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The recently measured inclusive electron-proton cross section in the nucleon resonance region, performed
with the CLAS detector at the Thomas Jefferson Laboratory, has provided new data for the nucleon structure
functionF, with previously unavailable precision. In this paper we propose a description of these experimental
data based on a Regge-dual model For. The basic inputs in the model are nonlinear complex Regge
trajectories producing both isobar resonances and a smooth background. The model is tested against the
experimental data, and tH@? dependence of the moments is calculated. The fitted model for the structure
function (inclusive cross sectigns a limiting case of the more general scattering amplitude equally applicable
to deeply virtual Compton scattering. The connection between the two is discussed.

DOI: 10.1103/PhysRevD.69.014004 PACS nunifer12.40.Nn, 13.60.Hb, 14.20.Dh

[. INTRODUCTION 7n=(A-q)/(p-q), the skewedneg®r skewness[1,10]. The
reality of the outgoing photon implies the presence of only

It has been recently realizéd—4] that a straightforward one scaling variable, namely, fq§=0 one has
generalization of the ordinary parton densities arises in ex-
clusive two-photon processes in the so-called generalized A2\t
Bjorken region, e.g., in Compton scattering with a highly n=-§ 1+F 1)
virtual incoming photon, and in the hard photoproduction of Q
mesons. Here one finds off-forwar_d r_’natrlx. element_s, as dlsThe generalized and ordinary Bjorken variables are related
tinguished from the forward ones in inclusive reactions.

Deeply virtual Compton scatterindVCS) combines the

features of the inelastic processes with those of an elastic A2

process. The diagram of such a procestk,)+p; +—
—e'(ky))+po+7y(gy), is shown in Fig. 1, where f=x 2Q 2
e(k,),e’'(k,) denote, respectively, the initial and final elec- A2

trons of moment&,,k,, and pq,p, denote the initial and 2—X+ X&

final momenta of the target correspondingly.

*[N)\LCSN',S tgzi:ar: erlgggsspirr?s:&fn r:fsiar‘] rleslhgzgﬂn,itl.ig Our starting point is a complex scattering amplitude de-
gne of ?he é:leanegst th:oIs to constructggenerglized parttynn di ending on three vgriableg, t andQ*, defined by Fig. 1
tributions(GPD) [5-9], which reduce to ordinary parton dis- nd the correspor_1d|ng legend. Even though our paper is _de-

I . e : voted to DIS of Fig. 2 and relevant CLAS data, we bear in
tributions in the forward direction. The theoretical efforts and
achievements are supported by the experimental results from
HERMES, HERA and CLAS Collaborations, and encourag-
ing future plans.

DVCS is characterized by three independent four-
momenta: p=p;+p,, A=p,—p;, and q=(q;+0y)/2,
where the vectorp; (q;) andp, (qg,) refer to the incoming
and outgoing protoiphoton) momentum, respectively. Most
of the papers on deep inelastic scatteripdS) and DVCS
are based on the operator product expansion with extensive
use of the light-front variables. Otherwise, the conventional
Bjorken variable isx=Q?%(2p;-q;), Q°=—q3, and é=
—g2/(q- P) is the generalized Bjorken variable. If both pho-
tons were virtual, we would have an extra scaling variable  FIG. 1. Kinematic of deeply virtual Compton scattering.
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The main idea behind the model is Reggeization of the
resonances both in treeandt channels. Nonlinear, complex
Regge trajectories replace individual resonance contribu-
tions. The resulting scattering amplitude is a complex func-
tion of the Mandelstam variablg,t,u and of the photon
virtuality Q2. Its imaginary part in the forward direction,
=0 corresponds to ordinary distributions or structure func-
tions (SF), describing inclusivee.g. electron-protonscatter-
ing, while the whole amplitude is directly related to exclu-
sive deeply virtual Compton scattering and corresponding
general parton distributions.

In Refs.[14-16 dual amplitudes with Mandelstam ana-
lyticity (DAMA) were suggested as a model for DVCS or
DIS. We remind that DAMA realizes duality between direct-

. . channel resonances and high-energy Regge behavior
mind the close relation between DVCS and DIS, the latter(“Veneziano-duaIity’). By introducing Q2 dependence in

being the limiting case of th? form.er. DAMA, we have extended the model off mass shell and have
Most of the papers on this subject are based on the fac- p . »
S i . . shown[14,15 how parton-hadrofor “Bloom-Gilman”) du-
torization properties, separating the perturbative and nonper-

turbative dynamics(*handbag” diagram, according to ality is realized in this model. With the above specification,

