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We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogene-
ous background. This collision is described by an exact solution of Einstein’s equations in a vacu-
um which is generated from a nondiagonal seed by means of a soliton transformation. The effect
produced by the soliton on the amplitude and polarization of the wave is considered.

I. INTRODUCTION

In this paper we study the collision of a gravitational
wave pulse and a soliton wave.

Gravitational solitons are found in general relativity.
They have features similar to the hydrodynamical soli-
tons, such as a peculiar behavior under collisions. Its
presence is found in some exact solutions of Einstein’s
equations which are generated by means of the so-called
soliton transformation of Belinskii and Zakharov.!

Their properties were studied in Refs. 2 and 3 in a
cosmological context: the solitons are localized pertur-
bations of the gravitational field propagating on a spa-
tially homogeneous background. They have no disper-
sion; a velocity of propagation can be associated to
them; after collisions they keep their individuality and
although their amplitudes decrease with time, this is be-
cause of the expansion of the background. The solitons
show a particlelike behavior initially, but resemble gravi-
tational waves at later stages.

Because of this peculiar behavior of the soliton waves,
it is of some physical interest to study the collision of
solitons with other waves, in particular with gravitation-
al waves. For this purpose we will construct exact solu-
tions of Einstein’s equations able to describe such a situ-
ation.

First we shall describe the way in which such solu-
tions can be obtained. The solution transformation of
Belinskii and Zakharov! can be used to generate new ex-
act solutions of Einstein’s equations, in vacuum or stiff
matter, with two commuting Killing vectors by using a
known solution (seed solution) to start with. A number
of solutions have been studied in recent years.>~® The
degree of complexity of the new solutions depends on
the seed solution and the number of parameters of the
“pole trajectories” which characterize the transforma-
tion. The main steps in a soliton transformation are the
evaluation of a generating function, which requires an
integration, and the election of the pole trajectories.
Usually the seed solution is taken to be a diagonal
metric because the generating functions are then easily
found.’

Nondiagonal seeds have also been considered.'®~!? In
the cosmological context, however, such solutions are
not truly nondiagonal from the point of view of the soli-
ton transformation technique because the generating
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function can be found from a diagonal seed, Bianchi
type I, followed by an Ehlers transformation.'?

By suitably choosing the pole trajectories one may find
solutions (soliton solutions) which can be interpreted as
gravitational solitons propagating on the background of
the seed metric.* Consequently, in order to find solu-
tions describing the collision of solitons with gravitation-
al waves, we must choose a seed solution containing
gravitational waves.

Some solutions with gravitational waves are found in
spatially homogeneous models: the Lukash Bianchi type
VII, (Ref. 14) or Siklos plane waves of types IV, VI,
and VII; (Refs. 15 and 16). The Lukash solution is rath-
er complicated and Siklos plane waves can be integrated
to find the generating functions, but they are given in
terms of a rather complicated combination of hyper-
geometric functions.!” Moreover, plane-wave solutions
have more symmetries than required, they do not admit
canonical coordinates, and the soliton transformation
transforms them into new plane-wave solutions. So they
are a class of their own.!®

It is best then to directly look for inhomogeneous
solutions. Wainwright and Marshman'*?° found a fami-
ly of inhomogeneous nondiagonal solutions which de-
pend on an arbitrary function of one null coordinate.
Those solutions can be interpreted as cosmological mod-
els with gravitational waves and seem appropriate to our
purpose. Furthermore, Kitchingham!® has found the
generating function for such solutions. One solution of
the Wainwright and Marshman family has been inter-
preted as a gravitational wave pulse?! propagating on a
Kasner background. In it the pulse has been construct-
ed by appropriately restricting the arbitrary function. It
turns out that this solution is the simplest solution with
a gravitational wave that can be constructed with the
Kasner background.

Although the gravitational wave solution which we
shall use as a seed solution is relatively simple, the final
solution is rather complex. Two reasons for this are that
the seed being nondiagonal the generating function is
not simple and that in order to get a solution with local-
ized soliton waves we need at least four complex pole
trajectories. Consequently, the final metric elements
look rather complicated.

Fortunately, the fact that the soliton waves and the
gravitational wave pulses are localized in finite regions in
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the z direction (the propagation direction) and that they
can be interpreted as finite perturbations on a Kasner
background, simplifies the analysis. Many properties
can be found by just considering the metric components
and their values on several asymptotic regions.

