
Classical and Quantum Gravity

PAPER

An extension of Poincaré group based on generalized Fermi–Walker
coordinates
To cite this article: Josep Llosa 2017 Class. Quantum Grav. 34 205003

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © © 2017 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6382/aa8972


An extension of Poincaré group based on generalized

Fermi-Walker coordinates

Josep Llosa

Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB),

Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona, Spain

August 25, 2017

Abstract

The class of accelerated and rotating reference frames has been studied on the basis of generalized

Fermi-Walker coordinates. We obtain the infinitesimal transformations connecting any two

of these frames and also their commutation relations. We thus have an infinite dimensional

extension of the Poincaré algebra and, although it turns out to be Abelian extension, and hence

trivial, it is noteworthy that, contrarily to Lorentz boosts, acceleration and rotational boost

generators commute with each other and with the generators of Poincaré group as well.

PACS number: 02.40.Ky, 02.20.Tw, 02.20.Sv, 04:20.Cv,

1 Introduction

The laws of Newtonian mechanics hold in all inertial reference frames, which are in uniform rec-

tilinear motion with respect to each other. This is known as the principle of relativity of Galilei.

However, this principle of relativity can be extended to arbitrary rigid frames, which are in arbitrary

translational and rotational motion with respect to each other, i. e. they are mutually related by

1
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coordinate transformations like

x′i = Rij(t)x
j + si(t) , t′ = t+ t0 ,

where Rij(t) is an orthogonal matrix and si(t) arbitrary functions of time. The laws of Newtonian

mechanics have the same form in any of these coordinate systems, provided that the necessary

inertial force fields —dragging, Coriolis, centrifugal, . . .— are included.

According to the special theory of relativity the laws of physics hold in all Lorentzian reference

frames, the relative motion of any couple of these frames is rectilinear and uniform, and the coor-

dinates in any pair of these frames are connected by a Poincaré transformation. Endeavouring to

set up a theory of gravity consistent with his theory of relativity, Einstein initially aimed to gener-

alize the theory of relativity to accelerated motions [1], but he soon abandoned this idea in favour

of the principle of general covariance. Its invariance group, namely spacetime diffeomorphisms, is

much wider than Poincaré group but, as soon Kretschmann pointed out [2], [3] “since any theory,

whatever its physical content, can be rewritten in a generally covariant form, the group of general

coordinate transformations is physically irrelevant” [4]. Moreover, in Kretschmann’s view, special

relativity is the one with the relativity postulate of largest content; indeed, its isometry group is a

ten-parameter group, which is the largest isometry group in four dimensions, whereas for generic

spacetimes in general relativity the isometry group reduces to the identity.

More recently other authors have insisted in the convenience of restricting general covariance [5] and

even a Principle of restricted covariance has been explicitly stated [6]. There is also in the literature

a renewed interest in accelerated reference frames. In a non-relativistic approach we should mention

the extensions of Galilei algebra to encompass acceleration in the context of non-relativistic quantum

mechanics [7], [8], [9] and, from a relativistic standpoint, the approach by Mashhoon [10] in view of

its possible application to non-local gravitational theories [11].

Our aim is to find an extension of the principle of relativity, meaning that there is a class of

coordinate systems —larger that the Lorentzian class but more restrictive than general curvilinear

coordinates– such that the laws of physics have the same form, including inertial force fields if

necessary; in the same way as the extended principle of relativity for rigid reference frames holds in
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Newtonian mechanics, as commented at the start.

Fermi-Walker (FW) coordinates [12], [13] are characterized by an arbitrary origin worldline, whose

proper velocity stands for the time axis, whereas the triad of space axis evolve without rotating in a

specific way, namely Fermi-Walker transport [14], just to stay orthogonal to proper velocity. Often

these coordinates have been seen as the relativistic generalization of the coordinates associated to

an accelerated, non-rotating observer [12], [15], [16]. From a historical viewpoint, FW coordinates

have also the merit of coinciding (for rectilinear motion) with the coordinate systems considered by

Einstein in his pioneering work [1], as has been proved elsewhere[17].

This class of observers and associated coordinates can be extended by allowing the space axes to

have an arbitrary rotational motion [12], [18], [19]. We shall refer to these as generalized Fermi-

Walker coordinates (GFW)1. Particularly ref. [18] aims to distinguish the inertial and gravitational

effects in the proper reference frame of an accelerated rotating observer.

We have concentrated on GFW coordinates because several authors have chosen them as the most

suitable to describe relativistic physical situations in which an extended non-inertial laboratory

apparatus intervenes2, e. g. at rest on the Earth surface. To list a few: the energy-momentum tensor

for a Casimir apparatus in a weak gravitational field [20], the Fulling-Unruh effect in accelerated

frames [21], the gravitational perturbations of the hydrogen spectrum [22], [23], and also [24], [25],

[26].

In section 2 we outline the main features of FW and GFW coordinate systems in Minkowski space-

time and see the specific form of Minkowski interval when written in these coordinates. Then in

section 3 we prove that the latter specific form is exclusive of GFW coordinates and state a kind of

uniqueness result associated to them.

The Minkowski metric components in these coordinates are ten well defined functions, namely

gµν(Xj , T ; fJ(T )) that involve six functions of time fJ(T ) , J = 1 . . . 6. These functions are con-

nected with the proper acceleration of the origin and the angular velocity of the spatial triad of
1Gourgoulhon [19] uses the term “coordinates with respect to a generic observer”
2Alternatively, FW coordinates if there is no rotational motion or Fermi normal coordinates for a freely falling

observer in a gravitational field
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axes.

In passing from one GFW system of coordinates to another the gµν(Xj , T ; fJ) are form invariant,

i.e. considered as functions of the ten variables Xj , T and fJ they do not change. However they

are not isometries in the proper sense because, if we consider the components as functions of the

four coordinates, namely gµν(Xj , T ) := gµν(Xj , T ; fJ(T )) , their values do change because the six

functions fJ(T ) differ from one GFW system to the other. This dual feature induce us to use the

term generalized isometries [29].

We then study the infinitesimal transformations connecting two GFW coordinate systems, as the

solutions of a generalized Killing equation, and derive the infinitesimal generators . As these trans-

formations imply not only a change in the spacetime coordinates (Xj , T ) but also in the six functions

fJ(T ) characterizing the GFW system, the infinitesimal generators act on a manifold that is much

larger than merely Minkowski spacetime (an infinite dimensional one, actually). These generators

span an infinite dimensional extension of Poincaré algebra which includes acceleration and rotation,

which may be taken as the mathematical embodying of an extension of the principle of special

relativity abiding arbitrary translational and rotational motions.

