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We investigate a model where the quantum dynamics of black hole evaporation is determined by imposing
a boundary on the apparent horizon with suitable boundary conditions. An unconventional scenario for the
evolution emerges: only an insignificant fraction of energy of order (mG)21 is radiated out; the outgoing wave
carries a very small part of the quantum-mechanical information of the collapsed body, the bulk of the
information remaining in the final stable black hole geometry.@S0556-2821~97!00202-6#

PACS number~s!: 04.70.Dy, 04.20.Gz

I. INTRODUCTION

It has been argued that, due to backreaction effects, the
Hawking model of black hole evaporation@1# may break
down long before the evaporation is complete@2#. Because
of the exponential redshift, the outgoing modes arise from a
reservoir of trans-Planckian energies, with frequencies even
higher than the total black hole mass. If a Planck-scale cutoff
is imposed before the horizon, it seems that there would be
only a scarce amount of outgoing modes, and black holes
would lose an insignificant mass by evaporation@3#. Lacking
the fundamental short-distance theory, by the time the out-
going modes arise with Planck frequencies, some extra as-
sumption is needed. Extrapolating the Hawking radiation
into this region leads to paradoxes, e.g., loss of quantum
coherence. However, a concrete alternative scenario to the
Hawking model has been elusive so far.

Recently, there have been some indications on how the
problem should be formulated@4,5#. The idea is that the
description of physics which is appropriate to external ob-
servers may require imposing a phenomenological boundary
on a surface located about one Planck unit away from the
event horizon, where gravitational self-interactions become
very strong@4#. In this paper we will attempt a more precise
construction. A novel theory of black hole evaporation will
be examined, which is based on the assumption that the ad-
equate framework for outside observers is a quantum theory
with a boundary on the apparent horizon. The outgoing flux
of energy in this model will coincide with the one predicted
by the Hawking model only in the region which is not caus-
ally connected with the apparent horizon. By that retarded
time the Hawking radiation flux is still negligible. In the
region in causal contact with the boundary the total flux will
be very small and it will exponentially go to zero. As a
result, the final state will contain a stable geometry with
approximately the same mass as the Arnowitt-Derer-Misner
~ADM ! mass of the original configuration. Only an energy of
order (mG)21 will be evaporated.

A scenario where the Hawking radiation stops leaving a
macroscopic black hole was contemplated in@6# as a pos-
sible solution of the information problem~for a discussion of
its weak points see, e.g.,@7#!. There it was suggested that the
radiation should stop when a certain bound on the informa-
tion content is saturated. This is not what the present model
predicts, but the way the information paradox is resolved is

similar, the Hawking process terminates and the information
remains stored in the final black hole geometry.

II. INFORMATION LOSS PROBLEM

In order for a black hole to be able to evaporate a signifi-
cant part of its mass, the Hawking model needs to be ex-
trapolated up to retarded times which are causally connected
with exponentially small proper distances;exp(2GM2)
from the event horizon. Because of the redshift, an outgoing
mode of average frequencyv;(MG)21 would have a fre-
quency (MG)21exp(GM2) at the moment it arises from the
horizon, which physically seems unacceptable~in particular,
for M2@1/G, higher than the black hole mass!, so backreac-
tion effects should be important. The critical time at which
corrections to the Hawking model may be expected is when
a distant observer enters in causal contact with a surface
located about one Planck unit of proper distance away from
the event horizon.~This is called thestretched horizonin
@8,4#; for a discussion of the different regions which are rel-
evant to the evaporation problem, see@9#.! The outgoing
modes arising from this surface have Planck-scale frequen-
cies, i.e., of order 1/AG. Clearly, lacking knowledge of
Planck-scale physics, some assumptions are needed in order
to calculate the radiation beyond this point. This is a crucial
step, since until this time only an energy of order (GM)21

has been evaporated. The justifications underlying
the Hawking theory are more or less the following.1

For large black holes the curvature is very small at the hori-
zon ~i.e., much less than Planck-scale curvatures,
R!G21), so no quantum gravity effects should be expected
in this region; the appearance of an outgoing mode is a glo-
bal effect and it is meaningless to assign it a frequency
;(GM)21exp(GM2), an inertial observer falling into the
black hole sees no strong quantum gravity effects at the mo-
ment it crosses the horizon. This picture leads however to
several problems. The most serious one is probably loss of
quantum coherence: if the initial state was a pure state, the
final state, after the black hole disappearance, will be a
mixed state and will contain no quantum-mechanical infor-
mation of the wave function of the collapsing object. A sec-

1For a general review on the information loss problem see, e.g.,
@7#.
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ond problem is that at the end point of the evaporation a
naked singularity remains exposed to outside observers. In
all dynamical situations that have been studied singularities
have always managed to remain hidden behind a horizon.
Accepting naked singularities leads to a number of problems,
in particular, to a conflict with predictability@10#. Either one
is to give up quantum mechanics~and cosmic censorship
hypothesis! or else revisite the assumptions of ignoring the
problem of Planck frequencies.