In particular we shall use the polarization functions
defined by Adams and co-workers?*?* to analyze the
metric. These authors define, in cosmological metrics
with two commuting Killing vectors, a wave amplitude
and a polarization angle associated with a certain frame.
These functions do not give intrinsic properties of the
metric but if the frame of reference has some physical
sense they have an unambiguous physical interpretation.
Since our frame is associated to the spatially homogene-
ous Kasner background in the canonical coordinates?*
we can adopt the usual cosmological interpretation of
the coordinates as the background reference frame.

We should emphasize that the solutions considered
here are vacuum Solutions. Therefore we do not have a
fluid flow to prove the spacetime. Solutions with stiff
fluid are easily found®>2?° and, in fact, Wainwright?'
gives the pulse-wave solution for stiff fluid. We have
chosen, however, to generate vacuum solutions because
they contain only pure gravitational effects of the space-
time without matter influence.

In Sec. II we consider the gravitational pulse-wave
solution and give the particular function we have used in
the seed metric. In Sec. III the polarization functions
are reviewed, in Sec. II the final solution representing
the collision of a pulse wave with a soliton wave is given
and their parameters are classified and interpreted. Fi-
nally, in Sec. V the solution is analyzed: we examine the
asymptotic regions analytically, in particular the behav-
ior along different light cones reveals properties of the
pulse-wave—soliton-wave interaction. We see that as a
result of the interaction both waves get strongly polar-
ized. The wave amplitudes and polarization angles are
shown to change under the collision in a peculiar way.
The pulse wave and the soliton waves keep their indivi-
duality after colliding in a way similar to the pure soli-
ton collision.

II. GRAVITATIONAL WAVE PULSE SOLUTION

We start with the gravitational wave pulse solution
given by Wainwright and Marshman. The metric can be
written as!?!

dst=1"38"(dz?—dt?)

+¢'2[dx*+(t +w?dy’ +2wdx dy], W

where w (¢ +z) is an arbitrary function and n’'=(w’)>.
The coordinate range is 0<? < 0, — 0 <X,§,Z < 0.
This is the simplest solution with a gravitational wave
that can be constructed with the Kasner background be-
cause it is the simplest solution which depends on an ar-
bitrary function of one null coordinate (implying speed-
of-light propagation). In fact, if we try to modify the
family of Kasner solutions with a function in the diago-
nal coefficients one finds, from Einstein’s equations, that
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such a function must verify a linear wave equation of the
cylindrical type which does not admit as solution a func-
tion of a unique null coordinate. If we then try to keep
the Kasner solution in the diagonal part and consider a
nondiagonal coefficient, Einstein’s equations give non-
linear equations for the nondiagonal coefficient and it is
found that they admit, as a solution, an arbitrary func-
tion of one null coordinate, ¢t +z or ¢t —z, provided we
restrict the Kasner family to just one of its members.
Stachel has shown this in the cylindrical wave context?®’
which is obtained from the cosmological one by consid-
ering ¢ as the cylindrical radial coordinate and z as the
time coordinate. In such context the Kasner solution is
interpreted as the static gravitational background pro-
duced by an infinite line of matter. The above-
mentioned solution is, perhaps, of no physical interest
because it corresponds to a line with negative energy
density. This problem does not arise in the cosmological
context.

When w =0 (or constant) the metric (1) reduces to a
member of the Kasner family. To define a pulse wave
we choose w localized in a small region of the spacetime
in the following way:

H7 uSuF,
U—ur
w(u)={H—A |l—cos 27— up<u<ug,
Up—Ur
H, ug<u ,

(2)
where u =t +z and H, A, up, and ug are arbitrary con-
stants: A4 may be interpreted as the amplitude of the
pulse wave and ug —up as its width. In the spacetime
regions u <up the metric is the spatially homogeneous
Kasner, and Wainwright?! has shown that in the region
ur <u <ug we have a gravitational wave. Thus the in-
terpretation of this solution as a gravitational-wave pulse
propagating at the speed of light on a homogeneous
Kasner background is clear. As an example, in Fig. 1
the metric coefficient g;, has been represented for the
pulse wave (2) with H =0.

