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A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly sol
including back-reaction effects, is investigated at both classical and quantum levels. This family contains
RST model as a special case, and it continuously interpolates between models having a flat~Rindler! geometry
and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black h
singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical
pects of these geometries are discussed, including the cosmological interpretation.@S0556-2821~96!02010-3#

PACS number~s!: 04.60.Kz, 04.50.1h, 98.80.Hw
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I. INTRODUCTION

Two-dimensional dilaton gravity models reproduced t
essential features of the Hawking model of gravitational c
lapse, with an exact account of back-reaction effects@1,2#.
An important question that remains is to what extent the
features are universal or are just properties peculiar
a special model. The Callan-Giddings-Harvey-Stroming
~CGHS! action

S5E d2xA2g$e22f@R14~¹f!214l2#%, ~1.1!

is different from the Einstein-Hilbert action restricted t
spherically symmetric configurations,ds25gi j (x

i)dxidxj

1e22f̃(xi )dV2, i , j51,2,

SEH5E d2xA2g$e22f̃@R12~¹f̃!2#12%, ~1.2!

so it is not obvious that the physics of the CGHS mod
should be similar to the physics of spherically symmet
Einstein gravity. The problem is that the dimensionally r
duced Einstein-Hilbert action coupled to matter is not
exactly solvable model. It is therefore important to look for
more general class of exactly solvable two-dimensional m
els containing a metric and dilaton field in order to have
more universal picture of the dynamics of black hole form
tion and evaporation, at least in the case of spherical sy
metry. Several attempts in this direction have been ma
either by modifying the boundary conditions of@2#, as in@3#,
or by starting from more general actions~see e.g.,@4,5#!.

It is well known that the most general action for a theo
containing a metric and a scalar field can be parametrized
couplings which are functions of the scalar field~see, e.g.,
@6,7,4#!. Our purpose here will be to identify, in the gener
class, a subclass of solvable semiclassical models with de
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able physical properties, exploring its possible application
the process of black hole evaporation as well as its cosm
logical interpretation. The classical part of the action is give
by Scl5S01SM , where

S05
1

2p E d2xA2gH e22f/nFR1
4

n
~¹f!2G14l2e22fJ

~1.3!

and

SM52
1

4p (
i51

N E d2xA2g~¹ f i !
2. ~1.4!

In the casen51 the model will reduce to the Russo-
Susskind-Thorlacius~RST! model. A similar idea was pur-
sued in@4#. In particular, by demanding the model to hav
asymptotic weak-coupling regions, the authors obtain a ge
eral class of models in which~1.3! is contained.

The classical geometries have typically a spacelike curv
ture singularity with an associated global event horizon, an
a curvature scalar which goes to zero at spatial infinity. In th
frame in which the dilaton and metric are static, the gener
geometry ~nÞ1! does not asymptotically approach the
Minkowski geometry, instead it approaches the Rindler me
ric. The scale factor goes to zero or to infinity according t
whethern.1 or n,1. Geometries with non-Minkowskian
asymptotic behavior are quite common in general theories
two-dimensional~2D! dilaton gravity~with a general dilaton
potential!, and they also appear in other contexts, such a
e.g., ‘‘black strings’’ in four-dimensional string theory~see
@8# and references therein!, magnetic flux tubes~e.g., the
Melvin vortex in four-dimensional Einstein theory@9#!, vari-
ous~211!-dimensional models, general gravity theories wit
dilaton and Maxwell fields@10#, etc.1 It is therefore of inter-

1In the simplest 2D critical string theory~with zero central-charge
deficit! there are no asymptotically Minkowskian solutions~the cor-
responding charged black hole solutions have a nontrivial asym
totic where the scale factor goes to zero!.
6995 © 1996 The American Physical Society
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6996 53A. FABBRI AND J. G. RUSSO
est to have a simplified context where these geometries
be investigated in detail.

