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The heterogeneity of computationally predicted reaction fluxes in metabolic

networks within a single flux state can be exploited to detect their significant

flux backbone. Here, we disclose the backbone of Escherichia coli, and com-

pare it with the backbones of other bacteria. We find that, in general, the

core of the backbones is mainly composed of reactions in energy metabolism

corresponding to ancient pathways. In E. coli, the synthesis of nucleotides

and the metabolism of lipids form smaller cores which rely critically on

energy metabolism. Moreover, the consideration of different media leads to

the identification of pathways sensitive to environmental changes. The meta-

bolic backbone of an organism is thus useful to trace simultaneously both its

evolution and adaptation fingerprints.

Keywords: disparity filter; flux balance analysis; metabolic backbones;

metabolic networks

High-quality genome-scale metabolic reconstructions

are composed of thousands of reactions and metabolites

[1–4]. Due to their complexity, the analysis of these

metabolic reconstructions requires computational

approaches, like constraint-based optimization tech-

niques [5,6], and methodological frameworks, like com-

plex network science [7,8], to elucidate features of their

functional organization and pathway structure. Some of

the tools used with this purpose are Elementary Flux

Modes [9], Extreme Pathways [10], Minimal Metabolic

Behaviors [11], and Minimal Pathway Structures [12],

which are based on finding feasible subnetworks to

relate them with definite functions. A different approach

in this endeavor is provided by the concept of backbone.

Backbones maintain significant information while dis-

playing a substantially decreased number of intercon-

nections and, hence, can provide accurate but reduced

versions of the whole system. In this direction, the work

by Almaas et al. [13] introduced a filtering technique

that selects the reactions dominating the production and

consumption of each metabolite and connects two

metabolites if the reaction producing one of them with

the highest flux happens to be the reaction consuming

the other with the highest flux, which defines a high-flux

backbone. This method is able to segregate classical

pathways, but the selected high-flux subgraphs present a
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linear structure with very little interconnectivity and so

they necessarily lack the characteristic complex features

of real metabolic networks [14–16].
Filtering approaches have also interested researchers

working on networks in a more general context. A fil-

tering method for weighted networks based on the dis-

parity measure [17,18] was developed in Ref. [19]. This

approach exploits the heterogeneity present in the

intensity of interactions (weights) in real networks,

both at the global and local levels [20], to extract the

dominant set of connections for each element. Typi-

cally, the obtained disparity backbones preserve almost

all nodes in the initial network and a large fraction of

the total weight, while reducing considerably the num-

ber of links that pass the filter. At the same time, dis-

parity backbones preserve the heterogeneity of the

degree distribution, the level of clustering, and the

bow-tie structure [21], and other complex features of

the original networks [19].

In this work, we use Flux Balance Analysis (FBA) [5]

maximizing the biomass production rate to determine

reaction fluxes in the metabolic network of

Escherichia coli (E. coli) iJO1366 [4] and other microor-

ganisms for comparison. Afterwards, we use the dispar-

ity filter [19] to extract its Significant Flux Backbone

(SFB) as a one-mode projection in the space of metabo-

lites. In contrast to the filtered linear structures from

Ref. [13], SFBs obtained using the disparity filter con-

serve not only high-flux reactions but also many low-

flux reactions—provided that they are significant for

the production or consumption of a certain metabolite

—, such that the complexity of the original networks is

preserved in the backbone. We investigate the obtained

SFB in glucose minimal medium for fingerprints of evo-

lution and environmental adaptation finding that its

central core is mainly composed of evolutionary con-

served reactions in energy metabolism whose fluxes still

retain at present a key role in the evolved organisms.

This feature is also observed in the central core reac-

tions of the SFB of other bacteria. In E. coli, the analy-

sis of the SFB reveals that the synthesis of nucleotides

and the metabolism of lipids form smaller cores which

rely critically on energy metabolism, but not conversely.

We also study how the structure of the SFBs in E. coli

depends on the composition of the medium, which

allows us to identify pathways that are more sensitive to

environmental changes and nutrient availability. This

leads us to define a Super Significant Flux Backbone

(SSFB) by merging the SFBs for the different environ-

ments. Finally, we find that the SFB contains most of

the highest fluxes in the metabolic network and that the

SSFB is enriched with genes in a core proteome of

metabolism and gene expression across conditions.