In what follows we shall take H =0 so that the coor-
dinates are adapted to the Kasner solution, if H is non-
null we can recover the usual coordinates with the
change dy’'=dy, dx'=dx + H dy.

III. WAVE AMPLITUDE AND POLARIZATION

The seed metric and the new metric we generate can
be seen as a generalization of a Bianchi type-I metric in
which we break the homogeneity in the z direction. Fol-

lowing Adams et al.?? they can be written generically as
ds?=f(dz?—d1?)+e? cosh¢+—i—sinh2¢ dx?

+ dy?

cosh2¢ — —lgsinthS

+ Xsinh2¢ dx dy

) (3)
¢
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FIG. 1. Nondiagonal metric coefficient for the seed metric:
(80)12/t'/? in the t-z plane. This shows essentially the pulse
wave (2) with the parameters 4 =8X107°, up=2.4, up=1.8.

where
¢E(¢2+72)1/2 4)

and all functions f, b, ¢, and y depend on ¢ and z. The
two-dimensional metric with dx and dy (3, and 9, are
the two Killing vectors) has only two independent com-
ponents ¥ and y. These will be identified as the two in-
dependent polarizations of the gravitational waves:
corresponding to the 4+ mode and y corresponding to
the X mode, relative to the invariant basis /9, and

3/9,.
We can now define a phase angle 6
tan20=y /¢ (5)

and then we may use the functions ¢,6 instead of ¥,y
since ¥ =¢ sin20 and ¥Y=¢ cos26. It is possible to give a
physical meaning to the ¢ and 6 functions defined in (4)

and (5). In fact, performing a rotation of the invariant
J

S = (k) cos(Y)

where A is an arbitrary complex parameter,
Y(Mt,2)=k'? [ w'(1—2uk)~"2du ,

and

k(Mt,z)=AMA +2zA+12)" 1,

w cos(Y)—AZ%sin(Y) (A/k)V?[cos(Y
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basis at any spacetime point with angle 6:
dx’'=cosfdx +sinfdy ,
dy'= —sinfdx +cosfdy ,

the two-dimensional metric becomes
e?(dx'y+e~(dy')?,

which has the form of a pure + wave of amplitude ¢.
It is therefore clear that ¢ in (4) represents the total am-
plitude of the gravitational wave while 6 in (5) is the
physical angle between dx and the direction of polariza-
tion of the wave.

For the pulse-wave solution (1) the polarization angle
6 and the wave amplitude are given by

tan20=—2+,
1—w*—t

14w+t

e )

¢ =arccosh

For the value of w taken in (2), where we make H =0,
the polarization angle is null except along the null rays
u E(up,urp). It is interesting to see how 6 changes along
the null ray ¥ =0, say, from ¢ =0, where it takes a finite
value, to t — «, where it goes like

w ™

tan20——m—— —
u=0,t—> o t
This indicates that the metric approaches the Kasner
background when ¢ — o i.e., it becomes diagonal.
The wave amplitude ¢ decreases like ¢ ~!/? as it is typ-
ical of gravitational waves in homogeneous back-
grounds.*

IV. A SOLUTION WITH A GRAVITATIONAL WAVE
PULSE AND SOLITON WAVES

This solution is generated from the seed solution (1)
by a soliton transformation’* with four complex pole
trajectories. As remarked in the Introduction the essen-
tial step in performing the soliton transformation is to
find the generating function by means of an integration.
For the metric (1) this has been found by Kitchingham!?
and, after correcting some misprints in the published
version, it reads

k ~lsin(Y)
)+wA~V%in()] |

(8a)

(8b)

(8c)

Now the new solutions (soliton solutions) can be generated by means of purely algebraic operations."* We define

four pole trajectories

wilt,z)=u; —z+[(u; —z)* 1'%, i=1,...,4

which must verify that

(9a)
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M3y=[y, Ma=[3 ,

and take p; and u, with opposite signs in the square root of (9a) to avoid spacelike singularities.
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(9b)

* Then we define two

vectors,

mi=(mo) (o™ (i, 1,20 ]aar @b =1,2, (10)
with (mg)" arbitrary complex vectors and construct the 4 X 4 complex matrix,

Fijz[m (80)erms N u; pj—t - (10b)
where (g, )., are the four coefficients of the seed metric (1) written in the form of the next equation (11).

