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Dirac’s constraint Hamiltonian formalism is used to construct a gauge-invariant action for the

massive spin-one and -two fields.

I. INTRODUCTION

Recently there has been much interest in the construc-
tion of gauge-invariant actions for string fields'? and or-
dinary fields.? A paper by West® indicates one way to
proceed for the several field types. He begins with a
Lorentz-invariant action whose variation gives the usual
free-field equations of motion and which contains the re-
quisite auxiliary Lagrange multiplier fields so that spin-
restricting constraints appear as equations of motion.
This action, which has no particular gauge symmetry, is
transformed into a gauge-invariant action through the in-
troduction of auxiliary dynamical (ghostlike) fields. The
gauge invariance is with respect to the joint variations of
all fields. Ramond presented an alternate gauge-
invariance construction at the level of the equations of
motion.?

In this paper we use the formalism of Dirac’s constraint
Hamiltonian dynamics* to arrive at the gauge-invariant
actions for the massive boson fields of spin one and spin
two. We start with the original Lagrangian density .27
containing only auxiliary Lagrange multiplier fields. The
momenta conjugate to these fields vanish, and are primary
constraints. To test the stability of these constraints we
construct the Dirac Hamiltonian Hp. Stability of the pri-
mary constraints generates secondary constraints.

In order to obtain gauge invariance at this level we re-
quire the system of primary and secondary constraints to
be first class.” We are led in this way to systematic, step-
by-step modifications of HJ, and hence .Z, such that the
constraints are rendered first class. The introduction of
auxiliary dynamical (ghostlike) fields is required.

Stability of the secondary constraints generates tertiary
constraints. Again guided by the principle of gauge in-
variance, we require the system of primary, secondary,
and tertiary constraints to be first class. This lead to fur-
ther modifications of Hp and hence .¥". These modifica-
tions require other dynamical auxiliary fields and/or extra
coupling terms.

Finally when the system of primary, secondary, and ter-
tiary constraints is rendered first class, the constraint
analysis ends since stability of the tertiary constraints gen-
erates no new constraints. The final action in each case is
the gauge-invariant action of West.> The final number of
phase-space degrees of freedom, i.e., the number of fields
plus conjugate momenta minus twice the number of first-
class constraints, is correct in each case.

II. SPIN ONE

The four-vector field A4, describing the massive spin-
one particle obeys the equation of motion

(O+m*)4,=0 (1)
subject to the condition
34,=0. (2)

The Lorentz-invariant action whose variation yields (1)
and (2) as Euler-Lagrange (EL) equations of motion is

So= [dx £, 3)
where
Lo=5AMO+m?H A, +X(3*4,) , )

with X treated as an auxiliary, Lagrange multiplier field.
As discussed by West,> S, has no particular gauge sym-
metry but can be modified to include another auxiliary
field ¢, such that under the joint gauge variations of 4,
X, and ¢, So—S which is gauge invariant.

The Hamiltonian analysis for this case proceeds as fol-
lows. From (4) we obtain the four-momentum conjugate
to the boson field’

3%, . .
= =—AF4Xg%, (5)

04

n
while the momentum conjugate to the multiplier field

9.7, 0
Ty —=— T =
*Toax

is a primary constraint. To test the stability of this con-
straint we must construct the Dirac Hamiltonian corre-
sponding to . :*

HY= [ d*x(r2+ hymy) (7)

(6)

where 7% :77“/1 B— 7L, is explicitly
o= — st — X+ X[g%T, —gH(d;4,)]

1 i m?
+ 3043, 4,) — T AkA,, 8)

Then with the equal-time Poisson brackets (PB) for scalar
fields

(X(x,t),7(y,1))=08(x—y) 9)
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we obtain
ry=(my, Hp) =X —[1°—(8;41)] . (10)

As this is not identically zero it is a secondary constraint.

