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Abstract 23 

 We used the disturbance resulting from a once in a hundred year storm on the northwest 24 

Mediterranean coast to examine the extent of the disturbance, the tolerance thresholds to 25 

burial, and the medium-term response of the long-lived Posidonia oceanica seagrass. 26 

Sediment burial at 12 surveyed areas was particularly strong in shallow meadows, with 23% 27 

of their surfaces buried, on average, under more than 10 cm of sediment. In contrast, less than 28 

5% of the meadow was affected at deeper locations. At three sites we tracked short-term 29 

mortality along a gradient of sediment burial. Survival response to burial was clearly non-30 

linear, with a significant threshold at 4-5 cm, beyond which shoot mortality was 100%. To 31 

track medium-term potential recovery, we established permanent plots subject to three 32 

sediment burial levels (0-5, 5-10, >10 cm burial), in four meadows. Where the initial shoot 33 

mortality was 100%, we recorded no shoot recovery over the 4 year period. In the remaining 34 

plots, where some shoots remained alive, we detected either further mortality or shoot 35 

recovery of 7% per year on average. Extreme storm events can result in sudden catastrophic 36 

losses of seagrass cover in shallow P. oceanica meadows. In the long term, and due to the 37 

long return time of such storms, the species may still be able to recover despite its low 38 

recovery potential. However, added anthropogenic stressors, including climate change, may 39 

seriously test the ability of long-lived shallow seagrass ecosystems to resist high intensity 40 

natural disturbances and may be critical for its persistence.  41 

 42 

  43 
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Introduction 44 

 Ecosystems are, by and large, a product of the disturbance regimes within which they 45 

exist. Disturbance is a key habitat-structuring agent; communities are driven by the intensity 46 

and frequency of condition-altering forces and the relative abilities of their constituent species 47 

in dealing with these disturbances (Sousa 1984). While a raft of research has focused on the 48 

influence of small, frequent disturbances on ecosystem stability and recovery, we are far less 49 

certain of how systems respond to larger, more infrequent disturbances (Hughes 1994). 50 

Ecosystem responses may not scale up predictably with increasing disturbance intensity; large 51 

infrequent events may trigger qualitatively different effects on ecosystems compared to more 52 

frequent small-scale perturbations (Romme et al. 1998). This is because, while disturbance-53 

prone systems may have endogenous feedback mechanisms to absorb regular disturbances, 54 

this natural resistance may have critical limits, beyond which ecosystems may respond very 55 

differently (Holling 1973). Understanding if such discontinuities exist under natural field 56 

conditions, what these threshold values are, and how systems respond when thresholds are 57 

crossed, requires considerably more empirical field data on system responses to large 58 

infrequent disturbances. However, their very unpredictability makes them difficult to study, 59 

except with opportunistic approaches in the wake of extreme events. 60 

 An extreme storm event, with a return time of ca. 100 years, affected the northwest 61 

Mediterranean coast on the 26 December 2008 (Sanchez-Vidal et al. 2012). The presence of a 62 

shallow depression over the Balearic Sea with a minimum pressure of 1012 hPa and a high-63 

pressure center over northern Europe (1047 hPa), generated an extreme storm with strong 64 

easterly winds and maximum wave heights of 14.4 m, maximum significant wave height (Hs) 65 

of 7.5 m and a duration of 73 h. This event was the largest ever recorded (in terms of wave 66 

height) on the northwest Mediterranean coast (Costa Brava, Spain) (Sanchez-Vidal et al. 67 
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2012). Storm action was not uniform, with the greatest effects (greatest wave power, heights, 68 

and shear stress) experienced in the northern third (which roughly corresponds to the rocky 69 

Costa Brava). South of this, wave power and shear stress decreased to around half (central 70 

Catalonia) and one third (southern Catalonia) of the extreme northern storm conditions (see 71 

Fig. 1 and Mateo and Garcia‐Rubies 2012). The effects on the biota were severe, affecting 72 

several marine habitats, from superficial rocky algal beds to deep canyons (Mateo and Garcia-73 

