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Abstract: We study a Bose-Hubbard trimer populated with an ultracold gas of dipolar bosons.
By exact diagonalization of the many-body Hamiltionian, we analyze different cases, depending on
the strength of the interactions that take place amongst the bosons and their polarization.

I. INTRODUCTION

Since 1995, when the first Bose-Einstein condensate
was obtained [1], the experimental techniques in this field
have developed enormously. Nowadays, a myriad of dif-
ferent systems can be built and tested, which has lead to
a large expansion of the field [2].

In this work, we will simulate a particular system
known as Bose-Hubbard (BH) trimer, which consists of
three potential wells amongst which tunneling is allowed.
We will consider it to be populated with an ultracold gas
of dipolar bosons. In contrast to the isotropic short-range
contact interaction usually present in ultracold gases,
dipole-dipole interactions are anisotropic and long-range.
This opens the possibility for new physics, which has been
recently developed [3].

II. DESCRIPTION OF THE SYSTEM

In order to describe this system, we will follow a similar
approach to that of Ref. [4]. We will consider that all
the dipoles, each one corresponding to one boson, are
oriented in the same direction. Each potential well (or
site) will be identified by a number (1,2,3). We will focus
on the case for which the tunneling rate between all pairs
of sites is the same.

In addition to that, we will also take into account the
interatomic interaction. This interaction has two compo-
nents, an on-site one, which corresponds to the interac-
tion between bosons that are in the same potential well,
and an intersite one, which corresponds to the interaction
amongst the bosons that are located in different poten-
tial wells. The on-site interaction is due to a combination
of dipolar and s-wave contact interactions. As a first ap-
proach, we will consider this interaction to be pair-wise.
The intersite one is due to the long range character of the
dipolar interaction. We will consider that each group of
bosons located in the same site create an effective dipole,
which corresponds to the superposition of all of them.
Then, the intersite interaction can be thought as the in-
teraction amongst these effective dipoles.

For simplicity, we will work within the second quan-
tization formalism. In our study, we will restrict to a
subspace of the Fock space with the total number of par-
ticles, N , fixed.

Taking all these features in consideration together with
the form of the dipolar interaction [4], the Hamiltonian
of the system reads:

Ĥ = −J(b̂†1b̂2 + b̂†1b̂3 + b̂†2b̂3 + h.c.) +
Uon

2

3∑
i=1

n̂i(n̂i − 1)

+Uint

∑
i<j

(1− 3 cos2 θij)n̂in̂j , (1)

Where b̂†i , b̂i and n̂i = b̂†i b̂i are the creation, annihilation
and number bosonic operators of each site, respectively
[5]. J , Uon and Uint are characteristic parameters of the
system which control the tunneling rate, the on-site inter-
action and the intersite one, respectively. J an Uint are
positive defined, whereas Uon can be either positive (re-
pulsive interaction) or negative (attractive interaction).
θij is the angle between the direction that joins each pair
of effective dipoles (each corresponding to one site) and
the direction of polarization.

The general procedure that we will carry out in order
to study this system is to build the matrix representation
of the Hamiltonian (1) in the Fock basis of our subspace,
i.e. F3 = {|n1, n2, n3〉 | n1 + n2 + n3 = N}, and then
diagonalize it. From the diagonalization we can obtain
the energy spectrum and the wave function of any state
we might be interested in, which in general will be the
ground state (GS). The diagonalization will be carried
out numerically, using a function which relies upon the
Implicitly Restarted Lanczos Method [6].

Once the wave function of the state that we want to
analyze is obtained, we can characterize several relevant
features of that state, such as expected values of different
observables or entanglement properties. The latter will
be obtained by means of a bipartite splitting, that is,
by tracing the density matrix of the state that we are
analyzing with respect the Fock basis corresponding to
2 sites, populated with at most N particles in total, i.e.
F2 = {|i, j〉 | i + j ≤ N}. This can lead up to three
different reduced density matrices, one for each site. It
can be proven that, for any state, in the Fock subspace in
which we will be working, these reduced density matrices
are always diagonal in the F1 = {|0〉 , ..., |N〉} basis, see
Ref. [7]. Therefore they will read:

ρ(i) = Trj,k (ρ) =

N∑
l=0

λ
(i)
l |l〉 〈l| , (2)
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with i, j, k = 1, 2, 3.
The λl coefficients are known as the entanglement

spectrum. As a general property, they fulfill
∑

l λl = 1.
From them, the Schmidt gap (∆λ) and the von Neu-
mann entropy (S), which are two figures of merit that
characterize the entanglement of a particular state, can
be computed.

