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Abstract: In this paper we shall model the evolution of a market evolving within the framework of the non-

arbitrage binomial pricing asset model using a Monte Carlo-based algorithm. Our goal is to study the value of an 

actual path-dependent structured financial product, so we can create a commercial strategy and commercialize it. To 

do this we study the sensibility of the product when we vary its defining parameters, so we understand how its price 

depends on them and we can adjust the parameters to profit. 

  

I. INTRODUCTION 

We all have experienced the economic crisis. We know 

prices are related to the law of supply and demand. We have 

heard about futures, options and portfolios. But few of us 

know what economy is about. And even fewer know that 

many tools and mathematical approaches we use in physics 

are helpful in the study and description of economic and 

financial systems. 

Roughly speaking, economy studies how people exchange 

resources and the consequences of this actions. Broadly, 

economy has three domains: microeconomics (that deals with 

the behavior of individuals and firms regarding the allocation 

of limited resources), macroeconomics (that studies the 

performance, structure, behavior and decision-making of an 

economy as a whole) and finance, that is the field related to 

the study of investments: it includes the dynamics of assets 

and liabilities over time under conditions of different 

uncertainties and risks. 

We can see economics’ area of study is vast and has deep 

consequences in humans’ life, so it may be surprising that 

most of economics is based in the following hypothesis: the 

decisions of any participant in any economic system are made 

rationally, meaning these choices are made to maximize the 

actor’s satisfaction (utility) [1] . 
Moreover, in finance another hypothesis is made: markets 

are efficient. This one implies all the information about a 

product that provides the opportunity of a risk-free profit 

makes the market evolve to a situation where this possibility 

disappears (the so-called no-arbitrage condition).  

Without a doubt, the succeeds of economic models so far 

are unquestionable. Nevertheless, it is clear there still are 

problems to be solved, as evince the recent economic crisis 

and the incapacity of predicting the crisis itself and its impact 

in both local and global scale. Economists have realized the 

foundations where the economic theory lies may not be 

entirely true. In fact, to a greater or lesser extent, all these 

foundations have been questioned [2]. So, taking all this into 

account, economy might draw on a fresher point of view 

coming from other areas of science, as physics.  

The interest of physicists in economy and, notably, in the 

financial markets starts in the 80’s when physicists and 

mathematicians were hired to study the large amount of data 

coming from these markets. However, the connection 

between economy and physics is way older [3]. In fact, it was 

Daniel Bernoulli who introduced the concept of utility to 

explain people’s preferences. On the other hand, in 1900 

Louis Bachelier introduced a probabilistic model to describe 

the evolution of financial markets [4], the same mathematical 

model used by Einstein five years later to explain the 

Brownian motion, which, as we know, is a stochastic 

macroscopic process due to microscopic interactions. 

The connection between the microscopic and macroscopic 

phenomena is the field of study of statistical physics. This 

stochastic description of nature involves random processes to 

emulate the unpredictable effect of the countless interactions 

between the particles of a system. This approach goes beyond 

equilibrium systems and can be used to also describe systems 

where phase transitions happen, which are usually not 

solvable analytically. The path down this road leads us to 

what nowadays is known as complex systems. 

In complex systems, small perturbations may become 

huge perturbations due collective effects. Moreover, these 

systems frequently exhibit extreme events, which could be 

understood as an earthquake studying tectonics or as a global 

crisis studying finance [5]. 

II. PRICING DERVATIVES 

We shall study the behavior of a market which we 

consider evolves randomly. More precisely, the price of a 

stock that evolves within the binomial no-arbitrage pricing 

model by which, at each time step, this price goes up some 

quantity 𝑢 with probability 𝑝 or it goes down an amount 𝑑 

with probability 𝑞 = 1 − 𝑝. 

We can view the behavior of our stock’s price by 

imagining at each time step we toss a biased coin. Then if the 

outcome is head the price goes up, else the price goes down. 

In this context we shall study the mean payoff of a 

structured financial product using a computer simulation, 

based on the Monte Carlo method, that allows us to perform a 

path-dependent study of the system’s evolution. 