A basic issue of these types of metrics is how to define
invariant mass in the absence of a preferred asympt
Minkowski frame. The standard Arnowitt-Deser-Misne
~ADM ! mass is conjugate to the asymptotic Minkowski tim
For the present models, the choice of a time scale is so
what arbitrary in that any two time coordinates differing by
multiplicative constant are equally valid~there will be, how-
ever, a natural time choice, namely the one which, forn51,
reduces to the Minkowski time!. It will be shown here that,
once the time coordinate is fixed the invariant mass con
gate to this time is conserved in the process of black h
formation and evaporation. This quantity constitutes a use
parameter which characterizes the geometry. In particu
the zero-curvature ground-state geometry is obtained by
ting the mass parameter to zero in the general solution.

A natural physical application of the models consider
here is in the cosmological context~see Sec. V!. The geom-
etries corresponding to the casesn.1, n,1, andn51 are
two-dimensional analogues of the Robertson-Walker c
mologies with parametersk51, k521, andk50, providing
a description of expanding or contracting universes.

II. EXACTLY SOLVABLE MODELS

The solvability of the model of@2# is related to the fact
that, after a suitable field redefinition, the action in the co
formal gauge@g6650, g1252~1/2!e2r# can be written in
the ‘‘free field’’ form @11#

S5
1

p E d2xS 1k ~2]1x]2x1]1V]2V!

1l2e2~x2V!/k1
1

2 (
i50

N

]1 f i]2 f i D , ~2.1!

where

x5kr1e22f2
1

2
kf, V5e22f1

1

2
kf, k5

N

12
.

The RST model is not, however, the only dilaton-gravi
theory that can be cast into the form~2.1!. As we will see
below, there are indeed inequivalent dilaton-gravity mod
which reduce to the above action upon a field redefinition2

We would like to find the most general theory whos
action can be written in the form~2.1! and which obeys the
following basic requirements:~i! it is reparametrization in-
variant;~ii ! it has the correct anomaly term;~iii ! it contains a
vacuum solution withR50 as well as asymptotically flat
solutions;~iv! there are no unphysical fluxes at infinity in th
vacuum~in the frame in which the metric and the dilato

2Field redefinitions involving Weyl scalings do not give equiva
lent theories in dilaton-gravity models due to the presence of
anomaly term. The matter interacts with the geometry through
conformal anomaly, which is always constructed in terms of t
appropriate physical metric~for further discussions on this point se
@6#!.
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field are static!. Now we will show that the most general
transformation that meets the above requirements is given

x5kr1e22f/n1S 1

2n
21Dkf, ~2.2!

V5e22f/n1
k

2n
f, ~2.3!

wheren is a real number. The casen51 corresponds to the
model of @2#.

Condition~i! requires, in particular, that the cosmologica
term in Eq.~2.1! be of the formA2g f(f)5(1/2)e2r f (f).
The most general transformation betweenx,V andr,f satis-
fying this condition can be written as

x5~k1a!r1 f 1~f!1g~r,f!, V5ar1g~r,f!.
~2.4!

We can use the freedom to redefine the dilaton fieldf so as
to have x2V5k~r2f̃!, i.e., kf̃52f1~f! ~henceforth
f̃5f!. Thus we can write

x5~k1a!r2kf1g~r,f!, V5ar1g~r,f!.
~2.5!

Now, in order to obtain the usual anomaly term
2~k/p!*d2x]1r]2r, g~r,f! must be of the formg(r,f)
5br1F(f). The linear termbr can be reabsorbed into a
redefinition ofa. The correct coefficient of the anomaly term
is obtained provided (k1a)22a25k2, i.e., a50. Thus we
havex5kr2kf1F~f!, V5F~f!, and we must still demand
conditions ~iii ! and ~iv!. The equations of motion derived
from ~2.1! are

]1]2~x2V!50, ]1]2x52l2e2~x2V!/k. ~2.6!

From Eq.~2.6! one sees that it is always possible to choose
gauge, the ‘‘Kruskal’’ gauge, wherex5V. In this gauge it is
easy to show that the curvature scalarR is proportional to

]1]2r5
1

F8~f! S 2l22
F9~f!

F82~f!
]1V]2V D . ~2.7!

