there is a Because of normal ordering, the operatd{g, and Ty no
critical value of the incident energy-density flux for which longer transform as tensors, but their transformation laws
dV/dU changes sign: for loweFy,, the apparent horizon is typically contain an anomalous piecsee, e.9.[12]). The
time-like; for largerTyy, it is spacelike. Note that a space- role of tyy,tyy in Eq. (4.2) is to preserve the tensor trans-
like apparent horizon necessarily involves a black hole geformation properties of the whole terd,,=Tyy—tuy-
ometry, since it implies that the curvgU,V)=0 is space- However, this requirement does not uniquely define them,

like. In Minkowski coordinates: since one could still add @, anything that transforms as a
) tensor. This ambiguity is removed by demanding the physi-
T | N T4 N (3.12 cal condition thatT,,=0 if |a);,=|0);,. In fact, ty, de-
velAHTTT30 'H T 122880r°G MY '

pends on a certain property of the incoming stbde;,,
namely what in Eq(3.8) was calledp, representing the total
Equation(3.11) can be easily integrated whéhis close to  incoming Kruskal momentum. This is because the “out”
V,, where M(V)=m. In this region the apparent horizon time, which is used to define the normal orderingTef, ,
curve takes the simple form depends itself op [see Eq(3.7)].

V[U+P(V)]=—kG, k= 42‘_;7_ (3.13 A. (14 1)-dimensional model
Although the calculation given here will not depend on
the explicit form oftyy, tyy, itis interesting to compare the
IV. BOUNDARY CONDITIONS AT THE APPARENT reflection condition(4.2) with the analogue equation in the
HORIZON (1+1)-dimensional mod€l13], where this relation automati-
cally arises by demanding that the curvature is finite at the

Following the discussion of Sec. Il, now we would like to boundary, and ,tyy are given by simple expressions. In
explore the consequences of postulating a boundary at the, ,skal coordinates. one finds E@h.2) with
apparent horizon. Let us first discuss a situation where the '

incoming energy density flux is less thafj, in the vicinity K K N
of the apparent horizon, so that it is timelikeee Fig. 1 It tuuzm- tw=yz: K= 715 4.9

may be assumed that this subcritical incident flux is striking

on the apparent horizon of an already formed black hole. Theyhere the equation of the apparent horizon is given by
simplest boundary condition is that this low energy-density

matter is just reflected on a timelike apparent horizon. This V[U+P(V)]=—«, (4.4
subcritical reflection must be interpreted as a quantum effect,
sinceT;, vanishes in the classical limit. which is the precise analog of E.13. In particular, using

In the classical theory, a reflection on a boundd(y) is Eqgs. 4.244.4), in the region(i), where there is no flux im-
a relation of the form pinging on the boundary, one finds
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dv\?2 K K
Tou=tuu—twy du] “Urp? U (4.9

where we have used the notatidfj,, to indicate that, since

in region(i) there is nothing to be reflected, this flux must be
interpreted as a Hawking radiation flux. Indeed, for 0 (as

will be clear later, this is always the case for macroscopic
black hole$, the second term can be ignored, and one simply
has

TH = 4.6
W= 0T )2’ (4.6)

which is the usual result that one would derive by the stan-
dard calculation of1].

B. 3+1 dimensions FIG. 2. Apparent horizon for an incident flux greater than criti-

cal.
Using Eq.(4.2), in regions(i) and (ii) we thus have the
fluxes T{, are thus superposed. The correct outgolig), can be
2 obtained by carefully continuing the previous formulas. Now
dv Uy>U,4, so that
Tou=tuu*{ 50 (Tuv—twv), 4.7 o ¥b
Ug H Uy H
., dv\2 _de(U+p)TUU= _de(U+p)TUU
Tou=tuu={ 5o/ tw- (4.9
0 H
It is interesting to note that the radiation fliig,, obtained in + ful dUU+p)Tyy,

this way is consistent with what one would derive from the

constraint equation&3.2), upon the replacement df,, by Uy 5 Ug .
Tuu—tuu., fu dU(U+p)TUU=fLJ dU(U+p)(—=Tgy)-
0 1
H — _ 192,
erefore, the total energy radiated betwégnandU, is
TUU (47TGr) (&Ur Zaup&ur)‘i‘tuu, U<U(()4 9) Th f h | di db ebl dUn i
ForV—o thg squtiqn in regiorii) apprpaches th_e classical Egﬂt _ l dU(U+p) ) ’ 4.13
Schwarzschild solution, so that the first term in E4.9) mGJy
vanishes, and one obtains
where
THu=tuy, U<U,. (4.10 ,
dv

