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Abstract. A filtered process Xk is defined as an integral of a deterministic
kernel k with respect to a stochastic process X. One of the main problems
to deal with such processes is to define a stochastic integral with respect to
them. When X is a Brownian motion one can use the Gaussian properties
of Xk to define an integral intrinsically. When X is a jump process or a
Lévy process, this is not possible. Alternatively, we can use the integrals
defined by means of the so called S-transform or by means of the integral
with respect to the process X and a linear operator K constructed from k.
The usual fact that even for predictable Y , K∗(Y ) may not be predictable
forces us to consider only anticipative integrals. The aim of this paper is, on
the one hand, to clarify the links between these integrals for a given X and
on the other hand, to investigate how the Lévy–Itô decomposition of a Lévy
process L, roughly speaking L = B + J , where Bis a Brownian motion and
J is a pure jump Lévy process, behaves with respect to these integrals.

1. Introduction.

A filtered process or Volterra process Xk is a stochastic process defined as the
integral of a deterministic kernel (s, t) → k(t, s) with respect to an underlying
process X . This class of processes is wide and includes, for instance, the fractional
Brownian motion, where X = B is a Brownian motion and k a particular kernel
(defined by (2.3) in Section 2.4) and the shot noise process, where X = N is a
Poisson process and k(t, s) = g(t − s), where g is a deterministic function. Both
examples are very important for applications in many domains.

Fractional Brownian motion, a type of Gaussian process introduced in [19], is
today a well-known object and several books that treat stochastic calculus with
respect to this process are available. We mention [6], [20], and [21]. Applications
to finance can be found in [28].

On the other hand, a shot noise process was introduced in [18] and applied to
computer failure times. In [15], an application to risk theory is presented and in
[25] applications to finance can be found.

In this paper, X will denote a Brownian motion, a pure jump Lévy process or
a general Lévy process. In order to make Xk relevant for applications, we have
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to define a stochastic integral with respect to it, but even for a simple function k,
Xk is not a martingale nor a Markov process, thus classical techniques developed
for defining integrals do not work for these processes.

Many investigations have been made to define such integrals. In the Brownian
setting, Bk remains a Gaussian process, thus we can define a stochastic integral,

denoted by δ
B,k
C , by the use of the chaos decomposition (see [2]). This construction

is not possible for pure jump and Lévy filtered processes because these processes
are no more Lévy processes.

The S-transform allows us to define directly an integral for filtered processes.
Classical references for the S-transform in the White Noise Analysis setting are

[16] and [23]. In the following, these integrals will be denoted by δ
B,k
S in the

Brownian motion case, by δ
J,k
S in the pure jump case and by δ

L,k
S in the general

Lévy case. The Brownian case is studied in [4] and the pure jump case in [5]. The
general case will be treated in Section 3.2 of this paper.

Finally, a more versatile idea is to construct, from the kernel k, a linear operator
denoted by K∗, and define a stochastic integral with respect to Xk, that will be
denoted by δX,K∗

, from the one with respect to X denoted δX by:

δX,K∗

(Y ) = δX(K∗(Y )).

Even for predictable processes Y , K∗(Y ) may be not predictable, thus δX has
to be defined in a anticipative way, see [9]. So, we have to browse the definitions of
anticipative integrals with respect to X . Three main types of constructions have
been investigated:

• First, we consider δXC defined by the use of chaos decomposition. This
construction has been widely investigated. Let us give some examples of
references: for Brownian motion [21], for the standard Poisson process [22]
and for Lévy processes [13] and [27].

• Second, we consider δXS defined by the use of the S-transform. In this
case, some references are: for Brownian motion [4], for pure jump Lévy
processes [5] and for general Lévy processes we will give the definition in
this paper.

• Finally, we evoke δXG the integral defined as the adjoint of a stochastic
gradient. Some references about this integral are: for Brownian motion,
[21, 29], for the standard Poisson process, [7] and for a marked Poisson
process, [11]. As far as we know, no version of δXG for a general Lévy
process is studied in the literature, whereas a direct definition as a dual
operator could be introduced from the gradient operator defined in [17].
It is well known that in the Brownian case δBG = δBC , meanwhile, even in
the simple cases developed in [7] and [11], we have δJG(Y ) 6= δJC(Y ). So we
will not consider this kind of integral for the comparisons we investigate
here.

The main topic of this paper is, first of all, to highlight the links among these
integrals and to deal with what we will call the Lévy–Itô problem. Lévy–Itô
decomposition tells us that a Lévy process can be decomposed in two independent
components, a Brownian one and a pure jump one. Thus, it is natural to wonder
if this decomposition is still true for the integrals considered in this paper. One
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says that the Lévy–Itô problem is true if for any Y in a suitable domain, we have,
roughly speaking,

δL(Y ) = δB(Y ) + δJ (Y ),

and one says that the Lévy–Itô problem is complete if moreover δB(Y ) and δJ(Y )
are independent.

The paper is organized as follows. Section 2 is devoted to the construction of
filtered processes. The notations are highlighted and the assumptions discussed.
Section 3 browses the different notions of anticipative integrals with respect to the
underlying processes. The links between these integrals are studied and the Lévy–
Itô problem is investigated. Finally, in Section 4 we develop the construction of
anticipative integrals with respect to filtered processes. We compare the different
definitions and give some results about the Lévy–Itô problem.

2. Definition of Filtered Lévy Processes.

In the whole paper ℓ denotes the Lebesgue measure on [0, T ], L2([0, T ]) denotes
the space of square integrable deterministic functions defined on [0, T ] equipped
with ℓ, and δa denotes the Dirac measure concentrated at {a}.

2.1. The general definition of filtered processes.

Definition 2.1. Let X = {Xt, t ∈ [0, T ]} be a stochastic process. Let k :
[0, T ]2 → R be a deterministic function. The filtered process Xk of underlying
process X is defined by

Xk
t :=

∫ t

0

k(t, s) dXs, t ∈ [0, T ].

2.2. The underlying process. Let L = {Lt, t ∈ [0, T ]} be a Lévy process
defined on a complete probability space (Ω,F ,P). Denote by {Ft, t ∈ [0, T ]} its
completed natural filtration. We refer the reader to [26] for a general theory of
Lévy processes. One of the main properties of Lévy processes is the Lévy–Itô
decomposition:

Theorem 2.2 (Lévy–Itô decomposition). There exists a triplet (γ, σ2, ν), where
γ ∈ R, σ2 ∈ R+ and ν is a Lévy measure, such that L can be represented as,

Lt = γt+ σBt + Jt, (2.1)

where

Jt :=

∫ t

0

∫

|z|>1

z dN(s, z) + lim
ǫ→0

∫ t

0

∫

ǫ<|z|≤1

z dÑ(s, z), t ∈ [0, T ], (2.2)

and

• B is a standard Brownian motion,

• N is the jump measure associated to L:

N(E) = card {t : (t,∆Lt) ∈ E} for any E ∈ B([0, T ]× R0),

where R0 = R− {0}, ∆Lt = Lt − Lt−, and card {A} denotes the cardinal

of the set A.
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• Ñ is the compensated jump measure associated to L:

dÑ(s, z) = dN(s, z)− ds dν(z).

The limit in (2.2) is a.s. uniform on every bounded interval.

