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The pure classical content of a pseudoclassical nonrelativistic model of a spinning particle is stud-
ied. The only physical meaningful world line is the one without “Zitterbewegung.” Interactions with

external electromagnetic fields are also studied.

I. INTRODUCTION

The use of Grassmann variables for describing certain
attributes of elementary particles such as spin, color, etc.,
is increasing. These pseudoclassical models' are usually
described by means of singular Lagrangians which con-
tain Grassmann variables in addition to the usual space-
time variables. The most common feature in all these
models is that the physical interpretation of Grassmann
variables is given after its quantization.

On the other hand, a pure classical interpretation of the
spinning particle’ is an old problem; therefore, one is
motivated to relate both formulations. In order to do that
it is necessary to apply a pure classical interpretation of
Grassmann variables. This can be achieved by using a
distribution function on Grassmann variables.>

In this work we will use this pure classical interpreta-
tion of the Grassmann variables in order to obtain the
classical physical content of a nonrelativistic pseudoclassi-
cal model.* We present the model from a Hamiltonian
point of view and we give a graded symplectic structure
and two first-class constraints. One of the constraints S is
even and corresponds to the Schrddinger equation, the
“mass shell” condition; the other one X is odd and after
quantization yields the Levy-Leblond equation.® These
first-class constraints also are generators of two gauge
transformations, i.e., reparametrizations and supergauge.

In order to obtain a classical interpretation of this
model it is necessary to define some sort of world line in
four-dimensional space-time, starting from the corre-
sponding object in superspace. Taking into account that
this model has two gauge invariances, the candidate must
be a gauge-invariant object, but any such object is a sheet
rather than a line, in superspace. The question is then
how to construct a good line in four-dimensional space-
time departing from a sheet. As in the relativistic case,®
one can show that there is no distribution function which
gives physical meaning to the gauge-invariant sheet be-
cause different lines on the sheet give rise to different
world lines in physical space (four-dimensional space-
time). Therefore, if we want to have a unique world in
this physical space we need to choose it in superspace.
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We can construct this line by introducing a new constraint
@, 1, which breaks the supergauge invariance and selects a
line in each sheet.

The next step will be to find the corresponding world
line in physical space starting from a line in superspace.
This is realized by a suitable distribution function which
averages over Grassmann variables in the submanifold M
of the super phase space, defined by X;; and & ;. Fur-
thermore, this model must verify the world-line condi-
tion’ (WLQ); i.e., the canonical and geometrical realiza-
tions must coincide up to a reparametrization. We will
prove that the WLC is satisfied for any constraint @y,
but when we study the equations of motion we will see
that there is only a physical interpretation when there is
no ‘“Zitterbewegung;” this requirement uniquely fixes the
constraint ;. We will also study the physics when an
external electromagnetic and Yang-Mills field are
switched on.

The organization of the work is as follows. In Sec. II
we introduce the free-particle model. In Sec. III we dis-
cuss the physically invariant object and introduce the con-
straint ®;;. In Sec. IV we study the distribution function
in the submanifold M. In Sec. V we discuss the WLC and
the physical content of the model. In Sec. VI we give a
Galilean realization. In Sec. VII we consider the elec-
tromagnetic interaction and in Sec. VIII we discuss the
Yang-Mills interaction.

II. FREE PARTICLE

A pseudoclassical model for a nonrelativistic spinning
particle was presented in paper I, by means of a singular
Lagrangian. Here we want to study the model directly in
the Hamiltonian formalism; for this reason we will work
in the nonrelativistic-phase superspace [x,t,p,E,€,1,7],
where x,¢ are, respectively, the position and time of the
particle, p and E are the momentum and energy, and
€,7,7) are Grassmann variables whose physical meaning is
related to the spin of the particle.

This super phase is endowed with a graded symplectic
structure
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{x',pl}=8Y, (€ e}=—i8Y,
(LE}=—1, {n7}=i

The dynamical content of the model is determined by two
first-class constraints

S=p’—2mE =0,

2.1

2.2)
Xy=En—p€+mn=0,
which after quantization give us the correct wave func-
tions; that is, the first one becomes the Schrédinger equa-
tion and the second Levy-Leblond equation.’
The Dirac Hamiltonian is

Hp=AoS +AX1L,

where Ay and A are even and odd arbitrary functions of
evolution parameter 7. Therefore, the equations of

(2.3)

motion are
X i=2Ap" — A€,
e'iz_ipi R
. . (2.4)
n=—im,
= —iAE .