There is a loophole in the above reasoning which has led
to ’t Hooft to formulate the problem in another way. Indeed,
the inertial infalling observer cannot be used to argue that
outgoing radiation at sub-Planckian distances from the hori-
zon is not affected by quantum gravity effects, since this
observer sees no Hawking radiation at all. The speculation of
’t Hooft and Susskind is that the quantum gravity effects in
this region should be such that radiation still exists but it is
no longer exactly thermal; it should contain all the original
quantum-mechanical information encoded in subtle correla-
tions, so that unitarity of the evolution is preserved. This
interesting approach nevertheless has some problems.

~1! There is no concrete model implementing this picture,
despite some attempts. In particular, there are no testable
predictions. For the time being it remains a speculation.

~2! There is no unique evolution of the information: for
the out observer the information is absorbed by the horizon
and then reemitted; for an ingoing observer the information
goes into the black hole undisturbed. In this picture the ho-
rizon acts as a ‘‘quantum xerox,’’ duplicating the quantum-
mechanical information.

~3! As in the Hawking model, one has to accept naked
singularities. By the end of the evaporation, Planckian cur-
vatures are exposed to the outside world.

In order to understand what other kind of physics could be
expected in this conflictive region, now we explore another
possible assumption. The basic idea is that the out observer
does not need to know all the details of the physics inside the
black hole up to the singularity in order to describe the out
physics. One can imagine that the correct quantum theory for
external observers requires a boundary at a suitable place.
There is a natural place where a boundary can be imposed,
namely the apparent horizon, which~for spherically symmet-
ric configurations! simply amounts to exclude the region
where the contoursr5 const are spacelike~see, e.g.,@9#!.
This would mean that there would be a change of the out
physics in the region causally connected with the apparent
horizon. This is precisely what is desired, since the radiation
received in this region originates from about one Planck unit
of proper distance away from the horizon, so it as well sepa-
rates the Planck physics zone. Reflecting boundary condi-
tions can be straightforwardly imposed when the apparent
horizon is timelike. The resulting formulas can then be easily
continued to the regime where the apparent horizon is space-
like by a continuous deformation of the apparent horizon
curve. The predictions of this model is that the Hawking
radiation essentially stops in the region causally connected
with the trapped surface. The final state is a stable black hole
plus minor emission carrying a total energy of order
(mG)21. It resolves the problem of information loss and the
singularity is never exposed to outside observers. It also
avoids loss of quantum coherence with no need of invoking
‘‘duplication of information;’’ here there is a logical evolu-

tion of the quantum-mechanical information. As we shall
see, in the spherical symmetric case everything is calculable
to leading order inMP

2 /m2. In particular, the total emitted
energy can be very accurately predicted in terms of the de-
tails of the incoming energy. There area priori two prob-
lems:~1! The apparent horizon as a boundary is put by hand.
A further justification would be desirable.~2! The physics of
the external world is describedas if there was a wall at the
apparent horizon. This is in contrast with the idea that noth-
ing so drastic should happen to a free-falling object when
encountering the apparent horizon.

Concerning the first point, there is a justification in
111 dimensions: the boundary at the apparent horizon fol-
lows automatically if one assumes that anSmatrix exists and
that it describes the usual semiclassical theory below the
threshold for black hole formation@11#. Indeed, in the
S-matrix formalism, the physics above thresholds is gov-
erned by analytic continuation. In 111 dimensions, it can be
shown that the supercritical regime which is obtained from
the subcritical regime by analytic continuation is mathemati-
cally equivalent to the black hole theory with a boundary at
the apparent horizon@11#. ~In 311 dimensions, the dynam-
ics is more complicated, because theS-matrix may also be
defined by analytic continuation in the transverse variables
such as the impact parameter or its conjugate, the momentum
transfert.! In any case, it would be more satisfactory to have
a derivation of this boundary from first principles, which
presently, lacking a fundamental short-distance theory,
seems an untractable problem. Why should the correct for-
malism exclude the region where the contoursr5const are
spacelike? What would be the nature of Planck-scale physics
which could justify the boundary? Here trans-Planckian
modes are suppressed, implying an ultraviolet softening at
the Planck scale, which is consistent with what is generally
expected in quantum gravity. Indeed, the boundary has es-
sentially the same effect as imposing a cutoff at a Planck-
scale frequency, which leads to a termination of the Hawking
process@3#.