The Schmidt gap is defined as the difference between
the two largest λl coefficients. When ∆λ(i) = 1, it
means that the state considered is a product state with
respect to site i, i.e. |ψ〉 = |ψ〉i ⊗ |ψ〉j,k. The von

Neumann entropy is defined as S = −
∑

l λl log λl. A
large von Neumann entropy corresponds to large entan-
glement, and vice versa. Its largest value is reached for
λl = 1/(N +1) , ∀l and its minimum when one of the co-
efficients equals one, i.e. ∆λ = 1. In order to normalize
it to 1, we will take the logarithms in base N + 1.

III. RESULTS

In order to understand better all the results obtained,
it might be helpful to first take a look at the intersite
interaction term of the Hamiltonian. As it is seen in (1),
concerning each pair of sites there is a coefficient mul-
tiplying it: Uint(1 − 3 cos2 θij). Uint is positive defined,
so, for each pair of sites, the attractive or repulsive char-
acter of this interaction depends entirely on the value of
θij . If this angle is such that 1−3 cos2 θij is positive, the
interaction will be repulsive, whereas if it is negative, it
will be an attractive one. As limiting cases, we note that
θij = π/2 is the most repulsive case and θij = 0 the most
attractive one.

It is also interesting to note that, due to the tunneling
term of the Hamiltonian, the matrix representation of
Ĥ is never diagonal in the F3 basis. This fact makes
the generic ground state of the system to be |ψ〉GS =∑

n1,n2
Cn1,n2

|n1, n2, N − (n1 + n2)〉, which in general is
not an eigenstate of the number operators, n̂i.

Keeping these features in mind, we will start by study-
ing the ground state of some characteristic configura-
tions, depicted in Fig. 1. In the α and β configurations,
a clear symmetry and equivalence between sites 1 and 3
can be observed, whereas in the the γ configuration the
symmetry is amongst all sites.

Fixing the total number of bosons N = 48, we solve
the Hamiltonian (1) by exact diagonalization. We will
first look at the different phases that appear depending
on the values of the on-site and the intersite interaction
coefficients, for each characteristic configuration.

A. α configuration

As seen in Fig. 1 (left panel), in the α configuration we
have θ12 = θ23 = π/6 and θ13 = π/2. Therefore, there
is attraction between sites 1-2 and 2-3, but repulsion
between 1-3. In Fig. 2, we show the average occupations
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FIG. 1: Schematic representation of α, β and γ configurations.
The vectors show the polarization of the effective dipoles for
each configuration. However, its length is not related to their
strength, as each site can be populated with a different num-
ber of bosons.

of site 1 and 2 for the ground state. We can clearly
distinguish three phases:

Phase α.a. The on-site attractive interaction, which
in this region is stronger than the inter-site one, tends
to group all the bosons in the same site. For the on-site
interaction all the sites are equivalent, so it does not
prioritize the occupation of any of them. However, as
the occupation of only one site does not take place (due
to the tunneling part of the hamiltonian), the intersite
interaction plays a role, prioritizing the occupation of
site 2 as it is more stable in the alpha configuration.

