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 Abstract.  

        In this paper we focus on the measurement of the normal growth rates  (R104) of 10.4 faces 

of  nitratine (NaNO3) single crystals under isothermal conditions in the temperature interval 288  

297. 5K in order to unravel the rate determining steps during crystal growth, depending on the 

hydrodynamic conditions. Owing to the elevated solubility of nitratine in water, the supersaturated 

system is very sensitive to temperature variation. In this sense we have constructed a device to 

control the temperature (its accuracy is below 0.1 K) and the concentration throughout the 

experiments. We managed to measure the crystal growth of three symmetry equivalent 10.4 faces 

of NaNO3 under different hydrodynamic conditions. We found that growth of these faces depend on 

different rate determining steps (being either surface or volume diffusion limited) according to  their 

position with respect to the solution flow. Finally, some thermodynamic crystallization parameters 

have been calculated to assess the rate determining steps. 

 

1. Introduction 

NaNO3, mineral nitratine, (space group  3 : a0 = 5.07; c0 = 16.83 Å) shows a crystal structure 

consisting in alternating layers of Na
+
 and    

  ions, nitrate layers being rotated each other by     

around the triad axis.
1
  Each Na

+
 is  octahedrally coordinated with oxygen atoms. Nitratine is iso-

structural with calcite but its athermal equilibrium shape (ES), calculated using a semi-empirical 

potential 
2
, is very different from that of calcite as only the {10.4} cleavage rhombohedron is 

present because its surface energy is very low with respect to that of the other crystal forms. NaNO3 

is easy  crystallized from an aqueous solution and the {10.4} rhombohedron always appears.      

NaNO3  single crystal growth has not been widely studied over the past years. The earliest research 

was by Sipyagin and Chernov 
3
 who measured the  growth rate (R), in the interval 0-50°C at a 

constant undercooling of  0.3 °C and found an anomalous not monotonic increase in the linear 

crystal growth rate with temperature. Some years later, Kirkova and Nikolaeva 
4
 measured the 

growth rate as a function of the flow rate, at different supersaturation () values. Results were 

essentially the same as reported by Sipyagin and Chernov. In both cases the indexes of the growing 

faces were ambiguous; further, the non-isothermal  (R vs ) measurements did not allow to evaluate 

the activation energy which is an important parameter controlling  the crystal growth dynamics. 
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Ongoing, Treivus 
5
 put forward that the NaNO3  growth  from solution proceeds according to the 

dislocation mechanism in a  convection free regime.  Jones et al.
6-8

 working at constant temperature 

but without controlling the supersaturation, developed a model which predicts the dependence 

between growth rate, dislocation density and strain. Moreover, studying  the strain in NaNO3 

secondary nuclei as a function of supersaturation, proposed for the first time a Burton, Cabrera and 

Frank ( BCF) isothermal model; unfortunately they did not work under isothermal conditions and 

hence the model they proposed results to be unreliable. Ristic et al.
9-10

, using  Michelson 

interferometry on strained crystals, were the first who measured a tangential growth rate of steps on 

the (10.4) faces of  about 12 µm s
-1

,  at σ = 0.2%. Finally, Graber et al.
 11

 studied the mass transfer 

and growth from aqueous solution in industrial crystallization, while
 
Oosterhof et al. experimented 

with isopropoxyethanol-water mixtures.
12

 Komnik and Startsev
13

 (see also references therein) were 

the first to grow NaNO3 single crystal from melt. More recently, Gopalakrishnan et al.
14

 were able 

to grow 40×10 mm cylindrical NaNO3 single crystals from melt (travelling zone method) with a 

dislocation density of about 10
3
-10

4
 cm

-2
. Sawada and Shichiri

15
 found that NaNO3 crystals 

growing from the melt developed a non-faceted morphology at low undercooling and dendritic 

behavior at higher undercooling.   

This short summary clearly shows that experimental data about crystal growth kinetics of      , 

both from solution or melt, are rather scattered and not a single systematic approach has  been 

attempted to date about the kinetics determining steps. Actually,  at the best of our knowledge, no 

rigorous correlation has been obtained yet between the main surface property of a face (such as the 

specific edge energies), its normal growth rate, the supersaturations in the solution bulk and the 

crystallization temperature. Besides, any attempt has been made to investigate, at least qualitatively, 

the influence of the fluid dynamic regime on the growth rate. 

Starting from a preliminary study on        crystal growth from aqueous solution 
2
,  we aim at 

determining in this study experimental growth isotherms (R(10.4) vs ), at three values of 

temperature, of the most important      form. At this end we will measure, simultaneously, the 

advancement rate of three equivalent (10.4) faces of the same single crystal. The measurements will 

be repeated using different crystal seeds in order to minimize the dispersion in the growth rate due 

to both the  character and density of dislocations; it is worth mentioning that each experimental 

point onto a growth isotherm represents the average of ten measurements made under the same 

kinetic and hydrodynamic conditions.  Then we will try  to find  the best fit between the 

experimental curves we obtained and the ones calculated by applying the classical theoretical 

models elaborated for the growth from solution  which allow to discriminate the rate determining 

steps controlling crystal growth. Peculiar attention will be paid to the influence  of the 

hydrodynamics on the growth rate of the simultaneously growing faces which are 

crystallographically equivalent, but are differently oriented with respect to the incoming solution 

flow.  