Just as in the (% 1)-dimensional model, the second term in TOO=Tou—Thu= _Tvv( m) (4.149

Eqg. (4.8 is a small correction to Eq4.10, which can be

neglected near a Elack hole horizfthe reason is thalyy  Thus when the apparent horizon is spaceliBg contributes
goes like 1/U +p)“ and it blows up neaty=—p; see EQ.  wjth the reverse sign. An extra contribution in regids) (s

(4.6 and Eq.(5.2) below]. _ o o not a surprise, since the geometry in regidm {s expected
~ The total energies radiated in regiofis and (ii) will be 5 undergo some modification, being in causal contact with
given by[we use 40GdU=—(U+p)dul: the boundary line. The flip of sign can be physically under-
Uo stood as follows. For each givan', the geometry a¥’ is
o'&t_477f du r2T,,= — f dU(U+p)r2T,, determined in terms of the energy that has crossédat
mG earlierV<V'. In the presence of the reflecting spacelike wall

(41)  atU>U,, the energy-momentum flux crossiblg cannot be
felt by the geometry in regionb)). The net effect is that the
iy ™ 2 geometry in regionlf) is changed in such a way that the flux
Eou mGj dU(U+p)r*Tiy 412 Ty must be subtracted from the outgoing flux. This inter-
pretation is confirmed in[11] for the solvable two-
Let us now gradually increase,, aboveTy, so that a partof dimensional model of13], where the exact time-dependent
the apparent horizon becomes spacehke as in Figh®  geometry, including the geometry in regiob)( can be ob-
change of character from timelike to spacelikeTg} is dic-  tained.
tated by Eq.(3.11)]. In this process a part of regidn ends It should be noted that only subcritical matter reflects off
up superposing with regiofii), giving rise to the region the (timelike) apparent horizon. The critical energy density
(b) of Fig. 2. In this region the two contributiongs, and  (3.12 at the horizon of a massive black hole is extremely
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FIG. 3. A macroscopic black hole geometry. The thick line rep-
resents the apparent horizon.

low (e.g., 1054 g/cn?, for a solar mass black holeFor

infalling objects with energy density greater than critical, the EE)?J)IE

apparent horizon will be spacelike, and they will just go

inside the black hole increasing its mass. As shown below,

only a very minor part of their energy and of their informa-
tion will be emitted.

V. EVOLUTION OF MACROSCOPIC BLACK HOLES

Let us consider the evolution of a macroscopic black hole .

geometry, i.e., with total masss>mp ,mp=1/\/G. For con-
venience we will assume thdi,, vanishes forv<V, and
V>V,. ForV>V, the geometry is approximately static and
given by the Schwarzschild geometry wittn=M (V)
>mp,p=P(V;)>|Uy|. For V>V, the apparent horizon
curve will be given by the equatioW(U +p)=—kG. The

geometry is displayed in Fig. 3. As shown in the previous

section, the energy-density flux in regidm)(is given by[see
Eq. (4.14]
2
-l 5y -

We notice that this outgoing energy-density flux is negative

dv

(b -
du

u

)

Tuu

(5.9

It will soon be clear that the amount of negative energy ra-

diated in region i) is a tiny Planck-scale quantit{in quan-
tum theory the energy density is not positive definite, an
global energy positivity will not be violated. It is the tail of

the outgoing wave that carries off this bit of negative en-

ergy) What has happened is that the usual Hawking contri
bution (4.10 has cancelled out in Eq4.14 because of the
superposition of the two fluxes. The leftover is an insignifi-

cant flux, representing a small tail of the wave function com-

ing out in region &).

