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Soluble models in two-dimensional dilaton gravity
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A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved
including back-reaction effects, is investigated at both classical and quantum levels. This family contains the
RST model as a special case, and it continuously interpolates between models havifgiadlat) geometry
and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole
singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical as-
pects of these geometries are discussed, including the cosmological interpré&iieH6-282(96)02010-3

PACS numbgs): 04.60.Kz, 04.50+h, 98.80.Hw

[. INTRODUCTION able physical properties, exploring its possible application to
the process of black hole evaporation as well as its cosmo-
Two-dimensional dilaton gravity models reproduced thelogical interpretation. The classical part of the action is given
essential features of the Hawking model of gravitational col-by Sy=Sy,+ Sy, where
lapse, with an exact account of back-reaction eff¢&tg].
An important question that remains is to what extent these So—i f dgx\/__ o= 24/n
features are universal or are just properties peculiar to ~° 27 9
a special model. The Callan-Giddings-Harvey-Strominger 1.3
(CGHS action

4 2
R+~ (V)

Fanes)

and

s=f d?x—g{e 2 [R+4(V¢)2+4ar\2]}, (1. 1 N
SM:_E; J d2x\/—g(Vf;)2. (1.4)
is different from the Einstein-Hilbert action restricted to
spherically symmetric configurationsc,iszzgij(x')dx'dxJ In the casen=1 the model will reduce to the Russo-
+e2¢0d402, i,j=1,2, Susskind-ThorlaciugRST) model. A similar idea was pur-
sued in[4]. In particular, by demanding the model to have
~ - asymptotic weak-coupling regions, the authors obtain a gen-
SEH:f d’>x\—g{e 2 [R+2(V$)2]+2}, (1.2 eral class of models in whicf.3) is contained.

The classical geometries have typically a spacelike curva-
so it is not obvious that the physics of the CGHS modelture singularity with an associated global event horizon, and
should be similar to the physics of Spherica”y Symmetrica curvature scalar which goes to zero at spatial |nf|n|ty In the
Einstein gravity' The prob]em is that the dimensiona"y re_frame in which the dilaton and metric are static, the generiC
duced Einstein-Hilbert action coupled to matter is not andeometry (n#1) does not asymptotically approach the
exactly solvable model. It is therefore important to look for aMinkowski geometry, instead it approaches the Rindler met-
more general class of exactly solvable two-dimensional modtic. The scale factor goes to zero or to infinity according to
els containing a metric and dilaton field in order to have awhethern>1 or n<1. Geometries with non-Minkowskian
more universal picture of the dynamics of black hole forma-a@symptotic behavior are quite common in general theories of
tion and evaporation, at least in the case of spherical syniwo-dimensional2D) dilaton gravity(with a general dilaton
metry. Several attempts in this direction have been madedotentia), and they also appear in other contexts, such as,
either by modifying the boundary conditions[@, as in[3],  ©-9., “black strings™ in four-dimensional string theorgee
or by starting from more general actiofsee e.g.[4,5]). [8] and references therginmagnetic flux tubege.g., the

It is well known that the most general action for a theory Melvin vortex in four-dimensional Einstein theof9]), vari-
containing a metric and a scalar field can be parametrized b§us(2+1)-dimensional models, general gravity theories with
Coup”ngs which are functions of the scalar f|Qk‘be7 e.g., dilaton and Maxwell f|e|d$10], etC.l It is therefore of inter-
[6,7,4]). Our purpose here will be to identify, in the general
class, a subclass of solvable semiclassical models with desir-