2. Growth apparatus and materials   
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Our goal is to measure the normal crystal growth rate         under isothermal conditions in the 

temperature interval 288 - 297.5 K. For each isotherm, the temperature of crystallization (Tgrowth) is 

maintained constant while supersaturation is varied by changing the saturation temperature (Teq) of 

the growth solution. This method
16

 allows an unambiguous and very precise determination of the 

thermodynamic supersaturation =kTgrowth × ln(1+), where it is       
          

            
and  

           is the activity of a solution saturated at    . The temperature interval T = (TeqTgrowth), 

corresponding to the supersaturation range we choose, is 0.1< T <0.8 K. It is worth to remember 

here that 3D-nucleation occurs when setting T ≥ 0.4K, so the zone where crystals only grow is 

very narrow, as was already determined by Benages et al.
 2

 This requires an experimental setup 

designed to avoid depletion of the supersaturated solution by 3D-nucleation. 

 

2.1. The experimental setup. 

In order to measure the growth rate of the faces we have constructed a device to observe the face 

advancement under a microscope. Its diagram is shown in figure 1 together with a picture. 

 

   

Figure 1. Flow diagram (left) and photo (right) of the home made growth cell device. Observation 

cell (C), peristaltic pump (, pump), thermostat baths (Wh, Wc), counter current concentric tube 

heat exchangers (H) and a reservoir (S). 

 

The unit consists in five main bodies: an observation cell (C), a peristaltic pump ( or PUMP in the 

photo), two thermostatic baths (Wh, Wc) with two counter-current concentric tube heat exchangers 

(H) and a reservoir (S).   As shown in Figure 1, the whole system is thermally insulated to avoid 

temperature fluctuations. The device has been built in AISI 304 stainless steel due to corrosive 

properties of NaNO3 solutions. The reservoir was built in glass and the connections and valves were 

of polypropylene, finally tubing was of PVC and Tygon
®
 for the pump section. The solution flows 

through the cell internal section of 0.6×1cm
2
.  In order to maintain the temperature constant, the cell 

is encapsulated in a double-walled stainless steel circular block where water circulates at the desired 

temperature. The seed glued on the sample holder can be observed between two glass windows 

C 

Wc 

S

h 

H 

H 

Wh 
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mounted with “viton” gaskets. In the back part there are two temperature probes.  The sample 

holder is a cylinder ending in a conical tip on which the crystal seed is glued and fixed; the holder is 

shaped to permit to rotate the crystal 360º around the direction perpendicular with respect to the 

flow inside the cell, in order to obtain the selected orientation.  The solution reservoir buffers the 

concentration of the solution during measurements.  The reservoir is a double-walled 1.3 liter vessel 

provided with temperature setting and monitoring. To change the supersaturation, water is added 

directly into the reservoir to achieve the desired saturation temperature     and         

         . This is repeated until     becomes equal to           . Two thermostatic baths control the 

temperature in the system. The first one is connected to one heat exchanger and to the growth cell in 

order to maintain constant the temperature inside it during the experiments. The other thermostat is 

used to prevent crystallization in the reservoir and to heat the solution (with the aid of a heat 

exchanger) just after the solution passed through the cell. The reservoir temperature is only adjusted 

when Tgrowth is varied to obtain a new set of isothermal growth rates. The temperature on the crystal 

maintained constant (its standard deviation being less than 0.05K),  as measured by to two probes 

that are inserted, into the cell, just before and after the growing seed , at a distance of about 5 mm. 

A third probe monitors the temperature into the cooling bath and a fourth one is immersed into the 

solution reservoir; in the whole system the temperature is recorded every 5 seconds .  

2.2 Source of material 

NaNO3 (analytical grade) was purchased at Quality Chemicals. According to the manufacturer, the 

major impurities are phosphor and sulfur atoms. Its purity was checked by ionic coupled plasma 

(ICP) with a mass detector; we have additionally found 21.7 ppm of titanium and 0.22 ppm of 

manganese. Powder X-ray diffraction confirmed that the product is a single II-NaNO3 phase.2.3  

2.3 Preparation of seed crystals 

Seed crystals were grown by water evaporation of a saturated solution at 291 K; the crystallization 

process takes at least 2 days. Crystals of less than 2×2×1mm
3
 were picked up with tweezers from 

the solution, dried onto a filter paper and stored at room temperature; then, the best ones were glued 

on the sample holder tip with a 2 components epoxy resin. We used a magnifying glass to  assure 

that the crystal is properly glued on the sample holder.  