Let 𝑆𝑛 be the price of our stock at the time step 𝑛. 

Consequently, its initial price is 𝑆0. As already said, this price 

evolves at every time step. Consider now the price if the 

outcome of the coin toss is head, 𝑆1(𝐻), and the price if it is 

tail, 𝑆1(𝐻). Then we can define the up and down factors as 

𝑢 =
𝑆1(𝐻)

𝑆0

, 𝑑 =
𝑆1(𝑇)

𝑆0

. 

Moreover, we introduce the interest rate 𝑟, which tells us 

how the value of the money change from one time-step to the 

next one. For instance, one euro invested in the money 

market at time 𝑛 would yield 1 + 𝑟 euros at time 𝑛 + 1. 

A feature of a market is that if a trading strategy can 

generate some profit, then it must also contemplate the risk of 

loss; otherwise there would be an arbitrage. More 

specifically, an arbitrage is a trading strategy that has zero 
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probability of losing money and a positive probability of 

making it.   

In the binomial model, to rule out possible arbitrages we 

must assume 

 0 < 𝑑 < 1 + 𝑟 < 𝑢. (1) 

The inequality 𝑑 > 0 follows from the stock prices’ 

positivity. The other two inequalities in (1) follow from the 

absence of arbitrage, as we shall explain now. Imagine  

𝑑 ≥ 1 + 𝑟 and we begin with zero money, then at time zero 

we borrow money from the market to buy stock. Even in the 

worst case, i.e. the stock’s price going down, its price at time 

one will be enough to pay off out money market debt; 

besides, there is a positive probability the stock is worth more 

since 𝑢 > 𝑑 > 1 + 𝑟. This provides an arbitrage. On the 

other hand, if 𝑢 ≤ 1 + 𝑟, we could sell the stock short and 

invest in the money market. Even in the case where the stock 

is worth the most, the cost of replacing it at time one will be 

less than or equal to the value of the money market 

investment, and since 𝑑 < 𝑢 ≤ 1 + 𝑟 there is a finite 

probability that the cost of replacing the stock will be strictly 

less than the value of the money market investment. This 

again provides an arbitrage. 

In addition to the no-arbitrage conditions, we have 

assumed that: 

(i) shares of stock can be subdivided for sale or 

purchase, 

(ii) the interest rate for investing is the same as the 

interest rate for borrowing, 

(iii) the purchase price of stock in the same as the selling 

price, 

(iv) at any time, the stock can take only two possible 

values in the next period. 

So far, we have introduced the ratios in which our system 

will evolve, i.e. the amount the price will change at every 

time step, and we have put some constraints at them. 

Nonetheless, to fully describe the binomial model we still 

must find the probabilities of the unfair coin. These are 

derived using financial arguments. 

On one hand, assume we have an initial wealth 𝑋0 and we 

buy Δ0 shares worth 𝑆0 each. This leaves us with a cash 

position 𝑋0 − Δ0𝑆0. Then, at time one, our cash position will 

be (1 + 𝑟)(𝑋0 − Δ0𝑆0). Moreover, also at time one, we will 

have a stock worth  Δ0𝑆1. In particular, if the stock’s price 

goes up, the value of our portfolio and our money market 

account at time one will be 

 𝑋1(𝐻) = Δ0𝑆1(𝐻) + (1 + 𝑟)(𝑋0 − Δ0𝑆0). (2) 

Otherwise, if the stock’s price goes down, our cash 

position at time one will be 

 𝑋1(𝑇) = Δ0𝑆1(𝑇) + (1 + 𝑟)(𝑋0 − Δ0𝑆0). (3) 

On the other hand, we define a derivative security to be a 

security that pays some amount 𝑉1(𝐻) at time one if the coin 

toss results in head and pays a possibly different amount 

𝑉1(𝑇) at time one if the coin toss results in tail. For a given 

𝑋0 and Δ0, we want that 𝑋1 = 𝑉1 regardless the outcome of 

the coin toss. Thus, from equations (2) and (3) 

 
𝑋0 + Δ0 (

1

1 + 𝑟
𝑆1(𝐻) − 𝑆0) =

1

1 + 𝑟
𝑉1(𝐻),

𝑋0 + Δ0 (
1

1 + 𝑟
𝑆1(𝑇) − 𝑆0) =

1

1 + 𝑟
𝑉1(𝑇).