1in the simplest 2D critical string theofyvith zero central-charge
deficit) there are no asymptotically Minkowskian solutiditise cor-
“Electronic address: fabbri@gandalf.sissa.it responding charged black hole solutions have a nontrivial asymp-
TElectronic address: jrusso@vxcern.cern.ch totic where the scale factor goes to 2ero
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est to have a simplified context where these geometries cdield are stati. Now we will show that the most general
be investigated in detail. transformation that meets the above requirements is given by
A basic issue of these types of metrics is how to define an
invariant mass in the absence of a preferred asymptotic
Minkowski frame. The standard Arnowitt-Deser-Misner
(ADM) mass is conjugate to the asymptotic Minkowski time.
For the present models, the choice of a time scale is some- —ogm, K
what arbitrary in that any two time coordinates differing by a Q=e """+ - ¢, 2.3
multiplicative constant are equally valithere will be, how-
ever, a natural time choice, namely the one whichferl,  wheren is a real number. The case=1 corresponds to the
reduces to the Minkowski timelt will be shown here that, model of[2].
once the time coordinate is fixed the invariant mass conju- Condition(i) requires, in particular, that the cosmological
gate to this time is conserved in the process of black holgerm in Eq.(2.1) be of the form\/__gf(¢):(1/2)ezpf(¢)_
formation and evaporation. This quantity constitutes a usefufhe most general transformation betwegf andp,¢ satis-
parameter which characterizes the geometry. In particulafying this condition can be written as
the zero-curvature ground-state geometry is obtained by set-
ting the mass parameter to zero in the general solution. x=(kta)p+fi(Pd)+a(p,d), Q=ap+g(p, o).
A natural physical application of the models considered (2.9

here is in the cosmological contefgee Sec. Y. The geom- i ) i
etries corresponding to the cases 1, n<1, andn=1 are W€ can use the freedom to redefine the dilaton fi#lsb as
to have x—Q=«(p—¢), i.e., kp=—f(¢) (henceforth

two-dimensional analogues of the Robertson-Walker cos~’ )
mologies with parametete=1, k=—1, andk=0, providing  ¢=¢%)- Thus we can write
a description of expanding or contracting universes.

1
x=kp+e ¢y %—1)K¢, (2.2

x=(k+a)p—kp+d(p,¢), Q=ap+d(p,d). "

Il. EXACTLY SOLVABLE MODELS
Now, in order to obtain the usual anomaly term
—(klm fd®xd, pd_p, g(p,) must be of the formg(p, )
=bp+F(#). The linear termbp can be reabsorbed into a
redefinition ofa. The correct coefficient of the anomaly term
is obtained provided K+ a)?—a?=x?, i.e.,a=0. Thus we
have x=kp—kp+F(¢p), Q=F(¢), and we must still demand
Szi f dzx(i (=0, xd_x+0.Q0_Q) conditions (i) and (iv). The equations of motion derived
T K from (2.1) are

The solvability of the model of2] is related to the fact
that, after a suitable field redefinition, the action in the con-
formal gauge[g..=0, g,_=—(1/2€*] can be written in
the “free field” form [11]

N

1 9.0_(x—Q)=0, d,9_x=—\2e2x"Vx (246
FANRPUVL 2 a9, 01, (2.0 +9-(—8) HoeX 29
=0 From Eq.(2.6) one sees that it is always possible to choose a
where gauge, the “Kruskal” gauge, wherg=(). In this gauge it is
easy to show that the curvature scafars proportional to
1 1 N ;
x=xkpte *—-kp, Q=e2?+_-kp, k== 1 , F'(d)

2 2 12 9+0_p=—1 | N —=5—7d,09_Q]. (2.

+ p Fr(d)) F/Z( d)) + ( 7)

The RST model is not, however, the only dilaton-gravity
theory that can be cast into the forfR.1). As we will see
below, there are indeed inequivalent dilaton-gravity models M
which reduce to the above action upon a field redefinition. Q=x=—\x*"x"+Q In(—\?x"x")+ + QM=const

We would like to find the most general theory whose 2.9
action can be written in the forrf2.1) and which obeys the '
following basic requirementd(i) it is reparametrization in- | et us first obtain the asymptotic part of the functié).
variant;(ii) it has the correct anomaly terrifi) it contains a  For  (—x*x")—w», we have [see Eq. (2.8)]
vacuum solution withR=0 as well as asymptotically flat 5, (9 O=—\2Q=—-N\?F(¢). From Eq. (2.7) we see that
SO|uti0nS;(iV) there are no unphysical fluxes at |nf|n|ty in the there are zero-curvature solutions provided
vacuum(in the frame in which the metric and the dilaton