2 Generalized Fermi-Walker coordinates

Let zµ(τ) be a timelike worldline in ordinary Minkowski spacetime, and uµ = żµ(τ) and and

aµ = z̈(τ) the proper velocity and acceleration 4-vectors. (We take c = 1, Greek indices run from 1

to 4 and Latin indices from 1 to 3; xµ refer to Lorentzian coordinates and the summation convention

is always understood unless the contrary is explicitely said.)

A 4-vector wµ(τ) is Fermi-Walker transported [13] along zµ(τ) if

dwµ

dτ
= (uµaν − uνaµ) wν (1)

Let us now consider an orthonormal tetrad, êµ(α)(τ) , which is FW transported along zµ(τ) and such

that êµ(4) = uµ . For a given point in spacetime, xµ , the Fermi-Walker coordinates [13], [19] with

space origin on zµ(τ) are:
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The time T (xν), given as an implicit function by

[xµ − zµ(T )] uµ(T ) = 0 (2)

The space coordinates Xi, defined by

X̂i = [xµ − zµ(T (x))] êµ(i)(T (x)) (3)

FW coordinates are the local coordinates of a non-rotating accelerated observer [12]. A natural

generalization, that also includes arbitrary rotational motion, is based on the notion of generalized

Fermi-Walker (GFW) transport [12], [18] of a vector wµ along the worldline zµ(τ):

dwµ

dτ
= Ωµ

ν(τ)wν (4)

where

Ωµ
ν = uµaν − aµuν − εµναβω

αuβ (5)

is the (spacetime) angular velocity and ωα(τ) is an arbitrary vector that is orthogonal to uµ that

we shall call proper angular velocity 4-vector.

Consider now a new tetrad {eν(α)(τ)}α=1...4 , with eν(4)(τ) = uν(τ) , that is GFW transported along

zµ(τ). We shall write:

eν(α) = ηνµe
ν
(α) , eν(α) = eν(β)η

βα

and the components of the angular velocity in this comoving base are:

Ω̂α
β = Ωµ

νe
(α)
µ eν(β) , Ω̂4

i = Ω̂i
4 = âi , Ω̂i

j = εijkω̂
k (6)

where ω̂l = ωνe
ν
(l) . In a terminology borrowed from rigid body kinematics, we will refer to the

GFW transported tetrad {eν(α)(τ)}α=1...4 as the “body axes”, whereas the inertial frame base will

be called the “spacetime axes”.

On the basis of the origin worldline zµ(τ) and the space axes eµ(i) we can introduce the generalized

Fermi-Walker coordinates of a point xν : (a) the time T (x) is defined as in equation (2) and (b) the

space coordinates are

Xj = [xµ − zµ(T (x))] eµ(i)(T (x)) (7)
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The inverse coordinate transformation — from GFW to Lorentzian coordinates— is(
T, X l

)
−→ xµ , xµ = zµ(T ) +X leµ(l)(T ) (8)

whence it easily follows that

dxµ =
[(

1 + ~X · ~a
)
uµ + εlikω̂

kXieµ(l)

]
dT + eµ(l) dX l (9)

and the Minkowski metric in GFW coordinates is

ds2 = d ~X2 + 2 dT d ~X ·
(
~X × ~ω

)
− dT 2

[(
1 + ~X · ~a

)2
−
(
~X × ~ω

)2
]

(10)

where the usual standard 3-vector notation has been introduced for the sake of brevity, with ~ω =

(ω̂1, ω̂2, ω̂3) and ~a = (â1, â2, â3). This formula generalizes those obtained in refs. [27] and [28] for

constant proper acceleration and angular velocity.

For ω̂i(t) = âi(t) = 0 the interval (10) is Minkowski metric, as expected. Indeed, in this case proper

acceleration and angular velocity vanish, the origin worldline is straight, the tetrad is constant and

GFW coordinates yield the Lorentzian coordinates for these axes and origin. As a consequence, the

group of transformations connecting GFW coordinates3 will include Poincaré group as a subgroup.

Had we to compare these GFW coordinates with the ordinary FW coordinates based on the same

world line, we should obtain Xj = Rji(T )X̂i , where Rji(τ) is a rotation matrix satisfying

Ṙji(τ) = εlikω̂
k(τ)Rjl(τ)

(εljk = εljk is the three dimensional Levi-Civita symbol, regardless the position of the Latin indices).

It is worth to remark that, whereas aµ, ων and Ωµν are the components of respectively proper ac-

celeration, proper angular velocity vector and spacetime angular velocity on an external Lorentzian

coordinate base, âj(τ), ω̂j(τ) and Ω̂αβ(τ) are the components of these objects with respect to the

GFW transported base. This is why we shall refer to them as intrinsic proper acceleration and so

on.
3The structure of the group of transformations is explained in detail in Appendix D
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2.1 The GFW reference system with origin zµ(τ) and angular velocity Ωµ
ν(τ)

Any GFW transported tetrad with angular velocity Ωµ
ν(τ) is a solution of the linear ordinary

differential system (4-5). Its general solution is

eµ(α)(τ) = Λµν(τ) eν(α)(0) (11)

where Λµν(τ) is a solution of the differential system

Λ̇µν = Ωµ
ρ(τ) Λρν , with Λµν(0) = δµν (12)

Therefore two tetrads, eµ(α) = e′µ(α) , that are GFW transported along the same worldline with the

same angular velocity will only differ in their initial values and as, besides eµ(4) = e′µ(4) = uµ , these

initial values are connected by a space rotation

e′µ(α)(0) =
4∑

β=1

eµ(β)(0)Rβα , with Rβ4 = R4
β = δβ4 ,

(
Ri j

)
i,j=1...3

being a constant orthogonal matrix. Combining the latter with (11) we have that

e′µ(α)(τ) = eµ(β)(τ)Rβα (13)

Hence all GFW transported tetrads along a given worldline with the same angular velocity are the

same apart from an initial space rotation and, according to the definition the GFW coordinates

based on any of these tetrads will differ at most in a constant rotation:

τ ′ = τ , Xi = RijX
′j

Given a GFW coordinate system with origin zµ(τ) and angular velocity Ωµ
α(τ), the worldline

Xi =constant, τ ∈ R is the “history” of a material point at rest in the GFW reference system. The

3-parameter class of these worldlines (for all Xj) represents the motion of a material body comoving

with the GFW system. As commented above, in any other GFW coordinates system based on the

same zµ(τ) and Ωµ
α(τ) we shall still have that X ′i =

(
R−1

)i
j
Xj = constant .