which, at largeQ?, lowest order perturbation decouples from DAMA can serve as an explicit m_odel valid, in principle, at
hadronic dynamics during the short time of interaction.2! valueszof the Mandelstam variablast andu as well as
While factorization in hard scattering processes is valid to alfor @ny Q% thus realizing duality “in two dimensions”: be-
orders in perturbation theory, a considerable fraction of thdween hadrons and partons, on the one hand and between
existing data comes from the so-called soft region of small€sonances and Regge behavior, on the other hand. The latter
and intermediate values @®? (Q®~1 Ge\?), where the Property opens the way of linking JLalarge x, resonancgs
present nonperturbative approach can be compared with tid HERA(small X, Regggphysics.
relevant successful perturbative Q@PQCD) calculations Recently new data on inclusive electron-proton cross sec-
[2,3]. Althought dependence at smdlis outside the pQCD tion in the resonance regionM<2.5 GeV) at momentum
domain, nontrivial forms of the dependence at a proper transfersQ? below 4.7 (GeV/cj, measured at the JL4BE-
scale suggested recen{l,6,7 can be confronted to those BAF) with the CLAS detectof17] were made public. In the
following from Regge-dual models. present paper we discuss an analysis of the new CLAS data
The phase of the DVCS amplitude experimentally is ex-within this model.
tracted from the interference between the DVCS and Bethe- The kinematics of inclusive electron-nucleon scattering,
He|tler amplitudes, like in the case of the Coulomb mterfe_r-appncame to both high energies, typical of HERA, and low
ence in the forward cone of elastic hadron scattering. Whilgnergies as at JLab, is shown in Fig(e Ref[16] for
PQCD factorization detail§2,8,9 how to calculate the real qre details
part of the DVCS amplitude, any Regge-dual model contains - gy gies of the complex pattern of the nucleon structure

the phase explicitly, its form depending on the available freeTunction in the resonance region have a long histsse, for

dom (form of the Regge singularity, shape of the trajectories . )
etc) inherent in this type of model. One can hope that theexample[lS]). Among dozens of resonances in 4€p sys

results of the pQCD calculation will reduce this freedom intem above the pion-nucleon threshold only a few of them can

the future. Alternatively, this phase can be approximately re-be identified more or less unambiguously. Therefore, instead

constructed by means of the dispersion relations or their simQf identifying each resonance, one considers a few maxima

plified version of the derivative dispersion relations, as it wag20Ve the elastic scattering peak, corresponding to some “ef-
done in Ref[11]. fective” resonance contributions. Recent results from the

In a series of papers we initiated the study of DIS anglLab[17,19 rene_wed the interest in t.he subject_and they call
DVCS within a Regge-dual approach. Its virtue is the pres-for a more detailed phenomenological analysis of the data
ence in the scattering amplitude bflependence and of the and a better understanding of the underlying dynamics.
phase as well as its explicit energy dependence, compatible The basic idea in our approach is the use the off-mass-
with unitarity. At high energies, the contribution of a dipole shell continuation of the dual amplitude with nonlinear com-
pomeron 12] dominates, while at moderate and low energiesplex Regge trajectories. We adopt the two-component picture
subleading contributionésecondary Reggeonbecome im-  of strong interactions, according to which direct-channel
portant. Moreover, by duality, at low energielsgchannel resonances are dual to cross-channel Regge exchanges and
Regge pole exchanges are replaced by direct-channdie smooth background in the channel is dual to the
Reggeons. Pomeron exchange in thiechannel. As explained in Ref.

No hard scale factorization is assumed in this approacH.14], the background in dual model corresponds to pole
External photons interact with the proton via vector mesorterms with exotic trajectories that do not produce any
(or generalized vector mes§h3]) dominance. resonance.

FIG. 2. Kinematic of deep inelastic scattering.
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KINEMATICALLY COMPLETE ANALYSIS OF THE CLAS. ..

Il. REGGE-DUAL STRUCTURE FUNCTION

In the present section we introduce notations, kinematic
and the Regge-dual model. More details on the model can
found in earlier papefl4-16,20Q.

So, we study inclusive, inelastic electron-proton scatter
ing, whose cross section was measured at JLab and used
determine the unpolarized structure functiba(x,Q?) as
well as the Nachtmann and Cornwall-Norton mome(see

e.g.[21)).
The cross section is related to the structure function by
Q%(1—x) x
2y —
F2(x,Q%) Ara(lrami0y %t 3

where the total cross sectionty*p, includes by unitarity all
possible intermediate states allowed by energy and quantu
number conservation, and we follow the norm

ol P(s)=ImA(s,Q%) (4)
used in Refs[14-16,22. The center of mass energy of the
¥*p system, the negative squared photon virtuaXy and
the Bjorken variablec are related by

s=W?=Q?(1—x)/x+mZ. (5)

2
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cross section with different weights is not an easy task. How-
ever, this problem can be overcome with the use(®of
hannel Regge trajectories, including all possible intermedi-
Ste states in the resonance region appearing as recurrences on

the trajectories. In this approach, Regge trajectories play the

r%le of dynamical variables and the parameters of the trajec-

tories can be fitted either to the masses and widths of the

known resonances or to the data on DIS cross sectginsc-

ture functiong, reflecting adequately the position of the

peaks in the SFor cross sectiondormed by the interplay of
different resonances.

The form of the Regge trajectories is constrained by ana-
lyticity, requiring the presence of threshold singularities, and
by their asymptotic behavior imposing an upper bound on
their real part. Explicit models of Regge trajectories realizing
these requirement were studied in a number of paf28k
or our present goalésmall and intermediate energjea
particularly simple model based on a sum of square root
thresholds will be suitable,

a(S) = ag+ a5+ ay( \/S—O— VSp—S), (7)

where the lightest thresholdy, produces the imaginary part
and the heavier thresholds producing the real part can be
approximated here by a linear term. In our cfsé—1§ s
=(m,+m,)2.