Consider the most general static solutions to ) [2]:

FU
1= F. 2.9

%Field redefinitions involving Weyl! scalings do not give equiva- ) ) mé
lent theories in dilaton-gravity models due to the presence of thd he general solution of Eq2.9) is F(¢)=ce™. The con-

anomaly term. The matter interacts with the geometry through th&tantc can be removed upon a proper shift of the dilaton
conformal anomaly, which is always constructed in terms of thefield. The presence of the constanteveals a whole class of
appropriate physical metrigor further discussions on this point see hew solutions labeled by= — 2/m, with the vacuum(R=0)
[6]). solution given by
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1 Ill. THE CLASSICAL THEORY
er=e’=—p—. (2.10 , : - i
(=AXTXT) Let us first consider the classical thediy-0. Oncet: is
restored in the formulas, the last three terms in @dl4) go
General configurations approach the vacuum solution in theway in this limit, and we are left with actiofl.3). The
asymptotic region. equations of motion derived from this action are

Let us note that the conditioR=0 is satisfied even if
linear terms ing (which are subleading at infinity and do not 47 1 1
contribute inF”) are added t&(¢). One thus concludes that 9xv| 1 | ~ >th
F(¢)=e™+B¢ is the most general functioR(¢) consis-

(V)2— ; V2h—2\2 exp( 2_n2n ¢”

tent with the existence of zero-curvature solutions. In this 40 1 2 M _
way we obtain + - 1 n)aﬂ¢ay¢+ - V,d,6+eT =0, (3.1
_ —2¢in_(, _ — a—2¢in _
Y=kp+e (k—B)¢p, Q=e 29"1Bg. R 4 2.4 2] 2720 | _
(21]) n n2 (ng) + n \Y ¢+4)\ ex n d) =0,
o o (3.2
The value ofB is fixed once conditior{iv) is imposed. In-
deed, consider the constraint equations: V2f;=0. (3.3
Kty =k YN —d.xdix+3:00.Q)+ 3 x Equation(3.1) results from the variation of the metric and
B . T - - (3.2 is the dilaton equation of motion. In the conformal
1 gaugeg. . =0, g._=—(1/2¢e* the equations of motion be-
+§i§0 9. fi0.1;. 212 come
. . . , . 4 2 ) —2n
COﬂSIdPI’ the o= coordinates, defined through-\x~ —Fa+¢a_¢+ﬁa+a_¢—>\ ex o ¢+2p|=0,
=e*"", in which the vacuum geometr{2.10 is static, (3.4

d=—(NI2)\(c"—0o") and p=[(1—-n)/2]\(c"—c"). Equa-
tion (2.12 becomes ) 4 4
—0,0_p+—0,Pd_p—— ,9_p+\?
\2 n n n
Kti(O'i):_Z[K—an]. (2.13

=0, (3.5

2—2n
Xexp( = d+2p
In order to have . (o")=0 in the vacuumB must be equal
to k/2n. The most general model that can be mapped to the 9,9_f,=0, (3.6
action (2.1) obeying conditiongi)—(iv) is thus given by the
one-parameter class of models defined by the transformand the constraints
tions (2.2 and(2.3). This leads to the action

—2¢In

4 1 1 +2 ) 4
€ nlt™h A+ i ﬁﬁid’_ﬁatl’ai%ﬁ

4
e 2N Rt — (V)2 | +4N%e™2?