The equation defining this 3-parameter congruence is

ϕµ(T, ~X) = zµ(T ) +Xi eµ(i)(T ) , τ ∈ R (14)
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and the proper time rate at the place ~X is

dτ = γ−1 dT , γ :=

([
1 + ~X · ~a(τ)

]2
−
[
~X × ~ω

]2
)−1/2

; (15)

This is the time ticked by a stationary atomic clock at ~X and it coincides with T at the origin. In

general, τ 6= T and usually the readings of proper time τ by two stationary clocks at two different

places will not keep synchronized. It is thus more convenient to use the synchronous time T instead

of local proper time.

The proper velocity vector of the worldline ~X =constant at the synchronous time T is

Uµ(T, ~X) = γ
[(

1 + ~X · ~a
)
uµ + εl ikX

iω̂k eµ(l)

]
(16)

The first term corresponds to the origin translational velocity, whereas the second term reflects the

rotational motion.

Due to the presence of a square root in the denominator, the domain where the GFW coordinates

are valid is restricted to the region
∣∣∣1 + ~X · ~a

∣∣∣ > ∣∣∣ ~X × ~ω∣∣∣ and the equality defines the horizon of

the GFW coordinate system.

Equations (15) and (16) generalize similar formulae derived in ref. [27]) in the context of constant

proper acceleration and angular velocity. Notice that the proper velocity Uµ depends on the place

(if ~ω 6= 0, then Uµ is different from the origin proper velocity, unless ~X ‖ ~ω). Proper acceleration

also varies from place to place; therefore, we should not speak of “the acceleration of a system of

coordinates” but rather the acceleration of the origin, namely âi in the body axes.

3 Uniqueness

We now prove that the expression (10) of the metric is exclusive for GFW coordinates in Minkowski

spacetime.

Proposition 1 If in some coordinate system
(
Xi, T

)
the spacetime metric has the form (10), then

there is a worldline zµ(τ) and an orthonormal tetrad eµ(α)(τ) , α = 1 . . . 4 , such that
(
Xi, T

)
are

the GFW coordinates based on that worldline and tetrad in a locally Minkowskian spacetime.
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Proof: It is straightforward to check that the Riemann tensor for the metric (10) vanishes; there-

fore the spacetime is locally Minkowskian.

Then consider the matrix Ω̂α
β(τ) defined by

Ω̂i
j(τ) = εijkω̂

k(τ) , Ω̂4
i(τ) = Ω̂i

4(τ) = âi(τ) (17)

where the functions âi and ω̂k are obtained from the coefficients in the metric (10). Then take

eµ(α)(τ) as the solution of the ordinary differential system

deµ(α)

dτ
= eµ(β)Ω̂

β
α(τ) (18)

for some initial data {eµ(α)(0)}α=1...4, that form an orthonormal tetrad, with eµ(4)(0) timelike. Due

to the particular form of the matrix Ω̂β
α, it is obvious that eµ(α)(τ) is an orthonormal tetrad for all

τ as well.

Being eµ(4) a timelike vector, consider a worldline zµ(τ) such that żµ(τ) = eµ(4)(τ) and the matrix

Ωµ
ν = Ω̂β

αe
µ
(β)e

(α)
ν

(indices are raised and lowered with ηαβ = diag[+1,+1,+1,−1] ). It is straightforward to see that

the tetrad eµ(α)(τ) is GFW transported along zµ(τ) with an angular velocity Ωµ
ν(τ) .

Consider finally the coordinate transformation

(
Xi, T

)
−→ xµ = zµ(T ) +Xj eµ(j)(T )

whose Jacobian and inverse Jacobian are respectively given by

dxµ =
(
żµ(T ) + eµ(α)(T ) Ω̂α

j(T )Xj
)

dT + eµ(j)(T ) dXj (19)

dT = −
eµ(4)(T ) dxµ

1 + ~X · ~a(T )
, dXi =

(
eµ(i) +

eµ(4)(T ) Ω̂i
j(T )Xj

1 + ~X · ~a(T )

)
dxµ (20)

Substituting the latter in the expression (10) we obtain that, in the coordinates xµ, the invari-

ant interval is ds2 = ηµν dxµ dxν ; hence xµ are Lorentzian coordinates and Xi, T are the GFW

coordinates for the worldline zµ(τ) and the tetrad eµ(α) . 2
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3.1 A geometric characterization of GFW coordinate systems

We shall see now that, if the hypersurfaces T = constant are hyperplanes in Minkowski spacetime

and Xj are Cartesian coordinates on these hyperplanes, then (Xj , T ) are GFW coordinates apart

from a shift in the origin.

Proposition 2 Let (Xj , T ) be a system of coordinates such that the Minkowski metric spatial com-

ponents are gij = δij, then: (a) the hypersurfaces T =constant are flat, (b) the rank of their

extrinsic curvature Kij is at most one, and (c) it satisfies that ∂[iKj]l = 0 .

Proof: The metric restricted to the hypersurfaces T = constant, gij = δij , is flat and the ambient

metric is Minkowski metric. Then, if Kij is the second fundamental form, Gauss equation [30]

implies that Ki[jKl]k = 0 .

The latter equation having the same symmetries as a Riemann tensor and being three the number

of effective dimensions, it is equivalent to its trace (il), that is:

Kj
iK

i
k −Ki

iK
j
k = 0

which implies thatKj
i has two eigenvalues, namely Ki

i (simple) and 0 (double), hence rankKj
i ≤ 1.

The relation ∂[iKj]l = 0 is a consequence of the Codazzi-Mainardi equation [30] and the fact that

Xj are Cartesian coordinates for the first fundamental form on the hypersurfaces T =constant. 2

Proposition 3 If the metric spatial components are gij = δij and the second fundamental form on

T =constant vanishes, then (Xj , T ) are GFW coordinates apart from a shift in the origin.