Consider the most general static solutions to Eq.~2.6! @2#:

V5x52l2x1x21Q ln~2l2x1x2!1
M

l
, Q,M5const.

~2.8!

Let us first obtain the asymptotic part of the functionF~f!.
For (2x1x2)→`, we have @see Eq. ~2.8!#
]1V]2V>2l2V52l2F~f!. From Eq. ~2.7! we see that
there are zero-curvature solutions provided

15
F9

F82
F. ~2.9!

The general solution of Eq.~2.9! is F(f)5cemf. The con-
stantc can be removed upon a proper shift of the dilato
field. The presence of the constantm reveals a whole class of
new solutions labeled byn522/m, with the vacuum~R50!
solution given by

-
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e2r5e2f5
1

~2l2x1x2!n
. ~2.10!

General configurations approach the vacuum solution in
asymptotic region.

Let us note that the conditionR50 is satisfied even if
linear terms inf ~which are subleading at infinity and do no
contribute inF9! are added toF~f!. One thus concludes tha
F(f)5emf1Bf is the most general functionF~f! consis-
tent with the existence of zero-curvature solutions. In th
way we obtain

x5kr1e22f/n2~k2B!f, V5e22f/n1Bf.
~2.11!

The value ofB is fixed once condition~iv! is imposed. In-
deed, consider the constraint equations:

kt65k21~2]6x]6x1]6V]6V!1]6
2 x

1
1

2 (
i50

N

]6 f i]6 f i . ~2.12!

Consider the s6 coordinates, defined through6lx6

5e6ls6
, in which the vacuum geometry~2.10! is static,

f52(n/2)l~s12s2! and r5@~12n!/2#l~s12s2!. Equa-
tion ~2.12! becomes

kt6~s6!52
l2

4
@k22nB#. ~2.13!

In order to havet6~s6!50 in the vacuum,B must be equal
to k/2n. The most general model that can be mapped to
action ~2.1! obeying conditions~i!–~iv! is thus given by the
one-parameter class of models defined by the transfor
tions ~2.2! and ~2.3!. This leads to the action

S5
1

2p E d2xA2gFe22f/nSR1
4

n
~¹f!2D 14l2e22f

2
1

2 (
i51

N

~¹ f i !
21kS 122n

2n
fR1

n21

n
~¹f!2

2
1

4
R~¹2!21RD G . ~2.14!

In what follows we will investigate the various physical a
pects of this model. A recent study of general models,
cluding a discussion of solvability, can be found in@4#.3

3The model~2.14! corresponds, of course, to a specific choice
the coupling functions of the generic model which has been ext
sively discussed in the literature~see, e.g, in@6,7,4#!. For example,
in the notation of@4#, the action~2.14! can be obtained with the
choice q(f)5e2(2/n)f1k[(122n)/2n]f, K(f)5(4/n)e2(2/n)f

1k[(n21)/n], v~f!522f, u~f!50, c51/4. The classical part of
the action~2.14! is included in a more specific subclass of mode
given by Eq.~4.24! of @4#, with a52n.
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III. THE CLASSICAL THEORY

Let us first consider the classical theory\→0. Once\ is
restored in the formulas, the last three terms in Eq.~2.14! go
away in this limit, and we are left with action~1.3!. The
equations of motion derived from this action are

gmnF4n S 2
1

2
1
1

nD ~¹f!22
2

n
¹2f22l2 expS 222n

n
f D G

1
4

n S 12
1

nD ]mf]nf1
2

n
¹m]nf1e2/nfTmn

M 50, ~3.1!

R

n
2

4

n2
~¹f!21

4

n
¹2f14l2expS 222n

n
f D50,

~3.2!

¹2f i50. ~3.3!

Equation~3.1! results from the variation of the metric and
~3.2! is the dilaton equation of motion. In the conforma
gaugeg6650, g1252~1/2!e2r the equations of motion be-
come

2
4

n2
]1f]2f1

2

n
]1]2f2l2expS 222n

n
f12r D50,

~3.4!

2

n
]1]2r1

4

n2
]1f]2f2

4

n
]1]2f1l2

3expS 222n

n
f12r D50, ~3.5!