Rubies 2012; Sanchez-Vidal et al. 2012). The magnitude and rarity of this event provided a 74 

rare opportunity to examine the immediate response and subsequent recovery of subtidal 75 

Posidonia oceanica seagrass meadows to such high-intensity disturbances. 76 

 The long-lived endemic seagrass Posidonia oceanica dominates sandy bottoms in the 77 

Mediterranean, extending to a depth of 35 m. It is considered one of the longest-living 78 

seagrass species in the world (Arnaud-Haond et al. 2012), and although characterized by 79 

extremely slow growth rates, it spreads almost exclusively through clonal growth, with 80 

successful sexual reproduction events being rare (Procaccini et al. 2001). An ecosystem 81 

dominant, P. oceanica is an important engineering species, and plays a critical role in binding 82 

soft-sediment habitats with a dense network of rhizomes and roots (called the matte), 83 

significantly reducing sand movement within the meadow (Gacia and Duarte 2001). In 84 

addition, the long seagrass leaves and shoots create a structurally complex habitat that 85 

considerably attenuates wave and tidal action (Duarte et al. 2013). These factors, together 86 

with its large rhizome storage, may make healthy, unfragmented P. oceanica meadows more 87 

resistant to regular sand movement events than other seagrass species. For instance, it is 88 

known that, on coasts exposed to strong winds, storm surges and tidal flows, sediment 89 

movements can bury seagrass shoots, expose roots and rhizomes, and even uproot entire 90 

plants (Frederiksen et al. 2004). In the face of this disturbance regime, several seagrass 91 
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species are characterized by short life spans, increased investment in seed banks, sexual 92 

reproduction, fast re-colonization and vertical shoot growth, a suite of life-history traits that 93 

enables them to thrive in disturbance-prone environments (Fourqurean and Rutten 2004). 94 

Unlike P. oceanica, these strategies are linked more to ensuring a fast recovery after 95 

disturbance events, rather than in resisting the disturbance itself. 96 

 The continued dominance and persistence of P. oceanica in most Mediterranean coastal 97 

waters over millennia (Mateo et al. 1997) has mainly been attributed to the species’ ability to 98 

deal with low nutrient and good light conditions prevalent in Mediterranean waters as well as 99 

its ability to engineer its own low-disturbance regime in the normally-dynamic soft sediments 100 

it inhabits (Ghisalberti and Nepf 2002). However, there are clear limits to this resistance. In 101 

fact, in shallow areas, P. oceanica is unable to cope with the persistently high hydrodynamic 102 

conditions present there, placing a natural upper boundary on meadow colonisation (Infantes 103 

et al. 2009; Vacchi et al. 2010). The storm of 2008 subjected coastal waters to extreme 104 

hydrodynamic conditions, and our study was designed to document how P. oceanica 105 

meadows responded to this pulse event. We first determined the extent of the disturbance by 106 

measuring the amount of sediment burial in 12 randomly selected meadows, representing 107 

more than 50% of known seagrass meadows within the affected zone of the storm. In 108 

addition, at four of the affected meadows, we determined the sedimentation thresholds that 109 

plants can tolerate. Finally, in order to determine potential recovery trajectories of these 110 

meadows, we tracked shoot recovery for 4 years after the initial pulse event.111 



 7 

Methods 112 

Regional extent of storm burial 113 

 The storm of 2008 left a large part of the northern Catalan coast very badly affected. In 114 

order to monitor the regional extent of seagrass burial caused by this event, we surveyed 12 115 

randomly chosen meadows two months after the event within the central affected zone of the 116 

storm (see Fig. 1, Table 1). Three of the meadows assessed were shallow (5-10 m) and the 117 

remaining nine were deep (15-25 m). This uneven distribution reflected the bathymetric 118 

distribution of P. oceanica meadows in the area and represented more than 50% of the known 119 

distribution of seagrass meadows in the area (Garcia et al. 2001). We estimated the extent of 120 

burial at each site in six randomly placed 50 m visual transects. We used a double observer 121 

method in which two divers independently scanned 5 m on either side of transect (total area 122 

surveyed per transect 500 m2) and assigned the area of the meadow that was buried under 123 

sand to 5 broad categories (0%, 25%, 50%, 75%, and 100% of the area of the transect with 124 

buried seagrass). All assessments were conducted with experienced seagrass researchers and a 125 

prior uncertainty analysis conducted with the same observers showed that inter-observer 126 

biases in visually assessing seagrass cover accounted for less than 2% of measurement error 127 