Concerning the second point, we recall that an outside
observer reaches infinite time before the collapsing macro-
scopic matter reaches the apparent horizon, so for him the
question has no physical significance. The question is
whether, to an inertial ingoing observer, free-falling matter
will pass undisturbed through the apparent horizon. The de-
scription of physics in the infalling frame, where there is no
Hawking radiation at all, clearly has to be different. For suf-
ficiently large black holes, curvature is very small at the
horizon, so in this region physics should be described by the
ordinary Einstein equations. We will adopt the viewpoint
that the ‘‘barrier’’ at the apparent horizon is just an artifact
of the out description. Both descriptions should be comple-
mentary in the sense of quantum mechanics. The notion of
complementarity in this picture is in fact weaker than in
@2,4#, where one needs to assume that the information of the
objects going inside the black hole must also come out in the
Hawking radiation. Indeed, while as in@2,4# we need to as-
sume that outgoing modes, before leaving the horizon re-
gion, undergo strong gravitational effects, in those works
these effects must ‘‘destroy’’ the infalling object, extract its
quantum-mechanical information, and transfer it to the out-
going modes, even before this reaches the apparent horizon.
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Here ‘‘complementarity’’ just means that the quantum-field
theoretical description which is appropriate to an outside ob-
server does not need to be extrapolated up to the singularity;
instead, simple Dirichlet-, or Neumann-type boundary con-
ditions should be imposed to the quantum fields at the appar-
ent horizon.

III. DETERMINATION OF THE APPARENT HORIZON
FOR GENERAL COLLAPSING MATTER

Let us restrict our attention to spherically symmetric con-
figurations:

ds25gi j ~x
0,x1!dxidxj1r 2~x0,x1!dV2, i , j50,1.

~3.1!

In this spherically symmetric space-time, the location
of the apparent horizon is determined bygi j ] i r ] j r50 ~see,
e.g., @9#!. In the conformal gauge,gi j (x

0,x1)dxidxj

5e2r(U,V)dUdV, this equation takes the form]Ur ]Vr50.
For the part ofU,V space which is physically relevant in the
process of gravitational collapse, the apparent horizon will
be simply given by the equation]Vr50.

Let r5r (U,V),r5r(U,V) be the classical solution of
the Einstein equations for a given infalling spherically sym-
metric configurationTmn . For simplicity only massless mat-
ter will be considered. In the conformal gauge, the classical
Einstein equations for thegUU and gVV components are
given by

]U
2 r22]Ur]Ur524pGrTUU ,

~3.2!
]V
2r22]Vr]Vr524pGrTVV ,

where TVV and TUU represent incoming and outgoing
energy-density fluxes. Let the apparent horizon curve be
classically given by

U52P~V!.

It is easy to obtainr (U,V) in the neighborhood of the ap-
parent horizon. Expanding aroundU52P(V), we have

]Vr
2[ f ~U,V!52F~V!@U1P~V!#1O„@U1P~V!#2….

By a conformal transformation one can always set
F(V)dV→const dV, so that the equation simply becomes

]Vr
252const3@U1P~V!#1•••.

It is convenient to choose the multiplicative constant equal to
2e21 @cf. Eqs.~3.6! and ~3.8!#. By integration we obtain

r 2~U,V!5~2M ~V!G!222e21V@U1P~V!#

1O„@U1P~V!#2…, ~3.3!

where a possible additive function f (U)5c@U
1P(V)#1••• is removed by a shift ofV, and a function
M (V) was introduced, defined by

2eG2
dM2~V!

dV
5V

dP~V!

dV
. ~3.4!

Using Eqs.~3.2!, ~3.3!, and ~3.4!, the functionsM (V) and
P(V) can be related to the incoming energy-momentum ten-
sor. In particular, evaluating theVV constraint~3.2! near the
apparent horizon, the second term can be dropped, and one
finds

dP~V!

dV
>

TVV
T~V!