Proof: Let us define vi = g4i and N2 = ~v 2 − g44, then the inverse spacetime metric components

are:

gij = δij −N−2vivj , g4i = N−2vi , g44 = −N−2 = det(gµν) 6= 0

and the connexion symbols are:

{ij|k} = 0 , {ij|4} = ∂(ivj) , , {4i|j} = ∂[ivj]

{44|i} = ∂T vi +N ∂iN + 2~v · ∂i~v , {44|4} = N ∂TN + 2~v · ∂T~v

 (21)
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The unit covector normal to the hypersurfaces T = constant and the second fundamental form are

respectively

na = −N δ4
a and Kij = −N Γ4

ij = N−1 ∂(ivj)

The vanishing ofKij then implies that ∂ivj = Wij is skewsymmetric, whose integrability conditions,

∂lWij = ∂iWlj , combined with by the Jacobi identity, imply that ∂jWil = 0 , that is

Wij = εijkω̂
k(T ) and therefore vi = εijkX

jω̂k(T ) + Vi(T ) (22)

So far we have used the restrictions imposed by Gauss and Codazzi-Mainardi equations. We have

still to exploit the vanishing of the components R4i4j . Including that ∂(ivj) = 0 and the connexion

symbols (21), we arrive at

R4i4j = 0 ⇔ ∂ijN = 0 ,

that is

∃ ~a(T ) and B(T ) such that N = B + ~X · ~a

and, provided that B 6= 0 , the time coordinate T can be redefined so that B = 1.

Therefore, in these coordinates the Minkowski metric reads

ds2 = d ~X2 + 2 dT d ~X ·
(
~X × ~ω + ~V

)
+ dT 2

(
−
[
1 + ~X · ~a

]2
+
[
~X × ~ω + ~V

]2
)

(23)

Finally, if we shift the origin as: X̃j = Xj+M j(T ) , where ~M(T ) is a solution of ∂T ~M+~ω× ~M = ~V ,

the Minkowski spacetime interval in the new coordinates has the form (10), i. e. (X̃j , T ) are GFW

coordinates. 2

4 Generalized isometries

Deriving a closed expression for the transformation relating two different GFW coordinate systems

would imply to invert the transformation law (14), which is not feasible in general. However we

can obtain expressions for infinitesimal transformations with the help of the notion of generalized

isometry [29].
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In a GFW coordinate system the invariant interval has a very specific shape (10) that involves

six arbitrary functions âi(T ) and ω̂j(T ). The general transformation formulae relating two GFW

coordinate systems, Xµ = ( ~X, T ) −→ X ′µ = ( ~X ′, T ′) , must preserve this overall shape but,

perhaps, with a different sextuple of functions,
(
â′i(t), ω̂′j(t)

)
. We shall call this transformation a

generalized isometry [29] because the interval is:

ds2 = gαβ(Xν , fI(X))dXα dXβ = gαβ(X ′ν , f ′I(X
′))dX ′α dX ′β (24)

Although the functions gαβ(X, fI) are the same, the metric coefficients, gαβ(X) = gαβ(X, fI(X)),

are different because the values fI(X) change to f ′I(X
′) in passing from one system to the other.

This is the reason why the transformation is not actually an isometry and we need to introduce the

notion of generalized isometry.

In the present case fI are six function that only depend on the coordinate T and can be arranged

as the skewsymmetric matrix

Ω̂αβ =

 εijkω̂
k(T ) âi(T )

−âj(T ) 0

 (25)

Consider now the infinitesimal transformation

X ′α = Xα + ε ξα(X) , f ′I(X) = fI(X) + εΦI(X) (26)

and therefore f ′I(X
′) = fI(X) + ε [ΦI(X) + ξαDαfI(X)] , where X4 = T and Dα = ∂

∂Xα .

Substituting this in equation (24) and keeping only first order terms we obtain

ξαDαgµν + 2D(νξ
αgµ)α +Gµν(X) = 0 (27)

where

gµν(X) = gµν(X, fI(X)) and Gµν(X) =
∑
I

ΦI

(
∂gµν
∂fI

)
(X,fI(X))

We have as many functions ΦI as fI and they can be also arranged in the skewsymmetric matrix

F̂αβ as

F̂ij = εijkα̂
k(T ) , F̂i4 = −F̂4i = b̂i(T ) (28)

Page 12 of 29AUTHOR SUBMITTED MANUSCRIPT - CQG-103579.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ExtendedPrinciple6 v0.tex 13

in much the same way as we did for the fI in the matrix (25).

Equation (27) can also be written as the generalized Killing equation

∇µξν +∇νξµ +Gµν = 0 , (29)

where ∇ is the Levi-Civita connexion for gµν and ξµ = gµνξ
ν .

Notice that the infinitesimal transformation (26) acts on Xα and also on the functions Ω̂αβ ; hence

the arena to represent their action is not Minkowski spacetime but rather the larger (infinite di-

mensional) manifold

M =
{(

~X, T, Ω̂αβ(t)
)
∈ R4 × C0

(
R,R6

)
, such that

∣∣∣1 + ~X · ~a(T )
∣∣∣ > ∣∣∣ ~X × ~ω(T )

∣∣∣}
(the inequality is to ensure that the metric (10) is non-degenerate). The infinitesimal generator

then looks like:

ξαDα +

∫
R

dt F̂αβ(t)
δ

δΩ̂αβ(t)
(30)

where ξα depends on Xj , T and Ω̂µν(t).

The need of the additional information contained in the six functions Ω̂αβ(t) comes from the

fact that the coordinates ( ~X, T ) are not enough to determine an event in spacetime unless we

further indicate the family of GFW observers to which these coordinates belong. To fix Ω̂αβ(t)

means choosing a subclass of GFW coordinate systems, that corresponding to GFW observers with

the same intrinsic spacetime angular velocity. Each one is characterized by the initial values of

the tetrad, eµ(α(0), and the initial point in the origin worldline, zµ(0), (the tetrad eµ(α(τ) and the

worldline zµ(τ) are then obtained as in the proof of Proposition 1 in section 3). By the way, it is

the same kind and number of parameters as for Poincaré group, although they are not Lorentzian

observers because Ω̂αβ(t) 6= 0.

The 4-dimensional submanifold MΩ̂ =
{(

~X, T, Ω̂αβ(t)
)
∈M

}
for a given Ω̂αβ(t) corresponds to

the part of Minkowski spacetime which is accessible to the GFW observers of the class determined

by this intrinsic spacetime angular velocity.

From a physical viewpoint it is worth to remark here that the magnitudes Ω̂αβ are measurable by the

GFW observer by means of accelerometers ( âj = Ω̂4j ) and gyrometers ( Ω̂jk ) along the observer’s
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spatial axes. As their measures do not need resorting to anything external, these magnitudes are

“absolute”, hence there is no sense in referring to them as “relative acceleration” or “relative angular

velocity” although one might be tempted to.