This evolution is confined in a surface defined by the con-
straints S and Xy;. The first-class constraints S and X
are also generators of gauge transformations that leave the
surface unaltered. These constraints give us a foliation of
the surface in terms of two-dimensional sheets X.

The global symmetries of the model are those associat-
ed with the Galilean group. The corresponding transfor-
mations are generated, through the Poisson brackets
(PB’s) (2.1) by

G=—3w;RY—v;B'+a,P'—aE , (2.5)
where (w;;,;,a;,a) are the Galilean infinitesimal transfor-
mation parameters and the Galilean generators are given
by

Ri=x'p'—xpi—iéé ,
B'=mx'—tp'+iné,
o 2.6)
P'=p',
E=E .

Note that this is a realization of Galilean algebra, with the
Lie brackets (2.1).

III. PHYSICAL CONTENT

In paper I the physical meaning of Grassmann variables
was obtained by means of a quantization procedure; here
we want to give a pure classical interpretation to these
variables. In order to do that we first introduce a “world
line” in superspace as a family of “events”
L(x(7),t(7),e(r),m(7),7(7)) which are solutions of equa-
tions of motion (2.4). However, as in the relativistic case,
L is not a gauge-invariant object and so it is not a good
candidate for an object with physical meaning. Neverthe-
less, we can construct such an invariant object by per-
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forming all the possible gauge transformations over the
line L, obtaining a two-dimensional sheet =. At this
point it might appear that the physical content of the
model is in the sheets, but following a similar analysis as
in the relativistic case® we can conclude that the sheets are
not physical because there does not exist a distribution
function on the Grassmann variables which gives the
same world line in space-time space from different lines
of the sheet related by supergauge transformations.

In order to have a unique world line in the physical
space it will be necessary to choose a line L on 2. We do
this by breaking the supergauge symmetry. Explicitly we
introduce a new constraint ®;; and odd function of
(x,t,p,€,7,7,E) in such a manner that X;; becomes a
second-class constraint.

By requiring the stability of ®;; the arbitrary function
A, appearing in Dirac Hamiltonian (2.3), is determined. If
®;; is such that {dy;,X1;} has an even non-Grassmann
part different from zero, in this case A becomes

1
(@i XL}

After substitution in Dirac’s Hamiltonian (2.3), we can
define the new first-class constraint

—— +Ao{ Pr,S}

A= or

(3.1

Hymigs'4 22ty L (32)
D— ar LLD ) .
where
'=5+L 33
S _.S+DXLL (3.3)
and
D={Py X1}, ¥={PLLS], (3.4)

where D must have an even non-Grassmann part.

The second-class constraints X;; and ®y; can be elim-
inated by means of the introduction of corresponding
Dirac brackets (DB’s) whose explicit expression is

{4,B}*={4,B) +-D%{A,XLL1 (®rr,®py ) (X1, B)

1
— = ({AX L} {PrL, B} +{A4, P} (X 1L1,B)) .

D
(3.5)
The equations of motion are
ii=do |2p' =L |, él=—aoLpt,
(3.6)
= a F= A LE p=_rL
t=>Ao [2m DM koDE,”I AoDm-

Now it is possible to define a line on configuration su-
perspace as a one-parameter family of events
L(x(7),t(7),e(r),m(7),7(7)) which is the solution of dif-
ferential equations (3.6). This line L is invariant under
reparametrization which is the only gauge invariance that
remains at this level. At this point we need to pass from
this line in superspace to a line in the physical space.
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IV. DISTRIBUTION FUNCTION

Now the model is defined by the first-class constraints
S’, Eq. (3.3), on the submanifold M on super phase space
defined by X1 and ®;;. We can pass from super phase
space to four-dimensional space-time (x,?) by means of a
distribution function p’ which works in the submanifold
M; in this way we can connect an abstract mechanics with
observable quantities.