1
_ 2, [
S—zﬂ_fdx\/ g

N
2 &ifiﬁifi=0. (37)
i=0

N| =

1 -2 -1
-5 2 (Vi)P+« Znn ¢R+nT (V)2
= From Egs.(3.4) and (3.5 it follows that
1 2y—1
- . . 2
aRVD R } (219 = 0+9-(p=¢)=0, 3.9

In what foII_ows we will investigate the various physical as-je. p=¢+f.(x")+f_(x_). It is always possible to per-

pects of this model. A recent study of general models, inform a coordinate transformation™ —x*' = f(x*), which

cluding a discussion of solvability, can be found[#1.2 preserves the conformal gauge and for whighe. In this
(Kruskal-type gauge the remaining equations take the form

3The model(2.14) corresponds, of course, to a specific choice of _ 5, _ N
the coupling functions of the generic model which has been exten-‘%r‘a—(e 24)/”) =A% J.(e 24)/”) - izo d:fid.fi,
sively discussed in the literatufeee, e.g, il6,7,4]). For example, (3.9
in the notation of{4], the action(2.14 can be obtained with the
choice q(¢)=e" M9+ k[(1-2n)/2n]$, K(p)=(4in)e"@M¢ 50 that the general solution is given by
+k[(n—1)/n], v(d)=—2¢, u(¢)=0, c=1/4. The classical part of
the action(2.14) is included in a more specific subclass of models e 2Wn=g 2= )2ty 4 hy(xH)+h_(x),
given by Eq.(4.24 of [4], with a=—n. (3.10

N| =
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whereh. (x*) are arbitrary functions ok~ subject to the horizon, but the two-dimensional curvature vanishésr a
constraints(3.7). recent discussion on this model, 442)).

Forn=2 the two-dimensional curvature is constant. How-
ever, the same considerations as for the cas8@ apply: the
dilaton field is singular on a spacelike line and the full ge-

In the Kruskal gauge the general static solution is giverometry still has a black hole interpretation, with an event
by [see Eq(3.10] horizon atx~=0. In Sec. IV we will see that at the quantum

level the curvature of the=2 model is no longer constant,
e 2= _\2*x~+Q In(—\2xFx")+ M (3.11 and it become_s _singLIJI.ar on a curve where the coupling
Y reaches some finite critical value.
Let us now perform the coordinate transformation

i.e., for these solutions there exists a timelike Killing vector(x*,x")—(o,t) by means of the relation =Ax*
at infinity representing time translation invariance with re-=f(Ao)e™"', wheref is a generic function oho. In this
spect to the time coordinate wheret=(1/2)In(x"/x~) (see  new coordinate system the line element and dilaton field take
also below. In Sec. Il B it will be shown thatV can be the form
interpreted as the mass of the black hole. The paranigter
represents a uniforrfincoming and outgoingenergy density ds?= [~
flux. Indeed, the constraint equatioli3.7) applied to the [M/N+f2(No)]"
solution (3.11) give T. . =Q/x? or, introducing(c™) de-

A. Static solutions

f2(No)dt2+ f'2(Ao)do?],

fined byA\x* =+ T, ., =\2Q. _ n. (M
Let us consider the static solution wip=0: ¢= 2 In A T \a) ). (3.14
1 A convenient coordinate system that will be used here is
—— R f(ro)= )\0',
ds? (M =N dx*dx, (\o)=e
(3_12) eZ(lfn))\U
ds?= —s —dt?+do?),
2o M o [T+ (Minje 27T ¢ :
A ' (3.15
n M
, o ¢=—5In| —+e*7|,
The corresponding curvature scaRiis given by 2 A
M n—2 This coordinate system is suitable to calculate the mass of
R=8e 2’9, d_p=4MAn|——\>x"x" . (3.13 the black hole by means of the ADM procedusee Sec.
A Il B). From Eq.(3.15 we see that the metric does not as-

ymptotically approach the Minkowski metric unlegs=1.
Consider the randed<n<2. In this case we get the standard Instead we observe the remarkable fact that for m#l the
picture of then=1 solutions, i.e., a spacelike singularity lo- geometry approaches the Rindler metric. Indeed, consider
cated atx"x~=M/\® and an asymptotically flat region for first the vacuum solution§.e., with M=0) in terms of the
—x"x~ =% (x*—o defines the future null infinity 5 and  spatial coordinatex defined byd f/f"=\dx, that is
X~ ——oo stands for the past null infinityg). The event ho-