 

 

(4) 

Solving the system of equations (4) for 𝑋0 and Δ0 we 

find 

 
𝑋0 =

1

1 + 𝑟
[𝑝𝑉1(𝐻) + 𝑞𝑉1(𝑇)] = 𝑉0, (5) 

 
Δ0=

𝑉1(𝐻) − 𝑉1(𝑇)

𝑆1(𝐻) − 𝑆1(𝑇)
. (6) 

Let’s focus on equation (5), where it appears two 

quantities 𝑝 and 𝑞 we have found solving the system. These 

are given by the expressions 

 
𝑝 =

1 + 𝑟 − 𝑑

𝑢 − 𝑑
, 𝑞 =

𝑢 − 1 − 𝑟

𝑢 − 𝑑
. (7) 

Due the no arbitrage condition (1), both 𝑝 and 𝑞 are 

positive-defined. Besides, they sum up to one, so we can 

consider them a probability measure. In fact, they 

probabilities of head and tail for the biased coin, respectively. 

They are not the actual probabilities, which we denote by 𝑝 

and 𝑞̃, but the so-called risk-neutral probabilities.  

Under the actual probabilities, the average growth of the 

stock’s price is typically strictly greater than the rate of 

growth of the money market; otherwise no one would want to 

take the risk associated to investing in the stock. Hence, 𝑝 

and 𝑞̃ should satisfy 

𝑆0 <
1

1 + 𝑟
[𝑝𝑆1(𝐻) + 𝑞̃𝑆1(𝑇)], 

whereas 𝑝 and 𝑞 satisfy 

𝑆0 =
1

1 + 𝑟
[𝑝𝑆1(𝐻) + 𝑞𝑆1(𝑇)]. 

If the average rate of growth for the stock were equal to 

the rate of growth of the money market investment, then 

investors would take no risk meaning that they do not require 

any compensation for assuming it, nor were they willing to 

pay extra for it. This is not simply the case when one invests, 

so 𝑝 and 𝑞 cannot be the actual probabilities. 

Since the study we are about to do involves more than one 

time-step, now we need to extend these ideas to multiple 

periods. We can do so defining the value of our portfolio in a 

recursive way, beginning with 𝑋0, via the wealth equation 

𝑋𝑛+1 = Δ𝑛𝑆𝑛+1 + (1 + 𝑟)(𝑋𝑛 − Δ𝑛𝑆𝑛), 
which is a non-anticipating magnitude, involving quantities at 

different time steps. 

Then, using the expressions for 𝑝 and 𝑞 given by (7), 

defining recursively backward in time the random variable 

 
𝑉𝑛 =

1

1 + 𝑟
[𝑝𝑉𝑛+1(𝐻) + 𝑞𝑉𝑛+1(𝑇)], (9) 

and defining 

Δ𝑛=
𝑉𝑛+1(𝐻) − 𝑉𝑛+1(𝑇)

𝑆𝑛+1(𝐻) − 𝑆𝑛+1(𝑇)
, 

one can prove by induction that we will have 𝑋𝑁 = 𝑉𝑁 for all 

possible outcomes of the biased-coin toss. Moreover, the 

random variable (9) is defined to be the price of the 

derivative security for all 𝑛 = 1,2 … , 𝑁 [5]. 
Last, but not least, from (9) we can find a formula to 

price the options in the present time in terms of the price at a 

time step 𝑛 

𝑋0 =
1

(1 + 𝑟)𝑛
𝔼[𝑋𝑛]. (10) 

III. THE VANILLA CASE 

Now that we have introduced our model, the simplest 

option to analyze is the so-called Vanilla option, which is a 



Treball de Fi de Grau 3 Barcelona, June 2018 

financial instrument that gives the holder he right, but not the 

obligation, to buy or sell an underlying asset, security or 

currency at a predetermined price within a given timeframe. 