The submanifold M can be parametrized by means of a
set of canonical variables (X',7,p',E,€") which is a subset
of the original set. The procedure to construct this subset
is to perform the Shanmugadashan transformation.® In
this canonical transformation the new canonical coordi-
nates (X ",T,ﬁ‘ i,E ,€ i,ﬁﬁi) are chosen in such a way that the
submanifold M can be characterized by equating some
coordinates, i.e., 7,7, to zero. Furthermore, we have the
property that the DB’s coincides with the PB’s in reduced
super phase space.

Therefore, the phase-space distribution function on M
will be a function p'(X',7,5",E,&’). In order to give the
correct meaning to p’ as a distribution function we must
require two conditions.

(i) Normalization conditions

[ dup@ 5z TE)=1, 4.1)

where du' is the measure in reduced space.
(ii) Liouville equation

W g e 0
3, TP Hp} ="+ (p Hp}r=0, 4.2)
where { ]* is the DB’s defined in (3.5) and { } is the

Poisson brackets in the reduced super phase space.

When the p’ is given, we can calculate the average (A4’)
for any function A’ defined on the submanifold by means
of the integration

(4= [dpp'a’. 4.3)

This procedure would require explicit use of the Shanmu-
gadashan transformation, but we would rather obtain the
physical results without explicitly performing that
transformation. If we work with DB’s we can use redun-
dant variables; therefore, it is possible to give a distribu-
tion function of p depending on all super-phase-space
variables with the condition that p must vanish outside of
M. In order to ensure that, we write p as

P( éj; 7),7],}’ iyE) =8(XLL )ﬁ‘( ei, n)ﬁrp i’E)S(‘q)LL) .
(4.4)

If we want to use this function, we must change the
normalization condition (4.1) to

[ dupé.nm.p E)=1, 4.5)

where du is the Grassmann measure depending on all
Grassmann variables; that is,

du=dndndeédede' . 4.6)

Note that the only integration over Grassmann variables
different from zero is

f du e = —iélk 4.7

where €7* is the Levi-Civita tensor.
Now we can pass from abstract space to the real phase
space by means of the average

(4)= [dupp4, (4.8)

where A is any dynamical variable defined on the sub-
manifold M, but not necessarily expressed in terms of in-
dependent variables.

To construct the distribution function, we depart from
the nonrelativistic distribution function introduced by
Berezin and Marinov?

ple)=cl(t)-e— éeijkeieje" , 4.9)

where the vector c is related to the spin or intrinsic angu-
lar moment of the particle. We suppose that this expres-
sion is valid in the rest frame characterized by P=0. An
expression which is valid for any reference frame and
Galilean invariant is given by

- ‘C i : 3 L.
f"(77’77»€)=0'€—%17—g Eijkf‘fjfk—;ﬂ'jkplfjfk’ﬂ .

(4.10)

Consider now the most general expression for the con-
straint ®;;. If we introduce the notation

€1=€; ,
€=7, (4.11)
€&=7,
making a Taylor-Grassmann expansion we have
Dy =d, €+ [ 15 €€ + Gupeae €°EPE° %€
a,b,c,de=1,...,5, (4.12)

where dg,fabc,8abcde are arbitrary functions of the real
variables x, ¢, p, E, and 7. However, the last two terms
have no physical relevance because this number of
Grassmann variables is too high, and so their real coeffi-
cients cannot appear in averaged quantities. Therefore we
have

p =8(X11)p(n,7,€)8(d,€°) . (4.13)
The normalization condition
[ dup=1 4.14)

imposes the relation among the real coefficients in ®y; .

2
p-d—mds—E d4—P”Td4=l ) 4.15)
Note that the functions d, have dimensions.
The Liouville equation will give us
se—SPp_ e CRy 5@ )22 0. 416
m ! m ! L ar )
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As we wish to describe a physical free spinning particle,
¢, must be constant. Therefore ®;; must be independent
of the evolution parameter 7.

V. WORLD-LINE INVARIANCE,
AVERAGED QUANTITIES

At this point, we have the mechanism to construct a
world line in four-dimensional space-time (x; ), (¢) which
enables us to give a classical physical meaning to the
Grassmann variables.