, T~V![@16peG3M2~V!#21. ~3.5!

To fix the notation, let us consider the static Schwarzschild
geometry. The standard connection with Kruskal coordi-
nates,U,V is given by

2mG~r22mG!er /2mG52V~U1p!, p52mG,
~3.6!

U1p522mGe2u/4mG, V52mGev/4mG,

v,u5t6r * , r *5r12mG ln~r22mG!. ~3.7!

In this case the apparent horizon coincides with the event
horizon. The solution of]Vr50 is U52p. Expanding
r (U,V) in Eq. ~3.6! nearU52p one obtains

r 2>~2mG!222e21V~U1p!1O„~U1p!2…. ~3.8!

For a dynamically formed black hole, assuming thatTVV
vanishes forV.V1 ,m5M (V1) will represent the total
ADM mass of the collapsing body, andp5P(V1) will be
associated with the total infalling Kruskal momentum.

The equation of the apparent horizon in the absence of
incoming fluxes was determined in@9#. It is easy to general-
ize this calculation to incorporate infalling matter. The equa-
tion

]r ~U,V!

]V
50,

can be written in terms of the total derivative on the apparent
horizon curve,r5rAH„U,V(U)…,

05
drAH
dU

2
]rAH
]U

>
drAH
dU

1
1

2eMG
V. ~3.9!

For a large Schwarzschild black hole,rAH>2MG, so that

2
V

2eMG
5
drAH
dU

>2G
dM

dU
.

Let us determinedM/dU. In the vicinity of the horizon, the
mass loss is dictated by the Stefan-Boltzmann law, and the
mass given is in terms of the incoming energy-density flux,

dM

dv
5S 2N

p2

30
TH
4 1TvvD ~4pr s

2!, r s52M ~V!G,

~3.10!

whereN represents the number of scalar field degrees of
freedom~as shown below, in this model the mass loss will be
compensated with an extra negative-energy contribution
coming from the lower branch of the apparent horizon; an
external observer can only measure the sum of two fluxes!.
Using
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dM

dU
5
dM

dv
dv
dV

dV~U !

dU
,

and Eqs.~3.7!, ~3.9!, and~3.10!, one obtains

dV

dU F2
NeGm2

480pM2V2 1
TVV
T~V!G521. ~3.11!

From Eq.~3.11! @see also Eq.~3.10!# we see that there is a
critical value of the incident energy-density flux for which
dV/dU changes sign: for lowerTVV the apparent horizon is
time-like; for largerTVV , it is spacelike. Note that a space-
like apparent horizon necessarily involves a black hole ge-
ometry, since it implies that the curver (U,V)50 is space-
like. In Minkowski coordinates:

Tvv
cr uAH5N

p2

30
TH
4 5

N

122880p2G4M4 . ~3.12!

Equation~3.11! can be easily integrated whenV is close to
V1, whereM (V)>m. In this region the apparent horizon
curve takes the simple form

V@U1P~V!#>2kG, k5
Ne

480p
. ~3.13!

IV. BOUNDARY CONDITIONS AT THE APPARENT
HORIZON

Following the discussion of Sec. II, now we would like to
explore the consequences of postulating a boundary at the
apparent horizon. Let us first discuss a situation where the
incoming energy density flux is less thanTvv

cr in the vicinity
of the apparent horizon, so that it is timelike~see Fig. 1!. It
may be assumed that this subcritical incident flux is striking
on the apparent horizon of an already formed black hole. The
simplest boundary condition is that this low energy-density
matter is just reflected on a timelike apparent horizon. This
subcritical reflection must be interpreted as a quantum effect,
sinceTvv

cr vanishes in the classical limit.
In the classical theory, a reflection on a boundaryV(U) is

a relation of the form

TUU5TVVS dVdUD 2. ~4.1!