(calculated from Bennett et al. 2011 data set). Only areas with shoots covered with more than 128 

10 cm of sediment, measured as the vertical distance between the sediment surface and the 129 

shoot ligula (i.e., a thin outgrowth at the junction of the leaf and the leaf base), were recorded 130 

as buried seagrass. This 10 cm sediment level was chosen based on known mortality 131 

thresholds for P. oceanica shoots (Cabaço et al. 2008 also see Results). This burial was 132 

clearly distinguished in the water because leaves were visibly trapped below the sediment and 133 

were at different stages of decomposition even 2 months after the storm (see Fig. 2 for 134 

examples of buried and unburied areas). Whenever we found large buried patches, we 135 
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recorded their approximate area with a measuring tape (length x width). These estimates of 136 

burial were relatively conservative, since portions of the meadow with less than 10 cm of 137 

burial could also likely be lost (Manzanera et al. 2011). Additionally, we did not take into 138 

account areas of the meadow affected by abrasion, unearthing and uprooting of plants, as this 139 

does not leave clear visible signs after the storm and is impossible to record unless spatially 140 

explicit baseline information is available. 141 

  Conducted in the immediate wake of this extreme storm, our measures of burial extent 142 

were necessarily opportunistic and conducted at a time of the year when weather conditions 143 

do not permit unrestricted access to the ecosystem. It was critical to assess seagrass burial 144 

before sediment movement appeared again during the normally-stormy months after the 145 

extreme storm. We could not know a-priori how the effect of the storm was distributed across 146 

the meadows, and our sampling protocols were designed to assess these effects as rapidly and 147 

accurately as possible. 148 

 149 

Plant burial tolerance  150 

 SCUBA divers assessed seagrass burial resistance thresholds in three meadows at 151 

different depths (Canyelles, 21 m; Giverola, 7 m; and Medes, 5 m; see Fig. 1). At each site we 152 

identified meadow areas along a gradient of sediment burial (from 0 cm to 15 cm sediment 153 

level) after the storm event (4 months later). Burial was determined as the height from the 154 

ligula to the sediment surface; under normal conditions the ligula stands a few cm (1 to >5) 155 

above the sediment. The number of living and dead shoots was counted in small quadrats (15 156 

x 15 cm, n = 25-30) placed along the burial gradient. To determine the proportion of dead 157 

shoots under each burial level, we took advantage of the fact that even dead shoots (including 158 

leaves) remained in the buried area long after the storm (4 months at the time of sampling; see 159 
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Fig. 2a, for an example). After measuring burial in each quadrat, we carefully removed the 160 

sediment, and counted all dead shoots (where the leaf base was completely necrotized). We 161 

also counted all shoots that remained alive, which, unlike dead shoots, had leaves with a 162 

healthy, light-green meristem. This method was unable to detect any potential loss of shoots 163 

directly uprooted by wave action. Therefore, our results represent a conservative estimate of 164 

the mortality caused by the storm, and only accounts for the effects of storm burial, not 165 

uprooting. 166 

 167 

Medium–term recovery potential 168 

 We established 40 x 40 cm permanent quadrats in each of four P. oceanica meadows 169 