The coordinates of the world line are

(x,')=fd;tpx.',
(t)=fd,uPt,

and the spin content of the model is obtained from the
Grassmann part of the generator of the Galilean group
corresponding to rotations

(S)y=(~iée)= [ dup(—iéé) . (5.2)

These objects must have the correct transformation prop-
erties under the Galilean group. That means they must
satisfy the world-line condition.” Before we discuss this
condition we must fix the evolution parameter by break-
ing the gauge symmetry associated with reparametriza-
tions; this means fixing the parameter 7 by means of a
new constraint ¢ such that S’ becomes second class; that
is,

(5.1

(S, ®}*=40. (5.3)

® must be chosen such that 4 has an even non-
Grassmann part different from zero. In that case the new
DB’s is
l ' ’
(fg)*=(fig) + (8] [Dg)"— (£,0)"(S"g)")
(5.4)
The stability of this new constraint ¢ enables us to calcu-
late the function A appearing in (3.2):
ho=1 2% (5.5)

Now we want to see if the line L ({x;),{t)) has real
objectivity or not. We can construct a canonical realiza-
tion of the Galilean group in terms of DB’s (5.4) in super
phase space and also a geometrical realization by means
of the PB’s. The world-line conditions ensure that two
inertial observers “see” the same world line; therefore, the
only difference between the two kinds of transformations,
the canonical and geometrical, must be a reparametriza-
tion; i.e.,

(x{1+87) +({xG})=(x{(1)) +({x,G}*#),
(t(r+87)) +{({,G})=(t (1)) +{{1,G}¥) ,
and the same for the spin variable:
(SU(r487))+({S¥G})=(SUr))+({SY,G}¥) .
(5.6)
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We say that the line has a real objectivity if-it is possible
to find a real 67. Using evolution equations (3.6) with the
corresponding Ag, (5.5), and also using the constraints S
and Xy it is possible to isolate 87 obtaining

1 [ P *
(- pomiew6))+ (5 [26-La|(e.617)
&r=
189 |, 17y_
<A ar |°F 2D”]>
(5.7)

The denominator never vanishes because 4 and 0®/d7
must have an even non-Grassmann part different from
zero; therefore, ((1/4)(3®/37)2E) will have a part
which is scalar;, on the other hand, if
((1/24)(y/Dy7(3®/87)) is different from zero, it will be
explicitly dependent on the Levi-Civita tensor and there-
fore will be a pseudoscalar.

Therefore, the WLC does not add any new restriction
on the constraints ®;; and ®. We can conclude that the
line {(x(7)), {t(7)), {S¥(r)) is an appropriate geometri-
cal object to characterize the world line of a nonrelativis-
tic spinning particle.

As in the relativistic case,® this line would only have
physical meaning for a restricted class of constraints ®y;.
For example, consider the averaged value of the
Grassmann spin tensor:

Si— _ ik

E4 —[ckmds-—-(p-c)dk] .

Ecy + m:‘Pk
m

(5.8)

Because of the tensor character of S¥ and €’* it is neces-
sary that d; be a three-vector and that d,=0. Further-
more, the free-particle spin tensor cannot depend on the
position of the particle; therefore, the coefficients d are
only functions of the momenta. We have

1

QL =/ . p-e+dsn, (5.9)

where f is a general function of their arguments. Further-
more, the coefficients of € and  must verify the normali-
zation condition (4.15). With these constraints one can
see from the equations of motion (3.9) that there are not
Zitterbewegung. If we choose ®y; as

o = (5.10)
m

the term associated with the spin has a clear physical
meaning:
Sk=Leki(SUy=ck . (5.11)

The equations of motion for the physical quantities are

ui=(x‘ i)=2wi ,
t=2mk,, (5.12)
¢i=0.
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When we choose the time coordinate as the evolution pa-
rameter, by means of the constraint

b=t —-7r=0, (5.13)
the arbitrary function A, becomes
1
}\.Q ~ (5. 14)

=2m

and we recover the equations of motion for a nonrelativis-
tic spinning particle without Zitterbewegung.