 

2.4.1 Batch preparation. 

For solution preparation we relied on the solubility curve determined by Xu and Pruess
17

: 

X = 0.0022 × T − 0.1757                 (1) 

X being the mass fraction and T the absolute temperature
1
. We weighted the required amounts of 

water and sodium nitrate to have 1600 g of solution. The solution was vacuum filtered into the 

reservoir where the temperature was set above the predicted equilibrium temperature (Teq) by the 

aid of the second thermostat to avoid any crystallization during the filtration.  We prepared two 

                                                           
1
 We  verified  the consistency of these data with those by Archer used in the following to calculate the supersaturation 

of the solutions. 



 

6 

batches: the first one was used to measure the crystal growth at Tgrowth = 288 K and the second at 

Tgrowth = 297.5 K and, after dilution,   at Tgrowth = 292.5 K. 

 

2.4.2  Seed crystal mounting and hydrodynamics 

First, we have to explain why we chose to avoid to grow the seed crystals  in stagnant or quasi-

stagnant solution. The main reason is that, under these conditions, different concentration gradients 

do arise along the growing surfaces, giving rise to morphological instabilities on the surface 

profiles, so vanishing the reliability of any kinetic measurement. Secondly, when only natural 

convection sets up, spontaneous plumes generate in the solution bulk and, consequently, strong 

discontinuities in the supersaturation values are produced onto the growing surfaces. Then, we 

decided to work under gentle hydrodynamic solution flow (2.35 cms
-1

) .  The rhombohedral shape 

of the seed does not allow  getting, simultaneously, a face completely parallel to the solution flow 

and the other one perpendicular to it. Therefore, we chose a compromise in which the faces 

“normal” and “parallel” to the flow form an angle of  69°  and 12° with respect to the flow 

direction, respectively; this in order to minimize the effect of turbulent regime on the “parallel” face 

due to the presence of the first exposed crystal edge, formed by parallel and normal faces, 

encountered by the incoming solution flow. One could object  that the two opposite “normal” faces 

(labeled with + and  in Figure 2) are not equally fed by the solution. As a matter of fact,  the face 

in front of the flow (+) should have a thinner boundary layer in respect to the opposite () one: for 

this reason we assumed that the growth rate (    
 ) of the normal faces is the ratio (d

N
/t) between 

the increment of the distance (d
N
) of (+) and () faces and the elapsed time t . We are conscious 

that averaging the growth rates of the opposite faces represents an approximation of the “true”     
  

value.  Nevertheless, we know that this is the best way to monitor, simultaneously and on the same 

crystal, the growth of three symmetry equivalent faces at the same crystallization temperature. It 

can be said, a posteriori, that we made the right mix (hydrodynamic regime, crystal orientation ) 

since we controlled ex situ the as grown surfaces and found that all of them where microscopically 

planar and brilliant,  as it is typical of the flat (F) faces that did not suffer morphological 

instabilities.   
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Figure 2. NaNO3 crystal in the growth cell. Three symmetry equivalent faces of the same cleavage 

rhombohedron are simultaneously exposed to the solution flow: one parallel         
   and two 

perpendicular        
    faces with respect to the flow. 

 

3. Calculation of the supersaturation of the solution 

The calculation is based on the work by D.G. Archer
18

 who used his modified Pitzer model of ionic 

solutions to parameterize the equilibrium properties of  the system NaNO3  H2O. We calculated the 

mean activity coefficient as a function of the solution ionic strength and its molality at the 

temperature of interest. In this sense, we prepared solutions and determined experimentally the 

saturation temperature according to Boistelle’s procedure
19

. Then we relied on a spline 

interpolation of the equilibrium data between 273.15 and 373.15 K given in Archer’s paper to 

obtain the thermodynamic relevant quantities. 

 

The supersaturation at Tgrowth   is defined as     
 
   

        
 

           
    

   , where the numerator contains 

the actual value of the NaNO3 concentration, in term of molality (meq), and the denominator 

represents the NaNO3 concentration at the crystallization temperature (mgrowth). The experimental 

values of the growth rate for perpendicular (    
 ) and parallel (    

 
) faces at the three growth 

temperatures together with the supersaturation values are given in Table 1. At every 

supersaturation, the measurements of both crystal size and growth rates were repeated ten times. 

 

Table 1. Experimental growth rate at different supersaturations (σ) for perpendicular (    
 ) and 

parallel (    
 

) faces at the three temperatures of growth.  

ΔT (K) σ 10
3

  104
  10

7
cm/s  104

p
 10

7
 cm/s 

288.0 K 

0.1 1.401 1.07 1.17 

0.2 2.804 3.28 2.57 

0.4 5.616 5.85 6.48 

0.5 7.023 6.80 8.12 

292.5 K 

0.2 2.767 4.03 4.50 

0.3 4.153 5.07 3.48 

0.4 5.540 9.58 8.47 
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0.5 6.929 11.5 9.65 

297.5 K 

0.2 2.712 7.62 6.58 

0.3 4.070 7.02 9.22. 