Now (my,my)= —8(x—y) and therefore the two con-
straints my~0 and 7y~0 as they stand are second class,
and the stability of 7y with respect to Hp will remove the
arbitrariness of A and destroy gauge invariance.® The
only way to avoid this is to modify Hp so that 7y does
not contain X. This is done via

Xl =204 X, (1
which implies

Lo L1 =L o— X2 (12)
Now with respect to H ll), the secondary constraint,

yv=(m, Hp))=—7"4+9;4'~0 , (13)

and the primary constraint are first class.

Next we must test the stability of the secondary con-
straint (13) with respect to HJ. Using the equal-time PB
for vector fields

(AM(x,0),m(y, 1)) = —g""8(x—y) (14)
we obtain

Ty=ir,Hp)=~+09,4°+m?4°+ 3,7 (15)
which is a tertiary constraint. We then have (my,7y)=0
but (7y,7y)= —m?8(x—y) so that to reinstate gauge in-
variance at this level, we must modify 7y to read

Ty=—m"43;A"+méo (16)

where ¢ is an auxiliary field such that
b=y, (17)

where 7, is the momentum conjugate to ¢. Then the
three constraints 7y, 7y, Ty will be first class.
To obtain (16) let

Hloxt=xl—xméo (18)
and, therefore,
L1 LHr=L1+Xméo ; (19)

to obtain (17) we need only add the term %17‘,,2 to /Yf but
this would destroy the Lorentz invariance of the action.
Therefore let

KoKy =H o4+ —+(3)0,0) ; (20)
thus
Ly L =L 4 T(348)(3,0) - 1)

Now test the stability of 7y with respect to Hp. We
obtain

Ty=Uip,Hp)=—(30; + mHmy+m>¢ . (22)

Thus the constraint analysis would end if the m 3¢ term
were removed from 7 y. For this to occur, let

IR H =+ T mP? (23)
and
J?/)3—>f4=f3—-;-m2¢2 . (24)

Thus the constraint analysis ends and S,= f dx L, is
the gauge-invariant action of West,®> derived via Dirac’s
constraint Hamiltonian formalism with one auxiliary sca-
lar multiplier field and one dynamical scalar field. There
are three first-class constraints. Therefore the final num-
ber of phase-space degrees of freedom is 12—6=6, the
appropriate number.
The explicit variations under which S, is invariant are

SAF=3"A ,
SY=(O+m?A,
ddp=mA .

Further the equations of motion can be used to eliminate
the field X which reduces .#4 to the Stueckelberg form.’

III. SPIN TWO

The symmetric tensor field ¢,,,, describing the massive
spin-two particle, obeys the equation of motion

(O+m*)d,,=0 (25)
subject to the conditions

3%¢,,=0 (26)
and

#l,=0. (27)

The Lorentz-invariant action whose variation yields (25),
(26), and (27) as EL equations of motion is (3) with

Lo=5¢"(O+m?),,+B*(3"$,,)+X() (28)

with B* and X treated as auxiliary, Lagrange multiplier
fields.

The Hamiltonian constraint analysis which results in a
gauge-invariant action for this case is as follows. From
(28) we obtain the symmetric tensor momentum conjugate
to the boson field

R
R
while the momenta conjugate to the multiplier fields
9.Z

h=—="=0 (30)
9B

v

= —¢"4 3 (B g™+ Bg%*) (29)

u
and
9.7

X
are primary constraints. To test the stability of these con-
straints we must construct

Ty = =0 31

Hy= [ dx(# 4+ Ml +Amy) (32)
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where 77 :77',“,(;5 Y &4 is, explicitly,

2
K= = 3Tt 1 (BEE O+ B ¥ — 87,
— (B g+ B¢ 3i,,) — X9,

+ +(3'¢)(3;,,) — + (BB, +B?) . (33)
Then

why=—m"493;6"+ 5B +g*B° (34)
and

Y=} (35)

are secondary constraints which can only be made first
class with respect to the 7/ by removal of the B¥B, and
B,? terms from #°. Therefore let

H})—>H!=HJ+5B"B, (36)
hence
Lo L= y—5B"B, (37)

We cannot simply add %Boz to the ]/cl as that would
destroy the Lorentz invariance of the action. Therefore
we must introduce a new auxiliary field =, which must
couple to B* derivatively to cancel the B,? term in 7l
Further, so as not to introduce new constraints we must
include kinetic energy terms for 2. Therefore let