Finally the new solution can be written as

ds’=f(t,z)(dz*—dt?)+g (t,z)dx °dx® (11

with
—2

f=/o 511/:2 (Hz(izt:)t:;_tz) (;(:22_#;) [teico+ () s 15, P4+ [(1g) e s — (1) s 10,12 (12a)
where f is the corresponding coefficient of the seed metric,

si(t,z)=sin[ Y (u;,t,2)+¢;], c;(t,z)=cos[Y (u;,t,z2)+¢;], (12b)
and the complex parameters ¢; are introduced instead of (m)\":

Qu) U my)\'=¢;sing;, (my)y =¢€;cosd; . (12¢)

Now, Einstein’s equations determine f up to multiplication with an arbitrary constant. The parameters €; can be ab-
sorbed in such a constant; consequently they do not play an essential role and may be ignored. The remaining

coefficients are
4

=0l | [y |t 74 (80— 3 (

ij=1

where

d,(li)(t,z)ztl/l(zui,ui )~3/4mi1/2s. ,

(13b)

¢(2i)(t,Z)Et]/2(2u,-}L,~ )_3/4(WH[1/ZSI- +lCi) .

This final solution has a rather complex structure,
especially since one has to invert the 44 matrix (10b)
to obtain (13a). For this reason, to get explicit solutions
with more than four poles is impractical. Fortunately,
the main features of more general solutions can be seen
from those with fewer parameters.

As we have remarked in the Introduction, in order to
get soliton waves we require at least four complex pole
trajectories. They have to be complex to avoid light-
cone singularities;' note that if we take real poles (9a)
with u; real, then pu;(¢,z) are not defined on the whole
range of t,z coordinates. We need two independent
poles to get localized solutions, as we shall see shortly,
and four complex poles in all because in order to get a
real metric solution! for each complex pole its complex
conjugate must also be a pole.

In spite of the complexity of the solution (11) we may
classify and give meaning to its parameters in the follow-
ing way.

The parameters A, up, ug are the pulse-wave parame-
ters. They characterize the seed solution and the pulse
wave in the new solution. A4 is the amplitude of the
pulse wave and | ug —up | the width of the pulse wave.

The parameters u; are the soliton parameters. They

L), 00 ()

-, (13a)

f

appear in the pole trajectories (9) and characterize the
spatial origin, width, and amplitude of the soliton waves.
Thus Re(u;) gives the soliton origins on the z axis,
Im(u,—u,) gives the soliton width, and Im(u,
—u)[ | Im(uy) | + | Im(u,) | ]~ the soliton amplitude.

The pole trajectories appear explicitly in (9a), we note
that g,, is given by the seed metric (g,),, minus a “per-
turbation” and all modulated by the pole trajectories in
the combination || | g, |t~ which contain the main
soliton contribution. In Fig. 2 this combination of pole
trajectories has been represented in the ¢ -z plane, it gives
essentially a localized function along the light cones
|z —Re(u;)|2—t% This localization is achieved be-
cause we take wy and U, with opposite signs in (9a); it
cannot be achieved with one independent pole only
[since it leads to metric singularities at |z | — o (Ref.
4)]. Thus g,, can be seen roughly (i.e., ignoring the per-
turbation which may play an important role in some
coefficients) as a superposition of the seed solution,
whose (g4);, component has been represented in Fig. 1,
and the soliton waves shown in Fig. 2. It is important to
note that the two soliton waves take the same values for
zZ—>tToo.

The remaining parameters ¢; may be called polariza-
tion parameters,* because they are related to the nondi-
agonality of the matrix g, and therefore, the polariza-
tion of the associated waves. In fact when the seed is di-
agonal one may choose ¢; such that the vectors m” in
(10a) have one null component, then the new solution is



36 GRAVITATIONAL WAVE PULSE AND SOLITON WAVE COLLISION

—4

FIG. 2. Soliton waves: (|p;| |p,|)*~* in the ¢-z plane.
The parameters in (9) are Re(u;)=R(u,)=-—0.8, Im(u,)
=0.043, Im(u,)=0.045. There is reflection symmetry in the z
axis at z—t oo.

also diagonal. In the present case the seed solution is al-
ready nondiagonal and the soliton solution is nondiago-
nal anyway.