0.4 5.430 15.8 22.9 

0.5 6.791 21.5 19.9 

0.7 9.519 23.5 16.5 

0.8 10.88 37.5 26.7 

 

 

4. Measured growth isotherms 

To identify the growth mechanism describe the dependence of the growth rate on supersaturation of 

the NaNO3 10.4 faces (N, perpendicular to the solution flow and P, parallel), we refer to the work 

by Gilmer, Ghez and Cabrera (GGC hereinafter)
 20

 who considered the stationary growth of a 

crystal due to combined volume and surface diffusion processes. Accordingly, the more general 

form of a face growth rate depends on the slope of the growth hillocks, on transport properties in 

the bulk of the solution and crystal surface and on the kinetics of integration of the growth unit in 

the steps. Depending on the relative weight of volume and surface diffusion and rate of integration 

of growth units in the steps, the general (R vs ) relation assumes specialized forms recovering the 

relations proposed by Burton, Cabrera, Frank (BCF hereinafter),
 21

 Bennema and Gilmer
22

 and 

Chernov.
 23

   

The GGC master equation reduces to eq (2) in the case where the mean free path of growth units in 

solution,    is much greater than that on the crystal face,  . Then,  
 

 
     is expected as surface 

diffusion requires desorption of the growth units. This assumption will be here justified a 

posteriori,  if we  find a relationship R vs.  acceptable under this assumption. 

 

 

     
       

    
     
  

   
 
  

    
 
  

   
                          

 

The meanings of the symbols in equation (2) are:  

   density of solute at equilibrium, 

   volume of a formula unit in the crystal cell,   = 62.40530×10
-24

     . 

   diffusion coefficient of growth units in solution,  

   supersaturation of the solution, 

   mean free path of a growth unit in solution,  
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   thickness of the boundary layer  

   coefficient related to the transfer of growth units between steps and surface, 

   mean free path of a growth unit on crystal face, 

   equidistance of steps 

   the life time of a growth unit on the crystal surface before desorption.  

The terms in the denominator are impedances to the growth rate which are, in the order: the first, 

the impedance of the adsorption reaction; the second the impedance to enter in the unstirred layer; 

the third the impedance for entering the steps and the forth as the surface diffusion impedance. 

 

5 Determination of the growth model and energy parameters. 

 

As we have to do with three equivalents 10.4 faces  growing under  different hydrodynamic 

conditions, we ought analyzing them separately. We first sought with the two faces perpendicular to 

the incoming flow and, after that, with the parallel one. In this part we determine as well  the most 

probable rate determining steps and some thermodynamic parameters that help us to validate the 

proposed theories.  As the positive and negative crystal faces having orientation perpendicular to 

the  solution flow,  keep a flat and stable surface during growth, we treat them as experiencing the 

same thickness of the boundary layer. This assumption is consistent with the measurement of the 

mean growth rate of the positive and negative faces  and can be justified considering that the rate of 

flow of the solution is slow and then the diffusion of the growth units in the solution potentially can 

limit the growth of the N faces, irrespectively of their orientation. This assumption can lead us to 

overestimate the weight of the volume diffusion on the positive N faces and of the surface diffusion 

on the negative N faces: as we will see, the consequence is that we calculate a kind of mean value 

of the quantity 
   

   
  discussed in the following. However, the rate limiting step  should be correctly 

identified. 

  

5.1 Faces perpendicular to the solution flow (N) 

We start with the analysis of the growth curves (    
        of the faces perpendicular to the 

solution flow. Indeed, the variation of the growth rates of the face parallel to the flow (    
      

shows a different behavior with temperature and supersaturation and will be analyzed in a second 

moment. In order to identify a growth rate limiting step we tested different hypotheses, as detailed 

in the following. 

5.1.1 Chernov model 

Because the measured growth rates suggest a linear increase of the growth rate with supersaturation, 

we tested at first if the growth is limited by volume diffusion. When the volume diffusion parameter 

is larger than the thickness of boundary layer ( ), equation (2) transform to equation (3) which 

represents the Chernov model, i.e. the growth rate determined by volume diffusion 

 

 

  
       

  
    
  

 
 
  

    
 
  

 
                                                

 

Two a-dimensional parameters were determined by non-linear least squares:   

    
 

  
 

  

   
   and     

   

 
 ,          is the mean specific edge energy (erg cm

-1
) of a 2D- 

nucleus on a  (10.4) face and    the area (cm
2
) occupied by the growth unit on the step ledge. At 
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297.5 K, the diffusion coefficient               was calculated by the Nernst equation 

considering its variation with concentration:         
        

       
  . The data to calculate    are 

from Robinson and Stokes reporting the values of the limiting equivalent conductivities:
 24

 
  

 

   
  

  

     
      

  
   

 

  
    

  

 

Here,     and    correspond to the number of cations, algebraic valence    and anions, algebraic 

valence      generated by the dissociation of a unit formula of electrolyte.    
  are the limiting 

equivalent conductivities, R and F are the gas and Faraday constant. 