Hypothesis 2.3. The Lévy measure satisfies
∫
R
z2 dν(z) < ∞.

This hypothesis will be useful later to define an integral related to filtered Lévy
process. In the following, we will assume that this assumption is fulfilled.

Remark 2.4. Under Hypothesis 2.3, Lt can still be written by (2.1) with a modified
γ and considering

Jt := lim
ǫ→0

∫ t

0

∫

|z|>ǫ

z dÑ(s, z), t ∈ [0, T ].

Remark 2.5. It is well known that processes B and J are independent, and J is
determined only by the measure ν (see for instance [27]).

Remark 2.6. In the case ν = 0, the process L is a Brownian motion with drift γt
and volatility σ. In the case σ = 0, we have a pure jump Lévy process. If, moreover,
ν is a finite measure we can write ν = λQ, with Q a probability distribution on R

and λ = ν(R). In this case, the process is a compound Poisson process.

Remark 2.7. For simplicity, we will assume from now on that γ = 0. In fact,
integrals with respect to the ”γt” component are nothing but deterministic ones.

2.3. The kernel.

Hypotheses 2.8.

(1) For any t ∈ [0, T ], the function
k(t, ·) : [0, t] −→ R

s −→ k(t, s),
is càdlàg and belongs to L2([0, t]).

(2) For any s ∈ [0, T ] the function
k(·, s): [s, T ] −→ R

t −→ k(t, s),
has bounded variation.

(3) k does not explode on the diagonal, that is, k(t, t) < ∞ for all t ∈ [0, T ].

These hypotheses on the kernel k are the one stated in [11] and are reasonable
to insure the process to have valuable stochastic properties.

2.4. Examples. The class of filtered processes introduced above covers, among
others, the following examples:

• The shot noise process which corresponds to the kernel k(t, s) = g(t − s)
for a certain function g defined on [0,∞). This process has already been
shown to be of much interest in a few applications as mentioned in the
Introduction. A particular case is the Ornstein-Uhlenbeck process, defined
by the function

g(u) = eαu11{u≥0},

where α is a positive constant.
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• The fractional Brownian motion, that admits the representation

B
(H)
t =

∫ t

0

k(H)(t, s) dBs,

with k(H) of the form

(s, t) → k(H)(t, s) := l(H)(t, s)(t− s)H−1/2s−|H−1/2|11[0,t](s), (2.3)

where l(H) is a bi-continuous function (see [8]).
• The fractional Lévy motion defined in [3], constructed by considering the
kernel k(H) and a Lévy underlying process. The hypothesis of non explo-
sion on the diagonal excludes the case H < 1

2 .

3. Stochastic Integrals With Respect to the Underlying Process.

3.1. Integrals based on the chaos decomposition. It is well known, since
[14], that Lévy processes enjoy the chaotic representation property in a slightly
generalized form. For the convenience of the reader, we recall the main ideas of
this approach.

For any Borel set E on [0, T ]×R, we define the sets E∗ = {t ∈ [0, T ] : (t, 0) ∈ E}
and E0 = E − E∗, and the measure

µ(E) :=

∫

E∗

σ2 dℓ(t) +

∫

E0

z2 d(ℓ ⊗ ν)(t, z).

Remark 3.1. The measure µ can be written as dµ(t, z) = dℓ(t) ⊗ dρ(z), with
dρ(z) = σ2 dδ0(z) + z2 dν(z). In the sequel, we denote dℓ(t) by dt.

Then for any set E, such that µ(E) < ∞, we can introduce the independent
random measure

L̄(E) :=

∫

E∗

σ dBt + lim
m→∞

∫

Em

z dÑ(t, z),

where Em = {(t, z) ∈ E : 1
m < |z| < m} and the limit is in the L2(Ω) sense. In

short, we can write

dL̄(t, z) = dB̄(t, z) + dJ̄(t, z),

where dB̄(t, z) := σ dBt ⊗ dδ0(z) and dJ̄(t, z) := z dÑ(t, z) are also independent
random measures on [0, T ]× R.

For any collection of disjoint sets Ei, with finite measure µ, we define the
multiple stochastic integral IL̄n (11E1×···×En

) of order n with respect to L̄ by

IL̄n (11E1×···×En
) = L̄(E1) · · · L̄(En). (3.1)

These multiple stochastic integrals satisfy, for m 6= n,

E[IL̄n (11E1×···×En
)IL̄m(11F1×···×Fm

)] = 0,

and

E[IL̄n (11E1×···×En
)IL̄n (11F1×···×Fn

)] = n!

∫

([0,T ]×R)n
1̃1E1×···×En

1̃1F1×···×Fn
dµ⊗n,

where f̃ is the symmetrization of the function f .
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Then, by linearity and density arguments, the definition of IL̄n is extended to
functions in

L2
n := L2(([0, T ]× R)n;B(([0, T ]× R)n);µ⊗n).

Remark 3.2. Notice that if E = [0, t]× R, for t ≤ T , then

B̄([0, t]× R) = σBt, J̄([0, t]× R) = Jt, L̄([0, t]× R) = σBt + Jt = Lt.

It is well–known that if F is a square–integrable random variable, measurable
with respect to the filtration generated by L, then F has the unique representation
usually called chaotic representation property for Lévy processes:

F =
∞∑

n=0

IL̄n (fn), (3.2)

where IL̄0 (f0) = f0 = E(F ) and fn is a symmetric function in L2
n, for any n ≥ 1.

Given this result we can introduce the gradient and divergence operators. We will
follow here the abstract point of view presented in [22].

We say that a square-integrable random variable F , given by (3.2), belongs to

the domain of the gradient operator DL̄, denoted by D
1,2

L̄
, if and only if

∞∑

n=1

nn!||fn||
2
L2

n
< ∞. (3.3)

In this case, we define the random field DL̄F = {DL̄
t,zF : (t, z) ∈ [0, T ]× R} as

DL̄
t,zF =

∞∑

n=1

nIL̄n−1(fn((t, z), ·)).

It is well known that DL̄ defines a linear and closed operator from L2(Ω,P) into

L2(Ω× [0, T ]× R;P⊗ µ), with dense domain D
1,2
L̄

.

On the other hand we define the divergence operator δL̄C in the following way.
If Y has the chaos decomposition

Y (t, z) =

∞∑

n=0

IL̄n (yn(t, z, ·)), (t, z) ∈ [0, T ]× R,

where yn ∈ L2
n+1 is a symmetric function in the last n variables, then δL̄C(Y ) is

defined as

δL̄C(Y ) =
∞∑

n=0

IL̄n+1(yn),

provided Y belongs to Dom
(
δL̄C

)
, that is,

∞∑

n=0

(n+ 1)!||yn||
2
L2

n+1

< ∞.
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It is well known that there is a duality relation between operators DL̄ and δL̄C

in the sense that if F ∈ D
1,2
L̄

and Y ∈ Dom
(
δL̄C

)
we have

E

[∫

[0,T ]

∫

R

Y (t, z)DL̄
t,zF dµ(t, z)

]
= E[δL̄C(Y )F ]. (3.4)

So, it can be deduced that δL̄C is also a linear and closed operator from L2(Ω ×

[0, T ]× R;P⊗ µ) into L2(Ω,P), with dense domain Dom
(
δL̄C

)
.

