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Abstract: The Hubbard model is very important for the study of of magnetic phenomena and
strongly correlated electron systems. This work serves as an introduction to the Hubbard model
and a presentation of the elements necessary to reach it. Here it is applied to a simple case to see
how you work with it.

I. INTRODUCTION

John Hubbard, at the beginning of 1960, proposed in
a series of articles a model to describe electrons in transi-
tion metal monoxides and electron correlation in narrow
energy bands. Due to the complexity of the study of these
systems given the vast amount of bounds and continuum
electron energy levels, Hubbard proposed to reduce the
study to a single localized orbital level per site. This
model opens the door to study the interactions between
electrons, giving rise to insulating, magnetic, and even
novel superconducting effects in a solid.

But before talking about the Hubbard model it is nec-
essary to introduce Bloch’s theorem used for delocalised
studies.

II. THE BLOCH’S THEOREM

A. Schrödinger’s equation

To describe the steady states of all the particles of a
solid we use Schrödinger’s equation

HΨ = EΨ (1)

where H is the hamiltonian of the solid, Ψ is the wave
function of the steady state and E is the energy of the
solid in this state.

The Hamiltonian is the sum of the operators of kinetic
energy and potential energy.

H = K + U, K = Ke +Kn, U = Uee + Unn + Uen

(2)

Ke and Ki are the kinetic operators for the electrons
and ions respectively. Uee, Uii, Uei are the potential oper-
ators for interactions between electrons, ions and electron
and ion.

Due to the number of variables that we have in the
equation, it is necessary to make some approximations.

1. Valence approximation. We assume that the elec-
trons in the inner layers are attached to the nucleus
forming an ion. Therefore we only take into account
the most external electrons, the valence electrons,
to work with the solid Hamiltonian.

Kn ≈ Ki, Unn ≈ Uii, Uen ≈ Uei

2. Born-Oppenheimer approximation: We assume
that the ions in their equilibrium position are at
rest. We can do this approximation because the
mass of the ions is larger than the mass of the elec-
trons, therefore the speed of the electrons will be
much greater than that of the ions.

Ki ≈ 0, Uii ≈constant (negligible), Uei ≈ U0
ei

3. Independent electron approximation: We approxi-
mate the interaction energy as the sum of the in-
teraction energies of the valence electrons.

Uee + U0
ei ≈

∑
i

(Ui(ri) +Wi(ri)) =
∑
i

Vi(ri) (3)

Ui(ri) is the average potential energy created by
the ions on the electron i and Wi(ri) is the inter-
action energy of the electron i with the effective
field created by the rest of electrons, in which each
electron moves independently.

With all these approaches the Hamiltonian of the solid
has been reduced to the Hamiltonian for the valence elec-
trons in the solid, as seen as independent particles. From
now on, H is understood in this sense.

H =
∑
j

Hj =
∑
j

Kj + Vj =

∑
j

− ~2

2m
∇2
j + (Uj(rj) +Wj(rj)) =

∑
j

hj (4)

The solution to the Schrödinger’s equation associated
with this Hamiltonian can be writen as an antisym-
metrized product of monoelectric wave functions ϕi(ri),
where Φ = ϕ1(r1)ϕ2(r2)...ϕN (rN )

hiϕi = εiϕi (5)

The Hamiltonian is independent of spin. The solutions
of H give us the part of the space of the wave function.
The function of the electron will be ϕ⊗ σ where σ is the
spin. To refer to the spatial part we use ϕ and to refer
to the function of the electron considering also the spin
we use Φ.

The energy of the solid is the sum of all εi, E =
∑
i εi.
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B. Bloch functions

To find the Bloch functions it is necessary to solve (5).
We must bear in mind that if the ionic nuclei are dis-

tributed periodically and regularly we can assume that
the potential V (r) has the periodicity of the Bravais lat-
tice. Therefore we can develop V (r) in Fourier series

V (r) =
∑
G

VGe
iG·r

VG =
1

Vc

∫
cell

V (r)e−iG·rdr

(6)

Where G are the vectors of the reciprocal lattice and Vc
is the volume of the cell.

Since V (r) has the periodicity of the Bravais lattice,
the probability density of the stationary states must also
have this probability. The wave functions associated with
these states that meet this condition are of the form:

ϕ(r) = eif(r)u(r) (7)

u(r) have the periodicity of the lattice and f(r+R) =
f(r) + f(R), where f(R) = k ·R. This

k =

3∑
i=1

ni
Ni

bi (8)

is a constant vector where bi are the vectors of the base
of the reciprocal lattice and Ni are the numbers of cells
of the direct lattice in the direction i.