From the interval expression (10) we have that

gij = δij , g4i = εijkX
jω̂k , g44 =

(
~X × ~ω

)2
−
(

1 + ~X · ~a
)2

(31)

and, as it follows from (27),

Gij = 0 , G4i = εijkX
jα̂k ,

1

2
G44 = −

(
1 + ~X · ~a

)
~X ·~b+

(
~X × ~ω

)
·
(
~X × ~α

)
(32)

Using this and after a little algebra, the generalized Killing equation splits in several blocks as

space: D(iξj) = 0 (33)

cross: −
(

1 + ~X · ~a
)2
Diξ

4 +D4ξi + εjlkX
lω̂kDiξj − ξjεjikω̂

k + εilkX
lα̂k = 0 (34)

time: −
(

1 + ~X · ~a
)
D4

[(
1 + ~X · ~a

)
ξ4
]

+ εjlkX
lω̂kD4ξj+

1

2
Djg44

(
ξj − ξ4εjlkX

lω̂k
)

+
1

2
G44 = 0 (35)

The general solution to the space block is

~ξ = ~f(T ) + ~X × ~g(T ) , where ~ξ = (ξ1, ξ2, ξ3) , (36)

which, substituted in the cross equation yields

−
(

1 + ~X · ~a
)2
Diξ

4 + φ̇i + εilkX
lγk = 0 , (37)

where a “dot” means derivative with respect to T , and

~φ = ~̇f + ~f × ω , ~γ = ~̇g + ~g × ~ω + ~α

Equation (37) giving all spatial derivatives of ξ4, it carries some integrability conditions which after

some algebra reduce to:

~̇g + ~g × ~ω + ~α− ~φ× ~a = 0 (38)
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In such a case, the general solution of equation (37) is

ξ4 = h(T ) +
~X · ~φ

1 + ~a · ~X
(39)

If we now substitute equations (36) and (39) in the time block (35), we obtain

−
(

1 + ~X · ~a
) [

ḣ+ ~a · ~f + ~X ·
(
~̇φ+ ḣ~a+ h~̇a+ h~a× ~ω + ~φ× ~ω + ~g × ~a+~b

)]
= 0 (40)

where (31) and (32) have been included. Putting ~ψ = ~φ+ h~a , this amounts to

ḣ+ ~a · ~f = 0 (41)

~̇ψ + ~ψ × ω + ~g × ~a+~b = 0 , with ~ψ = ~̇f + ~f × ω + h~a (42)

Together with (38), these equations constitute an ordinary differential system on the functions h,

~f and ~g that occur in the expressions (36) and (39) for ξi and ξ4. The solution is obtained in

Appendix A in terms of 4-dimensional variables, namely the 4-vector fα(T ) =
(
~f, h

)
and the

skewsymmetric tensor Mαβ(T ) formed with, respectively, ~ψ and ~g as the electric and magnetic

parts. The solutions (67) and (68) depend on ten constant parameters, fµ0 and M0
αβ , plus six

arbitrary one-variable functions, F̂αβ(t) .

Introducing then these solutions in the expressions (36) and (39), we have that the infinitesimal

generator (30) can be written as[
fµ(T ) +Mµ

j(T )Xj
]
D̂µ +

∫
R

dt F̂αβ(t)
δ

δΩ̂αβ(t)
(43)

where

D̂i = Di and D̂4 =
1

1 + ~X · ~a(T )

(
D4 − εijkXjω̂k(T )Di

)
(44)

i. e. D̂µ are a sort of orthonormalized partial derivatives.

4.1 Infinitesimal generators and commutation relations

Substituting now equation (69) in Appendix A into (43) and factoring out the ten constant param-

eters, fµ0 and M0
αβ , and the six arbitrary functions F̂αβ(t), we can write the general infinitesimal

generator as

fµ0 Pµ +
1

2
Mαβ

0 Jαβ +
1

2

∫
R

dt F̂αβ(t)Aαβ
(t) (45)
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where Mαβ
0 = M0

µνη
αµηβν and

Pµ = Λ ν
µ (T ) D̂ν , Jαβ = −2 k[α(T, ~X)Pβ] (46)

Aαβ
(t) =

δ

δΩ̂αβ(t)
− 2χ(t, T ) Λµ[α(t) ∆β] (T, t, ~X)Pµ (47)

with χ(t, τ) = θ(t)θ(τ − t)− θ(−t)θ(t− τ) and

kβ(T, ~X) = Λβj(T )Xj +

∫ T

0
dt′ Λβ4(t′) (48)

∆ν
(
T, t, ~X

)
= kβ(T, ~X) Λβν(t)−

∫ t

0
dt′G ν

4 (t′, t) (49)

as given by equations (70) and (71). (The matrices Λ ν
µ (T ) and G µ

ν (T, t) are also defined in

Appendix A.)

In order to better understand how these infinitesimal generators act on the manifoldM, we should

think of it as sliced in the 4-dimensional submanifolds MΩ̂ , each one characterized by a definite

choice of the six functions Ω̂αβ(t). Any of these submanifolds is coordinated by ( ~X, T ) and endowed

with the metric (10) and corresponds to the part of Minkowski spacetime that is accessible to the

class of GFW observers defined by the given Ω̂αβ(t). The generators Pµ and Jαβ act on —are

tangent to— each slice and span the realization of Poincaré algebra for that particular class of

GFW observers. On their turn, the generators Aαβ
t are transversal to the slicing and are connected

with changes in the intrinsic proper acceleration and angular velocity of the observer.

Although the derivation of the Lie brackets between pairs of infinitesimal generators is tedious and

intricated, it presents no conceptual subtlety and we shall not derive them explicitely here. An

outline of their derivation is postponed to Appendix C. The commutation relations are:

[Pµ,Pν ] = 0 , [Jαβ,Pµ] = 2 ηµ[αPβ] , [Jαβ,Jµν ] = 2 ηµ[αJβ]ν − 2 ην[αJβ]µ[
Aαβ

(t) ,Pµ

]
= 0 ,

[
Aαβ

(t) ,Jαβ

]
= 0 ,

[
Aαβ

(t) ,A
κλ
(t′)

]
= 0

 (50)

Thus, the algebra of the infinitesimal transformations connecting generalized Fermi-Walker coordi-

nate systems is an abelian extension of Poincaré algebra.
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4.2 A particular case: uniform proper acceleration without rotation

We shall now restrain to the subclass of FW systems of coordinates such that âi =constant and

ω̂i = 0. The angular velocity matrix in body axes Ω̂µ
ν then looks very simple and the invariant

interval is

ds2 = −
(

1 + ~a · ~X
)2

dt2 + d ~X2 , ~a = constant

To derive the infinitesimal transformations connecting two of these coordinate systems we must

solve the generalized Killing equation (29) with all the Gµν but one vanishing

G44 = −2
(

1 + ~a · ~X
)
~b · ~X

The infinitesimal generator (43) is in this case[
fµ(T ) +Mµ

j(T )Xj
]
D̂µ + âi

∂

∂âi

(The functional derivative in (43) has become a partial derivative because, on restricting to âi =constant,

the space on which the generator acts, namely

MA ⊂
{(

~X, T,~a
)
∈ R7 , such that 1 + ~X · ~a(T ) > 0

}
is finite dimensional.