(Giverola shallow, 7 m; Fenals shallow, 9 m; Canyelles deep, 21 m; and Palamós deep, 16 m; 170 

see Fig. 1 and Table 1) after the storm in order to determine the effect of burial (mortality) on 171 

the long-term survival (and potential recovery) of P. oceanica shoots. Three sets of plots with 172 

two replicates each (a total of 6 quadrats per site) were established at three burial levels (0-5 173 

cm; 5-10 cm; >10 cm, measured as explained above; n = 2 plots per treatment, 3 treatments 174 

per site). The number of shoots in each plot was counted 1) just after the storm (T0 = 175 

beginning 2009) taking advantage of the fact that mortality by sediment burial takes several 176 

months to occur, 2) a year later (T1 = beginning 2010), and 3) four years after the storm (T4 = 177 

end of 2012). Shoot mortality was expressed as a percentage of the difference between the 178 

number of living shoots in the initial counts (S0) and the counts one year after the storm (S1) 179 

divided by the initial counts (S0).  180 

mortality =    !!!!!
!!

   ∙ 100                           (1) 181 
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 Shoot recovery was established as a percentage of the difference between the number of 182 

living shoots in the counts four years after the storm (S4) and the counts one year after the 183 

storm (S1) divided by the initial counts (S0).  184 

recovery =   
𝑆! − 𝑆!
𝑆!

   ∙ 100                                                  (2) 

 Shoot recovery was then divided by four years, to obtain an annual rate of recovery for 185 

each location. 186 

 187 

Statistical analyses 188 

 We assessed plant burial tolerance with data pooled from all sites and depths. Since our 189 

preliminary data observations suggested a threshold response to shoot burial, a change point 190 

detection method was run in R with the package strucchange (Zeileis et al. 2002; Andersen et 191 

al. 2009). The algorithm is based on assessing whether different parts of the dataset require 192 

different parameters to fit a linear regression. Further, to assess the significance of every 193 

potential change point in the dataset, an F-statistic (Chow test statistic) was also computed. 194 

Since these methods require data sets with one observation per burial level, we established 195 

burial intervals of 1 cm (i.e., grouping all shoots buried from 0-1 cm, from 1-2 cm, etc.) and 196 

we sampled one random observation from each interval 1000 times. Each of the 1000 197 

sampling events resulted in a data set that was analyzed with an F-statistic and a change point 198 

estimator. We then plotted the mean F-statistic with its standard errors, and the mean 199 

percentage mortality for each burial interval with the most probable change point and its 200 

confidence interval. 201 
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 To determine the factors influencing medium-term shoot mortality (obtained from the 202 

fixed quadrats) we performed a 3-way nested ANOVA to test the effect of the fixed factors 203 

‘burial’ (3 levels: 0-5 cm; 5-10 cm; >10 cm), ‘depth’ (2 levels: shallow (5-10 m) and deep 204 

(15-25 m)) and their interaction (burial x depth), with ‘site’ (2 levels: Fenals and Giverola 205 

shallow meadows; Canyelles and Palamós deep meadows) as a random factor nested in 206 

‘depth’. Before analysis, data were tested for normality and homoscedasticity using the 207 

Shapiro–Wilk’s and Bartlett’s test, respectively. Whenever an ANOVA was significant, a 208 

multiple range contrast test was applied (Tukey’s Honestly Significant Difference) to 209 

determine differences among burial levels. We could not test the effects of burial on medium-210 

term recovery, since we recorded zero recovery in most of the fixed quadrats (see results) and 211 

we only discuss trends. 212 

 213 

Results 214 

Regional extent of burial  215 

 The effects of the 26 December 2008 extreme storm was strongest in the shallow 216 

meadows (5-10 m depth) we surveyed (Fig. 3, Table 1). These meadows were heavily 217 

affected by burial, with a mean of 20 ± 6% of their total area covered with more than 10 cm of 218 

sediment (Fig. 3). In contrast, deep meadows (15-25 m depth) showed relatively low levels of 219 

burial, with an average of 3 ± 2% of their total area under sand (Fig. 3). For the most part, 220 

burial occurred in patches of ca. 10 m2 or more, and was more frequent at the edges of 221 

meadows. 222 

 223 

 224 
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Plant burial tolerance  225 