First, let us estimate the totgbositive) energy radiated in
region @). As is well known, the Hawking radiation flux is
significant only neat) = — p where it has the fornisee, e.g.,

[12])

H

— = H
Tuu (Gmr)z

or TUUNW'

(5.2

J. G. RUSSO

and it can be neglected ft# <Ugy=—p—kG/V,. Thus

E@=— LJ‘UrldU(UﬁLp)rZTﬂU
mG U
k U+ k VvV
= P In—=, (5.3
4emG Ugy+p 4emG V,

which, indeed, is a small amount of energy. This can be
more explicitly seen by relating INg/Vy) to the physical
parameters characterizing the incoming energy-density flux,
such as the total energm. In particular, consider an approxi-
mately constanty-independentflux T, , which is such that
T,,=¢ atr~2mG. The total mass will be given by

2 a3y o2
m=4mar&(vy—ve)~(MG) kilnv—.
0

Thus we find

k &
R(me)-lf;, Z o= (16meGm?) " 1=T(V,).
(5.9

The parametef, is roughly equal to the critical density at
which a uniform spherical body would lie within its
Schwarzschild radiugnote thatT. is much smaller than
Zerr Toy~Eedmp?im?)].

Next, we calculate thénegative energy received in re-
gion (b). Let (V,,U,=—p) be the point at the intersection
between the apparent horizon and the null ihe —p, i.e.,
Vo[ —p+P(V,)]=—kG. Let us note that fom>mp,V,
andV, differ by a small quantityit should be remembered
that the splitting between the timelike part of the apparent
horizon and the horizotJ=—p is a quantum effegt In
particular, for a constant density flux one has

Vo, K
V, © 16GmZ’

where we used

&
—p+P(V,)=(4mG)? =

. “cr

(Vit=vyh,

as follows from integrating Eq3.5). The outgoing energy

Jnomentum tensor in regiorbj is given by Eq.(5.1). Since

we are only interested in the leading ordemig /m, we can
usedU/dV=—P’(V). Inserting Eq(3.5) into Eq.(5.1), one
obtains

dv

T3(V)
TR=TV) qau- "

T 9

T carries out information about the small fraction of the
infalling matter that arrived at the apparent horizon between
V, andV;. In Minkowski coordinates,

u
eX >mG|

4mr2AuT®)(uy), Au~2mG,

V2T?(V)

T~~~ "7
uu (8mG)°T,,

(5.6

HenceE{D)=
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&2 ing flux is caused by a contribution from the expanding
EP)=— 2gcrmG\lfe_ullz"‘G%—a(szs)_l, trapped surface. The total radiated energy is a sfpaii-

’ tive) Planckian quantity. The final configuration is a stable

K& black hole geometry, which has retained most of its mass

a= 125;(;< 1, (5.79  together with the guantum-mechanical information of the

original configuration.

The stability of the final geometry can be understood in
different ways. It is known that in order to have zero fluxes
at infinity [in the present case, in regiob)(, the gravita-
tional field must be greatly modified near the libe= —p.
This picture is sometimes referred to as the Boulware
vacuum choice, defined in terms of the Schwarzschild Kill-
ing vector(here the geometry has settled down to this situa-
= 2 (5.8  tion dynamically having started from the Unruh vacyum

Eouw M Accordingly, the geometry in regiorb} will be given by the
h ) a) | =(b) ; - Schwarzschild metric only at far distances frohs —p, viz.
us the total radiated enerd@(?)+E() is positive and of for —V(U+ p)>ex —const Gm?]. This condition is satis-

where we have used"1/*m"®=2mV, /k. Thus the emitted
negative energy is smaller tharn‘,i,/m?’ in absolute value.
Sincem>mp, this is a tiny energye.g., for a solar mass
black hole,EL)~ —1071m,). From Egs.(5.4) and (5.7)
one finds

b 2
Eoul _mp

orderE&)~(mG) ~* [see Eq(5.4)]. fied in the whole of the accessible part of regidr) (where
—V(U+p)>kG, and therefore the corrections to the
VI. CONCLUSIONS Schwarzschild metric will be exponentially small in the al-

. . . __lowed space-time.
To summarize, a simple theory of black hole evolution P

based on reflecting boundary conditions on the apparent ho-

rizon was d_escribed. Th.e departure ffom Hawking. theo_ry ACKNOWLEDGMENTS
occurs precisely by the time the outgoing modes arise with
Planckian frequencies from the vicinity of the horiz¢ar- The author wishes to thank D. Amati for useful discus-

ther discussions on the problem of Planck frequencies can k&ons and collaboration in th@+1)-dimensional analogue
found in[14,15). The sudden fall of the subsequent outgo-[11], and E. Verlinde for remarks.
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