A concrete case is the European call option, that gives the 

owner the right to buy stock for a stake price 𝐾. Obviously, 

the holder will exercise the option if he obtains any profit, so 

the payoff of this option is (𝑆𝑁 − 𝐾)+ = max(𝑆𝑁 − 𝐾, 0). 

Since the payoff of this kind of option is not path-

dependent, the expected value of the payoff can be computed 

analytically within the binomial pricing model using the 

formulas of the binomial distribution. Of course, it can also 

be computed with a method based in random numbers, such 

as the Monte Carlo method we shall introduce later, as a 

verification for the non-analytical one. 

 
FIG. 1: Figure comparing the payoff’s mean value of a European 

call option, using both analytical binomial formulas and the random 

number generation method, in terms of the number of times we run 

the Monte Carlo algorithm. The dashed line represents the analytical 

result and the one with the error bars goes for the Monte Carlo. We 

have used 𝑆0 = 𝐾 = 10 €, 𝑛 = 250, 𝜎 = 0.014, 𝑟 = 1,54 · 10−5. 

Moreover, in the inset we can see the convergence of the real 

error between the two payoffs and the statistical one (monotone 

line), in terms of the number of times we run the algorithm. 

Then, we can use the Monte Carlo method for other 

options or compound products which cannot be studied 

analytically or whose payoff has path dependent conditions. 

IV. THE PATH-DEPENDENT CASE 

As already said, we use a Monte Carlo-based algorithm to 

simulate the evolution of our market. Basically, the stock’s 

price behaves as a random walker, moving forward or 

backward a fixed quantity. To emulate the random-walk 

dynamics we generate random numbers uniformly distributed 

between zero and one, 𝑥 ∈ [0,1]. Then, if 𝑥 ∈ [0, 𝑝], we take 

it as the unfair coin tossing head and the stock’s price goes 

up. Otherwise, we interpret it as a tail and the price goes 

down. 

The value 𝑝 is the risk-free probability, defined in (7). To 

compute it we need to fix the values for 𝑢 and 𝑟 which are 

realistic, meaning they must be like the ones we find in real 

markets. 

A. Setting the parameters 

Let’s begin with the interest rate 𝑟. This is a tricky 

parameter to set, since it changes from epoch to epoch. In the 

present scenario of low interest rates, we shall choose the 

annual interest as 𝑟𝑎 = 0.385%. We can connect it with the 

interest rate for a time horizon 𝑇 using the relation 𝑟𝑇 = 𝑟𝑎/T 

Hence, considering we check how the market evolve every 

trading day, 𝑇 = 250 and 

𝑟𝑇 ≡ 𝑟 = 0.0000154. (11) 

We carry on with the up factor. Typical values for the 

annual volatility for a market’s share prices are around 

𝜎𝑎 ≈ 20 % and for our purposes we shall use 𝜎𝑎 ≈ 23 %. 

For a random-walk alike market the volatility for a time 

horizon 𝑇 is given by 𝜎𝑇 = 𝜎𝑎/√𝑇. Taking the same time 

horizon as before we get 

𝜎𝑇 ≡ 𝜎 = 0.0145464. (12) 

Moreover, we know that 

𝜎2 = 𝔼 [(
𝑆𝑛+1

𝑆𝑛

)
2

] − (𝔼 [
𝑆𝑛+1

𝑆𝑛

])
2

, 

where 

𝔼 [
𝑆𝑛+1

𝑆𝑛

] = 𝑝
𝑆𝑛+1(𝐻)

𝑆𝑛

+ (1 − 𝑝)
𝑆𝑛+1(𝑇)

𝑆𝑛

= 1 + 𝑟, 

𝔼 [(
𝑆𝑛+1

𝑆𝑛

)
2

] = (1 + 𝑟) (𝑢 +
1

𝑢
) − 1. 

Consequently, 

𝜎2 = (1 + 𝑟) [(𝑢 +
1

𝑢
) − 1 − (1 + 𝑟)], (13) 

which is an equation for u.  