The generalized Killing equations (33) to (35) reduce to

D(iξj) = 0 , −
(

1 + ~X · ~a
)2
Diξ

4 +D4ξi = 0

and

−
(

1 + ~X · ~a
)
D4

[(
1 + ~X · ~a

)
ξ4
]

+
1

2
Djg44 ξj +

1

2
G44 = 0

The solution is given in Appendix B and the infinitesimal generator depends on thirteen constant

parameters

fµ0 Pµ +
1

2
Mαβ

0 Jαβ + b̂iA
i
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where

Pi =

(
δji +

cosh aT − 1

a2
âiâ

j

)
Dj −

sinh aT

a
(

1 + ~a · ~X
) âiDT (51)

P4 =
cosh aT(

1 + ~a · ~X
) DT −

sinh aT

a
âj Dj (52)

Jαβ = −2k[αPβ] , with (53)

ki = Xi +
cosh aT − 1

a2

(
1 + ~a · ~X

)
âi , k4 = −sinh aT

a

(
1 + ~a · ~X

)
(54)

and

Ai =
∂

∂âi
+

cosh aT − 1

a2

[
−
(

1 + ~a · ~X
)
δij +Xiâj

]
Dj + (55)sinh aT − aT

a3
âi −Xi sinh aT

a
(

1 + ~a · ~X
)
 DT (56)

where the results in Appendix B have been included. The commutation relations are similar to

those given by (50) for the general case.

It is worth to consider now the limit c → ∞, to compare with the extensions of Galilei algebra to

include acceleration [8]. To obtain this limit we must first replace aT and ~a · ~X with aT/c and

~a · ~X/c2 and also add the necessary cn factors in formulae (51) to (56) to make them dimensionally

consistent.

Defining then H = cP4 and Ki = cJ4i and taking the limit c→∞, we obtain

Pi = Di , H = DT − T âjDj , Ki = T Pi , (57)

Ji = εijl

(
Xj +

T 2

2
âj
)
Dl , Ai =

∂

∂âi
− T 2

2
Pi (58)

and the only non-vanishing commutation relations are

[H,Ki] = Pi , [Ji,Pj ] = −εijlPl , [Ji,Jj ] = −εijlJl , [Ji,Kj ] = −εijlKl ,

as it corresponds to an Abelian extension of Galilei algebra and consistently with (50).
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Notice that these differ from the commutation relations obtained by Lukierski et al. [8], where the

generators of the exended algebra are:

P∗i = Di , H∗ = DT , J∗i = εijlX
jDl , K∗i = T Di , A∗i = T 2Di

and one of the commutation relations is different, namely
[
J∗i ,A

∗
j

]
= −εijlA∗l .

One possible reason for this disagreement is that the setting of FW coordinates assigns a crucial

role to simultaneity with respect to the inertial reference system instantaneously comoving with

the origin; whence the term −T âjDj in the generator of time translations, whereas in Lukierski’s

work simultaneity is absolute. Furthermore, in the present approach the realization of Poincaré

group acts on the space MA, coordinated by (Xj , T, âl), whence the occurrence of ∂/∂âi in the

acceleration boosts (58). The proper acceleration âl of the origin of coordinates is absolute, as

discussed in section 4, and if the acceleration does not vanish, the simultaneity hyperplanes are not

parallel to each other and a term −T âjDj occurs in the time translation generator.

5 Conclusion

We have introduced a class of reference frames with arbitrary translational and rotational motion,

namely generalized Fermi-Walker frames. Each one is determined by the worldline of its spatial

origin and a triad of spatial comoving axes with an arbitrary rotational motion.

Each GFW system of coordinates, (T,X1, X2, X3) is characterized by six functions of proper time,

âi(τ) and ω̂l(τ), respectively the components of the [proper] acceleration of the origin and the

angular velocity of the spatial triad with respect to the comoving axes. These quantities, which

are better handled as the skewsymmetric matrix Ω̂αβ(τ) —see equation (25)— are measurable from

inside the frame, i. e. without referring to anything external, by means of accelerometers and

gyrometers.

The transformations connecting the coordinates of any pair of frames in the GFW class preserve

the form (7) of the spacetime interval, maybe with different functions Ω̂αβ(τ). Thus we refer to

these transformations as generalized isometries. Infinitesimal generalized isometries satisfy the gen-

eralized Killing equation (37), whose solution is an infinite dimensional Lie algebra that contains
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Poincaré algebra and acceleration boosts plus rotational motions as well. A close look at the commu-

tation relations reveals that it is an Abelian extension of Poincaré algebra. From the mathematical

standpoint, the resulting structure, namely the direct sum of Poincaré algebra and an infinite di-

mensional abelian algebra, is rather trivial and dull. However it is somewhat surprising because,

just as velocity boosts J4j do not commute with each other nor with rotations Jij or translations

Pµ, one would expect something similar for acceleration boosts and angular velocity generators, i.

e. Aαβ
t , but the effective calculation leads to the “counterintuitive” relations (50).

Perhaps this unexpected commutativity is caused by the fact that the parametrization Ω̂αβ(t) we

have chosen for the extension of Poincaré algebra is somewhat intrinsic. Indeed, Ω̂4i(t) and Ω̂jk(t)

are, respectively, the components of proper acceleration and angular velocity in the triad of body

axes, which are carried by the GFW observer, without reference to anything external.

We have particularly considered the case of reference systems with uniform proper acceleration

without rotation because they have some historical interest, they are indeed the accelerated reference

systems introduced by Einstein in his pioneer paper [1], as it has been proved elsewhere [17].

Moreover, we have taken the non-relativistic limit, c→∞, and have compared it with the extension

of Galilei algebra obtained by Lukierski et al.[8] in a Newtonian framework. As a result, both

extensions are different because both the generators and their commutation relations are. In our

view, this is due to a condition which is crucial in our approach: at any moment there exists an

inertial system which is instantaneously at rest with an accelerated non-rotating systems of ours.

The influence of this, relativistic in origin, condition persists in the generators H, Ji and Aj even

after taking the limit c→∞ .