In order to go deeper in the Lévy problem we need to place our analysis on the
canonical space of Lévy processes. This will allow us to obtain probabilistic inter-
pretations of our gradient and divergence operators. We follow the construction
of the canonical Lévy space developed in [27].

We denote by (ΩB,FB,PB) the canonical space of the standard Brownian mo-
tion, that is, ΩB is the space of continuous functions on [0, T ], null at the origin,
with the topology of the uniform convergence on [0, T ], FB is the Borel σ−algebra
on ΩB and PB is the standard Wiener measure.

On the other hand, we denote by (ΩJ̄ ,FJ̄ ,PJ̄), the canonical space of a pure
jump Lévy process, with Lévy measure ν, as constructed in [27]. The space ΩJ̄ is
the space of finite or infinite sequences of pairs (t, z) ∈ [0, T ]× R0 such that for
any ǫ > 0, only a finite number of pairs satisfy |z| > ǫ.

Finally, we define the general canonical Lévy space on [0, T ] as

(Ω,F ,P) = (ΩB ⊗ ΩJ̄ ,FB ⊗FJ̄ ,PB ⊗ PJ̄),

where, for ω = (ω′, ω′′) ∈ ΩB ⊗ ΩJ̄ , the process

Xt(ω) = γt+ σBt(ω
′) + Jt(ω

′′), (3.5)

is a Lévy process with triplet (γ, σ2, ν).
Analogously, we can consider the following operators:

• OperatorsDB and δBC for functionals in L2(ΩB ,L
2(ΩJ̄ )) with measure dBt

on [0, T ], as introduced for example in [21]. Divergence operator can easily
be extended to process Y ∈ L2(Ω× [0, T ]× R,P⊗ µ) writing

δB̄C (Y ) := δBC (Y (·, 0)). (3.6)

• Operators DJ̄ and δJ̄C for functionals on L2(ΩJ̄ ,L
2(ΩB)) with measure

dJ̄(t, z) = z dÑ(t, z) on [0, T ]×R, as introduced in [27]. In fact in [27], J̄
is defined on [0, T ]× R0, but thanks to the factor z in the definition, it is
immediate to extend it to [0, T ]× R, by writing

δJ̄C(Y ) := δJ̄C(Y 11R0
). (3.7)

Now, we introduce the probabilistic interpretations of operators DL̄ and δL̄C .

The following results are also due to [27], and they establish how we can figure

out the random field DL̄F without using the chaos decomposition (3.2).

Let D1,2
B (L2(ΩJ̄ )) be the family of L2(ΩJ̄ ,FJ̄ ,PJ̄)–valued random variables that

are in the domain of the classical Malliavin derivative for Hilbert space valued
Gaussian random variables DB. The reader can consult [21] for the basic defini-
tions and properties of this operator. Let us recall now the construction of this
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space. We say that a random variable F is an L2(ΩJ̄)-valued smooth random
variable if it has the form

F = f(Bt1 , . . . , Btn)Z,

with ti ∈ [0, T ] for any i = 1, . . . n and f ∈ C∞
b (Rn) (i.e., f and all its partial

derivatives are bounded), and Z ∈ L2(ΩJ̄ ,FJ̄ ,PJ̄). The derivative of F with
respect to B, in the Malliavin calculus sense, is defined as

DBF =

n∑

i=1

∂f

∂zi
(Bt1 , . . . , Btn)Z1[0,ti].

It is easy to see that DB is a closable operator from L2(ΩB;L
2(ΩJ̄ )) into L2(ΩB ×

[0, T ];L2(ΩJ̄)). Thus we can introduce the space D
1,2
B (L2(ΩJ̄)) as the completion

of the L2(ΩJ̄)-valued smooth random variables with respect to the semi-norm

||F ||21,2,B = E

[
||F ||2L2(ΩJ̄ )

+ ||DBF ||2L2([0,T ]×ΩJ̄ ))

]
. (3.8)

Moreover, for ω = (ω′, ω′′), F ∈ L2(Ω) and (t, z) ∈ [0, T ]× R0, we define

(Ψt,zF )(ω) :=
F (ωz)− F (ω)

z
,

with ωz = (ω′, ω′′
z ) and ω′′

z = ((t, z), ω′′).
The following two lemmas, proved in [1], will be helpful for our purposes:

Lemma 3.3. Given F and G in L2(Ω) such that FG ∈ L2(Ω), and z 6= 0, we
have

Ψt,z(FG) = Ψt,zF ·G+ F ·Ψt,zG+ zΨt,zF ·Ψt.zG.

Lemma 3.4. Let F be a random variable in L2(Ω). Then F ∈ D
1,2
L̄

if and only if

F ∈ D
1,2
B (L2(ΩJ̄ )) and ΨF ∈ L2(Ω× [0, T ]× R0;P⊗ µ). In this case,

DL̄
t,zF = 11{0}(z)σ

−1DB
t F + 11R0

(z)Ψt,zF.

Remark 3.5. Let F ∈ D
1,2

L̄
.

• For z = 0, we have,

DL̄
t,0F = σ−1DB

t F = σ−1DB
t F, (3.9)

where the second equality comes from [21].
• For z 6= 0, we have

DL̄
t,zF = Ψt,zF = DJ̄

t,zF, (3.10)

where the second equality comes from [27].

Finally, we present the main result of this section:

Theorem 3.6. If Y ∈ Dom
(
δB̄C

)
∩ Dom

(
δJ̄C

)
, then Y ∈ Dom

(
δL̄C

)
⊆ L2(Ω ×

[0, T ]× R,P⊗ µ) and

δL̄C(Y ) = σδB̄C (Y ) + δJ̄C(Y ).

So, the Lévy problem is solved and true.
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Proof. Using the duality between operators D and δ we have, for any F ∈ D
1,2

L̄
,

E

[
FδL̄C(Y )

]

= E

[∫ T

0

∫

R

DL̄
t,z FY (t, z) dµ(t, z)

]

= E

[∫ T

0

∫

R

DL̄
t,zFY (t, z)σ2 dδ0(z) dt

]
+ E

[∫ T

0

∫

R

DL̄
t,zFY (t, z)z2 dν(z) dt

]

= E

[∫ T

0

DB
t F Y (t, 0)σ dt

]
+ E

[∫ T

0

∫

R

DJ̄
t,zF Y (t, z)z2 dν(z) dt

]

= E
[
FσδBC (Y (·, 0))

]
+ E

[
FδJ̄C(Y )

]

= E

[
FσδB̄C (Y )

]
+ E

[
FδJ̄C(Y )

]
.

�

In order to deal with processes Y defined on [0, T ], we have to restrict the domain

of the divergences δJ̄C and δL̄C . For this, consider the operatorsC
i, i = 1, 2, 3 defined

for any f ∈ L2([0, T ]× R) by:

C1(f) = ((t, z) → δ0(z) f(t, z)),

C2(f) = ((t, z) → z f(t, z)),

C3(f) = ((t, z) → C1(f)(t, z) + C2(f)(t, z)).

For f ∈ L2([0, T ]), we denote, for a sake of notational simplicity, C1(f)(t, z) =
δ0(z) f(t), C

2(f)(t, z) = z f(t) and C3(f) = C1(f) + C2(f).

Definition 3.7. Let Y be a random process on [0, T ].

