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Abstract: The objectives of this study are to analyze the origins of the statistical mechanics of
Bose-Einstein (1924), which are based on a quantum treatment of indistinguishable particles, and
to understand how its formulation was possible prior to the birth of the wave mechanics proposed
by Schrödinger (1926).

I. INTRODUCTION

The aim of this study is to analyze the foundations of
Bose-Einstein statistics. In other words, to discover the
origins of this new quantum statistics that was proposed
by the physicist Satyendra Nath Bose in 1924. Later,
Albert Einstein used it to introduce important advances
in this field of physics.

One of the main reasons of this study is the surpris-
ing fact that this statistics was formulated previously to
the appearance of Schrödinger's wave mechanics, which
did not emerge until the beginning of 1926. In addition,
we will try to show how the thought of Bose, Einstein
and other contemporary theoretical physicists, such as
De Broglie, influenced on Schrödinger and on the first
idea of the possible existence of a wave field associated
with each molecule, that is, the birth of the new concept
of particle-wave duality.

To properly substantiate these essay, the articles cor-
responding to the two authors of the new statistics, to-
gether with other documents of historical nature related
to the central theme of our study, are analyzed to clarify
the controversy mentioned initially. For a better under-
standing, the key ideas that lead to the new statistics
are explained and the most important expressions, which
are used in the development of the original articles, are
rewritten using updated notation.

In order to perform a more detailed study, this pa-
per is divided into four parts. The first part corresponds
to Bose's original article (Section II), where a new treat-
ment of particles and a new deduction of Planck's law are
introduced. The second part presents Einstein's original
articles (Section III), where the quantum theory for ideal
gas molecules and the most relevant results of the in-
troduction of this new treatment are explained. Finally,
the implications and the first highlights of these new ad-
vances are described (Section IV).

II. PHOTON GAS (1924)

II.A Satyendra Nath Bose (S. N. Bose)

S. N. Bose was a theoretical physicist born in 1894
in Calcutta (India), where he studied. In 1924, he was
professor at the University of Dhaka (Bangladesh) and

he focused his research on statistical mechanics. The
same year, he wrote the article �Planck's law and the
light quantum hypothesis� [2], which is considered a
fundamental contribution to the birth of quantum statis-
tics. The main reason that motivated Bose to perform
this study was his disagreement with the deductions of
Planck's law that were described so far and, as it is shown
later, to present a new way to obtain this law by us-
ing the radiation quantum hypothesis and disregarding
Maxwell's electromagnetism.

Bose tried to publish his paper, but it was not ac-
cepted. Therefore, he asked Einstein if he considered it
interesting and, if so, to publish it translated into Ger-
man. Einstein considered the article as a great break-
through, and he decided to recommend its publication in
one of the most important scientific journals of that time:
Zeitschrift für Physik. As mentioned later, Einstein ap-
plied the same treatment to formulate the quantum the-
ory of the ideal monatomic gas one week later.

II.B �Planck’s law and the light quantum
hypothesis�

In his article, Bose began by arguing that the deduc-
tions of the formula, which related the spectral density of
energy of the radiation and the average energy Ē of an
aggregate of monochromatic harmonic oscillators, were
not coherent since the bases of the quantum theory were
not consistent with the laws of classical electrodynamics:

ρdν = (
8πν2dν

c3
)Ē (1)

First of all, the factor in parentheses, which corre-
sponds to the undulatory part, is related with the elec-
tromagnetism of Maxwell and involves a continuous spec-
trum of both frequencies and energies. On the other
hand, the concept of discrete energy packages, which
corresponds to a quantum picture, came into play for
the calculation of the average energy. These facts led
him to look for a new deduction of Planck's law in a
totally quantum way, that is, incorporating the idea of
the light quantum (later called photons), and, as before
mentioned, disregarding Maxwell's electromagnetism.