In the Regge-dual approach with vector meson dominance For asymptotic, large or t the trajectories turn down to a
implied, Compton scattering can be viewed as an off-mastgarithm, producing wide angle scaling behavior with a link
shell continuation of a hadronic reaction, dominated in thgo the quark model. This interesting regime, discussed e.g. in

resonance region by nonstrangd énd A) baryonic reso-
nances. The scattering amplitude can be written as a po

Refs.[24,25, however is far away from the resonance region
&nd will not be included in the present analyses.

decomposition of the dual amplitude and factorizes as a In y*p scattering, mainly the twd* s (isospin 1/2 and

product of two verticesform factorg times the propagator,

[A(s,Q%)]i=0
f2(n—npﬂin+ 1)

=N} > =

r,n

2

BG
n_ar(s) +[A(81Q2)]t=0

(6)

whereN is an overall normalization coefficient,runs over
all trajectories allowed by quantum number conservation
our case =N7j ,N3 ,A) while n runs fromn™" (spin of the
first resonanceto n;"®* (spin of the last resonance—for more
details see the next sectipmnd[ A(s,Q?) 129 is the contri-
bution from the background. The functioh§Q?) anda,(s)

one A (isospin 3/2 resonances contribute in treechannel
and thus we will limit ourselves to considering these three
terms, plus additional terms which describe the background,
to be discussed later.

B. Form factors

In our previous worl{ 16], we concentrated our attention
on the analytic structure of the scattering amplitudes using a
simple dipole model for the form factors. However, in order
to properly describe the structure function in the resonance
region, it is essential to account for the helicity structure of
the amplitudes. Below we do so following Davidovsky and
Struminsky[26], who provided for relevant amplitudes by
using the Breit-Wigner resonance model. The relation be-

are respectively form factors and Regge trajectory corretween the Breit-Wigner and the “Reggeized” resonance

sponding to theth term. (For a comparison of the direct-
channel, “Reggeized” formula(6) with the usual Breit-
Wigner expression see Appendix)ANote that only for the

model, to be used can be found in Appendix A.
The form factors can be written as a sum of three terms
[26-29, G, (Q?), Go(Q? andG_(Q?), corresponding to

first resonance at each trajectory we have a squared form* N—R helicity transition amplitudes in the rest frame of
factor, while for the recurrences the powers of form factorsthe resonanc&:

are growing, according to the properties of DAMA4,15.

A. Regge trajectories

_ (RAR=AN=A,13(0)N Ay
m L

G, 8

Y

Any systematic account for the large number of direct-

channel resonancdsver 20 contributing to they* N total

whereAg, Ay and\ , are the resonance, nucleon and photon
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helicities, J(0) is the current operatok , takes the values

—1, 0 and+1. Correspondingly, the squared form factor is

given by a sunj26-29
|G (Q)[*+2[Go(Q%)|*+]G_(Q%). 9

The explicit form of these form factors is known only

near their thresholdsj|— 0, while their large©? behavior is
constrained by the quark counting rules.
According to[27], one has near the threshold

>y o, > ;-
G.(Q)~gP GO<Q2>~ﬁ|q|J 2 (10
for the so-called normal (172-3/2",5/2*,7/2", . ..) tran-
sitions and
. do, -
G.(Q)~dP 2 Go(Qz)NﬁMl“m (11)
for the anomalous (1/2—1/2,3/2%,5/27, .. .) transitions,
where
L V(M2-m?- Q)2 +4M%Q?
= , 12
gl oM (12)
MZ_mZ_QZ
Qo=—""%5 (13

2M '

M is a resonance mass.

Following the quark counting rules, in RefR9] (for a
recent treatment sd@6]), the large©? behavior ofG’s was
assumed to be

G.~Q7% G~Q 7% G ~Q° 14

Let us note that while this is reasonalofeodulo logarithmic

PHYSICAL REVIEW D 69, 014004 (2004

ki

|Go|2:C2( =
|q|?

2J-1
) C2a+m0(QO)CZJ+l(Q(,))y
(18

for the anomalous ones, whem,=3, my=4, m_=5
count the quarksC anda are free parameters. For notational
convenience we have introduced the functions

d
|Q|Q=o

Z2

C(Z) = W
The form factors aQ?=0 are related to the helicity photo-
production amplitude#\;;, and A, by

1 M
Nren M= mlAv2ad-

C. The background

Apart from the resonances, lying on ti’'s and A s
channel trajectories, dual to an effective bosoffijctrajec-
tory in thet channel, one has to consider the contribution
from a smooth background. Following our previous argu-
ments[14-16,20, we model it by nonresonance pole terms
with exotic trajectories, dual to the Pomeron,

ct
S 6, (Qp)

=E,E’ nb_ab(s)

G, (0)|= (19

[A(s,Q%)]ge= (20)
b

with dipole form factors, given by?(Q,). The exotic tra-
jectories are chosen in the form

ap(S) = ap(0) + a1p(VSo— V/So—$),

where the coefficientsr,(0), a1, and theQﬁ are the free
parameters. To prevent any physical resonance, they are con-
strained in such a way that the real part of the trajectory

(21)

factorg for elastic form factors, it may not be true any more terminates before reaching the first resonance on the physical

for inelastic(transition form factors. Our Regge-dual model,

sheet. An infinite sequence of poles, saturating duality, ap-

Eq. (6), predicts that the powers of the form factors increasd®€ars on the nonphysical sheet in the amplitude; they do not

with increasing excitatioresonance spjnThis discrepancy

interfere in the smooth behavior of the backgrofoa more

can be resolved only experimentally, although a modeldetails se¢30]).

independent analysis of th®2 dependence for various
nuclear excitations is biased by thenknowr background.