 The values of   were fixed and spanned several order of magnitude. The least squares test was 

made on the isotherm at 297.5 K.  Only for values Λ            the least squares converged:  the 

values of the parameters are affected by high variance values, but this law cannot be rejected on the 

ground of a      
  test with four degrees of freedom.

 25
 Anyway, we independently calculated the 

thickness of the boundary layer using the approximated expression given by GGC and derived by 

Carlson
26 

:
 
 

  
 

 
 

   

     
 
 

  
  

  
 
 

   

 

 

The values of density    and viscosity     can be obtained using their parametric representations 

given in the paper by Xu and Pruess, and NIST. 
17

 The molecular size     is known, while the rate 

of flow of the solution   and the linear size of the crystal  ,  are experimental. 

It turns out that   is of the order of        .    As the Chernov model is obtained when Λ>> δ, 

which contradicts our finding, this model should be excluded.  Furthermore we verified that the 

Chernov equation (3) cannot fit the other isotherms at 288.0K and 292.5K. 

. 

 

5.1.2 Growth limited by surface diffusion 
 

When the surface diffusion is the rate limiting step, from equation (2) one obtains the BCF growth 

law limited by surface diffusion (BCF-S): 

                                                                    
  

  

  
     

  

 
                         (4) 

In equation (4),     
      

  
  

   

 
 and    

 

 

   

   
  represent the parameters to be determined by 

least squares:    is the surface diffusion coefficient,    the mean free path of the growth units on 

the crystal face,   the residence time of a growth unit on the surface before desorption,   the edge 

free energy,     the  area occupied by a growth unit in a mesh on a step,  
 

 
 the ratio between the 

shape factor ( ) of the growth spiral and the number of dislocation in a bundle ( ).     is the 

concentration of adsorbed growth unit at equilibrium. Finally,   
    

   
 is the mean distance 

between steps.  

In the following we report the measured growth rates over which are superimposed the regression 

curves. The regression parameters and the statistical analyses are given in Table 2.  
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Table 2. BCF growth model parameters determined for        
  growth rates at three temperatures. 

 

288.0K 292.5K 297.5K 

Value Error Value Error Value Error 

p1 0.997·10
-4

 0.164·10
-4

 0.176·10
-3

 1.40·10
-4

 0.347·10
-3

 8.19·10
-5

 

p2 0.924·10
-3

 1.56·10
-3

 4.23·10
-3

 5.64·10
-3

 4.85·10
-3

 3.86·10
-7

 

 

In Figure 3 the BCF-S fitting to the experimental values for the three temperatures is shown (Blue: 

297,5K; red: 292,5K; and green: 288,0K). It is worth to outline that: 

 -the so called parabolic branches of the  curves are restricted to a very low supersaturation values, 

the lower the temperature the smaller the parabolic region;  

-the transition from the “parabolic” to the “linear” branch  is gradual as can be seen for the 297,5K  

isotherm (blue line);  

We tested also a linear relationship (R vs ):  the  
2 

values calculated for each regression line are 

not significantly different from those calculated fitting  the BCF eq. (2).  In particular, at every 

temperature,  the slope of the linear fits have values close to those of     calculated from eq.(2). 

This is reasonable and so there are not statistical evidence to reject  eq.(2).  As the measurements 

fall in the region of transition from the “parabolic” to the “linear” branch of the curves R vs.  

(eq.2), the parameter    is more constrained  than    . 

 

 
Figure 3.  Experimental growth isotherms        

  along with their theoretical BCF-S plots ( 

Green: 288.0 K,   Red: 292.5 K,  Blue:  297.5 K) 
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We see in Figs. 3 and 4 that  the standard errors affecting the measured rates increase with the 

temperature of the isotherms, as well as the dispersion of the measured points about the best fit 

curves. Carlson
26

 pointed out that turbulent flow may lead to starvation of faces whose normal is 

perpendicular to the solution flow ( in this paper faces P,  see Fig.2 ) and convection plumes can 

lead to wedged crystals implying the formation of vicinal and even higher index faces.
27

   As 

already detailed in section 2.4.2 , we imposed a slow solution flow to avoid uncontrolled 

convection; moreover,  to keep similar hydrodynamic conditions  the initial size and shape of the 

crystals was always the same.   

Moreover, the models we use to unravel a growth model assume that the growth hillocks are made 

by a sequence of equal spaced steps as a consequence of neglecting the steps movements with 

respect to the rate of diffusion of the growth units towards the steps.  As shown by the 

measurements on the face (10.4) of nitratine,
28

 even single spiral sides do not have a constant slope. 