Bose operated in the phase space of a photon, where
each state is included in a cell of volume h3 and charac-
terizes each quantum with an energy hν and a moment
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of magnitude hν
c , both corresponding to a zero mass par-

ticle. Once the three position coordinates, which corre-
spond to volume V, and the three moment coordinates,
which translated to spherical coordinates its differential
corresponds to d3p = 4πp2dp, are integrated for the vol-
ume of the phase space mentioned that corresponds to
the frequency range (ν, ν+dν), the following expression
is obtained:∫

...

∫
dxdydzdpxdpydpz = (

4πh3ν2

c3
)V dν (2)

Once the result is obtained, it is divided by the volume
previously mentioned h3, which is the volume assigned
to each cell, and then the total number of cells can be
determined. Bose indicated, without any additional ex-
planation, that a factor 2 corresponding to the number
of possible polarizations of each quantum has to be taken
into account. In this way, the total number of cells for
the mentioned frequency range is expressed as:

A(ν) = (
8πV ν2

c3
)dν (3)

Next, Bose calculated how many ways N quanta could
be distributed in the different cells corresponding to the
frequency ν following the �combinatorial method� of
his admired Boltzmann. In other words, he tried to find
the compatible distributions with the macroscopic state
of the system, which is defined by the occupation num-
bers p0(ν), p1(ν), p2(ν),... where pn(ν) indicates the
number of cells that contains n photons, obtaining:

Ω(ν) =
A(ν)!

p0(ν)!p1(ν)!p2(ν)!...
(4)

The total number of states, that is, the total number of
possible distributions, is given by the expression below:

Ω =
∏
ν

Ω(ν) (5)

Therefore, following Stirling's approximation, the en-
tropy is proportional to:

ln(Ω) =
∑
ν

[A(ν)lnA(ν)−
∑
n

pn(ν)lnpn(ν)] (6)

In order to obtain the equilibrium state, Bose maximized
expression (6) taking into account the constraints to keep
constant both the energy and the number of photons.
So, using the method of Lagrange multipliers, pn(ν) are
obtained. Then, an expression of the total energy of ra-
diation is determined by replacing them in (7):

E =
∑
ν

N(ν)hν =
∑
ν,n

npn(ν)hν (7)

Finally, passing to the frequency continuum, Bose ob-
tained the following expression:

E =

∫
8πhν3

c3
V

1

exp hν
κT − 1

dν (8)

Once the density of spectral energy ρ(ν) per volume unit
is defined as the ratio between the energy of the interval
(ν, ν+dν) and the total volume, equation (8) is equiva-
lent to the well-known Planck's formula:

ρ(ν)dν =
8πhν3

c3
1

exp hν
κT − 1

dν, (9)

where 1
κT represents Lagrange's multiplier for energy,

and κ is Boltzmann constant.

II.C Indistinguishability and non-conservation
of the number of quanta

It is important to highlight two points of Bose's treat-
ment that deserve a special attention. It was not be-
cause he assigned them, but because it is deduced from
the employed method. From the beginning, Bose defined
two constraints: one corresponding to the conservation
of total energy and the other one to the conservation of
the number of quanta. However, looking at his resolu-
tion method, it can be observed that only the first one
is employed. This is due to the fact that the number of
quanta is not conserved because of the emission processes
and the absorption of photons.

The authentically innovative point of the new deduc-
tion of the Planck's is the treatment of photons as if
they were indistinguishable particles. Bose introduced a
new idea through equation (4) without emphasizing it.
The fact of distributing the quanta in the different cells
without specifying which quantum goes to each cell and
only focusing on how many quanta go to each cell makes
possible to deduce the assigned indistinguishability.

Surprisingly, Bose did not realize what he was doing,
as he recognized later, since he thought he was repeat-
ing the same that Boltzmann had done until that mo-
ment. Nevertheless, the difference between them is that
what Boltzmann considered to be energy packages (indis-
tinguishable) that were distributed in molecules (distin-
guishable), Bose considered to be indistinguishable pho-
tons distributed in distinguishable cells.