 Four months after the storm, shoot mortality increased substantially as a result of sediment 226 

burial in the three meadows studied. While zones that had been buried from 0 to 3 cm showed 227 

relatively low shoot mortality after the storm event, mortality increased substantially at higher 228 

burial levels. Indeed, this increase was non-linear, with a sharp rise at 4-5 cm, and near-total 229 

mortality at burial levels of 8-9 cm and above (Fig. 4a). The burial interval of 4-5 cm was 230 

found to be a significant change point of plant tolerance (Fig. 4a,b).  231 

 232 

Medium–term recovery potential 233 

 The medium-term monitoring plots confirmed mortality patterns documented in the plant 234 

burial tolerance measurements (see previous section). A year after the storm, most plots with 235 

more than 10 cm of burial showed 100% mortality, while in plots with 0-5 cm of burial the 236 

mortality was significantly lower (Table 2), but with signs of delayed mortality (negative 237 

trajectories even 4 years after the storm, Table 3). There was some variability in the response 238 

of plots with intermediate burial levels (5-10 cm), with mortality values of 52 ± 14% (mean ± 239 

standard error (SE), n = 8 [2 quadrats per 4 sites]).  240 

 In tracking potential recovery, we did not observe shoot recruitment in the majority of 241 

quadrats from both shallow and deep meadows four years after the storm, confirming the low 242 

recovery capacities of Posidonia oceanica (Table 3). Indeed, from a total of 24 quadrats (2 243 

per 3 levels per 4 sites), recovery was observed only in 5 quadrats. In these plots (most of 244 

them from the 5-10 cm burial level), the average annual shoot recovery rate was 7 ± 3% 245 

relative to pre-storm conditions. In plots where the initial shoot mortality was 100%, we 246 

documented no recovery at all (Table 3).  247 
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 248 

Discussion 249 

 The storm of 2008 was among the most intense on record, with a return time of 100 years. 250 

The Posidonia oceanica seagrass meadows we tracked in the wake of this extreme event 251 

declined significantly in cover across the northern Catalan coast. Although storm effects were 252 

relatively modest in deep meadows (ca. 3% of areal losses), they were dramatic in shallow 253 

waters, with an average of 23% areal losses across the affected region. This is most likely a 254 

conservative estimate, since they are based only on measured losses caused by sediment 255 

burial and do not account for uprooting of seagrass shoots as a result of the large shear forces 256 

generated by the storm. Compared to many smaller, fast-growing species, Posidonia oceanica 257 

showed a moderate resistance to burial; plants appeared to tolerate sediment burial up to a 258 

clear threshold of 4-5 cm, beyond which shoot mortality increased sharply. We observed that 259 

burial levels above 8-9 cm resulted in the total mortality of shoots both in our extensive post-260 

disturbance surveys of plant burial tolerance, as well as in the permanent plots we tracked to 261 

assess potential recovery. Four years after the disturbance, shoot recruitment was only 262 

observed in the few plots that had not suffered total mortality as a consequence of the storm; 263 

in contrast, in plots where shoot mortality had been 100%, we did not record any recovery at 264 

all. The role of high-intensity low-frequency disturbances has rarely been considered an 265 

important driver of seagrass decline, perhaps because their long return times make them 266 

difficult to track (but see Larkum and West 1990; Fourqurean and Rutten 2004; Van 267 

Tussenbroek et al. 2014). Nevertheless, our results indicate that, despite their rarity, such 268 

infrequent disturbances may profoundly influence seagrass meadow dynamics. In this study, 269 

the storm resulted in a reduction of nearly one-fourth of its effective cover in shallow areas, 270 
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from which recovery is likely to be protracted – potentially requiring several decades to return 271 

to pre-disturbance conditions. 272 

 The ability of P. oceanica to resist this high intensity disturbance appears to be moderate 273 

when compared to smaller, fast-growing species (Cabaço et al. 2008), which tend to suffer 274 

higher shoot mortalities due to burial, but show a faster subsequent recovery (Cabaço et al. 275 

2008). Unsurprisingly, our results show that shallow meadows were the most heavily affected 276 

by the disturbance. Shallow meadows are often more subject to areal losses than deep 277 

meadows since the intensity of physical disturbances generally attenuate rapidly with depth. 278 