• Y ∈ Dom
(
δBC
)
if and only if C1(Y ) ∈ Dom

(
δB̄C

)
and then we define

δBC (Y ) := δB̄C (C1(Y )).

• Y ∈ Dom
(
δJC
)
if and only if C2(Y ) ∈ Dom

(
δJ̄C

)
and then we define

δJC(Y ) := δJ̄C(C
2(Y )).

• Y ∈ Dom
(
δLC
)
if and only if C3(Y ) ∈ Dom

(
δL̄C

)
and then we define

δLC(Y ) := δL̄C(C
3(Y )).

Theorem 3.8. If Y ∈ Dom
(
δBC
)
∩ Dom

(
δJC
)
, then Y ∈ Dom

(
δLC
)
⊆ L2(Ω ×

[0, T ],P⊗ ℓ) and

δLC(Y ) = σδBC (Y ) + δJC(Y ).

So, the Lévy problem is solved and true.
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Proof. By Theorem 3.6,

δLC(Y ) = δL̄C(C
3(Y )) = σδB̄C (C3(Y )) + δJ̄C(C

3(Y ))

= σδBC (C3(Y )(·, 0)) + δJ̄C(C
3(Y )).

Notice that C3(Y )(t, z) 11R0
(z) = C2(Y )(t, z) 11R0

(z). Using relationships (3.6) and
(3.7) and Definition 3.7, we have:

δLC(u) = σδBC (C3(Y )(·, 0)) + δJ̄C(C
2(Y ))

δLC(u) = σδBC (Y ) + δJC(Y ),

which ends the proof. �

3.2. Integrals based on the S-transform. A stochastic integral with respect
to X can be defined by the use of the so-called S-transform. This integral will be
denoted by δXS . When X is a Brownian motion we refer to [4], when X is a pure
jumps process, we refer to [5]. Let us briefly explain the construction of such an
integral. For this, we make use of the notations of Section 2.

The main idea of this construction is to consider random processes in a weak
sense as an action on test functions. In order to reach a sufficiently wide class of
processes, we have to consider a relevant class of test functions. To do this, we
have to construct from the process {X̄(t, z), t ≥ 0, z ∈ R} an auxiliary two-sided

process { ˆ̄X(t, z), t ∈ R, z ∈ R} as follows

ˆ̄X(t, ·) =

{
X̄1(t, ·), if t ≥ 0

X̄2(−t−, ·), if t < 0

where X̄1 and X̄2 are two independent copies of X̄. The restriction to [0, T ] is
explained in Section 3.3.

In each setting, let Ξ be a subset of L2(R2). For any η ∈ Ξ, consider I
ˆ̄X
1 (η),

the multiple stochastic integral of order 1 with respect to ˆ̄X , defined in (3.1). It
is well known that its Wick exponential is given by

exp♦, ˆ̄X
(
I

ˆ̄X
1 (η)

)
=
∑

n≥0

1

n!
I

ˆ̄X
n (η⊗n).

Thus we can introduce the following transform:

Definition 3.9. For Y ∈ L2(Ω,P), the S-transform of Y associated to ˆ̄X , denoted

by S
ˆ̄X (Y ), is the integral transform defined for any η ∈ Ξ by

S
ˆ̄X (Y ) (η) = E

Q
ˆ̄X
η

[Y ] ,

where

dQ
ˆ̄X
η = exp♦, ˆ̄X

(
I

ˆ̄X
1 (η)

)
dP.

Remark 3.10. The Wick exponential of I
ˆ̄X
1 (η) coincides with the Doléans-Dade

exponential of I
ˆ̄X
1 (η).
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Definition 3.11 (Wick exponential in the Brownian setting [4]). In the Brownian
setting, we have Ξ = S(R2), the Schwartz space of smooth rapidly decreasing
functions on R2, and

exp♦, ˆ̄B
(
I
ˆ̄B
1 (η)

)
= exp

(
I

ˆ̄B
1 (η)−

||η(·, 0)||2L2(R)

2

)
.

Definition 3.12 (Wick exponential in the pure jumps setting [5]). In the pure
jump setting, we have

Ξ =

{
η ∈ S(R2) : ∀(t, z) ∈ R2, η(0, z) = 0, η(t, z) > −1,

∂

∂z
η(t, z)

∣∣∣∣
z=0

= 0

}
,

and

exp♦, ˆ̄J
(
I
ˆ̄J
1 (η)

)

= exp

[∫

R

∫

R

log(1 + η(t, z)) d ˆ̄J(t, z)−

∫

R

∫

R

η(t, z) z2 dν(z) dt

]
.

We are also able to define the Wick exponential for Lévy processes:

Definition 3.13 (Wick exponential in the Lévy setting). In the Lévy setting we
consider:

Ξ =

{
η ∈ S(R2) : ∀(t, z) ∈ R2, η(0, t) = 0, η(t, z) > −1,

∂

∂z
η(t, z)

∣∣∣∣
z=0

= 0

}
,

and for η ∈ Ξ we define

exp♦, ˆ̄L
(
I
ˆ̄L
1 (η)

)
=
∑

n≥0

1

n!
I
ˆ̄L
n (η

⊗n).

Theorem 3.14. For η ∈ Ξ, we have

exp♦, ˆ̄L
(
I
ˆ̄L
1 (η)

)
= exp♦, ˆ̄B

(
I

ˆ̄B
1 (η)

)
· exp♦, ˆ̄J

(
I
ˆ̄J
1 (η)

)
. (3.11)

Proof. Indeed,

I
ˆ̄L
1 (η) = I

ˆ̄B
1 (η) + I

ˆ̄J
1 (η).

And in virtue of the property of additivity of Doléans exponential (see for instance
[24, Theorem 38], we have,

exp♦, ˆ̄L
(
I
ˆ̄L
1 (η)

)
= exp♦, ˆ̄L

(
I

ˆ̄B
1 (η)

)
exp♦, ˆ̄L

(
I
ˆ̄J
1 (η)

)
.

Now, it is easily seen, since I
ˆ̄B
1 (η) = I

ˆ̄L
1 (C

1(η)) = I
ˆ̄L
1 (η δ0), that

exp♦, ˆ̄L
(
I

ˆ̄B
1 (η)

)
= exp♦, ˆ̄L

(
I
ˆ̄L
1 (η δ0)

)
=
∑

n≥0

1

n!
I
ˆ̄L
n ((η δ0)

⊗n) (3.12)

=
∑

n≥0

1

n!
I
ˆ̄L
n (η

⊗n (δ0)
⊗n) =

∑

n≥0

1

n!
I
ˆ̄B
n (η⊗n) = exp♦, ˆ̄B

(
I

ˆ̄B
1 (η)

)
. (3.13)
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By the same lines, it is easily seen, since I
ˆ̄J
1 (η) = I

ˆ̄L
1 (C

2(η)), that

exp♦, ˆ̄L
(
I
ˆ̄J
1 (η)

)
= exp♦, ˆ̄L

(
I
ˆ̄L
1 (C

2(η))
)
= exp♦, ˆ̄J

(
I
ˆ̄J
1 (η)

)
,

which ends the proof of (3.11). �

The following theorem is the result which makes the machinery relevant to
define an integral. In fact it tells us that a process is perfectly described by its
S-transform.