rizon is atx =0. The Penrose diagram is identical to the f1="=X(1-n)x, n<1,
standarch=1 case(see, e.g.[1]). L (3.1
From Eq.(3.13 we see that fon=0 the two-dimensional 7 "=N(n—1)(x;—x), n>1,

spacetime is flat. This is not, however, a trivial solution, ) )
since the coupling constaet? is nontrivial and it becomes Wherex, corresponds to the poiit==. In this frame we get,

singular on a spacelike line. To take the limit-0 we must €9~ forn<1,
first rescale the dilaton fiel¢— ¢=ndg. The classical action N

(1.3 takes the simple form d?=dx®—[A(1—n)x]%dt3, ¢=— T IN[A(1—n)x],
(3.19

that is, the Rindler metric. In the special casel one ob-
tains f=e* and the geometry is the familiar linear dilaton
This is precisely what one gets from the CGHS aciibri) ~ vacuum, i.e., the Minkowski metrids’=—dt*+dx* and

if the metric is redefined by, ,—e’?g,,. The casen=0  #=—AX.

represents an unconventional black hole in the sense that For M #0 we have

there is a spacelike singularity in the couplit@nd hence a

1 ~
So=5— f d’x/—g(e 2?R+4\2).

%In the dimensional reduction interpretation, the singularity in

case will be excluded from the discussion. metric ds?=g;;dX'dx + e~ 2%d Q2.
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FIG. 1. Euclidean embedding of the metric fox8<1. In the
casen=0 the metric is that of the plane. Fo<0 the Euclidean

embedding does not exist: the geometry describes a hyperbolic unj-
verse that cannot be represented as a two-dimensional surface

three- or higher-dimensional Euclidean space.

2

_ 2 2 _
ds?=dx’— F(Ax)dt?, MO

F(AX) = (3.18

df

mﬁ:)\dx. (319)

Although it is not possible to integrat.19 in a closed
form for genericn [in the casen=1 Eq. (3.19 gives

F(Ax)=tantf(Ax)], the geometry can be visualized by ex-

amining the form ofF(f2). Near the horizonf=0 and
F(f2)=(\/M)"f2=0. In the asymptotic regionf—o and
F(f2)=f?"2". Forn<1 the “cigar” expandsF —x, and for
n>1 it shrinks(see also Sec. V and Figs. 1-3 thejeim
going to thex coordinates, whem>1 the pointf=c is
mapped into a finite point,, sincef! "~X\(n—1)(x;—x)
and F(Ax)~[N(1—n)(x;—x)]%

The fact that on the horizoff(Ax)~(Ax)? for all n
shows that the Hawking temperature will be givenNig,

irrespective of the value ofi. This result is unambiguous
once the time scale is fixed, and it will be confirmed below%0

by means of two alternative derivations.

B. ADM mass

In this paragraph we perform the calculation of the ADM
mass for these generalized blackhole configurations. We

stress once again that in the absence @draferred asymp-

6999
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FIG. 3. Euclidean embedding of the metric foxd<2. For
n=2 the euclidean metric reduces to the metric of the sphere.

natural time choice in that it reduces to the Minkowski time
for then=1 model. The introduction of this mass parameter
is useful since it is a conserved quantity in the process of
evaporation characterizing the geomefsge below.
If we denote byA ,, the gravitational field equations and
& a Killing vector field, thenj,=A,,§” should be a
conserved current and the corresponding conserved charge
density a total divergence. The corresponding charge is de-
termined as a surface term at infinity. In the c@%e(1,0),
representing time translation invariance, the only conserved
guantity is the total energy or mass.
We work in the(o,t) coordinate system introduced be-
fore. In this frame the metri¢3.15, which for the moment
we write generically asls’= —e?”(dt?— do?), and the dila-
ton depends only ow. The 00 component of E¢3.1) now
reads
4 1 1 2
Ago=e"*?"goog"} o ( —5to (01¢p)*— o T