The high-energy waves and sediment transport generated by storms is experienced most 279 

strongly in the first few meters of the water column and decreases considerably with depth 280 

(Ruiz et al. 2009). These regular storm events have already been identified as critical in 281 

determining the upper depth limit of seagrass distribution in the Mediterranean Sea (Infantes 282 

et al. 2009; Vacchi et al. 2010), and P. oceanica can only colonize shallower areas in the most 283 

protected bays (Ruiz et al. 2009). Below these limits however, the shallow meadows we 284 

monitored are remarkably persistent in the wake of frequent small-scale disturbances, having 285 

been present in shallow coastal waters for centuries and possibly millennia (Mateo et al. 286 

1997). The fact that a single large storm event could cause such a dramatic reduction in 287 

meadow cover suggests that high-intensity low-frequency disturbances, though rare, are 288 

potentially critical structuring agents of these nearshore ecosystems. In addition, given the 289 

long life span of this slow-growing species, these events can have important, and long-lasting 290 

demographic consequences for P. oceanica. Nearshore marine ecosystems like seagrass 291 

meadows can be particularly prone to these high-intensity disturbances, with long-term 292 

consequences for these systems as has been documented in the wake of hurricanes in Florida 293 

and the Caribbean (Fourqurean and Rutten 2004; Van Tussenbroek et al. 2014) or after the 294 
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combined effects of storms and anthropogenic engineering on the Australian coast (Larkum 295 

and West 1990). 296 

 The ability of P. oceanica to withstand sediment burial showed a sharp threshold around 297 

4-5 cm; beyond 8-9 cm, shoot mortality was nearly 100% in all three studied meadows. A 298 

similar pattern of tolerance was identified by earlier experimental burial studies for the 299 

species (Manzanera et al. 2011). A comprehensive review of sedimentation responses to 300 

burial suggested that seagrass species have an average critical burial limit for vertical rhizome 301 

growth of around 10 cm, which causes a 50% shoot reduction (Cabaço et al. 2008). This limit 302 

is highly species-specific and while some small, fast-growing species cannot tolerate more 303 

than 2 cm of burial, larger plants, particularly those with vertical rhizomes and large rhizome 304 

diameters (i.e., with more reserves), appear better able to counteract burial (Cabaço et al. 305 

2008). However, although P. oceanica is one of the largest seagrass species, with high 306 

structural complexity, the quantity of sediment this storm deposited on these meadows clearly 307 

tested the plant’s sediment tolerance, resulting in the dramatic losses we recorded. While, as 308 

this study documents, storms can result in the direct burial of large stretches of seagrass 309 

meadow, these events can reduce meadow conditions through several other pathways 310 

including directly uprooting plants or temporarily decreasing light transparency, among others 311 

(Frederiksen et al. 2004; Sanchez-Vidal et al. 2012). We did not directly assess uprooting or 312 

light reduction (caused by sediment resuspension) although these are likely to be significant 313 

additional pathways of meadow loss. At the only station where data on meadow patch area 314 

was available before the storm (Fenals shallow, see Table 1), we measured an areal loss due 315 

to uprooting of less than 5% after the storm, compared to the 30% loss by burial (Table 1, 316 

manuscript in prep.). In a parallel study conducted in the same region, we have shown that 317 

even low-intensity storms (significant wave heights ca. 2 m) can result in an 80% reduction in 318 

light availability for between 2 to 3 days (Roca et al. 2014). The storm of 26 December 2008 319 
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was considerably more intense, and we would expect a much more severe and lasting light 320 

reduction in its wake (Sanchez-Vidal et al. 2012). Light reduction associated with storms can 321 

substantially reduce the photosynthetic performance and carbon storage of seagrass species 322 

and can even result in extensive shoot mortality (Cabello-Pasini et al. 2003). While we have 323 

not evaluated these factors, we cannot discount them as potential co-acting drivers of shoot 324 

mortality along with burial. 325 

 Extrapolating from our four-year meadow recovery rates of affected meadows, it appears 326 

that P. oceanica has the ability to recover areal losses well within the return time of the storm. 327 