In Ref.[26] the following expressions for th&'s, com-
bining the above thresholdl0), (11) with the asymptotic
behavior(14), were suggested:

1G.12=]G.(0)[?a* 3¢ 73(Qg)c™(Qg) (15
2 2 qg 2J—1.2a+m, 2J—-1 !
|Go|?=C Wq c °(Qo)c™" " (Qp)
(16)
for the normal transitions and
1G-[2=G-(0)[?g* *¢* " (Qg)c™(Qy)
(17

Anticipating the results of Sec. IV, we notice that fits to
the data prefer a negative contribution from the second term
in the background. Formally this is compatible with alterna-
tive models(e.g.[17,19), but needs to be understood also in
the framework of the present Regge-dual approach.

Ill. COMPARISON WITH OTHER MODELS

In this section we would like to indicate the two important
properties of our Regge-dual model, that should, in principle,
discriminate it from alternative models of DIS in the reso-
nance region.

Looking at Eq.(6) one can see that contrary to the models
accounting for each resonance separately here resonances on
each Regge trajectory enter with progressively increasing
powers of the form factors. This makes the present model
quite different from the existing approacHd¥-19,26. No-
tice that increasing powers of the transition form factors re-
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sult in the suppression of the relevant contributions from the The imaginary part of the scattering amplitude can then
recurrences with growing spin, thus explaining the graduabe written, according to Ed6), as a sum of the contribution
disappearance of higher excitations. Further comparison dfom the resonances plus the background,
the experimentally measured transition form factors may dis-
criminate between two approaches. Work in this direction is 2 2
in progress. ImA(s,Q%) =N{[ImA(s,Q%) ]r

The second important difference comes form the param- +[ImA(SrQ2)]BG}-
etrization of the background. We describe the background by
nonresonating pole ternithe poles appear on the nonphysi- , o )
cal sheet, sef30]) with exotic trajectories and standard di- Accordingly, the resonance contribution takes the following
pole form factors. The background contribution strongly de-form:
creases with increasingQ?, whereas in “standard”
parametrizationf17-19,26 the background is an increasing m
function of Q°. Since resulting fits by different models are  [ZmA(s,Q¥)]g= >  fA(Q? 5
almost equally good, it is difficult to discriminate between J=A.Np.Np (nj—Rej)?+Im;
these two options. Studies of tiF dependence of the ratio
between a resonance contributions and the backgréand \ith Re andZm denoting the real and imaginary part of the
fixed energy or x may resolve this ambiguity and help to g|eyant Regge trajectory, and the form factors are calculated
better disentangle resonances from the background. as described in Sec. Il B. For instance, the form factor for the

A resonance can be written as

IV. ANALYSIS OF THE CLAS DATA

In this section, we present our fits to the CLAS data on f3(Q%)=0°c*(Q)[c*(Q0)|G ., (0)|*+c>(Qo)|G_(0)[?];
the nucleon structure functiofr,,(Q?,s) [17]. (22

A similar analysis using earlier dafa9] was carried out
in our previous papef16]. The main point of the model similar expressions can be cast for other contributions.
considered ii16] was the inclusion of three prominent reso-  The imaginary part of the forward scattering amplitude
nances,N* (1520), N*(1680) andA(1232) plus a back- coming from the background can be easily obtained from Eq.
ground, dual to the Pomeron exchange. In that approach th@0),
large number of resonances contributing to Fiewith dif-
ferent weights was effectively accounted for by letting the

SF depend on effective trajectories, whose parameters wer 2 _ VPPN Zm;
fitted to the data. This approach was, in a sense, justifeed “ e[ImA(s,Q )ee .:E ) Gic(Q) NMN_ e )24+ Tm?2’

. . . . J=E,E ( i ]) i
posteriori’: the parameters of the effective trajectories were (23

found to be close to these fitted to the spectrum of baryon
resonance. Although the main features of the S8} were min - )
reproduced by the dual model, the quality of the fit was farti€rén; " is the lowest integer, larger than maRe; ], en-
from perfect. The reason for the poor agreement could b&Uring that no resonances W|Il_app_ear on the exaotic trajectory.
threefold: first, in[16] we made an extra simplification by he advantage of such a choice is that the two tezrms of the
neglecting the helicity structure of the amplitudes, and theédackground depend on two different scal@g, andQg, , so
form factors were chosen in a simple dipole form. Includingthey will dominate in different regions.
the spin changes the form factors in a nontrivial way and The model constructed in this way, has 23 free param-
complicates th&)? dependence of the SF. The second pointeters: each resonance is characterized by ttiheeintercept
is related to the parametrization of the background;1ié] is kept fixed coefficients describing the relevant Regge tra-
the background was modeled by one term only, underestjectory plus the two helicity photoproduction amplitudese
mating the magnitude of the SF in some regions. The thirdEq. (19)]. The form factors(see Sec. Il B leave only two
important reason is the quality of the data—the set of point§ree parametersQ, and Q;. Finally, the background, con-
available was not homogeneous resulting in a nonuniforntains 8 free parameters: 4 for the two exotic trajectories, 2
weight of the fit. To cure this deficiency, we performed aenergy scaleQg andQg, and two amplitude&g andGg, .
preselection of the initial data set, a procedure that poterwith the overall normalization factoN this gives a total of
tially may result in ambiguities. The fits were improved, al- 23 free parameters.
though still are not perfect. The resulting fits to the CLAS data, performed by using
Similarly to[16], here we also include only the contribu- miNuIT [31], are presented in Table | and together with the
tion from three dominant resonancé$® (1520), N* (1680)  experimental data are shown for varioQ€ bins in Figs.
and A(1232) and we implement this by using three baryon3-8.
trajectories with one resonance on each of them. By consid- To start with, we made a fit by keeping some of the pa-
ering such resonances as “effective” contributions to the SFrameters fixed, close to their physical values, particularly
we are able to treat the large number of resonances that cotiiose of the Regge trajectories and of the photoproduction
tribute, with different weights, to the SF. amplitudes. Also, a single-term background was used. The
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TABLE |. Parameters of the fits. The symbdl refers to fixed parameters.