Since 𝜎2 ≪ 1, 𝑢 will be slightly higher than 1 and 

therefore we can expand 𝑢 = 1 + 𝜖 + 𝜖2. Thus, from (11) 

we find an equation for 𝜖 that reads 

𝜎2 = (1 + 𝑟)(2 + 𝜖2) − 1 − (1 + 𝑟)2. 
Its solution is 

𝜖2 =
𝑟2 + 𝜎2

1 + 𝑟
. (14) 

Since, as we have said, typical values of this parameters 

satisfy 1 ≫ 𝜎2 ≫ 𝑟 we can take 𝜖 ≈ 𝜎, meaning in practice 

we shall consider 𝑟 ≈ 0. 

Concerning the down factor, it is common to have  

𝑑 = 1 𝑢⁄ , and this will be our case, so the evolution of our 

system evolves as a one-dimensional random walk. 

B. The product 

We have already introduced our model, chosen a working 

line using Monte Carlo-based simulations and set realistic 

parameters for our algorithm, thereupon we shall study the 

payoff of an option which is path-dependent, as we describe 

here below. It is inspired by an actual structured financial 

product recently commercialized by MAPFRE VIDA 

S.A. [7], where we find to types of conditions: 

1. The final condition: regardless the stock price’s 

evolution path, if the final price is above a certain 

upper-limit percentage, 𝐿𝑢 , with respect the initial 

price, the payoff is the initial inversion plus the initial 

capital times the upper limit percentage. In other 

words, 

𝑆𝑁 > (1 + 𝐿𝑢)𝑆0 ⟹ 𝑋𝑁 = (1 + 𝐿𝑢)𝑆0 

2. The path-dependent condition: if the final prince is 

below this fix percentage, i.e. if 

𝑆𝑁 < (1 + 𝐿𝑢)𝑆0, 
      then 



Treball de Fi de Grau 4 Barcelona, June 2018 

(i) if at any time the price of the stock has been 

below a certain value, 1 − 𝐿𝑑, then the payoff is 

the final price of the stock, that is to say, 

𝑋𝑁 = 𝑆𝑁 . 
(ii) if the stock’s price never reaches the lower limit 

𝐿𝑑 then its value is the maximum between the 

final price and the initial one plus a certain 

percentage 𝐿𝑖, i.e 

𝑋𝑁 = max(𝑆𝑁 , (1 + 𝐿𝑖)𝑆0). 

Since the payoff is path-dependent, the Monte Carlo 

method has here an extra advantage because the method itself 

works generating random paths. Hereunder we present 

different simulated paths with different payoff 

 

 

 
 

FIG. 2: Different random walks for the stock’s price. We have 

chosen 𝑢 and 𝑟 as discussed before and 𝑆0 = 10 €, 𝐿𝑑 = 30%, 

𝐿𝑢 = 8,75% and 𝐿𝑖 = 2%. Consequently 

 a) The price reaches both the lower and the upper limit. Since 

condition 1. is fulfilled the payoff in this case is 𝑋𝑁 = 10,875 €.  
       b) In this case the price also reaches the lower limit, hence 

condition 2. 𝑖𝑖 is satisfied and the payoff is 𝑋𝑁 = 𝑆𝑁 = 7.585 €. 
 c) The last plot shows how the stock’s price reaches repeatedly 

the upper limit, but in the end it’s below this value. Hence the 

payoff is 𝑋𝑁 = max(𝑆𝑁, 1,02 𝑆0) = 10,2 €.  

We shall now use the algorithm to simulate the behavior 

of a certain market and study the average value of the 

option’s payoff for different values of the model’s parameters 

and the ones from the option. Unless it is the varying 

parameter, the values which we shall use are the ones in (11) 

and (12) and those used while plotting FIG 2. 

As it has been said before, in practice we consider 𝑟 ≈ 0, 

but let’s see what happens if we don’t: 

 
FIG. 3: Value of the product’s initial payoff, X0, in terms of the 

interest rate, 𝑟. To find 𝑋0 we use (10) 

We see that if the interest rate is negative, i.e. money is 

worth less at the end than it was at the beginning, then the 

value of our stock has decreased. Therefore, we must increase 

the initial price to compensate this devaluation. 