]1]2 f i50, ~3.6!

and the constraints

e22f/nF4n S 12
1

nD ]6f]6f1
2

n
]6
2 f2

4

n
]6r]6fG

2
1

2 (
i50

N

]6 f i]6 f i50. ~3.7!

From Eqs.~3.4! and ~3.5! it follows that

2

n
]1]2~r2f!50, ~3.8!

i.e., r5f1f1(x
1)1 f2(x2). It is always possible to per-

form a coordinate transformationx6→x685 f (x6), which
preserves the conformal gauge and for whichr5f. In this
~Kruskal-type! gauge the remaining equations take the form

]1]2~e22f/n!52l2, ]6
2 ~e22f/n!52

1

2 (
i50

N

]6 f i]6 f i ,

~3.9!

so that the general solution is given by

e22f/n5e22r/n52l2x1x21h1~x1!1h2~x2!,
~3.10!

of
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6998 53A. FABBRI AND J. G. RUSSO
whereh6(x
6) are arbitrary functions ofx6 subject to the

constraints~3.7!.

A. Static solutions

In the Kruskal gauge the general static solution is giv
by @see Eq.~3.10!#

e22f/n52l2x1x21Q ln~2l2x1x2!1
M

l
, ~3.11!

i.e., for these solutions there exists a timelike Killing vect
at infinity representing time translation invariance with r
spect to the time coordinatet, wheret5~1/2!ln(x1/x2) ~see
also below!. In Sec. III B it will be shown thatM can be
interpreted as the mass of the black hole. The parameteQ
represents a uniform~incoming and outgoing! energy density
flux. Indeed, the constraint equations~3.7! applied to the
solution ~3.11! give T665Q/x62 or, introducing~s6! de-
fined bylx656e6ls6

, T665l2Q.
Let us consider the static solution withQ50:

ds252
1

~M /l2l2x1x2!n
dx1dx2,

~3.12!

e22f/n5
M

l
2l2x1x2.

The corresponding curvature scalarR is given by

R58e22r]1]2r54MlnFMl 2l2x1x2Gn22

. ~3.13!

Consider the range4 0,n,2. In this case we get the standar
picture of then51 solutions, i.e., a spacelike singularity lo
cated atx1x25M /l3 and an asymptotically flat region fo
2x1x2→` ~x1→` defines the future null infinityI R

1 and
x2→2` stands for the past null infinityI R

2!. The event ho-
rizon is at x250. The Penrose diagram is identical to th
standardn51 case~see, e.g.,@1#!.

From Eq.~3.13! we see that forn50 the two-dimensional
spacetime is flat. This is not, however, a trivial solutio
since the coupling constante2f is nontrivial and it becomes
singular on a spacelike line. To take the limitn→0 we must
first rescale the dilaton fieldf→f̃5nf. The classical action
~1.3! takes the simple form

S05
1

2p E d2xA2g~e22f̃R14l2!.

This is precisely what one gets from the CGHS action~1.1!
if the metric is redefined bygmn→e2fgmn . The casen50
represents an unconventional black hole in the sense
there is a spacelike singularity in the coupling~and hence a

4Whenn.2 the geometry is very different; for simplicity here thi
case will be excluded from the discussion.
en

or
e-

r

d
-
r

e

n,

that

horizon!, but the two-dimensional curvature vanishes5 ~for a
recent discussion on this model, see@12#!.

Forn52 the two-dimensional curvature is constant. How-
ever, the same considerations as for the casen50 apply: the
dilaton field is singular on a spacelike line and the full ge-
ometry still has a black hole interpretation, with an event
horizon atx250. In Sec. IV we will see that at the quantum
level the curvature of then52 model is no longer constant,
and it becomes singular on a curve where the couplin
reaches some finite critical value.

Let us now perform the coordinate transformation
(x1,x2)→(s,t) by means of the relation6lx6

5 f (ls)e6lt, where f is a generic function ofls. In this
new coordinate system the line element and dilaton field tak
the form

ds25
1

@M /l1 f 2~ls!#n
@2 f 2~ls!dt21 f 82~ls!ds2#,

f52
n

2
lnSMl 1 f 2~ls! D . ~3.14!