V. SOLUTION ANALYSIS

A detailed analysis of the soliton solution (11) may be
performed analytically by studying the asymptotic be-
havior of g,, and the polarization functions introduced
in Sec. III.

The coefficient f is, according to Einstein’s equations,
entirely determined by g,,. We shall therefore ignore it
and concentrate on the metric coefficients g,

We shall consider three asymptotic regions: timelike
infinity (|z | <<t— ), spacelike infinity (<< |z |
— 0 ), and null infinity ( |z | —# — o0 ).

At timelike infinity the solution approaches the seed
solution (gg),,; this is typical of all soliton solutions in-
dependently of the number of pole trajectories* the
reason being that |u; |t~ ! approaches unity in this re-
gion. We have

gn—(gonl1+0=H1,
gu—(go)p[1+0 )], (14)
g2 —(go)p[1+0 (1] .

1

|
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The polarization angle and wave amplitude (4) and (6)
also approach the seed values (6):

tan20— —2wt " [14+0 ("],
¢—arccosh{t!?[1+0(: =11},

(15)

where we recall that w =H (=0) in this region [see (2)].

At spacelike infinity we have a similar behavior be-
cause, as remarked in the last section, we have chosen
the two independent pole trajectories with opposite
signs. Therefore, we have

gn—(goul1+0(z"H1,

g—(go)p[1+0(z"1)], (16)

82— (go)nu[1+0(z7 1],

and the polarization angle and wave amplitude as ex-
pected,

tan20—+—12—u;—t[1+0(z_1/2)] ,
' (17)
l+w2+t 1/2
¢ —arccosh W— [1+0(z7"9)],

where again w =H (=0) in this region.

Of course the interesting asymptotic features are
found at null infinity where the pulse wave and the soli-
ton waves are localized. Recalling that the pulse wave
travels to the right (towards positive z, see Fig. 1) and
that the soliton waves travel in opposite directions (see
Fig. 2) one of the soliton waves will collide with the
pulse wave. The effect of the collision may be seen by
analyzing the two soliton waves at null infinity; if no
pulse wave were present they would be completely sym-
metric.

The asymptotic behavior at null infinity along different
light cones may be summarized as

gll—»(30)11[1—2\/_2C()(“)][1+0(t—1/2)] ,
g12_>_ZVEtC(XIZ)[l'*‘O(t_l/Z)] , (18)

82— (80)n[1-2V2C (X )I[14+0(:~ )],

X11=d(2u,) 325 2+ 2dy (4uyuy) " s sy +ds(2uy) 7 2sy dy [ 2uy | TP sy |?

+2d4(4u1172)_3/45'1§2+d6 I 2u2 | 73/2'32 ‘ 2 N

X125d1(2u1)_3/23161+d2(4u1u2)'3/4(s102+s2(:1 )+d5(2u2)_3/232C2+%—d3 |2u1 ] —3/2(3161 +§1C1)

+d4(4u1ﬁ2)_3/4(5162 +C1§2)+d6 |2u2 ’ _3/2(5262 +§2C2) ’

with
RC(X,‘I’) ifz=—t+b N
where a,b are finite real parameters:
(19b)

XzzEdl(Zul)_3/2C12+2d2(4u1u2)_3/4CIC2+d5(2u2)_3/2C22+d3 |2u1 | *3/2|C1 [2

+2d,(4uyity) e Ty 4de | 2uy | T3 ey | 7,
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where an overbar denotes complex conjugation,
diy=—2e (e, +2)(e;—ey) e, —8)) (e, —2)) " He, +8,) e, +ey) 7%,
dy=deje (e, +))e,+8,)(e; —e;) | e, =8, | e +e,) 2 e+, | T2 |ey—g; | ey~ | 7',
dy=4le |He,+8) e —ey | e —2y | e +ey | 2le+8, | TPey—E | 77,