III. MOLECULES GAS (1924-1925)

III.A Albert Einstein

Albert Einstein was a German theoretical physicist
who was born in 1879 in Ulm (Germany). In 1905, he
published the Theory of Special Relativity, together with
other works that were crucial for the development of sta-
tistical physics and quantum physics. Lately, he pub-
lished the Theory of General Relativity in 1915, and he
was awarded with the Nobel Prize in Physics in 1921 for
his discovery of the equation of the photoelectric effect.

As mentioned in the previous section about Bose, Ein-
stein received his article about photons gas in 1924, with
the corresponding innovations he pretended to introduce.
Einstein realized that the same type of new statistics
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could be applied to an ideal monatomic gas, given the ex-
isting analogy between the molecules gas and the quanta
gas, which he had exploited in several occasions before.
One week later, Einstein presented the new method pro-
posed by Bose to the Prussian Academy of Science in
order to establish a quantum theory for ideal gas that
did not exist until then [3].

III.B�Quantum theory of the monatomic ideal
gas�

Einstein operated in the phase space of a monatomic
molecule, that is, particles with mass m; unlike Bose,
who dealed with photons, which have zero mass. In
the same way, the volume of the phase space region of
a molecule with energy within the interval (ε, ε+dε) can
be determined. To calculate it, the position coordinates
corresponding to the total volume V are integrated, to-
gether with the contribution of the momenta differential
in spherical coordinates d3p = 4πp2dp. Considering that
p=
√

2mε, the analogous expression to (2) is the following
one:

∫
...

∫
dxdydzdpxdpydpz = 8πV (

m3ε

2
)

1
2 dε (10)

If the phase space of the molecule is divided into cells of
extension h3 in the same way as in Bose's method, and,
then, the result is divided by the volume of each cell, the
total number of cells associated with the energy range (ε,
ε+dε) is:

A(ε) = 8π
V

h3
(
m3ε

2
)

1
2 dε (11)

Considering N as the total number of molecules, the
number of possible distributions of N molecules in the
mentioned energy range is determined by calculating the
product for all energies. Consequently, the total number
of distributions that are compatible with the macroscopic
state are also obtained (12).

Ω =
∏
ε

A(ε)!

p0(ε)!p1(ε)!p2(ε)!...
, (12)

where pn(ε) represents the number of cells in the inter-
val (ε, ε+dε) that are occupied by n molecules. This
expression is comparable to (5), for the photon gas. Tak-
ing into account the constraints of the total energy and
the number of molecules, Einstein maximized ln(Ω) us-
ing Stirling's approximation and the method of Lagrange
multipliers.

The fact of not looking exclusively for a deduction of
Planck's law as in the case of Bose, made it possible that
Einstein obtained unpredictable results when he formu-
lated the quantum theory for ideal gases.

III.C Some remarkable results

Classical statistics as limit of the new statistics

Einstein introduced the “degeneration parameter”,
which allows rewriting the results obtained as develop-
ments in series of powers of this parameter. If only the
first term of each series is considered, it can be verified
that the results obtained correspond to the classical the-
ory. Thus, the successive powers of λ provide additional
corrections to the classic results. The mentioned param-
eter is expressed as follows:

λ = h3
N

V
(2πmκT )

−3
2 (13)

As more valid is the condition λ�1, which means “low”
densities of particles and a “high” absolute temperature,
the results obtained are closer to the classics ones. This
fact allowed Einstein to conceive the classic theory of
ideal gases as a limit case of the new quantum theory.

Performing the development that corresponds to the
average energy Ē per particle, Einstein obtained the fol-
lowing equation:

Ē

N
=

3

2
κT (

∑∞
τ=1 τ

−5
2 λτ∑∞

τ=1 τ
−3
2 λτ

) (14)

For the case λ2�λ, it can be approximated to:

Ē

N
=

3

2
κT [1− 0, 1768h3

N

V
(2πmκT )

−3
2 ], (15)

where it can be observed that the classical result for the
mean energy per particle is always higher than the one
obtained by the previous expression.