A convenient coordinate system that will be used here i
f (ls)5els,

ds25
e2~12n!ls

@11~M /l!e22ls#n
~2dt21ds2!,

~3.15!

f52
n

2
lnSMl 1e2lsD .

This coordinate system is suitable to calculate the mass o
the black hole by means of the ADM procedure~see Sec.
III B !. From Eq.~3.15! we see that the metric does not as-
ymptotically approach the Minkowski metric unlessn51.
Instead we observe the remarkable fact that for anynÞ1 the
geometry approaches the Rindler metric. Indeed, conside
first the vacuum solutions~i.e., with M50! in terms of the
spatial coordinatex defined byd f / f n5ldx, that is

f 12n5l~12n!x, n,1,
~3.16!

f 12n5l~n21!~x12x!, n.1,

wherex1 corresponds to the pointf5`. In this frame we get,
e.g., forn,1,

ds25dx22@l~12n!x#2dt2, f52
n

12n
ln@l~12n!x#,

~3.17!

that is, the Rindler metric. In the special casen51 one ob-
tains f5elx and the geometry is the familiar linear dilaton
vacuum, i.e., the Minkowski metricds252dt21dx2 and
f52lx.

ForMÞ0 we have

s

5In the dimensional reduction interpretation, the singularity in
e2f̃ translates into a curvature singularity of the four-dimensiona

metric ds25gi j dx
idxj1e22f̃dV2.
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ds25dx22F~lx!dt2, F~lx!5
f 2

~M /l1 f 2!n
, ~3.18!

d f

~M /l1 f 2!n/2
5ldx. ~3.19!

Although it is not possible to integrate~3.19! in a closed
form for generic n @in the casen51 Eq. ~3.19! gives
F(lx)5tanh2(lx)#, the geometry can be visualized by ex
amining the form ofF( f 2). Near the horizon,f>0 and
F( f 2)>(l/M )nf 2>0. In the asymptotic region,f→` and
F( f 2)5 f 222n. Forn,1 the ‘‘cigar’’ expands,F→`, and for
n.1 it shrinks ~see also Sec. V and Figs. 1–3 therein!. In
going to thex coordinates, whenn.1 the point f5` is
mapped into a finite pointx1, since f

12n;l(n21)(x12x)
andF(lx);[l(12n)(x12x)] 2.

The fact that on the horizonF(lx);(lx)2 for all n
shows that the Hawking temperature will be given byl/2p,
irrespective of the value ofn. This result is unambiguous
once the time scale is fixed, and it will be confirmed belo
by means of two alternative derivations.

B. ADM mass

In this paragraph we perform the calculation of the ADM
mass for these generalized blackhole configurations. W
stress once again that in the absence of a~preferred! asymp-
totic Minkowski time, there is no unique possible definitio
of ‘‘mass.’’ The calculation that follows corresponds to th
mass conjugate to the timet introduced before; this is a

FIG. 1. Euclidean embedding of the metric for 0,n,1. In the
casen50 the metric is that of the plane. Forn,0 the Euclidean
embedding does not exist: the geometry describes a hyperbolic
verse that cannot be represented as a two-dimensional surfac
three- or higher-dimensional Euclidean space.

FIG. 2. Standard ‘‘cigar’’ geometry forn51.
-

w

e

n
e

natural time choice in that it reduces to the Minkowski tim
for then51 model. The introduction of this mass paramete
is useful since it is a conserved quantity in the process
evaporation characterizing the geometry~see below!.

If we denote byAmn the gravitational field equations and
by jm a Killing vector field, thenj m5Amnjn should be a
conserved current and the corresponding conserved cha
density a total divergence. The corresponding charge is d
termined as a surface term at infinity. In the casejm5~1,0!,
representing time translation invariance, the only conserv
quantity is the total energy or mass.