We go on studying the variation of the payoff as we vary 

the market’s volatility 

 
FIG. 4: Value of the product’s initial payoff, X0, in terms of the 

volatility, 𝜎. 

This time we observe the average value of the payoff goes 

down as volatility increases. One can show that, for a fixed 

interest rate 𝑟, taking 𝑢 = 1 + 𝜎 and 𝑑 = 1 𝑢⁄ , the risk-

neutral probability is given by 

𝑝 ≈
1

2
(

𝑟

𝜎
+ 1), 

meaning the probability of the stock’s price going up rises as 

 𝜎 drops, and vice versa.  

Moreover, from a qualitative point of view, reducing the 

volatility means investing in a less risky market hence, even 

the amount we would win may be smaller, so is the 

probability of losing our investment.  

The following situation we consider is the one where we 

change the value of the upper-limit. 

 
FIG. 5: Value of the product’s initial payoff, X0, in terms of the 

upper limit, 𝐿𝑢. 
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We observe the expected value of the payoff increases as 

𝐿𝑢 rises, since the product is worth more every time the 

stock’s price overcomes the upper limit 

 

The last parameter left to study is the lower limit 

 
FIG. 6: Value of the product’s initial payoff, 𝑋0, in terms of the 

lower limit, 𝐿𝑑 . 

In this case the product’s price drops as the lower limit 

goes down, since our hedging position becomes smaller, 

meaning it’s more likely we lose money. 

Finally, let’s study how 𝑋0 depends on the most relevant 

parameters, i.e. 𝜎 and 𝐿𝑑 . 

 
FIG. 7: Contour curves of the value of the product’s initial payoff, 

𝑋0, in terms of the lower limit, 𝐿𝑑 , and the volatility, 𝜎. 

One can see from this contour plot that, for the parameters 

considered, the mean value of the initial payoff verifies 

 9.8 € < 𝑋0 < 10 €. (15) 

C. The commercial strategy 

For this product to be attractive, we have to offer a 

relatively high 𝐿𝑢, so the buyer feels he can have an 

acceptable profit considering the risk taken. However, to 

compensate the rise of the product’s price we must introduce 

some factors adding risk to the investment. These can be both 

external, as the volatility of the market where we invest, or 

internal, such as the probability of having an unhedged 

position if the stock’s price reaches a certain lower limit, 𝐿𝑑. 

Following this logic, if the product offers a limited profit 

it’s price decreases, while offering covering for the possible 

loses makes the price rise. In this way, the product may make 

us feel like we are truly investing, since we have a positive 

probability of a situation where we have no hedging. 

If we were about to commercialize this product, our profit 

would come from the initial investment of the costumer, 

meaning we would buy the derivative instead of the stock and 

our benefit would be the difference. 

 Therefore, we must adjust the parameters, so the 

estimated price of the product is slightly lower than the initial 

price of the stock we are buying, just as we see that happens 

in FIG 7. 

CONCLUSIONS 

Summarizing, we have studied the expected value of a 

structured financial product’s payoff. To do so, we have used 

the no-arbitrage binomial model, which states the stock’s 

price can only go up or down some fixed quantities 𝑢 and 

𝑑 = 1 𝑢⁄  with probabilities 𝑝 and 𝑞 = 1 − 𝑝, respectively. 

These probabilities are derived using financial arguments for 

the one period model, and then generalized to the multiperiod 

model by induction. 

We have set the parameters like the typical values we find 

in real markets nowadays, 𝜎 = 1,45 % and 𝑟 = 0,00154 %, 

obtaining 𝑝 = 0.497 and 𝑞 = 0.503. 
Since we analyse a structured product whose payoff is 

path-dependent, we study the stock’s price time evolution as 

it was a random walker moving with probabilities 𝑝 and 𝑞. 

To do so, we have used a Monte Carlo-based algorithm. 

To have a better understanding of the product, we have 

studied its sensibility, i.e. how the option’s price varies when 

we change respect the parameters defining it.  

Then we have defined a commercial strategy, we have set 

the product’s parameters, so the initial price of the product is 

less than the initial stock’s price and we make profit, as we 

can see in (15).  
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