Using annual recovery rates estimated from shoot growth documented from the few 328 

monitored plots that showed some recovery, we estimate that the affected meadows could be 329 

recolonized by clonal growth within approximately 30 years if uninterrupted by additional 330 

disturbances. This is considerably faster than the projected return time of high-intensity 331 

storms. While, at first glance, this may appear encouraging, it is important to note that this 332 

recovery was restricted to a very limited number of plots (5 plots out of 24) where a few stray 333 

shoots had been spared the initial burial. Where burial caused complete shoot mortality, plots 334 

showed no signs of recovery, at least within the 4 year window of our observation. In 335 

addition, in the vast majority of our monitored plots (15 out of 24) the few shoots that 336 

survived the initial burial (from 0-5 cm and 5-10 cm burial levels) showed a clear trajectory of 337 

continued mortality even 4 years after the event. This lag indicates that even if shoots survive 338 

the initial burial, they may still be subject to a negative carbon balance, precipitating further 339 

mortality when they exhaust their reserves. Our results suggest that these meadows may rely 340 

heavily on vegetative growth for recolonizing disturbance gaps. Recovery from completely 341 

bald patches of meadow may be much more protracted since they may depend on colonization 342 

events by sexual propagules. Flowering events in P. oceanica are very rare, specially in 343 

northern Mediterranean meadows, and when they occur, are coupled with low reproductive 344 
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success. This is reflected in a very low genetic diversity in P. oceanica at a global scale 345 

(Procaccini et al. 2001). However, the species has also been reported to show very infrequent 346 

alternate sexual strategies like pseudo-vivipary (Ballesteros et al. 2005) or massive successful 347 

recruitment events (Balestri and Lardicci 2008). In terrestrial grasses like bamboo, these mass 348 

seeding strategies have been considered to be evolutionary adaptations to equally infrequent 349 

disturbances (Schaller 2007). These occasional reproductive events, together with slow 350 

vegetative expansion from neighboring areas (growth rate of horizontal rhizomes between 1 351 

and 6 cm per year; Marbà and Duarte 1998) may accelerate recovery process from barren 352 

patches at scales of centuries (Kendrick et al. 2005). Given enough time, large gaps of P. 353 

oceanica meadow have been shown to recover over even decadal time scales (Meinesz and 354 

Lefevre 1984). Taken together, it is likely that occasional pulsed recruitment events, together 355 

with clonal growth and horizontal growth from neighboring areas may be sufficient for P. 356 

oceanica to spearhead a full recovery. The very persistence of P. oceanica in these waters 357 

(Mateo et al. 1997; Arnaud-Haond et al. 2012) suggests that this species may be able to 358 

recover from occasional pulse disturbances, even when they are as destructive as the 2008 359 

storm,  360 

 A more worrying uncertainty is how anthropogenic stresses can disrupt these natural 361 

dynamic processes. At regional scales, coastal modifications have dramatically changed the 362 

dynamics of sedimentation in most human-dominated areas (González-Correa et al. 2009). 363 

The additive effects of natural disturbances like storms and anthropogenic coastal 364 

interventions such as beach nourishment or sand dredging have already resulted in sediment 365 

being deposited periodically on seagrass meadows (Larkum and West 1990; Erftemeijer and 366 

Lewis 2006). In fact, Mediterranean seagrass meadows have been contracting steadily over 367 

the last century, a decline attributed to a range of mostly anthropogenic factors operating at 368 

different scales (Marbà et al. 2014). Additionally, projections of future scenarios under 369 
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climate change for the Mediterranean region remain equivocal (Intergovernmental-Panel-on-370 

Climate-Change 2013), with most studies predicting a decrease in storm conditions (Lionello 371 

et al. 2008), but with other models predicting a slight increase or even an increased risk of 372 

Mediterranean cyclones (the so-called 'medicanes', Romero and Emanuel 2013). While slow-373 

growing P. oceanica seagrass meadows may be able to offset the effects of high-intensity, 374 

low-frequency disturbances, whether the ecosystem will be able to cope with these events 375 

while additionally dealing with an increasingly anthropogenized Mediterranean sea is still 376 

uncertain. 377 

378 
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Tables 
 

Table 1. Regional extent of burial assessed using visual transects (mean ± SE, n = 3-6) in 

each of the different meadows along the northwest Mediterranean coast indicated in Fig. 1. 