(19¢)
ds

—461?2(81 +El )(92+62) | ey —ey I 2(61—-'?2) ‘ e|+e; | 72(81 -}—Ez)_l(el —El )“l(ez—Ez)'l ,
d5_232(€2+52)2(81—62)2(51—82)2(81+62)7z(€]+ez)—2(€2+§2)72

de=—4|e, | e, +2;) |ey—ey |*|ey—2y |2 |ej+ey | e +ey | ey —2;) 77,

(a) (b)
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FIG. 3. Metric coefficients g, of (13a) in the t-z plane with the parameters 4 =8x107°, uy;=1.8, up=2.4, Re(u,)
=Re(u,)=—0.8, Im(x,)=0.043, Im(u,)=0.045, ¢,=¢,=0. In (a) we represent g,, /t'/%, in (b) g, /¢, and in (c) g, /1*/>. Note
that the orientation of axis in (b) differs from the remaining figures and is similar to that of Fig. 1.
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and

—\/u,-—b
Va—u; ifz=t+a .

ifz=—t+b,
e;= (19d)

The asymptotic behavior of the pulse wave is obtained
by simply taking one value for b in (19d) such that
bE(up,up). The asymptotic behavior of the soliton
which collides with the pulse wave is obtained by taking
a of order Re(u;) in (19d) and for the soliton which does
not collide by taking b ~Re(u;). It is clear from (19d)
and (19a) that the asymptotic values for the soliton will
differ, in opposition to the soliton waves of Fig. 2, and
this can be interpreted because of the interaction with
the pulse wave.

An interesting feature of (18) is that the diagonal
coefficients of the metric g,; and g,, grow in time, like
the seed solution, although they do not reach exactly the
same values due to the parameters X;; and X, which
differ for each light cone. Furthermore, the nondiagonal
coefficient g,, does not grow like the seed coefficient
(g0)1, which grows like ¢!/2; this is because the perturba-
tion term in (13a) dominates over the seed for this
coefficient. Since the nondiagonal term is essential for
the pulse wave we can say that, because of the soliton in-
teraction, the pulse wave gets stronger and more polar-
ized.

This last aspect, in fact, is seen more clearly from the
polarization angle for the metric (11) which becomes, at
null infinity,

4HV2C(Xy,)

an(20) = )

t~1[14+00 1], o)

which when compared with the seed value indicates that
along the pulse wave the polarization angle is greater in
the solution (11). Calculating along the soliton waves in-
dicates that they give an angle of polarization compara-
ble to that of the pulse wave. Recall that in the seed

solution this angle is zero along the light cones
|z |2~122
The wave amplitude of the metric (11) goes like
1-2V2C(Xy,)
d)—»arccoshfnz1/2[1+O(l’1/2)] , (21

which grows like the seed metric but with different pa-
rameters along each null line, similar to the behavior of
the diagonal coefficients.
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Some of these features are illustrated in Fig. 3, where
the exact metric coefficients are represented in the ¢-z
plane.

In Fig. 3(a) the coefficient g,; is shown; in this
coefficient the soliton waves dominate; it may be com-
pared to the soliton waves of Fig. 2.

In Fig. 3(b) the coefficient g,, is represented; this
coefficient shows clearly both the pulse and soliton
waves. The pulse wave may be compared to the metric
coefficient of the seed metric (gq);, in Fig. 1, but note
that there is a global ¢!/ factor between them because of
the interaction with the solitons. It is also clear that the
two soliton waves have different ‘“amplitudes” reflecting
the fact that one of them interacts strongly with the
pulse wave.

In Fig. 3(c) the g,, coefficient is represented; this
coefficient shows the pulse and soliton waves with com-
parable amplitudes and the trajectories on the #-z plane
are clear.

Note that the solitons do not travel at the speed of
light; it is known®? that they start at zero speed like
quasiparticles and only reach the speed of light at
infinity. The pulse wave, however, propagates at the
speed of light. Because of the singularity at ¢t =0 the
figures do not show very small values of ¢.

We can now say something about the global properties
of the solution considered. The seed solution can be in-
terpreted as a gravitational pulse propagating on a Kas-
ner background;?' because of the localized character of
the wave the metric is globally of Petrov type I for the
background. Similarly, the soliton solution (11) can be
interpreted as giving the propagation and interaction of
a gravitational wave pulse and two soliton waves on the
same Kasner background; again the metric is globally of
Petrov type I. This metric has the cosmological singu-
larity only (¢ =0) like the corresponding Kasner metric.
Thus it may be used as a cosmological model which
starts highly inhomogeneous and evolves to a Kasner
background with small localized waves of decreasing
amplitudes propagating on it.
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