PHYSICAL REVIEW D 69, 014004 (2004

Parameters Fit 1 Fit 2 Fit 3
@ —-0.8377° —0.8377° —-0.8377°
a; [GeV ?] 0.9500° 0.9402 0.9825
N3 a, [GeV 1] 0.1473° 0.1757 0.0920
A?(1/2) [GeV 1] 0.0484E-2 0.0484E-2 0.8647E-2
A?(3/2) [GeV 1] 0.2789E-1° 0.2789E-1° 0.9634E-2
@ —0.3700° —0.3700° —0.3700°
a; [GeV ?] 0.9500° 0.9724 0.9551
N3 a, [GeV 1] 0.1471° 0.0575 0.0949
A?(1/2) [GeV 1] 0.0289E-2 0.0289E-2 0.9724E-2
A?(3/2) [GeV 1] 0.1613° 0.1613° 5.1973E-11
@ 0.0038° 0.0038° 0.0038°
a; [GeV ?] 0.8500° 0.8758 0.8605
A a, [GeV 1] 0.1969° 0.1724 0.2005
A%(1/2) [GeV 1] 0.0199° 0.0199° 5.3432E-08
A?(3/2) [GeV 1] 0.0666° 0.0666° 0.0866
G, 6.5488 2.8473 3.6049
@ 0.3635 0.7014 0.3883
a, [GeV 1] 0.1755 0.1575 0.3246
E; le [GeV?] 5.2645 4.5169 3.9774
se, [GeV?] 1.14° 1.3038 1.14
Ge, —0.6520
@ —0.8929
E, a, [GeV 1] 1.7729
Q§2 [GeV?] 2.4634
se, [GeV?] 1.14°
So [GeV?] 1.14° 1.14° 1.14°
Q2 [GeV?] 0.4089 0.4580 0.9998
Q3 [GeV?] 3.1709 2.5180 1.8926
N [GeV ?] 0.0408 0.0655 0.0567
Xaor 12.92 4.6886 1.3005
resulting fit(fit 1) is shown in Table I. Nextfit 2) some of V. MOMENTS

the parameters of the Regge trajectory were varied. Conse-
quently they? was improved, although still remaining unsat-
isfactory. Finally, we let all the parameters vafit 3) with
the result reported in Table I. Fit 3 is good, Wiy o.+.
=1.30. It is worth mentioning that a comparison with a simi-
lar fit performed in[20] leading toxq4 ..t =9.4 needs care,
since in[20] only one term in the background was included,
the helicity amplitudes were kept constant and the datasé
used included both data from9] and[17].

To show the progress in the fits, we plot against the ex-
perimental data the structure functions for four different val-
ues ofQ? with the parameters from three different fits—see
Fig. 9.

Having fitted the parameter$rom now on we will use
parameters of fit 8 we can now proceed to further calcula- wherek=1,2, ... u is a factorization scale),;(u) is the
tions (moment$ and analyses(duality relation$ of the  reduced matrix element of the local operators with definite
model. spinn and twistJ, related to the nonperturbative structure of

We have calculated the moments of the structure func-
tions using the explicit expressions and parameters fitted in
the previous section. These moments can be used, in particu-
lar, to estimate the role of the nonperturbative effébtgher
twists).

From the operator product expansitfor a comprehen-
ive review see e.d21]) the momentsM,(Q?) of F, are
efined as

2\ (3-2)/2
) . (24

Mn(Q)= S Epy(12.Q%)0n ()| 2o
7=k Q
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%

0,4

0,2

02=o|.225Gev

Q° = 0.475 GeV®

Q*=0.825 GeV* F Q% =0.875 GeV? Q° =0.925 GeV*
0’0 | L 1 ' | | s 1 s | L | L | L |
0,2 0,4 0,6 0,2 0,4 0,6 0,2 0,4 0,6
X

FIG. 3. Structure functiof,(x) for Q>=0.225-0.925 GeV . Data are fronj17], whereas the straight line is the prediction of our dual
model (fit 3).

the targetEn;(x,Q?) is a dimensionless coefficient related ~1 Ge\2. Therefore the most interesting kinematical region

to the small distance behavior. lies between 0 and 5 Gé\and large values of, where the
The leading twist termr=2 is well established in pQCD, higher moments dominate. The JLab data and relevant cal-

while higher twists are indicators of the nonperturbative anctulations in[17] cover most of this region.