Energy distribution

On the other hand, the following expression is obtained
for the energy distribution:

n(ε) = cte.exp
−ε
κT (1 + λexp

−ε
κT + ...) (16)

where n(ε) represents the average number of molecules
with energy within the interval (ε, ε+dε). The term in
parentheses is related to the quantum correction, which
can cause that the new result differs from the classical
one. It can be noticed that the lower the energy ε, the
greater the quantum correction is.

Equipartition theorem

In the thermal equilibrium, the classical equiparti-
tion theorem states that the mean energy of a system
is equally divided between the different degrees of free-
dom. However, the theorem is not valid when quantum
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effects become important, as it can be tested with the
aid of (14). To obtain precise results from the classical
theorem, it is necessary that the thermal energy κT be
much larger than the spacing between the quantum en-
ergy levels of the system. Otherwise, certain degrees of
movement might be “frozen”, and then the energy is not
distributed in an equitable way.

Entropy

Einstein obtained a formula for the entropy that,
firstly, it turned out to be extensive, that is, there is
no need to introduce a factor 1

N ! , known as Gibbs's fac-
tor. Previously, this factor was needed to avoid a non-
extensive expression of the entropy.

Secondly, Einstein affirmed that, at zero absolute tem-
perature, all molecules are in a single cell, that is, in the
cell with the lowest possible energy. This fact implies
that only a possible distribution exists. Therefore, when
the logarithm of the number of microstates that are com-
patible with the macroscopic state of the system is equal
to 1, a null value for the entropy is obtained according
to the third law of thermodynamics (Nernst principle).

Bose-Einstein condensation

In a later article [4], Einstein detected the existence of
the phenomenon of �condensation�, which takes place
below a certain temperature for a given N and V. It con-
sists in the accumulation of particles in the same cell, that
is, in the cell of lower energy (the fundamental state, with
current terminology). Nowadays, it can be understood as
a great reduction in the velocity of the gas molecules, fact
that makes not possible to determine their location due
to the uncertainty principle. Therefore, there is a loss
of the individuality of molecules that are treated as a
unique condensate identity. The condensed phase, the
only one existing at zero absolute temperature, implies
an annulment of entropy.

Einstein suggested the helium and the electron gas as
possible candidates for the detection of this phenomenon,
but everything remained as a simple academic topic un-
til 1938. This year, F. London used this idea as a pos-
sible explanation for the transition phase of He I to He
II. Finally, in 1995, Scientists from JILA (Joint Institute
for Laboratory Astrophysics, University of Colorado) ob-
served for the first time, a condensate of atoms of Rubid-
ium 87 thanks to the laser cooling of atoms.

IV. FIRST IMPACT OF BOSE-EINSTEIN
STATISTICS

IV.A Loss of statistical independence

Einstein found the opposition of Ehrenfest, who did
not conceive the idea of using a non-independent sta-
tistical treatment for particles that, in fact, had been
employed in the new method without being indicated in

either of the two published articles of 1924. Einstein jus-
tified it by arguing that using a treatment in which par-
ticles were considered as statistically independent iden-
tities, different results would be obtained: on the one
hand, Wien's law for radiation, and, on the other hand,
the classical equation of state for the monatomic ideal
gas.

In order to differentiate both treatments (non-
statistical independence versus statistical independence),
Einstein began by distributing for both cases n particles
in the energy range (ε, ε+dε) of a total of N particles in k
cells. In this way, considering the number of microstates
that are compatible with the constraints of the system,
the entropy and the occupation numbers of the system
can be obtained by using the usual process.

Firstly, taking into account that there is no statistical
independence, the identical particles N are distributed
in k cells. Einstein attributed this form of evaluation
to Bose and obtained expressions that did not appear in
the mentioned article, but that could be found in a later
paper. The starting expression is:

Ω =
∏
ε

(k(ε) + n(ε)− 1)!