We work in the ~s,t! coordinate system introduced be
fore. In this frame the metric~3.15!, which for the moment
we write generically asds252e2r(dt22ds2), and the dila-
ton depends only ons. The 00 component of Eq.~3.1! now
reads

A005e22f/ng00g
11F4n S 2

1

2
1
1

nD ~]1f!22
2

n
]1
2f

1
2

n
]1r]1fG22g00l

2e22f. ~3.20!

In the linear approximationA00 is good enough to prove the
conservation of the charge. Let us expandr andf around
their vacuum values, i.e.,f52nls1df and r5~12n!ls
1dr. Note thatdf5dr @see~3.15!#, so that the last term in
~3.20! gives no first-order contributions. Using also
g00g

11521, we find

j 05e2lsS 2n ]1
2df1

6

n
l]1df1

4

n
l2df D

5]sFe2lsS 2n ]1df1
2

n
ldf D G . ~3.21!

This means that

E ds j 05Fe2lsS 2n ]1df1
2

n
ldf D GU

s5`

. ~3.22!

Now let us explicitly determinedf. From

e22f5SMl 1e2lsD n5e2lnsS 11
M

l
e22lsD n

;e2lnsS 11n
M

l
e22lsD ,

we getdf52(nM/2l)e22ls. Substituting in Eq.~3.22!, we
finally obtain

uni-
e in

FIG. 3. Euclidean embedding of the metric for 1,n,2. For
n52 the euclidean metric reduces to the metric of the sphere.
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E ds j 05M . ~3.23!

C. Dynamical formation of black holes

Let us now return to the general solution, Eq.~3.10!, and
consider the problem of dynamical blackhole formation sta
ing from the vacuum. The discussion is a straightforwa
generalization of then51 model of@2#, but we briefly out-
line it in order to fix the notation.

Using the constraints@see Eq.~3.9!# we can express the
general solution in terms of physical quantities, such as t
Kruskal momentum and energy@2#:

P1~x1!5E
0

x1

dx1T11
M ~x1!,

M ~x1!5lE
0

x1

dx1x1T11
M ~x1!.

We get

e22r/n5e22f/n52l2x1@x21l22P1~x1!#1l21M ~x1!.
~3.24!

The corresponding curvature scalarR is given by

R54lnM~x1!FM ~x1!

l
2l2x1@x21l22P1~x1!#Gn22

.

~3.25!

It exhibits a singularity located at

M ~x1!2l3x1@x21l22P1~x1!#50. ~3.26!

There is an apparent horizon atx21l22P1(x
1)50 and an

event horizon atx21l22P1(`)50.
Consider the case of an incoming shock wave atx15x 0

1

represented by the stress tensorT11
M 5 1

2( i50
N ]1 f i]1 f i

5ad(x12x 0
1). The constraint equation is then easily sati

fied by

e22f/n5e22r/n52a~x12x0
1!u~x12x0

1!2l2x1x2.
~3.27!

In the regionx1,x 0
1 the geometry is that of the vacuum

whereas in the regionx1.x 0
1 the geometry is that of the

static blackhole configuration discussed previously~with
mass parameterM5ax0

1l).

IV. QUANTUM THEORY

A. Hawking radiation

Let us first discuss the Hawking radiation ignoring bac
reaction effects due to the evaporation. We consider t
quantization of theN massless scalar fields in the fixed back
ground of a black hole formed by the collapse of an incom
ing sho ckwave. Since thef i ’s are free fields, they admit the
decompositionf i5 f iL(x

1)1 f iR(x
2), where f iL represents

the incoming wave andf iR the outgoing one0
1 the metric is

given by
rt-
rd

he

s-

,

k-
he
-
-

e22r/n52l2x1S x21
a

l2D1ax0
1 . ~4.1!

Consider the frame~sout
1 , sout

2 !, appropriate for an out ob-
server, defined by

lx15elsout
1

, 2lS x21
a

l2D5e2lsout
2

. ~4.2!

The ‘‘in’’ vacuum u0&in is defined as being annihilated by the
negative frequency modes with respect to the ‘‘in’’ time

(s in
1 ,s in

2),6lx65e6ls in
6

. The Hawking radiation will be
determined as usual in terms of the Bogolubov transform
tion between the ‘‘in’’ and ‘‘out’’ coordinate systems. Since
this is independent ofn the calculation is formally identical
to the casen51 so it will not be reproduced here~see, e.g.,
@13#!. One obtains

in^T22& in5
Nl2

48 F12
1

@11~a/l!elsout
2

#2
G . ~4.3!