Meadows with permanent recovery plots are marked with an asterisk (*). 

 

Meadow Latitude (ºN) Longitude (ºE) Orientation Depth (m) % buried area  

Canyelles* 41°41'59'' 2°53'16'' southeast 21 14 ± 9 

Fenals* 41°41'21'' 2°49'42" southeast 9 30 ± 3 

Fenals  41°41'19'' 2°50'12'' southeast 24 6 ± 5 

Giverola* 41°44'10" 2°57'16" southeast 7 10 ± 3 

Jugadora 42°18'53" 3°18'52'' southeast 20 0 ± 0 

Medes 42°02'46" 3°13'11" southwest 5 20 ± 3 

Medes  42°02'47'' 3°13'08'' southwest 15 0 ± 0 

Montjoi 42°14'48'' 3°14'03'' southeast 21 0 ± 0 

Palamós* 41º50'39'' 3º07'00'' southeast 16 1 ± 1 

Roses 42°14'18'' 3°12'14'' south 22 0 ± 0 

St. Feliu 41°46'16'' 3°01'33'' southwest 22 0 ± 0 

Tossa 41°43'30" 2°56'41'' southeast 14 10 ± 3 
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Table 2. Effects of sediment burial on shoot mortality. Results from F-tests for the dependent 

variable ‘shoot mortality’ with ‘burial’ and ‘depth’ as fixed factors and ‘site’ nested in depth. 

Significant values (p < 0.05) are presented in bold; ns, not significant; df, degrees of freedom; 

SS, sum of squares; F, F-statistic. 

 

Variable Source of variation Effect df SS F p 

Shoot mortality burial fixed 2 24681 12.3 <0.001 

 depth fixed 1 293 0.2 ns 

 burial x depth fixed 2 283 0.1 ns 

 site[depth] random 2 3183 1.6 ns 

 error  14    
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Table 3. Medium–term (4 years) recovery potential (see Eq. 2), in quadrats with (<100% 

shoots lost) and without (100% shoots lost) surviving shoots after the storm. For each 

category, the mode of burial values found is reported (cm). Note that most of the quadrats do 

not recover, and those that do recover, do so at slow rates. 

 

Shoots lost Burial (mode) Trajectory Number of plots Recovery 

100%  10-15 cm stable 4 no 

<100% 

<100% 

5-10 cm positive 5 7 ± 3% 

0-5 cm negative 15 no 
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Figure legends 

 

Fig. 1. Localities along the Catalan coast (northwestern Mediterranean) where the burial 

effect on Posidonia oceanica meadows was assessed (see Table 1 for meadows’ details). The 

size of the arrows represents the wave power of the storm event along the coastal stretch 

investigated.  

 

Fig. 2. Photographs showing (a) an area affected by sediment burial of more than 10 cm and 

(b) an area not affected. 

 

Fig. 3. Regional extent of burial. Estimated percentage of buried area (>10 cm) in deep (n=9) 

and shallow meadows (n=3) assessed with visual transects (see Table 1 for meadow details) 

(mean ± SE). 

 

Fig. 4. Plant burial tolerance. (a) Shoot mortality as a function of sediment burial assessed in 

15 x 15 cm quadrats (n = 23) placed extensively within the affected meadows. Note the 

presence of an evident change point at a burial level of (4-5) cm (dashed line). The confidence 

interval around the change point is indicated in grey, and solid black lines correspond to the 

mean shoot mortality before and after the change point. The sample size is indicated in 

numbers above each point. (b) Mean F-statistic ± error (n = 1000 samples, see Methods) in 

order to assess the significance of the potential change points. The method indicates the most 

significant change point as a peak (see the dashed line).  
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