(k(ε)− 1)!n(ε)!
(17)

Secondly, if there were statistical independence, it is nec-
essary to assign a cell to each molecule and, then, multi-
ply it by the factor in parenthesis below, which represents
all the possible ways to distribute the N molecules, in or-
der to obtain exactly n molecules in each energy interval
(ε, ε+dε). The number of microstates is then:

Ω =
∏
ε

k(ε)n(ε)(
N !∑
ε n(ε)!

) (18)

Einstein verified the validity of its treatment based on
equation (17) by obtaining an extensive entropy and a
null value for entropy at the zero absolute temperature,
according to Nernst principle. Otherwise, performing the
independent statistical treatment based on equation (18),
both requirements are not satisfied at the same time.
In this way, Einstein considered to have demonstrated
the need for the new treatment and the approximation
character of the classic treatment.

IV.B Influence on Schrödinger

In the article published by Einstein in 1925, he con-
sidered an ideal experiment in which a gas of volume
V is communicated with another one of infinite volume
through a wall that allows going through only molecules
with energy corresponding to the interval (ε, ε+dε). Ein-
stein computed the main relative quadratic fluctuation
of the main number of molecules with the considered en-
ergy:

(
∆(ε)

n(ε)
)2 =

1

n(ε)
+

1

k(ε)
, (19)
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where n(ε) is the mean value of the number of particles
and k(ε) is the number of cells that have the mentioned
energy range.

Thanks to previous ideas of De Broglie based on the
association of a scalar wave field to each material particle,
Einstein affirmed the association of the second term 1

k(ε) ,

which only depends on the energy range considered and
on the volume of the gas, with the value of the mean
quadratic fluctuation of this field. However, he did not
demonstrate it.

Finally, it should be noted that these ideas of De
Broglie and Einstein served as a basis for the formula-
tion of wave mechanics by Schrödinger at the beginning
of 1926.

V. CONCLUSIONS

Thanks to Bose's disagreement with the existing de-
ductions of Planck's law that combined the laws of clas-
sical electrodynamics and quantum concepts such as
quanta, he managed to deduce the new indistinguishable
treatment of photons. He achieved it by distributing the
photons in the different cells and considering how many
there were in each cell, without specifying which of them
were in each particular cell.

This new quantum treatment prompted Einstein to
formulate a quantum theory for the ideal monatomic
gas. This theory allowed obtaining remarkable results
such as the possibility of conceiving classical statistics as
a limit case of the new statistics through the introduc-
tion of the degeneration parameter, the loss of general
validity of equipartition theorem when quantum effects
become relevant, a new law for the energy distribution of
the molecules of an ideal gas in thermal equilibrium, and
the annulment of entropy at zero absolute temperature.

The previous results were obtained regardless of the
usual statistical independence of the molecules of an ideal
gas, as criticized by Ehrenfest. The study of certain sta-
tistical fluctuations in Einstein’s ideal experiment led him
to intuit the existence of a scalar wave field associated to
each material molecule under the new quantum treat-
ment.

After this brief study based on what could be consid-
ered to be the birth of quantum statistics, it is noted that
one of the most relevant aspects is the fact that all these
contributions are prior to quantum mechanics since it is
not until the beginning of 1926 when Schrödinger for-
mulated wave mechanics. As seen so far, this fact could
be surprising and perhaps contradictory. However, to
establish the basis of quantum statistics, only the intro-
duction of an indistinguishable treatment of particles and
the constant h are required.

Not only occurs this chronological distortion contrary
to what a priori one might think, but also it goes beyond
that. In other words, the fact is that the birth of quantum
mechanics did not influence the formulation of the new
quantum statistic, but it was just the opposite. This
fact is confirmed when Schrödinger himself admitted the
influence that the ideas of De Broglie and of Einstein
had on the evolution of his own thoughts towards the
formulation of wave mechanics in 1926. [5]
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