Near the horizon,sout
2 →`, andin^T22&in approaches the con-

stant valueNl2/48. In this region it can be shown that

in^Nw
out& in;e22pw/l/12e22pw/l ~whereNw

out is the number
operator of the out modes of frequencyw!, that is, the out-
going flux of radiation is thermal at the Hawking temperatur
TH5l/2p.

B. Back reaction

The inclusion of exact back-reaction effects can be do
as in then51 case@2#, by solving the semiclassical equa-
tions of motion corresponding to the effective action includ
ing one-loop effects, Eq.~2.14!. In terms ofx,V the math-
ematics is identical to then51 case. However, some
physical quantities, such as, e.g., the curvature scalar and
dilaton, have ann-dependent time evolution. Here we will
just point out the general features and the main differenc
with respect to the standardn51 case.

In terms ofx,V the vacuum solution is

V5x52l2x1x22
k

4
ln~2l2x1x2!. ~4.4!

The general time-dependent solution that describes the c
lapse of general incoming mass-less matter and subsequ
evaporation is given by

V5x52l2x1@x21l22P1~x1!#2
k

4
ln~2l2x1x2!

1l21M ~x1!. ~4.5!

The curvature scalar of the corresponding geometry is

R54ne22r
1

e22f/n2k/4 S l21
4

n2
]1f]2fe22f/nD .

~4.6!
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We notice that there is a singularity along the lin
f5fcr52~n/2!ln~k/4!. This line turns out to be timelike if
T11,k/4x12, and it becomes spacelike as soon
T11.k/4x12.

Note that in then52 case, which classically corresponde
to a constant curvature, the geometry has undergone an
portant change: once the one-loop effect has been inco
rated, not only is the curvature not constant, but it blows
at f5fcr . This is not a surprise; while at the classical lev
the curvature was constant, the coupling became strong
certain region. The quantum-corrected metric approaches
classical~constant curvature! metric asymptotically, but it
departs from it in the strong-coupling region.

As in then51 case it is always possible to impose boun
ary conditions on the timelike singularity such that the cu
vature remains finite~in this picture the critical line can be
viewed as a boundary of the spacetime, just as the liner50
in the spherically symmetric reduction of 4D Minkowsk
space!. Since the denominator vanishes on the singular
the curvature will remain finite only if

l252
4

n2
]1f]2fe22f/nU

f5fcr

, ~4.7!

or ~¹f!25n2(k/4)n21l2. This can be accomplished by de
manding]1Vuf5fcr

5]2Vuf5fcr
50. It should be remem-

bered that in order to take the limitn→0, one must first
rescalef→nf.

Energy conservation can be checked just as in the c
n51 @2#. We must compute the quantity

Eout52 1
2 lE

2`

x1
2

dx2@x21l22P~x1
1!#(

i50

N

]2 f i]2 f i ,

~4.8!

wherex1
1 represents the advanced time at which the inco

ing energy flux stops, andx 1
252l22P(x 1

1). The result of
the integration exactly reproduces the total incoming ener

V. COSMOLOGICAL MODELS

The theory~1.3! is similar to the dimensional reduction o
four-dimensional Einstein gravity~1.2! with

ds25gi j ~x
i !dxidxj1e22f̃~xi !dV2, f̃5f/n. ~5.1!

For n,2 the general model~1.3! with the changel2→2l2

exhibits interesting cosmological solutions, which may
regarded as toy Kantowski-Sacks models@14#, describing
‘‘spatially homogeneous’’ spacetimes with general line e
ment

ds25A~ t !~2dt21ds2!1B~ t !dV2. ~5.2!

A(t) andB(t) are generic functions oft ~a discussion in the
case of then51 model can be found in@15#; other general-
ized dilaton gravity models are discussed in@16#!.