Let us now consider the quantum theory. Define the ‘‘in’’
vacuumu0& in as being the state annihilated by the negative
frequency modes with respect to the ‘‘in’’ advanced and re-
tarded timest6r , and similarly for u0&out, in terms of the
‘‘out’’ advanced and retarded times,v,u5t6r * . Let T̂UU be
the energy-momentum tensor operator which is normal or-
dered with respect to the ‘‘out’’ vacuum, i.e.,

out̂ 0uT̂UUu0&out50, and letT̂VV the operator associated with
incoming ~advanced! energy-momentum flux fromJ2,
which is normal ordered with respect to the ‘‘in’’ vacuum,

in^0uT̂VVu0& in50. Any two composite operatorsT̂UU and
T̂UU8 differing only in the normal-ordering subtraction, will
be related in the form,T̂UU8 5T̂UU2 t̂UU , where, for free
fields, t̂UU will be ac number. Let us introduce the shorthand
notationTUU5 in^0uT̂UUu0& in andTVV5 in^auT̂VVua& in where
ua& in is the quantum state representing the collapsing matter.
Thus, in the quantum theory the reflection condition~4.1!
can be generically written in the form

TUU2tUU5S dVdUD 2~TVV2tVV!. ~4.2!

Because of normal ordering, the operatorsT̂UU and T̂VV no
longer transform as tensors, but their transformation laws
typically contain an anomalous piece~see, e.g.,@12#!. The
role of tUU ,tVV in Eq. ~4.2! is to preserve the tensor trans-
formation properties of the whole termT̂UU5T̂UU2 t̂UU .
However, this requirement does not uniquely define them,
since one could still add toT̂UU anything that transforms as a
tensor. This ambiguity is removed by demanding the physi-
cal condition thatTUU50 if ua& in5u0& in . In fact, tUU de-
pends on a certain property of the incoming stateua& in,
namely what in Eq.~3.8! was calledp, representing the total
incoming Kruskal momentum. This is because the ‘‘out’’
time, which is used to define the normal ordering ofT̂UU ,
depends itself onp @see Eq.~3.7!#.

A. „111…-dimensional model

Although the calculation given here will not depend on
the explicit form oftUU , tVV , it is interesting to compare the
reflection condition~4.2! with the analogue equation in the
~111!-dimensional model@13#, where this relation automati-
cally arises by demanding that the curvature is finite at the
boundary, andtUU ,tVV are given by simple expressions. In
Kruskal coordinates, one finds Eq.~4.2! with

tUU5
k

~U1p!2
, tVV5

k

V2 , k5
N

48
, ~4.3!

where the equation of the apparent horizon is given by

V@U1P~V!#52k, ~4.4!

which is the precise analog of Eq.~3.13!. In particular, using
Eqs. 4.2–~4.4!, in the region~i!, where there is no flux im-
pinging on the boundary, one finds

FIG. 1. Apparent horizon for an incident flux less than critical.
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TUU
H 5tUU2tVVS dVdUD 25 k

~U1p!2
2

k

U2 , ~4.5!

where we have used the notationTUU
H to indicate that, since

in region~i! there is nothing to be reflected, this flux must be
interpreted as a Hawking radiation flux. Indeed, forp@0 ~as
will be clear later, this is always the case for macroscopic
black holes!, the second term can be ignored, and one simply
has

TUU
H >

k

~U1p!2
, ~4.6!

which is the usual result that one would derive by the stan-
dard calculation of@1#.

B. 311 dimensions

Using Eq.~4.2!, in regions~i! and ~ii ! we thus have the
fluxes

TUU
R 5tUU1S dVdUD 2~TVV2tVV!, ~4.7!

TUU
H 5tUU2S dVdUD 2tVV . ~4.8!

It is interesting to note that the radiation fluxTUU
H obtained in

this way is consistent with what one would derive from the
constraint equations~3.2!, upon the replacement ofTUU by
TUU2tUU ,

TUU
H 52~4pGr !21~]U

2 r22]Ur]Ur !1tUU , U,U0 .
~4.9!

For V→` the solution in region~i! approaches the classical
Schwarzschild solution, so that the first term in Eq.~4.9!
vanishes, and one obtains

TUU
H >tUU , U,U0 . ~4.10!

Just as in the (111)-dimensional model, the second term in
Eq. ~4.8! is a small correction to Eq.~4.10!, which can be
neglected near a black hole horizon@the reason is thattUU
goes like 1/(U1p)2 and it blows up nearU>2p; see Eq.
~4.6! and Eq.~5.2! below#.

The total energies radiated in regions~i! and ~ii ! will be
given by @we use 4mGdU52(U1p)du#:

Eout
~ i! 54pE

2`

u0
du r2Tuu52

p

mGE2`

U0
dU~U1p!r 2TUU

H ,

~4.11!