Phase α.b. We see that in this region, the expected
occupation of site 1 is granulated, but the occupation
of site 2 is well defined. In general, granulated regions
in expected occupation diagrams correspond to a
degeneracy in the energy spectrum. Indeed, we have
obtained that in this case the ground state of the system
is two-fold degenerated. In order to understand this
result, we note that the dominating interaction is the
intersite one. Thinking about the properties of this
configuration, we can see that the system tends to the
following expected occupations in order to minimize
its energy in the J → 0 limit: 〈n̂2〉, 〈n̂1〉 → N/2 and
〈n̂3〉 → 0, or 〈n̂2〉, 〈n̂3〉 → N/2 and 〈n̂1〉 → 0. These
two configurations are equivalent and degenerated.
Therefore, by exact diagonalization, we can reach any
superposition of them. As 〈n̂2〉 → N/2 is the same for
both, it is well defined, but the expected occupations of
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FIG. 2: Expected average occupations, 〈n̂1〉/N (left) and
〈n̂2〉/N (right) in the (Uint/J , Uon/J) plane for the ground
state of the system in the α configuration. These results have
been obtained for N = 48.
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sites 1 and 3 are not. For the latter ones, due to this
superposition, we reach any random number (always
respecting 〈n̂1〉+〈n̂2〉+ 〈n̂3〉 = N).

Phase α.c. In this case, the on-site repulsive inter-
action is stronger than the intersite one, thus it domi-
nates. The on-site repulsive one, tends to distribute the
particles uniformly in the three sites, as discussed in Ref.
[7]. Therefore, we expect to have approximately the same
particles in each potential well, but with a correction due
to the intersite interaction. As the interaction between
sites 1-3 is repulsive and attractive otherwise, we observe
a depletion of sites 1 and 3, and an increase of the ex-
pected number of bosons in site 2. It can be seen that
this depletion and increase is progressive, the more in-
tense the intersite interaction, the more significant this
phenomena becomes.

B. β configuration

In this configuration, the characteristic angles are
θ12 = θ23 = π/3 and θ13 = 0, as depicted in Fig.
1 (middle panel). Thus, there is attraction between
sites 1-3 and repulsion otherwise. This case turns out
to be the opposite of the α configuration. From the
numerical results obtained, depicted in Fig. 3, we can
again distinguish three phases:

Phase β.a. In this region there is a two-fold degen-
eracy in the ground state. Because of that, this phase
appears granulated in the average expected occupation
of site 1. Basically, this can be explained noticing that
the on-site interaction dominates and it is attractive,
meaning that it tends to gather all the bosons in one
site. The intersite interaction acts as a correction to this
distribution. Due to the features of the beta configura-
tion and the tunneling part of the Hamiltonian, the less
energetic configurations are either 〈n̂2〉, 〈n̂1〉 → 0 and
〈n̂3〉 → N , or 〈n̂2〉, 〈n̂3〉 → 0 and 〈n̂1〉 → N , as site 2
is the only one that feels intersite repulsion with all the
others. These two degenerated limiting configurations
explain the results obtained.
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FIG. 3: Expected average occupations, 〈n̂1〉/N (left) and
〈n̂2〉/N (right) in the (Uint/J , Uon/J) plane for the ground
state of the system in the β configuration. These results have
been obtained for N = 48.

Phase β.b. In this region, the intersite interaction
dominates. From the β configuration features, it follows
that in this case, in order to minimize its energy, the
system has to populate only sites 1 and 3. Looking
at the Hamiltonian of the system (1), we see that the
magnitude of the intersite interaction is proportional to
the product n̂in̂j , so the energy is minimized when the
expected occupation of site 1 and 3 is the same. This
matches with the results obtained: 〈n̂1〉, 〈n̂3〉 → N/2
and 〈n̂2〉 → 0 .

Phase β.c. The on-site interaction dominates. In this
case it is repulsive, which means that tends to distribute
the bosons equally amongst the three sites. The intersite
acts then as a correction to this distribution, slightly un-
balancing the expected occupation in sites 1 and 3 with
respect to 2, as there is attraction between site 1 and
3 and repulsion otherwise. As it can be seen, this un-
balancing becomes more significant the more intense the
intersite interaction is.