Consider a homogeneous distribution of conformal m
ter, with
e

as

d
im-
rpo-
up
el
in a
the

d-
r-

i
ity,

-

ase

m-

gy.

f

be

le-

at-

T11
matter5T22

matter5
1

4 (
i50

N

~] t f i !
25c.

In the conformal gauge, the scale factor and dilaton of th
homogeneous solutionds25e2r(t)(2dt21ds2) have the
following general form:

e2r5S e2lt1
c

l
t1mD 2n

e2lt, e2f/n5S e2lt1
c

l
t1mD 21

.

~5.3!

When eithercÞ0 orm,0 the evolution starts at some finite
t5t0 where ~for n.0! e2f,e2r and R are all singular.
Whenm.0 andc50 the evolution starts att52`, where
the solution is regular. The behavior att→` does not depend
on the values ofm andc, as is clear from Eq.~5.3!.

Let us discuss in detail the simplest casem.0 andc50.
The scale factor is

e2r5~e2lt1m!2ne2lt. ~5.4!

The curvature and the dilaton field are given by

R524nl2m~e2lt1m!n22,
~5.5!

e2f5~e2lt1m!2n.

From ~5.4! we note that the couplinge2f/n always stays fi-
nite. For t→2`, e2r(t)→0, R→4nl2mn21, and
e2f/n→m21. Then the Universe begins to expand and th
subsequent evolution will be dictated by the value ofn. As
t→` we have

e2r→e2l~12n!t, ~5.6!

i.e., the scale will increase forn,1 and decrease forn.1,
wherease2f/n→0 andR→0 irrespective of the value ofn.
Thus forn,1 the Universe is open and expands forever~Fig.
1!, in the casen51 the expansion slows down to zero as
ymptotically ~Fig. 2!, and forn.1 the Universe is closed: at
a certain time the expansion stops and the Universe begins
contract~see Fig. 3!. It is interesting to note that in this last
case the collapse takes place in a finite proper time, and
the weak coupling region wheree2f/n50.

Let us introduce the cosmological timet and consider the
Euclidean metric

ds25dt21F~lt!dx2,

F~lt!5
e2lt

~m1e2lt!n
,

eltdt

~m1e2lt!n/2
5dt. ~5.7!

The compact space coordinatex must have period 2p/l in
order for the metric to be free from conical singularities a
t50. This is clear from the fact that in the regiont>0 ~t→
2`! one hasF~lt!>l2t2. The metrics with 1,n,2 will
then have a conical singularity att5` ~Fig. 3!. Indeed, at
t→`, one findsF(lt)5l2(n21)2(t12t)2, which implies
a conical singularity att5t1 ~t5`! with deficit angle equal
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to 2p~22n!. Forn52 there is no conical singularity and the
metric is that of the sphere,F~lt!5sin2~lt!.

Thus the simplest cosmologies withc50 andm.0 con-
tain expanding and contracting~non-‘‘isotropic’’! universes
with no initial singularities. In the casen.1 the Universe
recollapses in spite of the absence of matter energy den
~c50!. This is due to the fact that forn.1, as the weak limit
e2f/n→0 is approached~t→`!, the scale factore2r must go
to zero in order to compensate the increase of the cosmolo
cal term in the action@see Eq.~1.3!#.

A final remark concerns the case whenn521. For this
model, in the gauger5f, the functions@see Eq.~5.2!#
A5e2r andB5e22f/n become the same. An homogeneou
solution in this gauge isds25(m12l2x 0

2)(2dx0
21dx1

2),
e2f5m12l2x 0

2. The four-dimensional metric~5.1! can thus
be written as
sity

gi-

s

ds252dt21R2~t!~ds21dV2!, ~5.8!

which means~in this four-dimensional interpretation! that
the spatial section of the metric remains constant througho
the evolution. For larget, the radius of the Universe in-
creases asR~t!;At so that the Hubble constantH[(1/
R)(dR/dt) goes to zero as 1/t. This is quite satisfactory,
since the behaviorH;1/R2 is characteristic of standard
radiation-dominated Friedmann-Robertson-Walker~k50!
cosmologies.
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