Theorem 3.15. Let X = B, J, L. If S
ˆ̄X (Y1) (η) = S

ˆ̄X (Y2) (η) for all η ∈ Ξ, then
Y1 = Y2.

Proof. For the Brownian setting the proof can be found in [4, Theorem 2.2, page
958], for the pure jump setting, the proof is in [5, Proposition 3.4, page 504].
Finally, in the Lévy setting, the proof is strictly the same as in the pure jump
case. �

In the following we denote dπ
ˆ̄B = dδ0 and dπ

ˆ̄J (z) = z2 dν(z).

Definition 3.16. Consider X = B, J and Y a random field. The Hitsuda-

Skorohod integral of Y with respect to ˆ̄X exists if there exists Φ ∈ L2(Ω) such
that for all η ∈ Ξ,

S
ˆ̄X (Φ) (η) =

∫

R

∫

R

S
ˆ̄X (Y (t, z)) (η) η(t, z) dπ

ˆ̄X(z) dt.

In this case Y ∈ Dom
(
δ

ˆ̄X
S

)
and thanks to Theorem 3.15, Φ is unique and is

denoted by δ
ˆ̄X
S (Y ).

This is Definition 3.1 together with the remark at the beginning of Section 3.2
of [4] for X = B and Definition 3.7 together with Remark 3.9 of [5] for X = J .

Theorem 3.17. Let X = B, J and Y a predictable random field satisfying

E

[∫

R

∫

R

|Y (t, z)|2 dπ
ˆ̄X(z) dt

]
< ∞. (3.14)

Then Y ∈ Dom
(
δ
ˆ̄X
S

)
.

Proof. See Theorem 3.1 in [4] for B and Theorem 3.5 in [5] for J . �

Denote dπ
ˆ̄L = dρ.

Definition 3.18. Consider Y a random field. The Hitsuda-Skorohod integral of

Y with respect to ˆ̄L exists if there exists Φ ∈ L2(Ω) such that for all η ∈ Ξ,

S
ˆ̄L (Φ) (η) =

∫

R

∫

R

S
ˆ̄L (Y (t, z)) (η) η(t, z) dπ

ˆ̄L(z) dt.

In this case Y ∈ Dom
(
δ
ˆ̄L
S

)
and thanks to Theorem 3.15, Φ is unique and is

denoted by δ
ˆ̄L
S (Y ).
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Theorem 3.19. Let Y be a predictable random field satisfying

E

[∫

R

∫

R

|Y (t, z)|2 dπ
ˆ̄L(z) dt

]
< ∞. (3.15)

Then Y ∈ Dom
(
δ
ˆ̄L
S

)
.

Proof. Recall that dρ(z) = σ2 dδ0(z) + z2 dν(z). Thus (3.15) implies (3.14) with
X = B and X = J . Moreover Y being predictable, this implies, by Theorem 3.17,

that Y ∈ Dom
(
δ
ˆ̄B
S

)
and Y ∈ Dom

(
δ
ˆ̄J
S

)
. �

Theorem 3.20. Let Y be a predictable random field satisfying (3.15). Then

S
ˆ̄L
(
δ
ˆ̄L
S (Y )

)
(η) = S

ˆ̄B
(
δ
ˆ̄B
S (Y )

)
(η) + S

ˆ̄J
(
δ
ˆ̄J
S(Y )

)
(η). (3.16)

Proof. Let η ∈ Ξ. As dπ
ˆ̄L = dπ

ˆ̄B + dπ
ˆ̄J , to prove the result it is enough to show

that, for any t ∈ R,
∫

R

S
ˆ̄L (Y (t, z)) (η) η(t, z) dπ

ˆ̄B(z) =

∫

R

S
ˆ̄B (Y (t, z)) (η) η(t, z) dπ

ˆ̄B(z), (3.17)

=

∫

R

S
ˆ̄J (Y (t, z)) (η) η(t, z) dπ

ˆ̄J (z). (3.18)

Let us prove (3.17). Note that the reasoning is the same for (3.18). Using Fubini
Theorem repeatedly, we have
∫

R

S
ˆ̄L (Y (t, z)) (η)η(t, z) dπ

ˆ̄B(z) =

∫

R

E

[
exp♦, ˆ̄L

(
I
ˆ̄L
1 (η)

)
Y (t, z)

]
η(t, z) dπ

ˆ̄B(z)

= E

[∫

R

exp♦, ˆ̄L
(
I
ˆ̄L
1 (η)

)
Y (t, z)η(t, z) dπ

ˆ̄B(z)

]

= E

[∫

R

exp♦, ˆ̄L
(
I
ˆ̄L
1 (ηδ0)

)
Y (t, z)η(t, z) dπ

ˆ̄B(z)

]
.

And in virtue of (3.13), we have

E

[∫

R

exp♦, ˆ̄L
(
I
ˆ̄L
1 (ηδ0)

)
Y (t, z) η(t, z) dπ

ˆ̄B(z)

]

= E

[∫

R

exp♦, ˆ̄B
(
I
ˆ̄B
1 (η)

)
Y (t, z) η(t, z) dπ

ˆ̄B(z)

]
,

and the result follows. �

3.3. Links between these two approaches. First of all, notice that, thanks
to a well known property of S-transform (see [4] and [5]), we can restrict ourselves
to integrals on [0, T ] noticing that

∫ T

0

∫

R

S
ˆ̄X (Y (t, z)) (η)

∂

∂ t
S

ˆ̄X
(
ˆ̄X(t, z)

)
(η) dπ

ˆ̄X(z) dt

=

∫ T

0

∫

R

SX̄ (Y (t, z)) (η)
∂

∂ t
SX̄

(
X̄(t, z)

)
(η) dπX̄(z) dt. (3.19)
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In the sequel, we focus on this integral on [0, T ] and denote it by δX̄S (Y ). The

domain of δX̄S , denoted by Dom
(
δX̄S

)
, is the set of random processes satisfying

E

[∫ T

0

∫

R

|Y (t, z)|2 dπX̄(z) dt

]
< ∞.

Theorem 3.21. • If Y belongs to Dom
(
δB̄C

)
, then Y ∈ Dom

(
δB̄S

)
and

δB̄C (Y ) = δB̄S (Y ).

• If Y belongs to Dom
(
δJ̄C

)
, then Y ∈ Dom

(
δJ̄S

)
and δJ̄C(Y ) = δJ̄S(Y ).

• If Y belongs to Dom
(
δL̄C

)
, then Y ∈ Dom

(
δL̄S

)
and δL̄C(Y ) = δL̄S (Y ).

Proof. Let us prove the third point. Consider Y ∈ Dom
(
δL̄C

)
. Then there exist

functions yn, such that

Y (t, z) =
∑

n≥0

IL̄n (yn(·, (t, z))).

By linearity, we can restrict our attention to the case Y (t, z) = IL̄n (yn(·, (t, z))) for
fixed n. Thus

δL̄C(Y ) = IL̄n+1(ỹn).

Now, we have for any η ∈ Ξ,

SL̄
(
δL̄C(Y )

)
(η) = E


IL̄n+1(ỹn)

∑

j≥0

1

j!
IL̄j (η

⊗j)


 (3.20)

=
1

(n+ 1)!
E

[
IL̄n+1(ỹn) I

L̄
n+1(η

⊗(n+1))
]

=
〈
ỹn, η

⊗(n+1)
〉
L2

n+1

.