This can be understood considering that l, the equidistance between successive spiral steps,  is 

proportional to the step curvature:    
  

  
 , close to the dislocation core, while near the spiral 

periphery the advancement rate of the steps is determined by crystal edges, steps from other 

sources, defects, etc. As a consequence, step bunching occurs, as also shown in some models
29

 and 

theoretical works on the kinematic waves.
30

   The bunching is enhanced with increasing 

temperature as the mean rate of advancement of the steps is higher.  It follows that the measured 

growth rate of a crystal face is a mean over different domains of the same face where the steps 

density, and often their height, vary from site to site of the face. Finally, to measure a growth 

isotherm requires the use of several crystals what may cause growth rate dispersion, as far as each 

crystal has a different dislocations distribution and density. There is a temperature effect as well,  

because the generation of growth defects increases with the growth rate.  

 

5.1.3 Growth limited by volume transport and surface diffusion 

 

When imposing to equation (2) that the coefficient related to the transfer of growth units between 

steps and surface must be  smaller than the mean free path onto the surface (     ) one obtains 

the equation: 

  
      

   
 

  
    

 

  

                                  (5)    

 

We refer to this coupling between volume and surface as the GGC-VS model. Using the estimated 

value of  , we determined two parameters fitting this expression to the isotherms. The regression 

parameters and the statistical analyses are given in Table 3 and graphically shown in  Figure 4. The 

parameter    corresponds to   and     to 
 

 

   

   
. 

Table 3. Parameters of volume and surface diffusion growth model, determined for        
  growth 

rates at three temperatures. The parameter  indicated with the symbol  t2    and  p2  in Table 2, 

represents the same physical quantity. 

 



 

13 

 

288.0K 292.5K 297.5K 

Value Error Value Error Value Error 

t1 0.196·10
-1

 2.08·10
-3

 0.112·10
-1

 8.95·10
-3

 0.524·10
-2

 2.08·10
-3

 

t2 0.995·10
-3

 1.70·10
-3

 5.18·10
-3

 7.55·10
-3

 6.77·10
-3

 5.60·10
-3

 

 

 

When 
 

 
 

 

  
   at low supersaturation, the growth rate is approximately proportional to the square of 

the supersaturation. When, with increasing supersaturation, it becomes  
 

  
  

 

 
 the relation between 

growth rate and  supersaturation  tends to be linear. At low supersaturation, the rate is limited by the 

surface processes while at higher supersaturation the rate is determined by volume diffusion. We 

observe that the equidistance between spiral arms,    
   

   
  , is the parameters determining the 

change of curvature of  both isotherms BCF, equation (4) and GGC-VS equation (5).   

  

 
 

Figure 4.  Experimental growth isotherms        
  along with their theoretical GGC-VS 

plots ( Green: 288.0 K,   Red: 292.5 K,  Blue:  297.5 K) 

 

 

5.2   Face parallel to the solution flow (P).  

 

We also sought to assess the step determining the growth rate of  the  face parallel to the incoming 

flow, as described in the  following.  

 

5.2.1 Growth limited by volume diffusion.  
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We did not try a fit with the BCF law used in case of the growth of the faces perpendicular to the 

solution flow. As the measured isotherms (Fig. 5) do not exhibit a curvature at low  values, we 

tested a linear fit:       . 

 

 Figure 5.  Experimental growth isotherms        
  along with their linear representations (Green: 

288.0 K,   Red: 292.5 K,  Blue:  297.5 K). 

The linear law can be derived from equation (2) when l, the equidistance between steps, is very 

small with respect to the mean free path,  s , on the surface (l / s  0): this means that surface 

diffusion is negligible with respect to the volume diffusion that becomes the rate determining 

process. Given this conditions,  the denominator on equation (2) reduces to (+ ) and hence the 

parameter a coincides with  
 0   v

δ  
  : 

 =  
 0   v

δ  
 ×σ   (6) 

In eq. (6),     is the equilibrium concentration of growth units in solution,   is the volume of a 

formula unit in the kinks,  v is the diffusion coefficient in solution,   the thickness of the solution 

boundary layer on the (10.4) face, while    , which is related to the free path of a growth unit in 

solution, is a retarding factor increasing  with  the activation energy for desolvation. The regression 

coefficient ‘ ’ is given in the table 5.   

From the regression coefficient, knowing  0   v and    at the three values of temperature,  we 

estimate  the boundary layer thickness (P) over the P face. The (P)  values  are compared with  

the (N) ones derived from the formula by Carlson, for the three crystallization temperatures, 

respectively :    

T crystallization (K) 288.0 292.5 297.5 

(N) 10
-3

 cm   3.151 3.201 3.254 

(P) 10
-3

 cm   0.761 12.82 7.675 
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Notwithstanding that on (P) propagates the error affecting the measures of the growth rates of the 

P face,  the increase of the boundary layer thickness over the P face looks likely and this factor is 

limiting the growth rate.  