Xt =x!+B(5,;2)—(3;2)(d'%)
Bozﬂz —wsms+ By, (38)

which obtains from

L\~ L= —B"9,2)+(3*Z)(9,2) . (39)
Thus, with respect to H [2,, we have

7= — 104 3;0" — g"'ms —gH(9,2) (40)
and

T =¢k . (41)

Among the primary and secondary constraints, only

593

y=¢h—2% , (43)

the constraint system becomes first class to the secondary
constraint level. This is accomplished by

HESHI=24X(23)
with

Ly L= —X(23) .

(44)

(45)

Now we must consider the stability of the secondary
constraints with respect to Hjp. For (43) and (40) we ob-
tain, explicitly,

%xz(ﬂ’x,Hg)z—ﬂ"éy—Wz (46)
and
= —(39; + m)¢H° — 3, + 1 g"%3'3; 3 — +gHd; s ,
47)
where we have used the equal-time PB
(p*¥(x,1)7 (y t)):%(g*‘“g”ﬁ—{—g""g“B)S(x—y) (48)

for symmetric tensor fields.
tertiary constraints

Equations (46) and (47) are

(Ty,my)=(d —2)8(x—y), (49)
(74, 7)) =g — 339, +mH)B(x—y) , (50)
(Fha )= +(g" +g"% )89, + m*H)8(x —y)

— (g + g% )33, 8(x—y) , (51)

where d =g/, is the space-time dimension.

To restore gauge invariance at this level is a bit more
complex than for the spin-one case. A new auxiliary field
¥ is required which should separately eliminate the d and
the 2 from (44). From (43) and (46) we see that this can
be done by adding the term —d to 7y and requlrmg that

(25 +di) = my. Therefore first add X(d¥) to 7 which
means subtract X(dv) from .73, then further modify .Z;
by Lorentz-invariant kinetic terms so that in total we have

Ly L 4= L 3= X(d ) + 2 )3, )
+ §<a#¢)(a#¢> : (52)

Because of the 3*S term in . we cannot simply addi-

k) =gH8(x —y) (42)
(m,m) =g 0(x =y tively amend 5%~ as was done earlier. Rather, we must re-
is nonzero. Thus if 7y becomes turn to the 7. stage to obtain, from %,
|
0 Ty—TT B° Ty— T B° T B° Ty—T B°
=7 s i_ [ z | ) s | o| 7=  BY ¥ |
cTHet 1Y d—2 |Ta—2 ||| a2z |Ta—z|™E 7 T2 d—2 | d—2
+B° o |’
. Ts Ty—Ts B .
B'(9;32)— — — (9! .
(9;2) 2 d 2 PR (0'2)(9;2)
2 77'2+B0 Ty —Ts BO
23 4+dy)— — — —7s—BO°
XX +di) d_zl 3 P 7 3 (mp—ms—B")
d d B |
. . Ty —T3
—2(3'ZN9;2)— ('Y ¢) — — —
18;2) =S (@) — = | | —— ) (53)
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To retain first-class status with respect to the primary
% constraint, the uncanceled msB,’ term in %ﬁ must be
eliminated; hence,

0., . . . . 0
7T¢=—.=20'+d1//—>20'—|—dl[1-—3 . (54)
oY
Therefore,
Ly L s=L4—BH) (55)

and it is now easiest to write

K =X+ BB S+ )+ X2 +dy)
—(afz>(ai2>-2(a"2)(a,.¢)—%<a"w)(a,.¢,)

1 (7T¢—7Tz)2

—i—%BOﬂ';—{— %ﬂ'zﬂ'z—%— 5-7_2— . (56)
Now with respect to H} we have
= —m049;0M —gM(Z+ 1) — +gH0ms (57)
and
=, —(2Z+di) (58)

for the secondary constraints. Together with the primary
constraints, these form a first-class system.

