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Renormalization of gauge-invariant operators and the axial anomaly
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The renormalization properties of gauge-invariant composite operators that vanish when the clas-
sical equations of motion are used (class II* operators) and which lead to diagrams where the Adler-
Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do
need, in general, nonvanishing gauge-invariant (class I) counterterms.

I. INTRODUCTION

Composite operators have long been used in field
theories, mainly in deep-inelastic analysis, through
Wilson’s operator-product expansion.! With the appear-
ance of the Shifman-Vainshtein-Zakharov sum rules® as a
useful way to extend the domain of applicability of quan-
tum chromodynamics to low-energy phenomenology, the
renormalization properties of gauge-independent compos-
ite operators have been the object of renewed interest.>*

Composite operators can be divided into three classes.
Class I contains those operators which are invariant under
classical gauge transformations and which do not vanish
when one uses the covariant equations of motion (we will
qualify this later). The operators that, being formally
gauge invariant, vanish by virtue of the equations of
motion form class II. Finally, class II® groups the non-
gauge-invariant operators.’

In general, bare operators cannot be made finite by
means of multiplicative renormalization, but rather a
composite operator can mix with others of the same di-
mension and Lorentz structure along the renormalization
procedure. The problem of mixing among composite
operators has been dealt with by several authors’~7 and, in
the light of their work, the following properties are
known.

(i) In ordinary covariant gauges class-I operators mix
not only among themselves, but also with classes II* and
I®. On the contrary, in the background-field gauge,®
where gauge invariance is retained in the external (classi-
cal) field, class-I operators do not mix with class II®.

(ii) The submatrix concerning the renormalization of
class-I operators among themselves, Z, is gauge indepen-
dent. However, even in the background-field gauge, the
contribution to a renormalized class-I operator coming
from class-II operators, Zyy;, is gauge dependent.

(iii) The renormalization of class-II operators among
themselves, Z 11, involves gauge-dependent coefficients.

Finally, it is claimed by Kluberg-Stern and Zuber® and
Deans and Dixon’ that for the renormalization of class-II
operators one does not need any class-I counterterm (i.e.,
Zy11=0). Nevertheless, this claim, being proven for class-
II® operators, relies on a formal manipulation of function-
al integrals that could be incorrect for some class-II*
operators as we will see. This is indeed the case when the
Adler-Bell-Jackiw anomaly® plays a role.

II. GENERATING FUNCTIONAL

For simplicity’s sake let us consider the Yang-Mills La-
grangian with massless fermions
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S\ being an anticommuting infinitesimal parameter. We
now consider the generating functional of complete
Green’s functions. We add several operators O; coupled to
the corresponding sources,
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By using the appropriate functional derivatives and then setting all sources equal to zero, we obtain the desired Green’s

functions with an insertion of a composite operator. ) '
Beyond the tree level appropriate counterterms have to be added to .S in order to keep all the Green’s functions finite.
Let us now suppose that we are, for the time being, concerned with the renormalization of gauge-invariant operators like

F"™F,, or ¥1. These operators obey an equation of the type (5),
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We have introduced a shorthand notation W for the operator vanishing when the classical equations of motion
functional-differential operator. Clearly W2=0; i.e., Wis are used,

nilpotent. Equation (6) is not only reflecting the invari- ~

ance of the theory under BRS transformations, and thus DPFE 4 g YT "= 5S =0,

the fulfillment of Ward-Slavnov identities, but also is pro- # 845 -0

viding restrictions on the form of the permitted counter- A N (8)
terms. When renormalizing a gauge-invariant operator, i(ﬁqb)“: 85 (D &5

= =0, i(yP)*=-=0,
one adds gauge-invariant counterterms, but, in general, e oy
one needs (because of the breakdown of gauge invariance
by the gauge-fixing term) non-gauge-invariant counter-
terms as well, ¢, NV,,, provided that they conspire to build a (DZbFL‘"+g$T“y"¢)Cf,(A,J,1/1) 9)
quantity still satisfying W¢,N, =0. The simplest possi-

is of the form

bility is obviously to take ¢,N, = W¢,F,, with no restric-  °F

tion on F,, provided they have suitable dimension and iCp —iv°D .CP 10
Lorentz and color structure. In fact, it can be shown® that _aﬂd}ﬁ’ ¥ PasC (10)
this is the general solution. with C3, C %, C* satisfying

Then the most general action satisfying Ward-Slavnov

a__ abc_bc
identities can be written as WC,=gf**p°C;
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where the separation in classes I, II?, and II® is clearly ex-
hibited. Let us recall that any gauge-invariant composite  the generating functional (3) can be written as