Bloch’s theorem says that the value of a Bloch func-
tion subjected to a translation R in the lattice of Bravais
differs in a phase eik·R. The probability density is a real
value.

ϕ(r + R) = eif(r+R)u(r + R) =

eif(R)eif(r)u(r) = eif(R)ϕ(r) = eik·Rϕ(r)

(9)

The Bloch functions are

ϕ(k, r) = eik·ru(r) (10)

III. WANNIER FUCTIONS

The Bloch functions are periodic in k-space. Therefore
they have a Fourier series in plane waves in the reciprocal
of the reciprocal space, that is in the direct space. ϕn can
be written like this:

ϕn(k, r) =
1√
N

∑
j

Wn(Rj , r)eik·Rj , (11)

The functions Wn(Rj , r) are the Wannier functions.
They can be calculated from the Bloch functions

Wn(Rj , r) =
1√
N

∑
k

ϕn(k, r)e−ik·Rj (12)

The summation is over all k-vectors in a Brillouin zone.
Each Wannier function is centered at the midpoint

of the cell. In addition, Wannier functions form an or-
thonormal complete basis∫

W ∗n(Ri, r)Wm(Rj , r)dr =

1

N

∑
kk′

eik·Ri−ik′·Rj

∫
ϕ∗n(k, r)ϕm(k′, r)dr =

1

N

∑
k

eik·(Ri−Rj)δnm = δnmδij (13)

As it is a complete base

I =
∑
i

|Wn(Ri, r)〉〈Wn(Ri, r)| (14)

Therefore we can say that Wannier functions are lo-
calized orthonormal functions about individual points in
the lattice. In other hand, Bloch functions are extended
functions. The transformation between both functions is
a unitary transformation, i.e. the Hilbert space gener-
ated by both is the same. Thanks to this we can work
with one or other according to our needs.

The Wannier functions are a great tool to work in sit-
uations where the spatial position of electrons plays an
important role. The most important areas of aplication
are:

1. Attempst to derive a transport theory for Bloch
electrons.

2. Phenomena involving localized electronic levels.

3. Magnetic phenomena.

Since the Wannier functions are located on the lat-
tice knots, they can be writen as a linear combination
of atomic functions. As we only take into account the
valence electrons of each atom, we can assume that of-
ten each Wannier function can be approximated by an
atomic function or an especific linear combination of
(quasi-)degenerated atomic functions determined by the
atoms with which we are working. For example if we are
studying a copper lattice the Wannier function could be
W ∼ χ3dx2−y2 .

When approximate Wannier functions by atomic func-
tions we lose the property of orthogonality between Wan-
nier functions centered on different cells because the
atomic functions can overlap with the functions of the
neighboring atoms (and the atomic functions are not or-
thogonal unlike the Wannier functions) as we can see in
Fig.(1).
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FIG. 1: Interaction of two atomic functions depending on the
semidistance. r1, r2 and r3 they are the semidistance to the
first, second and third neighbor. We can see that the 4s func-
tion is much more extended than the 3d function, therefore it
will overlap with more functions.

If the Wannier functions with which we are going to
work can be approximated by little extended atomic func-
tions then we can suppose that the orthonormality is a
good approximation, since we are only interested in in-
teractions with first neighbors.

IV. THE HUBBARD MODEL

Let’s recover the associated Hamiltonian to the solid
H = Ke+Uee+U0

ei+U
0
ii+Umedium−Umedium. Therefore

Ke + U0
ei + U0

ii + Umedium ≡
∑
j

hj

Uee − Umedium ≡
1

2

∑
ij

g(ri, rj)

H =
∑
j

hj +
1

2

∑
ij

g(ri, rj) (15)

Where g(ri, rj) = e2

4πε0
|ri − rj |.

Now we can rewrite the Hamiltonian through the Wan-
nier functions and the creation and destruction operators.

A. Creation and destruction operators

The operator c+miσ creates a electron in a state
Wm(Ri, r) with spin σ ∈ {α, β} (where α is for spin up
and β is for spin down). This is the creation operator.

The operator cmiσ destroys a electron in a state
Wm(Ri, r) with spin σ ∈ {α, β}. This is the destruc-
tion operator.

Since these operators work with electrons (which are
fermions) and wave functions must be antisymmetric,

they must comply with the anticommutation relations
of two operators.