Now, by the very definition of δL̄S (Y ) we have:

SL̄
(
δL̄S (Y )

)
(η) =

∫ T

0

∫

R

SL̄
(
IL̄n (yn(·, (t, z))

)
(η) η(t, z) dµ(t, z) (3.21)

=

∫ T

0

∫

R

1

n!
E

[
IL̄n (yn(·, (t, z))) I

L̄
n (η

⊗n)
]
η(t, z) dµ(t, z)

=

∫ T

0

∫

R

〈
yn(·, (t, z)), η

⊗n
〉
L2

n

η(t, z) dµ(t, z)

=
〈
yn, η

⊗(n+1)
〉
L2

n+1

.

Noticing that η⊗(n+1) is a symmetric function, we have

SL̄
(
δL̄C(Y )

)
(η) = SL̄

(
δL̄S (Y )

)
(η),
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for any η ∈ Ξ. So, the result is shown in virtue of Theorem 3.15. Moreover equality

(3.20) and (3.21) prove that Y ∈ Dom
(
δL̄C

)
implies Y ∈ Dom

(
δL̄S

)
. The proofs of

the other points are similar, replacing dµ(t, z) by dℓ(t) ⊗ dδ0(z) in the Brownian
setting, and by dℓ(t)⊗ z2 dν(z) in the pure jump setting. �

Definition 3.22. Let Y a random process on [0, T ].

• Y ∈ Dom
(
δBS
)
if C1(Y ) ∈ Dom

(
δB̄S

)
and δBS (Y ) = δB̄S (C1(Y )).

• Y ∈ Dom
(
δJS
)
if C2(Y ) ∈ Dom

(
δJ̄S

)
and δJS(Y ) = δJ̄S(C

2(Y )).

• Y ∈ Dom
(
δLS
)
if C3(Y ) ∈ Dom

(
δL̄S

)
and δLS (Y ) = δL̄S (C

3(Y )).

Theorem 3.23. • If Y belongs to Dom
(
δBC
)
, then Y ∈ Dom

(
δBS
)
and

δBC (Y ) = δBS (Y ).
• If Y belongs to Dom

(
δJC
)
, then Y ∈ Dom

(
δJS
)
and δJC(Y ) = δJS(Y ).

• If Y belongs to Dom
(
δLC
)
, then Y ∈ Dom

(
δLS
)
and δLC(Y ) = δLS (Y ).

Proof. It is an immediate consequence of the previous theorem and definitions. �

3.4. The Lévy–Itô problem.

Theorem 3.24. The Lévy problem is solved and true. Indeed,

• for any process Y ∈ Dom
(
δB̄C

)
∩ Dom

(
δJ̄C

)
, we have Y ∈ Dom

(
δL̄C

)
⊆

Dom
(
δL̄S

)
⊆ L2(Ω× [0, T ]× R) and

δL̄S (Y ) = δB̄S (Y ) + δJ̄S(Y ), (3.22)

• for any process Y ∈ Dom
(
δBC
)
∩ Dom

(
δJC
)
, we have Y ∈ Dom

(
δLC
)
⊆

Dom
(
δLS
)
⊆ L2(Ω× [0, T ]) and

δLS (Y ) = σδBS (Y ) + δJS(Y ). (3.23)

Proof. Theorem 3.6 tells us that

δL̄C(Y ) = δB̄C (Y ) + δJ̄C(Y ),

and Theorem 3.21 insures that we can replace in each integral the subscript C by
subscript S. So, the first result follows. The second one follows exactly the same
lines by means of Theorem 3.8. �

3.5. The complete Lévy–Itô problem. It is easily seen that, whatever the
setting (Brownian, pure jump and Lévy), the complete Lévy–Itô problem is true
if and only if u is deterministic.

4. Stochastic Integrals with Respect to Filtered Processes.

4.1. Intrinsic definitions for the filtered Brownian motion. The filtered
Brownian motion introduced in Section 2.4, is an isonormal Gaussian process. In
fact, for any (s, t) ∈ [0, T ]2, we have

E
[
Bk

t B
k
s

]
=

∫ t∧s

0

k(s, u) k(t, u) du = 〈k(s, ·), k(t, ·)〉L2([0,T ]) .
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Thus, following a similar construction to the construction in Section 3.1, it is
possible to define an intrinsic integral by means of chaos decomposition, denoted

by δ
B,k
C . We refer to [21] for details.

4.2. By the use of the S-transform. In this section, X denotes B, J or L

and X̄ denotes B̄, J̄ or L̄. For details on the construction of the integral by the
use of S-transform, we refer to [4], for X = B, or [5], for X̄ = J̄ . Consider
Y ∈ L2([0, T ]× R), then

SX̄

(∫ T

0

∫

R

Y (s, z) dX̄(s, z)

)
(η) =

∫ T

0

∫

R

SX̄ (Y (s, z)) (η) η(s, z) dπX̄(z) ds.

Now taking Y (s, z) = 11[0,t](s)11A(z), we have

SX̄
(
X̄([0, t]×A)

)
(η) =

∫ T

0

∫

R

11[0,t](s)11A(z) η(s, z) dπ
X̄(z) ds.

=

∫ t

0

∫

A

η(s, z) dπX̄(z) ds.

Hence, we can write, in a suggestive notation,

SX̄
(
X̄(dt, dz)

)
(η) = η(t, z) dπX̄(z),

and thus for any Y ∈ Dom
(
δX̄S

)
predictable, we have

SX̄
(
δX̄S (Y )

)
(η) =

∫ T

0

∫

R

SX̄ (Y (s, z)) (η) SX̄
(
X̄(dt, dz)

)
(η) ds.

Definition 4.1. For X̄ = B̄, J̄ , L̄, assume Hypothesis 4.2 is fulfilled. Let Y a
measurable random field in L2(Ω×[0, T ]×R). Y is said to have a Hitsuda-Skorohod
integral with respect to X̄k if

• for any η ∈ Ξ:

t →

∫

R

SX̄ (Y (t, z)) (η) SX̄
(
X̄k(dt, dz)

)
(η) ∈ L1([0, T ]),

• and there is a Φ ∈ L2(Ω) such that for any η ∈ Ξ:

SX̄ (Φ) (η) =

∫ T

0

∫

R

SX̄ (Y (t, z)) (η)
∂

∂ t
SX̄

(
X̄k(dt, dz)

)
(η) dt. (4.1)

By Theorem 3.15, Φ is unique and is denoted δ
X̄,k
S (Y ), and its domain is denoted

by Dom
(
δ
X̄,k
S

)
.

Now, restrict ourselves to stochastic processes. To do so, the following assump-
tion has to be fulfilled. In [5], assumptions on the kernel, that guarantees that
hypothesis is fulfilled, are given.

Hypothesis 4.2. The mapping

t →
d

dt
SX̄

(
Xk

t

)
(η),

exists for every η ∈ Ξ.
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Definition 4.3. For X = B, J, L, assume Hypothesis 4.2 fulfilled. Let Y a mea-
surable stochastic process in L2(Ω× [0, T ]). Y is said to have a Hitsuda-Skorohod

integral with respect to Xk if

• Ci(Y ) ∈ Dom
(
δ
X̄,k
S

)
,

• for any Y ∈ Dom
(
δ
X,k
S

)
, δ

X,k
S (Y ) = δ

X̄,k
S (Ci(Y )),

where i = 1 for X = B, i = 2 for X = J and i = 3 for X = L.