It is also remarkable that the notion of generalized isometry [29] permits to go beyond Kretschmann’s

idea that, since special relativity admits the widest isometry group, it contains the largest relativity

postulate. Our approach here has led to an intermediate group, namely the group of generalized

isometries of the interval (7), which is larger than Poincaré group but much smaller than the

whole diffeomorfism group. On the other hand, this intermediate group can be seen as the special

relativistic counterpart of the Galilei group extensions considered elsewhere [7],[8],[9].
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Appendix A: Solving the generalized Killing equation

We here solve equations (38), (41) and (42), that we first arrange as

~̇f + h~a+ ~f × ~ω = ~ψ

ḣ+ ~f · ~a = 0


~̇ψ + ~ψ × ~ω + ~g × ~a = − ~A

~̇g − ~ψ × ~a+ ~g × ~ω = −~α

 (59)

If we put fα =
(
~f, h

)
and ψα =

(
~ψ, 0

)
, the first pair of equations can be written as

ḟα + Ω̂α
βf

β = ψα (60)

where Ω̂α
β is the matrix (17).

Consider now the Lorentz matrix Λµα(T ) = eµ(α)(T ) which is a solution of equation (18) with the

unit matrix as initial data

Λ̇µα = ΛµβΩ̂β
α , Λµα(0) = δµα (61)

Including that Ω̂ β
ν = −Ω̂β

ν , we have that the inverse matrix, Λ α
µ = ηµνΛνβη

βα , is a solution of

Λ̇ α
µ + Ω̂α

β Λ β
µ = 0

Hence, Cν Λ α
ν (T ) , with Cν constant, is a solution of the homogeneous part of equation (60). The

complete equation can be solved by the method of variation of constants and we so obtain

fα(T ) = fν0 Λ α
ν (T ) +

∫ T

0
dtGαν(T, t)ψν(t) (62)

where

Gµρ(τ, t) = Λ µ
ν (τ) Λνρ(t) = G µ

ρ (t, τ) (63)
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acts as a kind of matrix Green function and

∂TG
α
ν(T, t) = Ω̂ α

λ (T )Gλν(T, t) (64)

This solves the first pair of equations (59) provided that ~ψ(T ) is known.

It is worth noticing that, except in the case of one-directional motion, the matrices Λ µ
ν (T ) , T ∈ R

are not in general a one-parameter subgroup of Lorentz group; however the matrices Gαν(T, t) do

have the group property:

Gαν(T, t)Gνλ(t, t′) = Gαλ(T, t′) (65)

and also

Gαν(T, t) = G α
ν (t, T ) and Gαν(t, t) = δαν

To solve the second pair of equations we first organize the unknowns ~g and ~ψ as a skewsymmetric

matrix Mαβ , with

Mij = εijkg
k , Mi4 = −M4i = ψi

and also

Fij = εijkω̂
k , Mi4 = −M4i = Ai

so that equations (59) become

Ṁαβ = Mρβ Ω̂ρ
α +Mαρ Ω̂ρ

β − F̂αβ (66)

whose general solution is

Mαβ(T ) = M0
µν Λµα(T ) Λνβ(T )−

∫ T

0
dt F̂µν(t)G µ

α (T, t)G ν
β (T, t) (67)

where G µ
α is obtained by raising/lowering the indices in the matrix Green function (63) and M0

µν =

M0
νµ are constant.

Finally, as ψν(t) = Mν
4(t) , equation (62) leads to

fα(T ) = fν0 Λ α
ν (T ) +M0

µλ Λµα(T )

∫ T

0
dtΛλ4(t)−

∫ T

0
dt F̂µλ(t)Gαµ(T, t)

∫ T

t
dt′G λ

4 (t′, t) (68)

where (65) has been included.
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These expressions, (67) and (68), are to be substituted into the generator (43) and we obtain

fµ(T ) +Mµ
jX

j = fν0 Λ µ
ν (T ) +M0

αβΛαµ(T )kβ(T, ~X)−
∫ T

0
dt F̂αβ(t)Gµα(T, t) ∆β(T, t, ~X) (69)

where the auxiliary variables

kβ(T, ~X) = Λβj(T )Xj +

∫ T

0
dtΛβ4(t) (70)

∆β
(
T, t, ~X

)
= Λ β

ν (t)

[
kν(T, ~X)−

∫ t

0
dt′ Λν4(t′)

]
(71)

have been introduced.

Appendix B: Non-rotating uniformly accelerated systems

We here particularize the results in Appendix A to the subclass of FW coordinates with uniform

acceleration (without rotation). In the body axes the angular 4-velocity matrix Ω̂µ
α is

Ω̂i
4 = Ω̂4

i = âi , Ω̂i
j = 0 , i, j = 1 . . . 3

It can be easily checked that the general solution to equation (61) is

Λµν(t) =
cosh(at)− 1

a2
Hµ

ν +
sinh(at)

a
Ω̂µ
ν + δµν (72)

where a2 = ~a · ~a and Hµ
ν = Ω̂µ

αΩ̂α
ν .

In this particular case the matrices Λµν(t) are a 1-parameter subgroup of Lorentz group and the

Green functions (64) are:

Gµν(τ, t) = Λµν(t− τ) = Λ µ
ν (τ − t)

Including this, equations (70), (71) and (69) become

kβ(T, ~X) = Λβj(T )Xj +
sinh(aT )

a
δβ4 +

cosh(aT )− 1

a2
Ω̂β

4 (73)

∆β
(
T, t, ~X

)
= kβ(T − t, ~X) (74)
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and

fµ(T ) +Mµ
jX

j = fν0 Λ µ
ν (T ) +M0

αβΛαµ(T )kβ(T, ~X)− 2Ai

∫ T

0
dtΛ[iµ(t)k4](t, ~X)

or, including (72) and (73) and after some algebra,

fµ(T ) +Mµ
jX

j = fν0 Λ µ
ν (T ) +M0

αβΛαµ(T )kβ(T, ~X) + âµ(~b · ~X)
cosh aT − 1

a2
(75)

+δµ4

[
sinh aT − aT

a3
(~b · ~a)

(
1 + ~a · ~X

)
− sinh aT

a
(~b · ~X)

]
−Aµ cosh aT − 1

a2
(1 + ~a · ~X)

Appendix C: Commutation relations

Here we outline the main traits in the derivation of the commutation relations (50).