confining effects. In order to study the higher twists, it is In the present section we evaluate the Nachtnm{®hrand

essential to have a complete knowledge of Byecovering  Cornwall-Norton (CN) moments within our Regge-dual

the entirex range for each fixe®@?. Higher twists can be model and compare them with the data of the CLAS Col-

well established only with higher momenta>2), mean- laboration[17] as well as with those from Reff32].

while for M, their contribution is small even af? The relevant moments are defined as
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Q*=1.075 GeV®

Q% = 1.325 GeV®

Q® = 1.475 GeV®

0,00 C

0,30 |- Mk

0,15 -

Q% =1.575 GeV* : Q* = 1.625 GeV*
0,00 . L L 1 . . 1 L 1 .
0,2 0,4 0,6 080,2 0,4 0,6
X
FIG. 4. Structure functiorff,(x) for Q?=0.975-1.675 Ge\}.
Ml 2)_Jld | )F 2) (25) = PN 3+3(I’l+l)r+n(n+2)r2
Q)= | dXPr(x)F2(x.Q (xQ%)= (n+2)(n+3) ’

where

n+1 r=v1+4M?x%/Q?,

—P(x,Q?) for I=N

pr(x)={ x
X2, for I=CN E=2x/(1+r).
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0,15

0,00
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0,00
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0,15

| @°=2225GeV* \
1 | 1 | 1 1%

0,00
0,30 -
9

0,15 | L i

Q% =2.325 GeV? b | Q?=2.375 GeV? Q*=2.425 GeV*
0,00 . 1 ; | i TN i ] i | i | i 1 . ] f 1

0,2 0,4 0,6 0,8 0,2 0,4 0,6 0,8 0,2 0,4 0,6 0,8
X

FIG. 5. Structure functiofF,(x) for Q?=1.725-2.425 Ge\.

Please note that in our calculations the elastic part of the SF As seen from the figures, the agreement between our

(for x=1) was not taken into accourisee Sec. llIG in model and the data is quite good in the regi@¥f

Ref. [17]). <5 Ge\?, where the SFs were fitted to the data. The dis-
It is a relatively simple task to obtain the moments bycrepancies increase witQ?, away from the measurements.

using the existing numerical integration methods. We have

used the parameters of fit 3 from Table I. In Fig. 10 we plot

the Nachtmann moments far=2,4,6,8 together with the V1. DUALITY RATIO

results from[17]. In Fig. 11, the calculated N- and CN-

moments are compared with those fr¢82]. On this second In this section we check the validity of the parton-hadron

set of figures the errors in the momenta are not displayedjuality for our Regge-dual model by calculating the so-

according tg32] they should be less than 5%. called “duality ratio”
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Q° = 2.525 GeV* Q° = 2,575 GeV*

Q° = 2.625 GeV* Q° =2.675 GeV’
1 . ] 1 L 1

Q* =2.825 GeV* Q° =2.875 GeV’
| L 1 L | | L |

02} + - % L
9
Q° = 2.925 GeV* Q° = 2.975 GeV* Q° = 3.025 GeV*
0’0 | L | L | | | | | ! | L
0,2 I
Q° = 3.075 GeV* Q°=3.125 GeV* Q% =3.175 GeV®
0,0 | L | L | 1 | “ | 1 | L
04 06 08 04 0,6 0,8 0,4 0,6 08
X
FIG. 6. Structure functioffr 5(x) for Q?=2.475-3.175 Ge\..
| Res Smax
Q)= (26) Ired Q%)= f dsF3*,
Scaling Smin
where and we have fixed the lower integration linsj};,=Sq, vary-
ing the upper limits,,, equal 5 GeV and 10 GeV. These
s limits imply “global duality,” i.e. a relation averaged over
|sca“ng(Q2):f maxdngca”ng’ some interval irs (contrary to the so-called “local duality,”
Smin assumed to hold at each resonance positibor fixed Q?

014004-10



KINEMATICALLY COMPLETE ANALYSIS OF THE CLAS . .. PHYSICAL REVIEW D 69, 014004 (2004

Q° = 3.325 GeV*

0,00

0,15
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Q* = 3.425 GeV*
L L 1 L 1 L 1 L L 1 L l L 1

FIG. 7. Structure func-
tion Fy(x) for Q?=3.225

i —3.925 Ge\.
[}
)

Q° = 3.575 GeV* Q° =3.625 GeV’

Q% =3.725 GeV*
| L | L | L |

Q® =3.675 GeV*
0‘00 L | L | 1 |

t

Q*=3.875 GeV?
" l L l L l

i

Q°=3.825 GeV* \ Q* = 3.925 GeV*
0’00 P I S T T S PR 1 P (U I N S
04 05 06 07 08 0904 05 06 o7 08 0904 05 06 07 08 09

X

the integration variable can be eithetas in our casgx or lution in Q?, calculated 33] from the DGLAP equation.
any of its modificationsX’,¢, . . .) with properly scaled in- The functionF?es is our SF with the parameters of fit 3
tegration limits. The difference may be noticeable at smallsee Table )l The results of the calculations for different
values ofQ? due to the target mass correctioffsr details  values ofs,,,, are shown in Fig. 12.
see e.g[17]). These effects are typically nonperturbative  Given the available variety and flexibility of the existing
and, apart from the choice of the variables, depend on thparametrizations for the Sksee Sec. I)l we do no attribute
detail of the model. _ too much importance to the above duality test. Its validity or
In choosing the smooth “scaling curvé$®''"9 (actually, ~ failure to a large extent may be caused by the accidental
it contains scaling violation, in accord with the DGLAP evo- interplay of the details of different parametrizations. By this
lution) we rely on a model developed jB83] and based on a we do not intend to raise doubts about the very concept of
soft nonperturbative Regge pole input with subsequent evgparton-hadron duality. Moreover, in our opinion, explicit re-