We must now test the stability of the secondary con-
straints with respect to H). We have

7= —(09; + m?)p*°+g+%3'3, (2 + 1)

—3;(m 4 gtims) (59)
and
Ty=—T,—Ty (60)
and
(7,77 ) =m2gH08(x —y) . 61)

Therefore we need a mass term in 7% such as g*%m?y.

Therefore if

K=+ 2mSy (62)
and

Ls—>Le=Ls—2m*ZY, (63)
then (7%,7y)=0. Further, since

(7,7 p)=5m>(g" +g"g")8(x—y) , (64)
we need a mass term in 7% such as g#%m?S. Therefore if

Ko H =2+ m?3? (65)
and

Lo— L 7= L ¢—m?>Z? (66)
then

(7,7 )=3m’g""8(x—y) (67)

alone survives as the nonzero PB.
To render the set of primary, secondary, and tertiary

constraints first class we must introduce another auxiliary
field, a four-vector field 4, such that

mh—mh +mA* (68)
and

sl — tmat (69)
Therefore

/ZHWE:*}/’Z—mgAH—%ﬂ—‘j,m# (70)
or

L L y= L 34 mBPA, +(FAVB,4,) . (TD

Thus the system of constraints is first class to this tertiary
level.

Now test the stability of the tertiary constraints with
respect to Hp.

First

Ty=—(8;0'+m?iry—m2di . (72)
Therefore, if

m?d

HEoxl=nty > Y2 (73)
or
S or L o= Ly ’”z"d "y (74)

then 7y is not a new constraint, and there is no change in
the prior first-class status. Second, since

(i, H))=—(3'd; + m2)mly +m>A* (75)
if
9 10 9 m?
¥ o—0, :}VC+TAHA# (76)

or
m2
L 9L 10— TA

pAR (77

then 77"; is not a new constraint.

The constraint analysis ends and Sy = fdx S 10 is the
gauge-invariant action of West,* derived via Dirac’s con-
straint Hamiltonian formalism, with one auxiliary scalar
plus one auxiliary four-vector multiplier fields and two
auxiliary scalar plus one auxiliary four-vector dynamical
fields, there are 15 first-class constraints. Therefore the
number of phase-space degrees of freedom is 42 —30=12,
the appropriate number.

Explicitly the final Lagrangian density ./ is

L 0= 1O +m)d,, +BH(0%,,) + X o
— +B"B, +mB* A, —B"3,(3+4)—X(23 +d¥)
—AMO4m*) A4, —2(O+m?*)2+2(3"2)(9,1)

~2m22¢—%1/)(l:]+m2)¢ (78)
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and the joint variations with respect to which the action
S0 is invariant are

8¢,y =0, Ay +0 A, +8uM (79a)
8B, =2(0+m?A, , (79b)
X =—(0+m?),, (79¢)
ddy,=mh, , (79d)
dY=n, (79)
83 =04, . (796)

Again it is possible to eliminate, via the equations of
motion, the auxiliary multiplier fields B* and X, yielding
a gauge-invariant action involving only dynamical fields
which is the spin-two analog of the Stueckelberg action.

IV. CONCLUSION

We have constructed a gauge-invariant action for the
massive boson fields of spin 1 and spin 2, using Dirac’s
constraint Hamiltonian formalism. We begin with the
non-gauge-invariant action which gives the free, mass-
shell, field equations plus supplementary conditions. The

momenta conjugate to the auxiliary fields vanish and are
primary constraints. Primary-constraint stability, with
respect to the beginning Dirac Hamiltonian, generates
secondary constraints.

The guiding principle here is that all the constraints
must be first class if the theory is to exhibit gauge invari-
ance. Step-by-step modification of the Dirac Hamiltoni-
an, and consequently the Lagrangian density, renders the
primary- and second-constraint system first class. Stabili-
ty of the secondary constraints generates tertiary con-
straints. Further step-by-step modifications of the Hamil-
tonian yields a first-class constraint system. There are no
further constraints and we thus arrive at the gauge-
invariant actions of West.

That the constraint analysis should end at the tertiary is
also dictated by a counting of the number of degrees of
freedom. In a future paper we will extend this analysis to
arbitrary spin.
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