C. γ configuration

As commented before, in this configuration all
sites are equivalent, so the same physics is observed
for the three of them. This is due to the fact that
θ12 = θ13 = θ23 = π/2, as it can be seen in Fig. 1
(right panel). Moreover, this corresponds to the case of
maximum repulsion between all pairs of sites. Looking
at the results depicted in Fig. 4, we can distinguish two
different phases:

Phase γ.a. This phase corresponds to the region
where the on-site attractive interaction dominates, as
well as to the region in which the intersite interaction
does. In both cases, the interaction amongst bosons
basically tends to group them in a single site, their effect
is equivalent. Due to the total equivalence amongst
the three sites, we obtain three-fold degeneracy in the
ground state, and the granulated expected occupation
associated to it.
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FIG. 4: Expected average occupation of site one, 〈n̂1〉/N , in
the (Uint/J , Uon/J) plane for the ground state of the system
in the γ configuration. These results have been obtained for
N = 48.
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Phase γ.b. The on-site interaction dominates. In this
case it is repulsive, which means that tends to distribute
the bosons equally amongst the three sites. As in this
case all the sites are equivalent, it does not unbalance
the configuration, and the expected average occupation
of each site in the ground state is the same for all of them:
〈n̂1〉, 〈n̂2〉, 〈n̂3〉 → N/3.

D. General case

In the previous sections, we have obtained the same
results as in Ref. [4]. Now we will consider a new scenario,
in which all the possible orientations of the dipoles are
permitted, fixing the interaction coefficiens.

We choose the y-axis to be in the direction that joins
sites 1 and 3. We represent the direction of the dipoles
with a generic unit vector expressed in spherical coor-
dinates. Computing the corresponding scalar products,
we can reach the following expressions for the cosines
squared that are involved in the dipolar interaction:

cos2 θ13 = (sin θ sinφ)2

cos2 θ12 = (sin θ sinφ)2
[

sin
(π

3

)
cotg φ− cos

(π
3

)]2
cos2 θ23 = (sin θ sinφ)2

[
sin
(π

3

)
cotg φ+ cos

(π
3

)]2
.

From these expressions, we can see that this interaction
is symmetric with respect to θ = π/2, and invariant un-
der π-shifts of φ. Thus, studying the system in the θ−φ
plane with θ only ranging from 0 to π/2 and φ from 0 to
π, we can already observe all the phenomenology of this
general case.

A useful way of exploring this new situation is to de-
compose the dipolar vectors in two components; their
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FIG. 5: Schematic representation of the characteristic con-
figurations reached by the components of the dipolar vectors
parallel to the plane of the trimer as a function of φ. The
subscripts indicate the sites which each configuration tends
to populate with more bosons, analogously as in the previous
sections.

projection to the plane of the trimer and the one per-
pendicular to it. The former will vary its orientation
only with respect to φ, passing through different charac-
terisitic configurations which we can identify with the α
and β ones, as it is schematically shown in Fig. 5. On
the other hand, the latter components will always have
the same orientation, which corresponds to a γ configu-
ration. Varying θ, we can control the magnitude of each
contribution. We can range from the case of having the
dipolar vectors in the plane of the trimer (θ = π/2) to
the one in which they are perpendicular to it (θ = 0).

Having a closer look at Fig. 5, we can also notice that
the phenomenology observed in each site has to be the
same as that of the other sites within π/3 shifts of φ
(forwards or backwards), since our choice of axis has been
totally arbitrary. We could have associated φ = 0 to a α3

or a α1 configuration instead of a α2, and yet the system
would be the same. It is because of this equivalence that
we shall only focus on the phenomena observed in one
site.

As an illustrative case, we will consider a strong
intersite interaction, without on-site one. In particular,
we will consider Uon = 0 and Uint/J = 5. The results
obtained are depicted in Fig. 6, from which we can
distinguish different phases:

Phases Ai. This phases appear for low values of θ,
where the γ-like components of the dipoles dominate. As
there is no on-site interaction, they tend to gather the
bosons in one site. In fact, the effect of this components
alone has been already characterized in γ.a phase. Now,
however, for most of the φ values, the dipolar components
parallel to the plane of the trimer break completely the
three-fold degeneracy observed in the γ.a phase, promot-
ing the occupation of site i with respect to the others.
This is due to the fact that these components make one
site more stable, except when the βi−j configurations in
the plane of the trimer are reached. These configurations
make two sites equally stable, and therefore a two-fold
degeneracy in the energy spectrum is found. These par-