VI. GALILEAN REALIZATION

We construct the Galilean realization for this model for
the case ® 1 =7/m. To do that we follow the Shanmu-
gadashan method.® We define the conjugate variables

H= 7’171— : (6.1a)
F=Xi+ 3’]’;5 , (6.1b)

where Xy and S are given by Egs. (2.2). The new vari-
ables satisfy the PB’s:

@A} =i, (7,7}=0, {#7}=0. (6.2)

To complete the canonical transformation, we must solve
the equations

We seek the solutions of (6.3) from which the Grassmann
variables have no position dependence, i.e.,

E'=¢YE,P,en,7) . (6.4)
Equations (6.3) and the canonical condition
e, &) =—8% (6.5)
give us
?"zei——&ln . (6.6)
m

For the remaining variables, X,f and p ,1, we choose

r=r 6.7)
E=E

and
f‘:x‘+f’(p,E,t,ei,n,71) , 6.8)
r=t+g(p,E,t,;,m,7) .

By imposing the corresponding canonical condition
(x5 =(1x)

={(x &} ={x75}={x"7}=0,

(L&'} =(TF)=(T7) =0, ©9
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{xi’pj} :8'] ’
(F.E}=—1 (6.10)
A solution is
f“:x"—ifi’l ,
m
Tt (6.11)

The Galilean generators (2.7) in terms of new variables be-
come

RI=x'p'—xlp'—ie'e/,

B'=—tp'+mx‘,

. (6.12)
P'=p’,
E=F .

This is an 11-dimensional realization of Galilean algebra
with respect to the brackets (3.5) which is explicitly

{4,B}*={A4,B}—i({45}{n,B}{4,7}{7,B})

which coincides with the PB’s in the reduced space { }x-
defined by

(6.13)

%=0, 7=0. (6.14)

Furthermore, we can fix the evolution parameter by

choosing the constraint
¢=¢t—-7=0. (6.15)

Then S’ becomes a second-class constraint. That enables
us to construct a nine-dimensional realization. In fact,
we can eliminate two superflows degrees of freedom with

t=r,

P

2m

(6.16)

Then the corresponding DB’s which realize the algebra
are

{4,B}¥={4,B}*+{4,5'}{®,B}*

—{A4,®}*{S",B}* . (6.17)

Because of the Galilean scalar character of X1; and S’ we
have

{G,G'}¥={G,G'}*={G,G"} , (6.18)
where G or G’ denote any of the Galilean generators:
Si=_Jiekeiek. (6.19)
The distribution function is
PP i,€m)
=8(p-€) |cre— P';’—cn — é [eijke‘ejek
— ie~-kpidekn 8 | L
m Y m

(6.20)
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which enables us to calculate the average position and
spin variables:

(X)=(x)=x, (6.21)

(8)=(S)=c, (6.22)
where

Si=_<tiélke'ek. (6.23)

The generators of the Galilean group in terms of averaged
quantities are

Ji= 3Ry =X xp)+c’,

Bi=—1p'4+mx; ,
. (6.24)
P":P‘)
2
.
E= 2m ’
which is a realization under the operator
3(4) 3(B) 9d(4) 3(B)
0[(4),(B)]= . — — . -
[<4),(B)] ax' op' ap' ox'
jk~k9(4) 3(B)
ekl =L (6.25)
+e ac’ acC!

VII. ELECTROMAGNETIC INTERACTIONS

We introduce the interaction of the nonrelativistic spin-
ning particle with an external electromagnetic field by
means of the two first-class constraints:*

SEM_(p—eA)?—2m (E —eA®)—ie (2F%yé + FUéé) ,

(7.1
XM =(E —ed®)—(p—eA)-e+m7,
where (A% A) are the electromagnetic potentials and
i i X 0 i
FUEM__ai’ Fo= 04 _ 04 (1.2)
an ax] ax,- at

are the electromagnetic fields. The equations of motion
are generated by the Dirac Hamiltonian

Hp =AXE +1o5™

with the PB’s (2.1); their explicit expression is given in pa-
per I, Eq. (4.12).