{ciσ, c+jσ′} = δijδσσ
′, {c+iσ, c

+
jσ′} = 0, {ciσ, cjσ′} = 0

(16)
Let’s see an example of how these operators work:

If we have the state |α, β, α, β〉 and the opretaors
c+1β , c

+
1α, c1α, c2β , c

+
2α then

c+1β |α, β, α, β〉 = |βα, β, α, β〉
c+1α|α, β, α, β〉 = 0

c+1βc2β |α, β, α, β〉 = |αβ, 0, α, β〉
c1αc

+
2α|αβ, 0, α, β〉 = |β, α, α, β〉 (17)

B. Representation of the Hamiltonian according to
Wannier functions

Now that we have seen how the creation and destruc-
tion operators work and some of their properties, we can
use them to rewrite the Hamiltonian using the Wannier
functions. We want to write the Hamiltonian as a func-
tion of the destruction and creation operators. For this
we will use that the Wannier functions are a complete
base

Taking the Hamiltonian from (15)

∑
j

hj = I
∑
j

hjI
′ =

∑
niσ

|Wnσ(Ri, r)〉〈Wnσ(Ri, r)|
∑
j

hj∑
mjσ′

|Wmσ′(Rj , r)〉〈Wmσ′(Rj , r)|

(18)

|Wnσ(Ri, r)〉 ≡ c+niσ
〈Wmσ(Rj , r)| ≡ cmjσ

〈Wnσ(Ri, r)|
∑
j

hj |Wmσ(Rj , r)〉 ≡ hnmij (19)

∑
j

hj =
∑
nm

∑
ij

∑
σ

hnmijc
+
niσ|0〉〈0|cmjσ =

∑
nm

∑
ij

∑
σ

hnmijc
+
niσcmjσ (20)

Since g is a function of two variables, the identities
that we will use will be

I =
∑

nmijσσ′

|Wnσ(Ri, r)Wmσ′(Rj , r)〉〈Wmσ′(Rj , r)Wnσ(Ri, r)|

(21)
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∑
ij

g(ri, rj) = I
∑
ij

g(ri, rj)I
′ =

∑
nmn′m′

∑
ijkl

∑
σσ′

〈Wn(Ri, r)Wm(Rj , r
′)|

∗g(r− r′)|W ′n(Rk, r)W ′m(Rl, r
′)〉

∗c+niσc
+
mjσ′cm′lσ′cn′kσ (22)

We reduce our study to the case of a single band, there-
fore m = n = 1 and

hijnm = hij = 〈W (Ri, r)|h(r)|W (Rj , r)〉 (23)

gijkl = 〈W (Ri, r)W (Rj , r
′)|g(r−r′)|W (Rk, r)W (Rl, r

′)〉
(24)

Now our Hamiltonian can be written as

H =
∑
ij

∑
σ

hijc
+
iσcjσ +

1

2

∑
ijkl

∑
σσ′

gijklc
+
iσc

+
jσ′clσ′ckσ

(25)
We use Hubbard’s approximations to rewrite hij and
gijkl.

If i 6= j then hij = −t when i, j are nearest neighbors,
and zero otherwise. This is the hopping term.

For gijkl, if i = j = k = l then gijkl = U . For the rest
of the cases gijkl = 0.

Therefore Hubbard’s Hamiltonian is

H = −t
∑
<ij>

∑
σ

c+iσcjσ + U
∑
i

c+iαc
+
iβciβciα (26)

C. Physical interpretation of Hubbard’s
Hamiltonian

Due to Born-Oppenheimer approximation the atoms
in the lattice are still and the electrons in the last layer
move. This is a good approximation for a solid with only
one relevant orbital. Each site of the lattice is limited by
the Pauli Exclusion Principle, therefore in each one we
can only have: an empty site, a one electron with spin
up, one electron with spin down or two electrons with
spin up and down.

As the electrons can move, they interact through
Coulomb interaction. The biggest interaction will be that
of two electrons occupying the same site. We will assume
that the contribution to the energy is 0 if the site is empty
or with only one electron, or U if the site is doubly occu-
pied. With the term Uc+iαc

+
iβciβciα we express this fact.

To express the kinetic energy of the electrons when
moving from one place to another neighbor, we can sup-
pose that one electron is destroyed in the first site and
another is created in the next. The energy of this jump
is denoted by t and will be determined by the overlap-
ping of two wave functions of the pair of atoms. The
approximation that they can only jump to spaces that

FIG. 2: Pictoric representation of the kinetic term t in the
Hubbard Hamiltonian.