Eout
~ ii !52

p

mGEU0

U1
dU~U1p!r 2TUU

R . ~4.12!

Let us now gradually increaseTvv aboveTvv
cr so that a part of

the apparent horizon becomes spacelike, as in Fig. 2@the
change of character from timelike to spacelike atTvv

cr is dic-
tated by Eq.~3.11!#. In this process a part of region~i! ends
up superposing with region~ii !, giving rise to the region
(b) of Fig. 2. In this region the two contributionsTUU

R and

TUU
H are thus superposed. The correct outgoingTUU

(b) can be
obtained by carefully continuing the previous formulas. Now
U0.U1, so that

E
2`

U0
dU~U1p!TUU

H 5E
2`

U1
dU~U1p!TUU

H

1E
U1

U0
dU~U1p!TUU

H ,

E
U0

U1
dU~U1p!TUU

R 5E
U1

U0
dU~U1p!~2TUU

R !.

Therefore, the total energy radiated betweenU1 andU0 is

Eout
~b!52

p

mGEU1

U0
dU~U1p!r 2TUU

~b! , ~4.13!

where

TUU
~b! 5TUU

H 2TUU
R 52TVVS dVdUD 2. ~4.14!

Thus when the apparent horizon is spacelikeTUU
R contributes

with the reverse sign. An extra contribution in region (b) is
not a surprise, since the geometry in region (b) is expected
to undergo some modification, being in causal contact with
the boundary line. The flip of sign can be physically under-
stood as follows. For each givenU8, the geometry atV8 is
determined in terms of the energy that has crossedU8 at
earlierV,V8. In the presence of the reflecting spacelike wall
atU.U1, the energy-momentum flux crossingU1 cannot be
felt by the geometry in region (b). The net effect is that the
geometry in region (b) is changed in such a way that the flux
TUU
R must be subtracted from the outgoing flux. This inter-

pretation is confirmed in@11# for the solvable two-
dimensional model of@13#, where the exact time-dependent
geometry, including the geometry in region (b), can be ob-
tained.

It should be noted that only subcritical matter reflects off
the ~timelike! apparent horizon. The critical energy density
~3.12! at the horizon of a massive black hole is extremely

FIG. 2. Apparent horizon for an incident flux greater than criti-
cal.
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low ~e.g., 10264 g/cm3, for a solar mass black hole!. For
infalling objects with energy density greater than critical, the
apparent horizon will be spacelike, and they will just go
inside the black hole increasing its mass. As shown below,
only a very minor part of their energy and of their informa-
tion will be emitted.

V. EVOLUTION OF MACROSCOPIC BLACK HOLES

Let us consider the evolution of a macroscopic black hole
geometry, i.e., with total massm@mP ,mP51/AG. For con-
venience we will assume thatTVV vanishes forV,V0 and
V.V1. ForV.V1 the geometry is approximately static and
given by the Schwarzschild geometry withm5M (V1)
@mP ,p5P(V1)@uU0u. For V.V1 the apparent horizon
curve will be given by the equationV(U1p)>2kG. The
geometry is displayed in Fig. 3. As shown in the previous
section, the energy-density flux in region (b) is given by@see
Eq. ~4.14!#

TUU
~b! 52TVVS dVdUD 2. ~5.1!

We notice that this outgoing energy-density flux is negative.
It will soon be clear that the amount of negative energy ra-
diated in region (b) is a tiny Planck-scale quantity.~In quan-
tum theory the energy density is not positive definite, and
global energy positivity will not be violated. It is the tail of
the outgoing wave that carries off this bit of negative en-
ergy.! What has happened is that the usual Hawking contri-
bution ~4.10! has cancelled out in Eq.~4.14! because of the
superposition of the two fluxes. The leftover is an insignifi-
cant flux, representing a small tail of the wave function com-
ing out in region (a).

First, let us estimate the total~positive! energy radiated in
region (a). As is well known, the Hawking radiation flux is
significant only nearU52p where it has the form~see, e.g.,
@12#!