To study the classical content we must once again con-
struct a world line in physical space time. In order to do
that it is necessary to define a line in the surface of super
phase space defined by the constraints (7.1); that is, we
need to introduce an extra constraint ®;;. Furthermore
as we want to recover the free-particle model of the previ-
ous section when the potentials are turned off the only

(7.3)

physical meaningful constraint is ®;;=7/m. In that
case the Dirac Hamiltonian reduces to
Hp=ASEM . (7.4)

Now we can construct the distribution function by in-
troducing minimal electromagnetic coupling into the
free-particle distribution function, i.e.,

2225
-c
pPPM=8(YEM) c-e—-gl—w——n
m
i o 3 o
—é fijkf'fjfk—;l‘fijkpiszjfkl ]5(¢LL) )
(7.5)
where

PEM=P—€A . (7.6)

This distribution function has to satisfy the normalization
condition and the Liouville equation. This last equation
gives the evolution of the spin:

c=2AoBXC. (7.7

We can also calculate the evolution of other quantities. In
particular, for the acceleration we have

u'=2Ay |ulFYe +2Ae . (7.8)

mFY%_ % F4 ebiC!

When the evolution parameter is the time coordinate of
the particle, Eq. (7.8) is just the usual Lorentz-Dirac force
law.

VIII. YANG-MILLS INTERACTION

If we now consider a nonrelativistic spinning particle
with internal degrees of freedom, described by a set of
Grassmann variables 6, and 6}, we can consider the in-
teraction with an external Yang-Mills field.” At the pseu-
doclassical level the model is defined in paper I by the two
first-class constraints

SYM—(p—gI°A,)?—2m (E —gI°4?)

—ig (2F% 1% €+ F,I°€€e)~0 , (8.1a)
XYM=(E —gI°Ad)n—(p—gI® 4*)e+m7 =0,
a'=1,...,n, (8.1b)

where 1% =61°'0 are a realization of the Lie algebra of the
internal-symmetry group and (42 A,') are the Yang-Mills
potentials. The equations of motion at the pseudoclassical
level are given in paper I. In order to extract the classical
content we consider, as in the preceding sections, a line in
the surface of super phase space defined YY™ SYM, Expli-
citly, we introduce the constraint ®;; =7/m.

The distribution function must contain all Grassmann
variables. By construction €,%,% and 6,,6) commute; this
suggests the introduction of two distribution functions
pil€,m,7,p) and p,(6,,0%) with the properties

f pile,n,7,Pde=1,
[ p2(60,02)dp(6,,62)=1,

where du is the measure associated with 0,,6% whose ex-
plicit form will depend on the internal group considered.
Furthermore, we will require that p, and p, satisfy
separately the Liouville equation. In that way we are sure
that the total distribution function

(8.2)



2226 J. GOMIS AND M. NOVELL 33

P=P1(€,77a_77,b)P2(9a,9;) (8.3)

has the correct properties.
The distribution function p; associated with the spin
variables is

Pym €

p™M=8(X{M) |c-e—
m

i .
~% [e,jke‘efek

3 o
_;eijkP%{Mejek (o),

(8.4)

where
pYM=p_gA“'1a,, a=1,...,N. (8.5)

The explicit form of p, will depend on the internal-
symmetry group. The Liouville equation for p; gives the
evolution of spin, namely,

¢i=—2gAJ%Flct. (8.6)

Note that 1% contains Grassmann variables. Therefore to
obtain a classical equation we need to consider the average
with respect to p,. Explicit examples are found in Ref.
10.

IX. CONCLUSIONS

We have studied the classical content of a pseudoclassi-
cal model for a nonrelativistic spinning particle. We have
shown that in order to define a world line in a four-
dimensional space-time we need to consider a line in su-
perspace and a suitable distribution function on the sub-
manifold defined by X;; and ®;;. The world line in
physical space defined in this way has an objective reality,
i.e., verifies the WLC for an arbitrary choice of ®;.
However, the physical content of this model is not in-
dependent of the constraint ®;;. In fact, we conclude
that the only possible meaningful choice of ®; is the one
given by ®;; =7/m that yields an evolution without Zit-
terbewegung. The Galilean realization for this situation is
constructed by means of the Shanmugadashan transfor-
mation. Finally we have studied the interactions with
external electromagnetic and Yang-Mills fields. In both
cases the expected classical equations of motion are ob-
tained.
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