8/\
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Let us now perform the following change of variables:

A;=A;+¢k ‘alk’ ¢=¢+¢pcp’ ‘Z=17’+¢q6q . (14)

Equation (13) becomes (up to terms of higher order in the sources)

WjJ.J,¢1= [ [dAldldg|[dy][d¥]D exp|i [ d*x | L +§,0; + Wy Fy+gf 045 i Cox

a“Aa b Cl +jk(Af — i Coix)

a (¢_¢pcp)a+(;ﬁ—‘¢q6q) Ja (15)

Notice that the change (14) is easily done with field 42 4> since it is a local change of variables it has unit Jacobian.!
However, this is not so simple with fermionic fields as we will see and we have introduced the Jacobian & of the
transformation in Eq. (15).1?
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A further manipulation allows us to write Eq. (15) as

WidT,41= [ [dANd@)dpldylaTID exp [i [ d*X[L+8,0,+ W, Fy + Wi —35Chy)

+Ja( Ay — i

where we have used Eq. (11). Notice the two terms in Eq.
(15) which have been integrated as W, (— 5 °C> k)

Connected Green’s functions with an msertlon of a
composite operator will be obtained from

Z[jJ,J,¢1=—i mW[j,J,J,$] (17)

while one-particle irreducible (1PI) Green’s functions will
be obtained after Legendre-transforming Eq. (17). When
computing 1PI Green’s functions, the insertions in the
external legs which are generated by the new terms in (16)
coupled to the field sources which appear once the change

]

Cri)+T W —8,Cpla+ (9—6,C,) I %] (16)

of variables (14) is performed are exactly canceled by the
(modified) propagators, which will contain the new inser-
tions too.

Clearly, had we neglected the Jacobian we would have
entirely reabsorbed class-II* operators in the terms
W¢,F,, so that operators which vanish by virtue of the
classical equations of motion are, in spite of their gauge
invariance, generated from a gauge-dependent composite
operator. When this is the case both class-II? and class-II®
operators can be expressed in the form W¢,F, and thus
the results of Kluberg-Stern and Zuber indeed hold. Let
us summarize, for the sake of completeness, their argu-
ment.

Consider an insertion of WF, in a Green’s function. It is given by the functional derivatives of

J (A dQUAPNdYNITIWF,exp [i [ d*5(L + 45+ T Vet T Tt Copu+7°C) |

(18)

Using the invariance of the action under BRS transformations, Eq. (18) can be written as
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The operator

ol ~a_0 _1_ ai__ ___5__ 5
TR 8¢, T 8K, ek,
(20)
being independent of the fields, can be taken out of the
functional integral in (19). Notice that the auxiliary
sources J}, K,, K,, and K,, which are to be set equal to
zero, are necessary to write the operator (20) in a linear-
ized form.
After Legendre-transforming both Egs. (18) and (19),
]

ﬂEj; NG
M

(19)

the following Ward identity holds for 1PI Green’s func-
tions:

Twr, =QC% . 1)

Recall that the right-hand side of Eq. (21) should contain
the additional sources. At the one-loop level this identity
has to be satisfied both for finite and divergent parts, so
that the counterterms required to renormalize Cywr, are in
fact provided by T,
counterterms are forbidden, at least at the one-loop level.

The conclusion is obvious: Class-I

Then the generating functional with the suitable counterterms, which at the one-loop level takes the form

f[dA][d¢J][d<p][d1/J][d¢]exp [ fd x(L +AL +¢;0;,+A,0; + Wo,F, +AW¢,F, +field sources) | ,

(22)

can be written, introducing the bare fields and parameters, in the form

[ 1dAlld@dF1[dy]dP]exp [i [ d*x(£0+ 4200+ WL F2+field sources)

where ¢? and ¢ stand for

¢?=¢i+2Aij¢j ,
=¢n + zAnj¢j + zAnm¢m
J m

(24)

(23)

f

and O,-0 and F,? denote the operators written in terms of

bare fields. (Indices i,j run over the gauge-independent

operators and m,n over the gauge-dependent operators.)
Notice that Eq. (24) is indeed providing the sort of mix-

ing which is expected from the results of Kluberg-Stern
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and Zuber. What is relevant to us is that Eq. (23) takes
exactly the same form as Eq. (16), so that one can extend
the previous argument to any order.’

What we want to do now is to study whether things are
altered when the change of Eq. (14) does not have a trivial
Jacobian and thus cannot be dropped out of the generating
functional (16).