In the next section, to further corroborate the proposed growth model, the dependence on 

temperature of the parameters estimated by statistical analysis can be checked and the value of same 

properties calculated.   

Table 5. Calculated parameters for the linear law: isotherms (    
 ).  

 

 

288.0 K 292.5 K 297.5 K 

Value Error Value Error Value Error 

regression 

coefficient  

a (cms
1

) 

1.11·10
-4

 1.30·10
-5

 1.09·10
-4

 2.87·10
-5

 2.33·10
-4

 4.20·10
-5

 

 

 

6. Activation energy calculation  

From the statistical analysis of the growth isotherms we can conclude that the growth of the P faces 

is limited by diffusion of the growth units in the solution.  Conversely we cannot decide if the 

growth of the N faces is limited by surface diffusion or by both surface and volume diffusion, 

depending on the solution supersaturation. Therefore we are led to analyze the temperature 

dependence of the parameters derived from these models.  

The activation energy for volume diffusion can be obtained from the values of  the volume diffusion 

coefficients which, at the three crystallization temperatures, are respectively: 

 

         
        

       
                                 

   

   
 

From these values we calculate   
      

 
 

 

       
      

    
  by linear regression. 

Subtracting from the latter quantity     calculated at 292.5 K, we get the activation enthalpy for 

volume diffusion          
       

      

    
. 
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Figure 6. Arrhenius plot of                for the faces normal to the solution flow; (see text for 

details). 

From the temperature dependence of    we can  estimate the value of          
 

. 

 Indeed         
        

         
 

  
   can be obtained  by fitting the GGC-VS relation to the 

measured growth rates shown in Figure 6.   is considered unaffected by hydrodynamics. 

It is   
    

            
          

 
 =      

  

    
. This figure seems acceptable if compared with the 

standard hydration  enthalpy of the couple         
  of  728 

  

    
 
31  

 

As             
          

 
, a lower bound is obtained:        

          
 

.   

 

 

 

6.1 Faces normal to the solution flow: the isotherms (     
      ). 

Concerning the growth of the N faces, we consider, at first, the dependence of the parameter    on 

temperature (Fig. 7)  obtaining by the Arrhenius plot the related activation and equilibrium energies. 

The value of     is related to the slope of      
  at high         ;      is constrained better than      , 

which is related to the growth rate at very low supersaturation where  accurate measurements are 

difficult.   The temperature dependence is expressed by the equation: 

 

  
      

 
 

 

         
    

   
       

      
 

              (7) 
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Figure 7. Arrhenius plot of               
   ) for the faces normal to the solution flow (see text for 

details). 

This comes from the definition of the parameter p1= 
   

 
   (where the molecular volume   is a 

constant) as we calculate: 

 (a) the variation of the residence time ( ) with T :    
      

 
 

 

         
 

, where      
 

 

represents the activation heat for desorption of a growth unit;  

(b) the variation of the concentration of the adsorbed growth units at equilibrium (ns0) with T:  

                                                             
        

 
 

 

    
   

       
      

      

where     
   is the mean enthalpy to transfer one growth unit (component 2) from the kink 

2
   to the 

surface: on the surface the growth units occupy the area   
  and they can be adsorbed if, 

simultaneously,   
   

  molecules of solvent are desorbed with evolution of    
   

       
   joules. 

Several equations have been proposed for the dependence of     on temperature (see ref.
 30,32

). We 

chose that from the Lundager Madsen’s thermodynamical model of the adsorbed layer.
 32

                

It is a quite  difficult task to calculate a priori      
   

       
      

 
,  for an adsorbed layer of 

electrolyte,
 32, 33

 but we know that it is positive, at least. To estimate this enthalpies we can use the 

experimental value:     
      

 
 

 

      
  

    
 , as shown in fig. 6. As we assumed      

  

      
  

    
  we obtain    

   
       

      
   . 

 

We consider now the parameters common to both BCF-S and GGC-VS equations and use      the 

mean value of    and     : at                    
 

 

   

    
    to estimate     the mean edge free 

energy of a straight step developing along the   41 direction on (10. 4). 

                                                           
2
  The kink, in the case of a (10.4) face of NaNO3 crystal, is composed by 4 growth units (each of composition NaNO3). 

Hence, it is a complex kink (not monoatomic or monomolecular Kossel kink), i.e.  a  “non-Kossel kink”  recently  
introduced by Chernov 

36
 when dealing with the relaxation time needed to the growth units to find their 

crystallographic (equilibrium) site within the kink structure.   
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In the expression of          depends on the number of interacting  spirals of the same sign and   is 

the shape factor approximately equal to 4, for a lozenge shaped island  . Here, it is worth 

remembering that the lozenge shaped island, limited by four equivalent   41 sides, is nothing else 

than the shape of the 2D nucleus: its size  determines  the spiral step spacing on the growing (10.4) 

face; consequently, the value of the mean edge free energy   concerns both 2D nucleation and spiral 

growth mechanisms. In general,     depends on the shape of the growth spirals and on their 

configuration, i.e. if the spirals are isolated or interlaced. 
34,35

 The simple expression of     we use 

is suitable to obtain an estimate of               the mean free path  of the growth units on (10.4)  

equal to         cm we calculate  = 0.47      erg cm
1

.    This value has the correct order of 

magnitude.  