FIG. 3: Pictoric representation of the one site repulsion term
U in the Hubbard Hamiltonian.

are first neighbors is due to the wave functions decrease
exponentially.

The term U in absence of the t (U >> t) would favor
local magnetic moments, since it would suppress the pos-
sibility of a second electron at singly occupied sites. In
this case, the energy levels are determined by the number
of double occupied sites and the number of electrons in
relation to the number of sites.

If the term U is the one that is absent (t >> U), this
causes the electrons of the system to spread throughout
the solid. In this case it will not be necessary to use
the Hubbard model and we can study the electrons with
the Bloch model, since the functions that describe the
electrons will be more extended.

When both terms are present, despite the simplicity of
the model, the analytical study is quite complicated.

Normally U and t are calculated with a molecular clus-
ter model or are deduced from experimental values.

D. Diagonalitzacion of the 4-site Hubbard
Hamiltonian

Because the most common diagonalization that we find
in the literature is for the Hamiltonian with 2-sites, here
I present the work method for the Hamiltonian of 4-sites.
The objective will be to calculate the energy as an eigen-
value of the Hubbard matrix and study how this varies
with t and U . It consists of a one-dimensional lattice
with four sites occupied by four electrons, two with spin
up and two with spin down. The lowest energy states are
those with each site occupied by only one electron (This
configuration is a degenerated state of energy 0).

As we have said before we assume that electrons can
only interact with first neighbors. Also, as a first approx-

Treball de Fi de Grau 4 Barcelona, June 2018



Introduction to the Hubbard Model Juan Luis Dıaz Jimenez

imation, we will also assume that there can only be one
site doubly occupied.

The first thing we will do is create a base in the Hilbert
space with the occupation numbers. The first 6 elements
of the base that we take are the neutral states

|α, β, α, β〉 = e1, |α, α, β, β〉 = e2,

|β, α, β, α〉 = e3, |α, β, β, α〉 = e4,

|β, β, α, α〉 = e5, |β, α, α, β〉 = e6,

Applying the Hamiltonian to ei we find other possible
combinations of these four electrons.

The total number of combinations (with the above re-
strictions) between the four electrons is 30, that is, our
Hilbert space has dimension 30 and is made up of 30
components. We apply H to e1:

H|α, β, α, β〉 = −t|0, αβ, α, β〉 − t|αβ, 0, α, β〉
+t|α, 0, αβ, β〉+ t|α, αβ, 0, β〉 − t|α, β, 0, αβ〉 −

t|α, β, αβ, 0〉 =

−te7 − te8 + te9 + te10 − te11 − te12
(27)

Realizing this same calculation for the remaining ele-
ments of the base we obtain the matrix of the Fig. (4).

FIG. 4: Matrix for the 4-site Hubbard Hamiltonian.

If we allow two doubly occupied sites, we just have to
add five more elements to the base, the 2U terms would
appear on the diagonal and the terms t would have to be
calculated.

To calculate the energy we must calculate the eigen-
values of the matrix. For this we take t = λU and U = 1.
We vary the value of λ.

Note that in small t, the fundamental state is domi-
nated by the neutral states (states in which there is only
one electron in each knot). When growing t the weight
of the ionic states (states in which one knot is empty
and another has two electrons) is increased, indicating a
mobility of the electrons and the possible transition to
a conducting state (Mott transition), with a state domi-
nated by delocalized electrons.

t E0 neutral weight ionic weight

0.1 -0.088742 0.921662 0.078338

0.5 -1.230997 0.568828 0.431172

0.7 -1.907582 0.509556 0.490444

1.1 -3.293969 0.452992 0.547008

TABLE I: Energy values of the ground state, the weight of
neutral states and ionic states for different λs.

V. CONCLUSIONS

In this paper we have seen how to introduce the Wan-
nier functions as a unitary transformation of the Bloch
functions. We have also seen how to rewrite the Hamilto-
nian of the solid using the Wannier functions getting to
express the Hamiltonian using the creation destruction
operators. This Hamiltonian is called Hubbard’s Hamil-
tonian.

Finally, we have calculated its associated matrix for
the Hamiltonian Hubbard case of 4 sites. This model
allows us to study the passage of the insulating material
to the conductive material (Mott transition) or to use the
perturbation theory for small t to find the Hamiltonian
of Heisenberg. These are some examples of the many
utilities that the Hubbard model has.
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