φ

A2

B2-3 B1-3 B1-2

A2A3 A1

FIG. 6: Expected average occupation of site 2, 〈n̂2〉/N , (left)

and von Neumann entropy measured in site 2, S(2), (tracing
with respect to sites 1 and 3) (right) for the ground state
of the system. Although they are different magnitudes, they
share the same scale. The results are shown in the (θ, φ)
plane, and have been obtained for Uon = 0, Uint/J = 5 and
N = 48.
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ticular cases serve as the boundaries of the Ai phases.
Recalling the equivalence between a dominating γ-like

intersite interaction and a on-site attractive one observed
in phase γ.a, it is easy to see the analogy between phases
Ai and the α.a phase. This analogy is also valid between
the boundaries (βi−j configurations in the plane of the
trimer) and the β.a phase.

Phases Bi−j . Now the components of the dipolar
vectors parallel to the plane of the trimer dominate. In
these phases there is equal expected occupation of only
two sites. The particular cases for which αi configura-
tions in the plane of the trimer are reached define the
boundaries between them.

These results can be understood thinking that, except
for the αi configurations, there is always a pair of sites
for which the attraction is larger than the others. This
situation is similar to that of β.b phase. For the same
reason, equal expected occupation of two stites and al-
most null occupation of the third is obtained. Therefore,
we can establish again an analogy between phases Bi−j
and β.b phase. As for the boundaries (when αi config-
urations in the plane of the trimer are reached), we can
identify them with α.b phase.

The effect of varying θ in Bi−j phases can be appreci-
ated in the von Neumann entropy, although it is not seen
in the expected occupation of the sites, which remains
constant. We see that the more intense the components
perpendicular to the plane of the trimer are, the larger
the entropy becomes.

In Fig. 7 different cuts of the entanglement spectrum
are shown. In the left panel we have fixed θ = π/4.
In this cut, we can see that the Schmidt gaps tend to
∆λ(i) → 1 in the Bj−k phase, but they are clearly differ-
ent from 1 in the Bi−k and Bi−j phases. Therefore, Bj−k
phases tend to a product state between site i and the
other two, which remain entangled, as it was expected.

In the right panel, with φ = π/12 fixed, we can also see
the tendency ∆λ(i) → 1 for the Ai phase. Noticing that
total expected occupation of one site and null occupation
of the others can only be reached with one of the Fock
states: |N, 0, 0〉 , |0, N, 0〉, or |0, 0, N〉, we can infer that
the Schmidt gaps measured in the other sites tend to one
as well. Therefore, Ai phases tend to a product state
between the three sites.

Moreover, we see that the entanglement spectrum
collapses in the phase transitions. This phenomena has

also been found in Refs. [4] and [7], and it serves as a
way of identifying those transitions.

φ

θ

FIG. 7: Entanglement spectrum of the ground state of the
system measured in site 2 as a function of φ, for θ = π/4
fixed (left), and as a function of θ, for φ = π/12 fixed (right).
Both spectra have been obtained for Uon = 0, Uint/J = 5 and
N = 48.

IV. CONCLUSIONS

We have studied the anisotropic effects of the dipolar
interaction in the ground state of a BH trimer populated
with dipolar bosons, obtained by exact diagonalization of
the many-body Hamiltonian. First, by considering three
characteristic configurations, we have seen how the com-
petition between the on-site interaction and the intersite
one leads to different phases. After that, we have consid-
ered a different scenario, in which all the orientation of
the dipoles are permitted, but the strength of the inter-
actions is fixed. In all the cases, we have seen how the
orientation of the dipoles plays a crucial role, due to the
anisotropy of the dipolar interaction.

We have shown that the different phases numerically
obtained can be characterized by means of expected av-
erage occupations and energy degeneracy. In the general
case, we have also seen that the entanglement properties
of the system can be very helpful in these characteriza-
tions.
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