—2gooh2e 2%, (3.20

2
+ 0 d1pdr1

In the linear approximatior, is good enough to prove the
conservation of the charge. Let us expgndand ¢ around
their vacuum values, i.e¢p=—nAo+35¢ and p=(1—n)\o
+p. Note thatép= dp [see(3.15)], so that the last term in
(3.20 gives no first-order contributions. Using also
ot=-1, we find

P A2No z 2 9 i 2
jo=e2| = dEog+ ~ Narsp+ —\265

=4

o

em(za 5¢+3>\5¢ } (3.21)
n°t n ' :

totic Minkowski time, there is no unique possible definition This means that

of “mass.” The calculation that follows corresponds to the
mass conjugate to the time introduced before; this is a

FIG. 2. Standard “cigar” geometry fon=1.

(3.22

2 2
e’ (ﬁ 918¢+ >\5¢”

f dO'JOZ

Now let us explicitly determin&S¢. From

o=

e_2¢:

n
% + eZ)\O’) — eZM‘IU

M n
+ —2)\0'
1 N e )

— eZ)\nU

M
+ —2\o
1+n X e )

we getdp=—(nM/2\)e 2. Substituting in Eq(3.22, we
finally obtain
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a
f do jo=M. (3.23 eZP’“=—)\2x*(x+F +axg . (4.

C. Dynamical formation of black holes Consider the framéog,, oo,), appropriate for an out ob-

Let us now return to the general solution, E8.10, and server, defined by

consider the problem of dynamical blackhole formation start-
ing from the vacuum. The discussion is a straightforward )\X+:e)\0';ut, )
generalization of the=1 model of[2], but we briefly out-
line it in order to fix the notation.

Using the constrainttsee Eq.(3.9)] we can express the The “in” vacuum |0);, is defined as being annihilated by the
general solution in terms of physical quantities, such as th@egative frequency modes with respect to the “in” time
Kruskal momentum and enerdg]:

a B
X+ i e Mou, 4.2

+

(0 ,0), £ \x* =€ ?n. The Hawking radiation will be
o determined as usual in terms of the Bogolubov transforma-
P+(x+)=f dx™ ™ (xh), tion between the “in” and “out” coordinate systems. Since
0 this is independent af the calculation is formally identical
to the casen=1 so it will not be reproduced hefsee, e.g.,
N .
M(x+)=)\fx dx X TV, (x). [13]). One obtains
0
NA? 1
W (T Yin= 1- — .
e get in{ )in 48 [1+(a/n)e oou]?

4.3

e 2= 26M= N2 [x "+ N 2P, (XxT)]+ N "IM(xT).
(3.29 Near the horizong,,—, and;(T __);, approaches the con-
stant valueN\%48. In this region it can be shown that
The corresponding curvature scaRuis given by in(NO™; ~ e~ 2™ 1 — e~ 2™k (where NO™ is the number
operator of the out modes of frequenay, that is, the out-
going flux of radiation is thermal at the Hawking temperature
Ty=N2m.

+) n—2
— AT [XT+HNT2PL(xT)]

(3.29

R=4AnM(x")

It exhibits a singularity located at B. Back reaction

The inclusion of exact back-reaction effects can be done
M(xT)—=N3T[x~+X"2P,(x")]=0. (3.26  as in then=1 case[2], by solving the semiclassical equa-
tions of motion corresponding to the effective action includ-
There is an apparent horizonsat +\ 2P, (x*)=0 and an  ing one-loop effects, E¢2.14. In terms of ,Q the math-
event horizon ak~ +\ 2P _ (%) =0. ematics is identical to then=1 case. However, some
Consider the case of an incoming shock wave atx g physical quantities, such as, e.g., the curvature scalar and the
represented by the stress tensdt!, =359, fd,.f;  dilaton, have am-dependent time evolution. Here we will
=ad(x" —Xq ). The constraint equation is then easily satis-just point out the general features and the main differences
fied by with respect to the standard=1 case.
In terms of x,{) the vacuum solution is
e 2¥N=g"20N=—_g(xT—xJ)O(x" —x5)—AXTx".
.29 Q=X=—)\2x*x’—%In(—)\zx*x’). (4.9
In the regionx™<x§ the geometry is that of the vacuum,
whereas in the regior™>xg the geometry is that of the
static blackhole configuration discussed previoughith
mass parametevl =axg\).