4.3. By the use of an operator. Another more direct approach is to follow
[11], [12] or [10] and to use a linear operator K∗ which allows us to define an
integral with respect the filtered process by the mean of an integral with respect
to the underlying process. For this approach, the following hypothesis has to be
fulfilled.

Hypothesis 4.4. The kernel k : [0, T ]2 → R is a triangular deterministic function,
that is, k(t, s) = 0 for all 0 ≤ t < s ≤ T.

Theorem 4.5. There exists an operator K∗ : L2([0, T ]) → L2([0, T ]) linear and

continuous, satisfying for any t ∈ [0, T ],

K∗(11[0,t]) = k(t, ·). (4.2)

Remark 4.6. Assumption 4.4 ensures, by equation (4.2) that K∗(11[0,t]) is null for
all 0 ≤ t < s ≤ T and thus ensures that the processes constructed by means of the
operator K∗ are càdlàg.

Proof. Let us sketch the proof. Details are given in [11] and [12]. Introduce the
following operator K:

K : L2([0, T ]) → L2([0, T ])

f →
∫ T

0 k(·, s)f(s) ds.

It is known that K is a continuous operator from L2([0, T ]) into L2([0, T ]). Its
adjoint is given by

K∗ : L2([0, T ]) → L2([0, T ])

f →
∫ T

0
k(s, ·)f(s) ds.

Consider now the operator:

ITT− : L2([0, T ]) → L2([0, T ])

f →
∫ T

.
f(s) ds.

ITT− is continuous from L2([0, T ]) into L2([0, T ]), moreover, its adjoint is given by:

IT0+ : L2([0, T ]) → L2([0, T ])
f →

∫ .

0 f(s) ds.

Finally, we define the operator:

K∗ : L2([0, T ]) → L2([0, T ])
f → K∗ ◦ [ITT−

]−1(f).
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K∗ is linear and continuous from L2([0, T ]) to L2([0, T ]).
Formally, we have, for all f ∈ L2([0, T ]):

∫ T

0

K∗(δt)(s)f(s) ds = K(f)(t) =

∫ T

0

k(t, s)f(s) ds,

which shows that

K∗(δt) = k(t, ·).

On the other hand, we have:

ITT−(δt) = 11[0,t],

and (4.2) follows. �

Theorem 4.7. For any f ∈ L2([0, T ]), locally bounded, we have
∫ t

0

f(s) dJk
s =

∫ t

0

∫

R0

K∗(f)(s) dJs, ∀t ∈ [0, T ], (4.3)

∫ t

0

f(s) dBk
s =

∫ t

0

K∗(f)(s) dBs, ∀t ∈ [0, T ], (4.4)

where the integral in (4.3) has to be understood in the Stieltjes’s sense and the

integral (4.4) in the Wiener’s way.

Let the vector space Ik, that is, the closure of I, be the vector space generated

by functions {11[0,t] : t ∈ [0, T ]}, with respect to the following inner product:
〈
11[0,t], 11[0,s]

〉
Ik = 〈k(t, ·), k(s, ·)〉L2([0,T ]) .

Then K∗ is an isometry from Ik into L2([0, T ]), and for any f ∈ Ik, g ∈ Ik we

have:

E

[∫ T

0

f(s) dJk
s .

∫ T

0

g(s) dJk
s

]
= 〈f, g〉Ik , (4.5)

E

[∫ T

0

f(s) dBk
s .

∫ T

0

g(s) dBk
s

]
= 〈f, g〉Ik . (4.6)

Proof. Obviously, we have, for any t ∈ [0, T ],

Jk
t =

∫ T

0

11[0,t](s) dJ
k
s ,

and by the very definition of Jk, for any t ∈ [0, T ],

Jk
t =

∫ T

0

k(t, s) dJs =

∫ T

0

K∗(11[0,t])(s) dJs,

thus, for any t ∈ [0, T ],
∫ T

0

11[0,t](s) dJ
k
s =

∫ T

0

K∗(11[0,t])(s) dJs.

Relation (4.3) is true for any function of I thus, by a continuity argument, it is
true for any deterministic function of L2([0, T ]).
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Let 11[0,t] ∈ I, we have:

||11[0,t]||Ik = ||k(t, ·)||L2([0,T ]) = ||K∗(11[0,t])||L2([0,T ]).

The isometry is verified for the elements of I and by a limit procedure, using that
K∗ is continuous, the result holds. The same arguments hold replacing J by B.
Finally,

E

[∫ T

0

f(s) dJk
s .

∫ T

0

g(s) dJk
s

]
= E

[∫ T

0

K∗(f)(s) dJs.

∫ T

0

∫

R0

K∗(g)(s) dJs

]

= 〈K∗(f),K∗(g)〉L2([0,T ]) (4.7)

= 〈f, g〉Ik ,

where (4.7) comes from the Itô isometry for deterministic integrands and jumps
processes. The same arguments hold replacing dJ by dB evoking in (4.7) the Itô
isometry for Wiener integrals. �

Theorem 4.8. The operator K∗ verifies, for any locally bounded f ∈ L2([0, T ]),
∫ t

0

f(s) dLk
s =

∫ t

0

K∗(f)(s) dLs, ∀t ∈ [0, T ]. (4.8)

For any f and g in Ik, define the inner product

〈f, g〉Ik,L := (1 + σ2) 〈f, g〉Ik ,

and let Ik,L be the closure of I with respect to this inner product. Then K∗ is an

isometry from Ik,L into L2([0, T ]) and for any f ∈ Ik,L, g ∈ Ik,L we have:

E

[∫ T

0

f(s) dLk
s .

∫ T

0

g(s) dLk
s

]
= 〈f, g〉Ik,L .

Proof. For any t ∈ [0, T ],

Lk
t =

∫ T

0

11[0,t](s) dL
k
s ,

The very definition of K∗ applied to f = I[0,t] and the definition of Lk, yield that,
for any t ∈ [0, T ], we have

Lk
t =

∫ T

0

k(t, s) dLs =

∫ T

0

K∗(11[0,t])(s) dLs.

Thus, for any t ∈ [0, T ],
∫ T

0

11[0,t](s) dL
k
s =

∫ T

0

K∗(11[0,t])(s) dLs.

Relation (4.8) is true for any function of I, thus, by a continuity argument, it is
true for any deterministic function of L2([0, T ]). Finally, for f ∈ Ik,L and g ∈ Ik,L,

E

[∫ T

0

f(s) dLk
s .

∫ T

0

g(s) dLk
s

]
= E

[∫ T

0

K∗(f)(s) dLs.

∫ T

0

K∗(g)(s) dLs

]
.
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Now, by independence of B and J , this writes:

E

[∫ T

0

f(s) dLk
s .

∫ T

0

g(s) dLk
s

]

= σ2E

[∫ T

0

K∗(f)(s) dBs.

∫ T

0

K∗(g)(s) dBs

]

+ E

[∫ T

0

K∗(f)(s) dJs.