014004-11



FIORE et al. PHYSICAL REVIEW D 69, 014004 (2004

0,10

Q° = 4.075 GeV®
| L |

Q%=3.975 GeV*
0,00 1 1 1

0,10 - - L

0,05

Q% =4.125 GeV® Q% =4.175 GeV* Q= 4.225 GeV® B
L | L 1

| L | L | s | L | L |

0,00

FIG. 8. Structure func-
- tion Fy(x) for Q%=3.975
—4.675 GeV.

0,05

h
T
Q°=4325GeV: ¢ ¢ Q° =4.375 GeV* ¢

. 1 L . 1 L 1 . 1

Q* = 4.275 GeV*
0,00 d L

0,10 L -

0,05

Q° = 4.525 GeV®
1 L l

Q%= 4.475 GeV®
| L |

Q° = 4.425 GeV?
0,00 . L
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L 1 1 | L 1 L 1 L 1

L 1 .
0,6 0,7 0,8 0,9 06 0,7 0,8 0,9 06 0,7 0,8 0,9

0,00

alization of this concept, similar to the Veneziano model,the large number and high statistics of the data and poor
should exist and be looked for. Work in this direction is in understanding of the nonperturbative dynamics, typical of
progress. the kinematical region where data are collected.
As repeatedly stressed, our approach does not compete
VIl. CONCLUSIONS with QCD; it is aimed to be complementary to QCD in the
nonperturbative domain. The main virtue of our Regge-dual
The main objective of the present study is a phenomenocapproach is its generality: potentially, it can be used for any
logical analysis of the CLAS data in a model within the value of its kinematical variable. From this point of view, of
analytical S matrix approach, complementary to approachesspecial interest is the possibility to link low-energy, reso-
based on pQCD. This analysis, as well as similar attemptaance physic¢and the JLab dajawith the high-energyor
show that achieving good fitsvith low x?) to the data is a low x) physics(from HERA) by “Veneziano duality” (apart
highly nontrivial task by itself. The origin of this difficulty is from parton-hadron dualijy inherent in the model.
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FIG. 9. Comparison between three different fits performed in the present rfzadetext

The price for such generality is the available freedom orspin, the same applies for the transition form factors.
flexibility of the model. It can be, however, further limited by ~ On the whole, the revival of the analytical methods,
comparison with other models, pQCD calculations and thenamely the study of various Riemann sheets of the scattering
data. In particular, we note the following. amplitude in the resonance regidfor a recent interesting

(i) Realistic parametrizations for baryonic trajectories,approach along these lines sg8]), and its combinations
satisfying the theoretical constraints yet fitting the datawith the parton model and QCD is a promising new devel-
should be further elaborated. Work in this direction is inopment in the strong interaction theory, that may shed new
progress. light on the confinement problem.

(i) The separation of resonances from background is In estimating the predictive powedbpr flexibility) of the
model-dependent. Our parametrization of the backgroungresent model, we notice that the number of the free param-
differs from that introduced long agsee e.g[18]) and used eters herd23) is comparable to or smaller than that in simi-
in all subsequent papefe.g.[17,19. Its nonorthodox moti- lar fits. For example Niculesc[B85] uses 30 fitting param-
vation comes from dual analytical models. At the same timeeters. The virtue of the present Regge-dual approach is the
fits to the data producesee Sec. IYa negative sign in front possibility to extend the model using the same set of the
of the second term of the background, similar to the “ortho-parameters to the small x domain, treated in Ref4,15,36.
dox” models(e.g.[17,19). Matching the large-xJlab and small-xtHERA) kinematical

(i) The present Regge-dual approach generalizes theegions will remove or at least reduce substantially the num-
concept of transition form factors, continuous in spin. More-ber of the free parameters and constrain the flexibility of the
over, higher spin resonance excitations are accompanied byodel. The realization of this ambitious goal, already dis-
higher powers of the relevant transition form factor, andcussed in Ref414,15,38, will depend on the right choice of
since the Regge trajectories imply an analytic continuation inhe Q? dependence or, alternatively, the correct off mass
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FIG. 10. Nachtmann moment#/y for n=2,4,6,8. The plot 0zl P =Rl
compares the moments calculated from the Regge-dual with thos: a bt LN e
extracted from the data and reported 7] (inelastic part i ak
] . o5k &
shell continuation of the dual amplitude. In the present papel 5
Q? dependence was introduced in the resonance region vi =
the transition form factors. Qe oif
To conclude, let us once more emphasize that the Regge = i
dual approach to DIS and DVCS to a large extent is comple- ;
mentary to the conventional one, based on the presence of 005t
hard scale, whef (or a masdM) is large and the amplitude : W
is calculable up to corrections of Q/times logarithms of o ) . T————3 e
Q2. In this case hard-scattering factorization can be appliec oAl = S S eSS =
for anyx, small or not. - o o5 1 15 s 25 5 o5 4 45 s
In the standard approach the generalization of DIS struc- Q2 GeV?