The general time-dependent solution that describes the col-
lapse of general incoming mass-less matter and subsequent
evaporation is given by

IV. QUANTUM THEORY .
v X2yt ) 2 VT Il — ) 2yt
A. Hawking radiation Q=x=—MXT[X"+A7PL(XT)] 4 IN(=A"X"x7)
Let us first discuss the Hawking radiation ignoring back- FATIM(XT). (4.5
reaction effects due to the evaporation. We consider the
guantization of théN massless scalar fields in the fixed back—_l_h t lar of th di -
ground of a black hole formed by the collapse of an incom- € curvature scaiar ot the corresponding geometry 1S
ing sho ckwave. Since thig’s are free fields, they admit the 1 4
decompositionf; = f; (x7)+f;r(x"), wheref, represents _ —2p 2 —24in
the incoming wave andis the outgoing ong the metric is R=4ne e 29— /4 A n? I o-ge ’
given by (4.6
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We notice that there is a singularity along the line 1 N
¢=bo=—(n/2)In(x/4). This line turns out to be timelike if Tﬁ@ETTW%ZE)wmﬂzo
T.,.<kl4x™2 and it becomes spacelike as soon as 1=0

T, >«ldx"2.

. _ . . In the conformal gauge, the scale factor and dilaton of the
Note that in then=2 case, which classically corresponded homogeneous solutionls’=e*(—dt?+da?) have the

to a constant curvature, the geometry has undergone an irg llowi | form:
portant change: once the one-loop effect has been incorp 2110WINg general form:
rated, not only is the curvature not constant, but it blows up

at ¢=¢,. This is not a surprise; while at the classical level 2=
the curvature was constant, the coupling became strong in a
certain region. The quantum-corrected metric approaches the

classical (Cons_te_mt curvatubemetric_ asymptotically, but it \yhen eitherc+0 or m<0 the evolution starts at some finite
departs from it in the strong-coupling region. t=t, where (for n>0) e??,e* and R are all singular.

As in then=1 case it is always possible to impose bound'When m=>0 andc=0 the evolution starts at=—. where
ary condltlor]s on t.hef t|m_eI|k(_a singularity _S.UCh }hat the cur-ye solution is regular. The behaviortat-cc does not depend
vature remains finitéin this picture the critical line can be on the values ofn andc, as is clear from Eq(5.3).

viewed as a boundary of the spacetime, just as therlin@ Let us discuss in detail the simplest casg-0 andc=0.
in the spherically symmetric reduction of 4D Minkowski 114 scale factor is

space. Since the denominator vanishes on the singularity,

-n -1

Cc Cc
e+ —t+m| e, e2¢’”=(e2“+ L t+m

(5.3

the curvature will remain finite only if e?P=(e®M+m) e, (5.4
) 4 oyl The curvature and the dilaton field are given by
N=——d.¢pd_pe 2" : (4.7)
n
$=er R=—4n\?m(e?+m)""2,
2_ .2 n—1y 2 ; ; (5.5
or (Vé)*=n=(«/4)"""\°. This can be accomplished by de- e2¢=(e2M4m) "

mandinga+Q|¢,:%= a,Q|¢,:¢Cr=O. It should be remem-

bered that in order to take the limit—0, one must first From (5.4 we note that the coupling®?'"