∫ T

0

K∗(g)(s) dJs

]

= σ2E

[∫ T

0

f(s) dBk
s .

∫ T

0

g(s) dBk
s

]
+ E

[∫ T

0

f(s) dJk
s .

∫ T

0

g(s) dJk
s

]
.

Finally, relation (4.5) and (4.6) enable us to write:

E

[∫ T

0

f(s) dLk
s .

∫ T

0

g(s) dLk
s

]
= (1 + σ2) 〈f, g〉Ik = 〈f, g〉Ik,L .

�

Definition 4.9. For I = C, S, to define the integral with respect to the filtered

process associated to X = B, J, L, it is enough to say that Y ∈ Dom
(
δ
X,K∗

I

)
if

and only if K∗(Y ) ∈ Dom
(
δXI
)
and δ

X,K∗

I (Y ) := δXI (K∗(Y )).

4.4. A relationship between these integrals.

Theorem 4.10.

• Dom
(
δ
B,k
C

)
= Dom

(
δ
B,K∗

C

)
,

• For all Y ∈ Dom
(
δ
B,K∗

C

)
, δ

B,k
C (Y ) = δ

B,K∗

C (Y ).

Proof. See [21] Proposition 5.2.2, page 288. �

Theorem 4.11. For X = B, J, L, and for all Y ∈ Dom
(
δ
X,K∗

C

)
,

δ
X,K∗

C (Y ) = δ
X,K∗

S (Y ).

Proof. By definition, for X = B, J, L

δ
X,K∗

I (Y ) = δXI (K∗(Y )), I = C, S,

the proof is thus an obvious consequence of Theorem 3.23. �

Finally, it remains to prove the following result:

Theorem 4.12. For X = B, J, L, Dom
(
δ
X,K∗

S

)
= Dom

(
δ
X,k
S

)
and for all Y ∈

Dom
(
δ
X,k
S

)
, δ

X,K∗

S (Y ) = δ
X,k
S (Y ).
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Proof. We give the proof for X = L. It is exactly the same in the other cases. Let
Y = Fh with F ∈ L2(Ω) and h ∈ L2([0, T ]). To prove the theorem, it is enough
to show that, for any η ∈ Ξ,

SL̄
(
δ
L,K∗

S (Y )
)
(η) = SL̄

(
δ
L,k
S (Y )

)
(η).

By the very definition of integrals by means of the S-transform (relations (3.19)
and (4.1)), we have :

SL̄
(
δLS (K

∗(Y ))
)
(η) =

∫ T

0

SL̄ (K∗(Y )(t)) (η)
d

dt
SL̄ (L(t)) (η) dt,

SL̄
(
δ
L,k
S (Y )

)
(η) =

∫ T

0

SL̄ (Y (t)) (η)
d

dt
SL̄
(
Lk(t)

)
(η) dt.

The particular form of u allows us to write:

SL̄ (Y (t)) (η) = EQL̄
η
[Y (t)] = h(t)EQL̄

η
[F ] , (4.9)

SL̄ (K∗(Y )(t)) (η) = EQL̄
η
[K∗(Y )(t)] = K∗(h)(t)EQL̄

η
[F ] ,

thus, it remains to show that, for any η ∈ Ξ,
∫ T

0

h(t)
d

dt
SL̄
(
Lk(t)

)
(η) dt =

∫ T

0

K∗(h)(t)
d

dt
SL̄ (L(t)) (η) dt. (4.10)

Now, we have

SL̄
(
Lk(t)

)
(η) = SL̄

(
δLS (k(t, ·))

)
=

∫ T

0

SL̄ (k(t, s)) (η)
d

ds
SL̄ (L(s)) (η) ds,

but for deterministic k, it comes from (4.9) that SL̄ (k(t, s)) (η) = k(t, s), which
yields to

SL̄
(
Lk(t)

)
(η) = SL̄

(
δLS (k(t, ·))

)
=

∫ T

0

k(t, s)
d

ds
SL̄ (L(s)) (η) ds.

Let us point out that, for a differentiable function f such that f(0) = 0,

d

ds
f =

[
IT0+
]−1

(f).

All the processes X, defined in this work, are assumed to verify X(0) = 0. Then
we can write, for any t ∈ [0, T ]:

d

ds
SL̄ (L(t)) (η) =

[
IT0+
]−1

(SL̄ (L(t)) (η)),

thus

SL̄
(
Lk(t)

)
(η) = K ◦

[
IT0+
]−1

(SL̄ (L(t)) (η)),

finally,

d

ds
SL̄
(
Lk(t)

)
(η) =

[
IT0+
]−1

◦K ◦
[
IT0+
]−1

(SL̄ (L(t)) (η)).
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Thus, noticing that the dual of IT0+ is ITT−
, we have

∫ T

0

h(t)
d

ds
SL̄
(
LK(t)

)
(η) dt =

〈
h,

d

ds
SL̄
(
LK(·)

)
(η)

〉

L2([0,T ])

=
〈
h,
[
IT0+
]−1

◦K ◦
[
IT0+
]−1

(SL̄ (L(·)) (η))
〉
L2([0,T ])

=
〈
K∗ ◦

[
ITT−

]−1
h,
[
IT0+
]−1

(SL̄ (L(·)) (η))
〉
L2([0,T ])

=
〈
K∗(h),

[
IT0+
]−1

(SL̄ (L(·)) (η))
〉
L2([0,T ])

,

which is exactly the relation (4.10). This ends the proof for simple processes. The
theorem remains true for any process by a limiting procedure. �

4.5. Lévy–Itô problem for filtered processes.

Theorem 4.13. • For any Y ∈ Dom
(
δ
L,K∗

C

)
, δ

L,K∗

C (u) = δ
B,K∗

C (Y ) +

δ
J,K∗

C (Y ).

• For any Y ∈ Dom
(
δ
L,K∗

S

)
, δ

L,K∗

S (u) = δ
B,K∗

S (Y ) + δ
J,K∗

S (Y ).

• For any Y ∈ Dom
(
δ
L,k
S

)
, δ

L,k
S (u) = δ

B,k
S (Y ) + δ

J,k
S (Y ).

Proof. The proof of the first two statements is nothing but an application of The-
orems 3.6 and 3.24 to K∗(u). The third statement is a consequence of the second
statement and Theorem 4.12. �

4.6. The complete Lévy–Itô problem. The filtered process and its underlying
process have the same filtration. See [12] for Brownian motion and [11] for Poisson
process. The proof can be easily extended to the general Lévy case. Thus the
remark of Section 3.5 extends to filtered processes.
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applications. Stochastics An International Journal of Probability and Stochastic Processes,
86, (2013), no. 4, 551–572.

18. Lewis, P. A. W.: A branching Poisson process model for the analysis of computer failure
patterns (with discussion). J. Roy. Statist. Soc. Ser. B 26, (1964), 398–456.

19. Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian motions, fractional noises and
applications. SIAM Rev. 10 (1968), 422–437.

20. Mishura, Y. S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes.
Lecture Notes in Mathematics 1929, Springer-Verlag, Berlin, Heidelberg, 2008.

21. Nualart, D.: The Malliavin Calculus and Related Topics, Second edition, Springer-Verlag,
Berlin, 2006.

22. Nualart, D. and Vives, J.: Anticipative calculus for the Poisson process based on the Fock
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