From (44) we have that the only non-vanishing Lie brackets among D̂µ’s are[
D̂i, D̂4

]
=

1

1 + ~X · ~a(T )
Ω̂ σ
i (T ) D̂σ (76)

wich, combined with

D̂4Λ β
ν (T ) =

1

1 + ~X · ~a(T )
Λ ρ
ν (T )Ω̂ β

ρ (T )

readily leads to

[Pµ,Pν ] = 0 (77)

Now, from (48) we easily obtain that

Pµkβ = ηµβ (78)

which, combined with the second equation (46) and (77), immediately yields

[Jαβ,Pµ] = 2 ηµ[αPβ] , [Jαβ,Jµν ] = 2 ηµ[αJβ]ν − 2 ην[αJβ]µ

That is, the infinitesimal generators Pµ and Jαβ span Poincaré algebra.

To derive the commutators of these with the generators Aαβ
t , we shall use that

D4χ(t, T ) = δ(T − t) and Pµ∆β(T, t, ~X) = Λ β
µ (t) (79)
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Moreover, form (61) we have that

D4

(
δΛ ν

µ (T )

δΩ̂αβ(t)

)
=
δΛ ρ

µ (T )

δΩ̂αβ(t)
Ω̂ ν
ρ (T ) + 2 δ(T − t) Λ [α

µ (t) ηβ]ν

which can be integrated to obtain:

δΛ ν
µ (T )

δΩ̂αβ(t)
= 2χ(t, T ) Λ [α

µ (t)Gβ]ν(t, T ) (80)

We also need that [
D̂4,

δ

δΩ̂αβ(t)

]
=

2

1 + ~X · ~a(T )
δ(T − t)Xj δ

[β
j η

α]ρD̂ρ (81)

Then, combining equations (79) to (81) we easily arrive at[
Pµ,A

αβ
t

]
= 0 (82)

and, including (46) and the fact that

δkµ(T, ~X)

δΩ̂αβ(t)
= 2χ(t, T ) Λ [α

µ (t) ∆β](T, t, ~X) , (83)

we readily obtain that Aαβ
t kµ = 0 which, combined with (46) and (82) yields[

Jµν ,A
αβ
t

]
= 0 (84)

Finally, to calculate the commutators between pairs of generators of the kind Aαβ
t , we realise that,

from (47) and (83),

Aµν
t =

δ

δΩ̂µν(t)
− δkρ(T, ~X)

δΩ̂αβ(t)
Pρ (85)

and therefore[
Aµν
t ,Aαβ

t′

]
=

(
− δ2kσ(T, ~X)

δΩ̂µν(t) δΩ̂αβ(t′)
+

δ2kσ(T, ~X)

δΩ̂αβ(t′) δΩ̂µν(t)

)
Pσ

−δk
σ(T, ~X)

δΩ̂αβ(t′)

[
δ

δΩ̂µν(t)
,Pσ

]
+
δkσ(T, ~X)

δΩ̂µν(t)

[
δ

δΩ̂αβ(t′)
,Pσ

]

+

[
δkσ(T, ~X)

δΩ̂µν(t)
Pσ,

δkρ(T, ~X)

δΩ̂αβ(t′)
Pρ

]
(86)
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Now, as cross partial derivatives are equal, the first term in the right hand side vanishes. Further-

more, as Pσ and Aαβ
t′ commute, we have that[

δ

δΩ̂αβ(t′)
,Pσ

]
= −Pσ

(
δkρ(T, ~X)

δΩ̂αβ(t′)

)
Pρ

which, substituted in (86) yields [
Aµν
t ,Aαβ

t′

]
= 0

Appendix D: The group of transformations

As the domain of any particular GFW system is not in general the whole Minkowski spacetime,

the group of transformations connecting these systems is rather of local nature and some attention

must be paid to the domains of such transformation maps.

A given GFW system K is characterized by
(
zµ(τ), eν(i)(τ)

)
, i. e. the origin worldline and the

triad of spatial axes; it has also associated an angular 4-velocity Ω̂αβ in body axes [see eq. (17)].

To obtain the K-coordinates Xν = (Xj , T ) of an event xµ the relation (8)(
T, X l

)
−→ xµ = zµ(T ) +X leµ(l)(T ) ,

must be inverted. Generally an explicit inversion is not possible but, according to the inverse

function theorem, it can be done whenever the Jacobian does not vanish. The latter can be easily

derived from the metric (10) and it is

det

(
∂xν

∂Xµ

)
= 1 + ~X · ~a(T )

For those values X l such that the worldline zµ(T ) +X leµ(l)(T ) is timelike, that is[
1 + ~X · ~a(T )

]2
>
(
~X × ~ω

)2
,

where the metric (10) has been included, the Jacobian does not vanish and (17) can be inverted.

Consider then the open set

VK =
{

(Xj , T ) ∈ R4
∣∣∣ 1 + ~X · ~a(T ) >

∣∣∣ ~X × ~ω∣∣∣}
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and the map

ϕK : VK −→ DK

Xν −→ zµ(T ) +X leµ(l)(T )


where the range DK has been chosen so that ϕK is exhaustive and it corresponds to the “wedge”

in Minkowski spacetime that is accessible to the GFW system K. The “sizes” of VK and DK depend

on Ω̂αβ and not on the origin or the initial orientation of the GFW transported tetrad.

As the Jacobian of this map is positive in the whole domain VK , it has an inverse ψK : DK −→ VK

and Xν = ψK(xµ) are the K-coordinates of the event xµ and

Let K and K′ two GFW systems. The K′-coordinates of an event xµ ∈ DK′ are

X ′ν = ψK′(xµ) ∈ VK′

and, if xµ ∈ DK, then xµ = ϕK(Xν) , where Xν ∈ VK are the K-coordinates of xµ.

Thus, if xµ ∈ DK ∩ DK′ , then X ′ν = ψK′ (ϕK(Xµ)) = ΦKK′(Xµ) , where we have written

ΦKK′ = ψK′ ◦ ϕK (87)

The domain of this product map is Xµ ∈ ψK (DK ∩ DK′) = VK ∩ ψK (DK′) = VKK′ whereas its

range is X ′ν ∈ ψK′ (DK ∩ DK′) = ψK′ (DK) ∩ VK′ = VK′K .

It is obvious that VKK′ is an open subset of VK .

The transformation connecting K-coordinates and K′-coordinates is the map

ΦKK′ : VKK′ −→ VK′K

which by construction is bijective.

It follows straightforward that the class of all these maps is a group which extends Poincaré group.

Indeed, as commented in section 2, inertial systems are a particular instance of GFW systems ,

when Ω̂αβ = 0 and therefore the origin worldline is straight and the tetrad is constant. If K is such

a system, as âi = ω̂j = 0 , there is no restriction either on the coordinates domain or wedge and

VK = DK = R4 . If K and K′ are two inertial systems it is thus obvious that ΦKK′ is the Poincaré

transformation connecting both systems.
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