ture functions to the DVCS amplitude can be illustrajtgd]

by the following sequence of transitions: FIG. 11. Nachtmann momentMﬁ, and Cornwall-Norton mo-

. . ments,M$N, for n=2,4,6,8. These plots show the comparison be-
Fo~IMmA(y*p—7vy*p) tween the moments evaluated according to our Regge-dual model
and the values of the moments extracted from the electron-proton

*
—IMAYTP=7P)i-o0 scattering data reported |82] (inelastic park

* _ * .
AP YP)=0 ALY P vP). @7 well as in the values of the parametéesg. quark counting

. h d v i The link between the scaling behavior of the analytic and
In phenomenological approachesiependence usually is 5k models is a very interesting but still open problem. It

introduced by simply multiplying the forward scattering am-; ~o approached in a number of papers, e.d2B, where
plitude by arbitrary exponentia®', incompatible with the e large angle scaling behavior in a dual model was
shrinkage of the cone. A consistent, nonfactorizable form ofchieved by using Regge trajectories with logarithmic
thet dependence was discussed and derived within pQCD igsymptotic behavior.
a recent interesting paper by Freyd. Although ours is a typically “soft” approach, the quark

In the Regge-dual approach, on the other hand, the abovgructure, small-distance effects, etc. are also present there
sequence can be inverted: on starts with a complexdue to the use of nonlinear Regge trajectories. In particular,
t-dependent DVCS amplitude that can be reduced to the DIfhe asymptotic logarithmic behavior of these trajectories
structure functiorF, by taking its imaginary part, setting  could mimic hard scattering, quark counting ef25,38|.
=0 and equating the two photon momenta. This approaciThese effects are not factorized, as in the standard approach
does not require the presence of any hard scale, such as largi[1] and in most of the related papers, but are continuous,
photon momenta. The external photons are assumed fce. the transition from “hard”(perturbative to “soft” (non-
couple to the proton by vector dominanéer generalized perturbativé dynamics occurs smoothly, according to the
vector dominanc¢13]). In this sense this approach is typi- properties of dual analytical models. The correspondence be-
cally “nonperturbative.” Partongquarks and gluonsare not  tween the “hard” sector of this dual model and pQCa the
present explicitly but rather implicitly, manifest in the scal- quark model (see e.g[24,3§) is an interesting problem,
ing behavior of the amplitude for large t and/orQ? as  meriting further studies.
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KINEMATICALLY COMPLETE ANALYSIS OF THE CLAS . ..
S e e APPENDIX A: POLE DECOMPOSITION OF THE DUAL
ige! AMPLITUDE AND THE BREIT-WIGNER FORMULA

=5 =10GeV? ||
max

In the vicinity of a resonance, the nucleon structure func-
tion can be written in a factorized forfi29],

2
:;:%2 SWP~M2)XPL(Q?) (A1)

Fa(x,Q%)=

where P:(Q?) stands for some power of the nucletiran-
sition) form factor: this power is two in the standard ap-
proach, as e.g. in Refsl7-19,28, but varieqrises with the
resonances spin in the present Regge-dual approach;
.~ =(p-q)/m=Q?2mx (p is the four-dimensional momentum
: % 4 & ¢ ¥ & & i of the nucleongq is the four-dimensional momentum of pho-
QZ, GeV? ton, see Fig. 2 andM is the mass of the resonance.
This formula determines the contribution of a single, in-

FIG. 12. Global parton-hadron duality test for different values offinitely narrow resonance to nucleon structure functions. For
a wide resonance, if we replace the delta-functigfvv?

—M?) in the above expression by the familiar Breit-Wigner
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, 2m*>x 1 MT ,
Fa(x,Q%) = - X Pg(Q%). (A3)
1+4m?x%/Q? ™ [m?+ Q%(1/x—1)—M?]2+ M?T'?
Now let us compare this expression with our E2R):
(A4)

. . Q*(1-x) N Zm < Pe(02
2(X, Q%)= 47Ta(1+4m2X2/Q2) (nj_Rej)2+Im1_2 F(Q%),

Expanding the Regge trajectory near a resonaReg=n;+{Req;}' (s—M?)=n;+{Rea;} [m*+Q*(1/x—1)—M?] and
introducing the notationt’=Zm; /{Rea;}'M, we get the expression

) Q3(1-x) N MT 2
P Q0= 4ma(1+4m**1Q%) (Reaj}’ [m?+Q2(1x—1)— M2+ MZFZXPF(Q . (A%

The obtained value for the normalization coefficient is ap-

Notice thatQ?(1—x) = (s—m?)x~(M2—m?)x in the vicin-
proximately (for M=2m and {Rea;}' =1 Gev'?) N

ity of the resonance and therefore E¢83) and (A5) are
approximately the same for ~8a=0.058 GeV 2, in agreement with the results of the fit
8m?a{Rea;}’ (see Table)l
Ne ———— 1 (AB)
(M2=m?)
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