III. EVALUATION THE JABCOBIAN

By performing the suitable Wick rotation in Eq. (16),
we will calculate in Euclidean space-time. The Euclidean
spinors ¥ and ¥ can be expanded according to'3

Y(x)=a,pn(x),
Px)=Th,eh(x) .

a, and b, are elements of the Grassmann algebra. @, are
chosen to be the eigenfunctions of the equation

iD(P,. =}‘n¢’n . (26)

iD, being now a Hermitian operator, has real eigenvalues.
The solutions to Eq. (26) are taken to satisfy

fd4x ¢>I(x)<pm(x)=8,,m . (27)

The path-integral fermionic measure, which is properly

(25)

terested in the pseudoscalar operators of dimension 4.

Class II? contains the operators i ¥y’ ﬁt// and —i @E‘y%, )
that C,=vy° and G, =y¢. (Our 9° is defined as

=" qyzy3 In Euclidean space-time 7°=9%/'y%y with
7*=iy’.) Then

Com =8wm + [ d*% @1 (X)$, V'@ (x) ,
Crom=8mm+ [ d*x @] (x)$g7V’ P (x) .

Since we are ultimately going to take a derivative and set
¢ =0, we will retain terms at most linear in ¢. So, using

(3D

det[1+L]=exp[Trin(1+L)]~exp(TrL) , (32)
we find
D =det[CC ]!

=exp |~ 3 [d* o} (x)(8, +¢,)Vpu(x) | . (33)
What is left is to evaluate
D(x)=S o} (x)1 @, (x) . 34)

This is easily done choosing a plane-wave basis for the
@,(x) (see Ref. 13). The result is

defined by ( g? . fra .
— D(x)= N5 e'"PF
I14a,db, , (28) * 372 2 uv(X)Fag(x) (35)
n
so that
under the change .
da, =Cynday, , (29) D =exp |~ fd4X(¢p +4q) 3§1T2 Nf%dwaBFZVFaaﬂ
db ), =db,C,,, , (36)
transforms ai _ _ or, in Minkowski space,
I14a.db,— [1da,db,det[CC ]! . (30) )
n n D=exp |i [d*%(¢,+¢,)ESNFF| . 37
To be definite consider, for instance, that we are in- 32w
J
Equation (16) now reads for pseudoscalar operators of dimension 4
2 ~
WU.JT,91= [ [dAlldeNagldyliaPlesp |i [ d*x | L +6,0i+(8y+8,) 55 N/ FF+ W9, F,
+ field sources] ‘ , (38)

where index i runs over gauge-invariant operators and index n labels gauge-dependent operators. O; and F, are under-
stood to have suitable quantum numbers. Of course, FF was already included in the set of class-I operators O;, but this
does not affect our argument. The proof of Kluberg-Stern and Zuber we have sketched in the preceding section still im-
plies the lack of mixing of WF, operators to class-I operators but now, and this is the crucial point, class-II* operators
cannot be expressed as WF,. On the contrary, they get a class-I contribution from the very beginning.

The renormalization argument previously used works in the same way at any order in perturbation theory, i.e., class-I
operators mix among themselves and with WF,-type operators along the renormalization procedure, whereas operators of
the form WF, mix only among themselves. Much as before, one can write the equivalent to Eq. (23) as

0

2 ~
ZLO+4000+(4+49) gvz N/FF

3 + W¢OF?+field sources } ] (39)

J1dA1ldelldp]ldv]idP]exp li Ja*
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with
¢?=¢1 +2Aij¢j +Aip¢p +Aiq¢q ’
j

Sp=0p+Zhpitjs $g=bg+Shyd; (40)
J J

¢2 =¢n +2Anj¢j + Anp¢p +Anq¢q + zAnm¢m .
j m

As usual, indices i,j label class-I operators, indices m,n
class-II operators, and p and ¢ stand for i¥Py°¥ and
i Eysﬁ ¥, respectively.

We have put Ay, =A,, =A,, =A,, =0 as a consequence
of the nonrenormalization of the axial anomaly, but noth-
ing prevents FF from coupling to other gauge-invariant
operators.*

Equations (39) and (40) are our final result. They
indeed show the coupling of some class-II* operators to
class-I operators.
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IV. CONCLUSION

oy Ed; and 1715751// do have a class-I contribution, as we
have learned. In general, this can also happen with more
sophisticated composite operators containing both 3° and
DP. In other words, and remarkably enough, the claim
about the independence of class-II* operators on class-I
operators seems to fail exactly by the same reasons that
the axial anomaly occurs in field theory.
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