Tuu
H ;

1

~Gmr!2
or TUU

H ;
1

r 2~U1p!2
, ~5.2!

and it can be neglected forU,U08[2p2kG/V0. Thus

Eout
~a!>2

p

mGEU08

U1
dU~U1p!r 2TUU

H

>2
k

4emG
ln
U11p

U081p
5

k

4emG
ln
V1

V0
, ~5.3!

which, indeed, is a small amount of energy. This can be
more explicitly seen by relating ln(V1 /V0) to the physical
parameters characterizing the incoming energy-density flux,
such as the total energym. In particular, consider an approxi-
mately constant (v-independent! flux Tvv , which is such that
Tvv>E at r;2mG. The total mass will be given by

m>4pr s
2
E~v12v0!;~mG!3E ln

V1

V0
.

Thus we find

Eout
~a!>

k

16
~mG!21

Ecr

E
, Ecr[~16peG3m2!215T~V1!.

~5.4!

The parameterEcr is roughly equal to the critical density at
which a uniform spherical body would lie within its
Schwarzschild radius@note thatTvv

cr is much smaller than
Ecr , Tvv

cr ;Ecr(mp
2/m2)#.

Next, we calculate the~negative! energy received in re-
gion (b). Let (V2 ,U2[2p) be the point at the intersection
between the apparent horizon and the null lineU52p, i.e.,
V2@2p1P(V2)#52kG. Let us note that form@mP ,V2
andV1 differ by a small quantity~it should be remembered
that the splitting between the timelike part of the apparent
horizon and the horizonU52p is a quantum effect!. In
particular, for a constant density flux one has

V2

V1
>12

kEcr

16Gm2E
,

where we used

2p1P~V2!>~4mG!2
E

Ecr
~V1

212V2
21!,

as follows from integrating Eq.~3.5!. The outgoing energy
momentum tensor in region (b) is given by Eq.~5.1!. Since
we are only interested in the leading order inmP /m, we can
usedU/dV>2P8(V). Inserting Eq.~3.5! into Eq.~5.1!, one
obtains

TUU
~b! >T~V!

dV

dU
52
T 2~V!

TVV
. ~5.5!

TUU
(b) carries out information about the small fraction of the

infalling matter that arrived at the apparent horizon between
V2 andV1. In Minkowski coordinates,

Tuu
~b!>2

V2T 2~V!

~8mG!2Tvv
expS 2

u

2mGD . ~5.6!

HenceEout
(b)>4pr s

2DuTuu
(b)(u1), Du;2mG,

FIG. 3. A macroscopic black hole geometry. The thick line rep-
resents the apparent horizon.
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Eout
~b!>2

pEcr
2

2E
mGV1

2e2u1/2mG>2a~G2m3!21,

a5
k2Ecr

128eE
,1, ~5.7!

where we have usedeu1/4mG52mV1 /k. Thus the emitted
negative energy is smaller thanmP

4 /m3 in absolute value.
Sincem@mP , this is a tiny energy~e.g., for a solar mass
black hole,Eout

(b);2102114mP). From Eqs.~5.4! and ~5.7!
one finds

uEout
~b!u

Eout
~a! >

mP
2

m2!1. ~5.8!

Thus the total radiated energyEout
(a)1Eout

(b) is positive and of
orderEout

(a);(mG)21 @see Eq.~5.4!#.

VI. CONCLUSIONS

To summarize, a simple theory of black hole evolution
based on reflecting boundary conditions on the apparent ho-
rizon was described. The departure from Hawking theory
occurs precisely by the time the outgoing modes arise with
Planckian frequencies from the vicinity of the horizon~fur-
ther discussions on the problem of Planck frequencies can be
found in @14,15#!. The sudden fall of the subsequent outgo-

ing flux is caused by a contribution from the expanding
trapped surface. The total radiated energy is a small~posi-
tive! Planckian quantity. The final configuration is a stable
black hole geometry, which has retained most of its mass
together with the quantum-mechanical information of the
original configuration.

The stability of the final geometry can be understood in
different ways. It is known that in order to have zero fluxes
at infinity @in the present case, in region (b)#, the gravita-
tional field must be greatly modified near the lineU52p.
This picture is sometimes referred to as the Boulware
vacuum choice, defined in terms of the Schwarzschild Kill-
ing vector~here the geometry has settled down to this situa-
tion dynamically having started from the Unruh vacuum!.
Accordingly, the geometry in region (b) will be given by the
Schwarzschild metric only at far distances fromU52p, viz.
for 2V(U1p)@exp@2const Gm2#. This condition is satis-
fied in the whole of the accessible part of region (b), where
2V(U1p).kG, and therefore the corrections to the
Schwarzschild metric will be exponentially small in the al-
lowed space-time.
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