always stays fi-

rescale¢g—ndo. nite. For t——ow, M50, R—4n\?m"!, and
Energy conservation can be checked just as in the cas®®"—m~*. Then the Universe begins to expand and the
n=1[2]. We must compute the quantity subsequent evolution will be dictated by the valuenofAs
t—o we have
_ N
Eou=— 2 A f X [XT+HNT2P(x)]Y, 9-fia-f;, e —e T, (5.6
—o =0
(4.8 i.e., the scale will increase far<1 and decrease far>1,
wherease??"—0 andR—0 irrespective of the value af.

wherex; represents the advanced time at which the incomThus forn<1 the Universe is open and expands fore\g.

ing energy flux stops, and; = —\"2P(x{). The result of 1), in the casen=1 the expansion slows down to zero as-

the integration exactly reproduces the total incoming energyymptotically (Fig. 2), and forn>1 the Universe is closed: at
a certain time the expansion stops and the Universe begins to

V. COSMOLOGICAL MODELS contract(see Fig. 3. It is interesting to note that in this last
case the collapse takes place in a finite proper time, and in
The theory(1.3) is similar to the dimensional reduction of the weak coupling region wheef®"=0.

four-dimensional Einstein gravit§l.2) with Let us introduce the cosmological timeand consider the

Euclidean metric

— . (xdxdxi +e 2209402 B=d/n. (5.
ds?=g;;(x)dx'dx +e dQ?, ¢=d¢/n. (5.1 dL=dr2+ F(Ar i,

For n<2 the general modell.3) with the change\>——\? g2\t

exhibits interesting cosmological solutions, which may be F(?\T)Zm,

regarded as toy Kantowski-Sacks modgld], describing

“spatially homogeneous” spacetimes with general line ele- eMdt

ment mﬁ = dT. (57)
ds?=A(t)(—dt*+do?) + B(1)dQ2. (5.2 The compact space coordinatemust have period 2\ in

order for the metric to be free from conical singularities at
A(t) andB(t) are generic functions df (a discussion in the 7=0. This is clear from the fact that in the regies0 (t—
case of then=1 model can be found ifiL5]; other general- —=) one hasF(A\n)=A%7 The metrics with £n<2 will
ized dilaton gravity models are discussed 16)). then have a conical singularity &t~ (Fig. 3). Indeed, at
Consider a homogeneous distribution of conformal matt—c, one findsF (A7) =\%(n—1)?(7;— 7)?, which implies
ter, with a conical singularity at=m7, (t=) with deficit angle equal
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to 2m(2—n). Forn=2 there is no conical singularity and the ds?’=—d 7+ R?(7)(do?+dQ?), (5.8
metric is that of the spheré& (A1) =sirf(\7).

Thus the simplest cosmologies witi-0 andm>0 con-  which means(in this four-dimensional interpretatiprthat
tain expanding and contractingon-*isotropic”) universes the spatial section of the metric remains constant throughout
with no initial singularities. In the case>1 the Universe the evolution. For larger, the radius of the Universe in-
recollapses in spite of the absence of matter energy densityreases aR(7)~,/r so that the Hubble constai=(1/
(c=0). This is due to the fact that far>1, as the weak limit R)(dR/d7) goes to zero as %/ This is quite satisfactory,
e??",0 is approache—x), the scale factoe®” must go  since the behavioH~1/R? is characteristic of standard
to zero in order to compensate the increase of the cosmologiadiation-dominated Friedmann-Robertson-Walké=0)

cal term in the actioisee Eq(1.3)]. cosmologies.

A final remark concerns the case wher—1. For this
model, in the gauge=¢, the functions[see Eq.(5.2)] ACKNOWLEDGMENTS
A=e? andB=e 2#" become the same. An homogeneous
solution in this gauge isls®=(m+2\%x3)(—dx3+dx3), We would like to thank D. Amati for useful discussions.
e??=m-+ 2\2x3. The four-dimensional metris.1) can thus  J. R. thanks SISSA, Trieste, for hospitality during the course
be written as of this work.
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