Summing up and according to the bottom of section 5.1.2, hydrodynamic factors and surface 

features at the nano-scale can explain both the dispersion of the growth rates and that the growth of 

faces of different orientation may be limited by different elementary processes i.e. their growth can 

occur with different mechanisms. Notwithstanding the dispersion, the processes limiting the growth 

rate can be identified, as the experimental (Rhkl vs ) isotherms can be fitted by curves 

corresponding to proposed growth models and the derived activation energies for growth are 

supporting the statistical analysis. In conclusion, we accept that the growth rate of the 10.4 faces 

perpendicular to the solution flow is likely limited by surface diffusion at low supersaturation and, 

with increasing supersaturation, is limited by volume diffusion,  as described by the GGC-VS  

equation. 

 

6.2 Faces parallel to the solution flow:  (    
 ). 

Similarly to what we did with the perpendicular faces, here we describe the thermodynamic 

parameters that can be extracted from the linear law. In figure 8, an Arrhenius plot for the   

coefficients is drawn. The experimental activation energy (  
 
) turns out to be 52. 23 kJ/mole.  
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Figure 8. Arrhenius plot for determining the activation energy for NaNO3 crystallization on the 

faces parallel to the solution flow. 

 

Being    
     

   
 , the expression of the activation energy associated to the growth in the linear 

region  is: 

  
     

      

 
 

 

  
      

 
 

 

 
 

   
 
  

 
 

 

    
        

         
 

 
   

        
         

 

  
   (8) 

              
 

 and         
 

 are the activation enthalpy and free enthalpy a growth unit surmounts 

in the transition from the solution to the crystal face. 

The first factor can be further developed:      

  
      

 
 

 

=   
     

 
 

 

  
     

 
 

 

 
      

         
  

 
 

 

  

where  M is the molecular weight of the solute. The derivative of   are calculated using the 

solubility by Archer 
(17)

: 

 
      

         
  

    
            and    

     

    
      . 

The temperature dependence of   is calculated from the data by NIST:
 17

 

  
     

                  

The mean value of                   is calculated from the isotherm at 292.5 K. The 

boundary layer dependence with temperature turns to be:  
  

 
 

 

         cm K, evaluated through 

the experimental values of solution flow rate    , mean dimension of crystals      and data from 

NIST
17

 to calculate the remaining quantities in the just quoted relation:   
 

 
 

   

     
 
 

  
  

  
 
 

  . 

We cannot estimate         
         

    as an entropy difference is involved: if the jump distance, 

  , of a growth unit in solution is                  using the experimental value of   
 

 and 

substituting the calculated quantities in eq.(8), it results         
         

        
 

       
   at 

292.5K.   

The difference between the activation entropy for partial desolvation of the growth units entering 

the adsorbed layer and that for volume diffusion is an indication that desolvation brings about an 

higher disorder than diffusion where ions conserve the hydration shell. 

Therefore, considering that during growth: i) the P faces remain flat at the observation under the 

optical microscope and do not experience effects due to turbulent flow;  ii)  the shape of the growth 

isotherms is linear;  iii)  the thermodynamic analysis do not lead to inconsistencies;   then we accept 

that the growth rate of the P faces is limited by the diffusion in the bulk of the solution. 
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Conclusions 

We have determined the normal growth rate of 10.4 faces of nitratine (NaNO3) single crystal 

under two different hydrodynamic settings and isothermal conditions in the temperature interval 

288 – 297.5 K. In this system, the temperature control is essential because the growth rate of 

nitratine is very sensitive to the experimental parameters, owing to its elevated solubility. 

Accordingly,  we have constructed a device to overcome all the difficulties.  The statistical analysis 

of  the growth isotherms coupled with a thermodynamic study  allowed us to assess  the rate 

determining steps of the growth rates  of the 10.4 faces of nitratine: volume (P faces) or surface 

diffusion and volume diffusion (N faces) can limit their growth depending on the prevailing 

hydrodynamic conditions; conversely, the integration of the growth units in the steps is not rate 

limiting. Likewise, we estimated the edge energy of steps on 104. Some activation quantities 

related to the transfer of growth units from kinks and from solution to the adsorbed layer could also 

be estimated.  Both the experimental set up and the measurement method allowed us to overcome 

the drawbacks which are intrinsic not only to nitratine, but usually to all very soluble compounds. 

The  promising results we are obtaining from the  observation of  the growing surfaces by  in - situ 

confocal  and atomic force microscopy, make us confident of acquiring deeper insight about the 

crystallization of nitratine.  
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