Materials and methods

We use FBA to compute the fluxes of the reactions in a

metabolic network which maximize the biomass production

rate of the organism. These fluxes are treated as weights by

the disparity filter. The large-scale connectivity structure of

the obtained SFB is analyzed in terms of connected compo-

nents and additional media are considered to analyze the

environmental sensitivity of the backbone composition.

Finally, the composition of the SFB of E. coli is compared

with that of the high-flux backbone defined in [13] and with

the core proteome given in [22].

Flux Balance Analysis

Flux Balance Analysis [5] is a technique which allows to com-

pute metabolic fluxes without the need of kinetic parameters,

just by using constrained-optimization. Flux Balance Analysis

proceeds by writing the stoichiometric matrix S of the whole

network and multiplying it by the vector of fluxes m. This stoi-
chiometric matrix contains the stoichiometric coefficients of

each metabolite in each reaction of the network. This product

is then equal to the vector of the time variation of the concen-

trations _c ¼ S � m. Steady-state is assumed, thus S � m ¼ 0.

Since, in general, metabolic networks contain more reactions

than metabolites, we have an underdetermined system of

equations. Hence, a biological objective function must be

defined in order to have a biologically meaningful solution. In

this work, the chosen objective function is the biomass yield

of the organism, which means that FBA finds the solution

that optimizes the biomass production rate of the organism,

which is equivalent to maximize biomass formation. Rev-

ersibility of reactions is also added in order to constrain the

solutions. Since we have a linear system of equations with lin-

ear constraints, Linear Programming is used in order to com-

pute a flux solution in a small amount of time (of the order of

1 s), which implies a computationally cheap method.

We implement FBA using the GNU Linear Programming

Kit (GLPK). FBA calculations are performed on four bacte-

ria—E. coli iJO1366 [4], Helicobacter pylori (H. pylori)

iIT341 [23], Staphylococcus aureus (S. aureus) iSB619 [24],

and Mycoplasma pneumoniae (M. pneumoniae) iJW145 [25]

(we also provide results for Mycobacterium tuberculosis

(M. tuberculosis) iNJ661 [26], Saccharomyces cerevisiae

(S. cerevisiae) iND750 [27], and Methanosarcina barkeri

(M. barkeri) iAF692 [1] in Supporting Information). The

models (see Table S1 for number of metabolites and reactions

in the genome-scale reconstructions of the organisms) include

the biomass reaction, auxiliary reactions such as exchange or

sink reactions, and all cellular compartments which are taken

into account. We represent these metabolic networks as bipar-

tite graphs with two kinds of nodes, metabolites, and reac-

tions, and with links containing directionality, which leads to

incoming, outgoing, and bidirectional links. For E. coli, FBA

calculations are performed in a glucose minimal medium with
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a maximum uptake of glucose limited to

10 mmol�gDW�1�h�1 [4], whereas for M. pneumoniae, FBA

computations are carried in a defined medium with a maxi-

mum glucose uptake of 7.37 mmol�gDW�1�h�1 and a supply

of D-ribose to simulate the availability of ribosylated bases

[25]. For H. pylori, we used the minimal medium provided in

Ref. [23] needed by iIT341 to fulfill the biomass requirement.

In the case of S. aureus, the calculation are performed in a

glucose minimal medium [24].

Disparity filter on metabolic networks

The disparity filter [19] takes advantage of the local hetero-

geneity present in the fluxes of reactions associated with a

given metabolite. The filter is able to retain those fluxes

which are significant, meaning that their value is unexpect-

edly high. Notice that, since we work with directed meta-

bolic networks, we have three kinds of links: incoming,

outgoing and bidirectional links. In the filtering procedure,

we treat incoming and outgoing connections separately,

and so bidirectional links are disassociated into incoming

and outgoing links. The filtering method starts by normal-

izing the kini fluxes minij associated with the reactions which

produce a certain metabolite i, pinij ¼ minijP
j¼1;kin

i

min
ij

, and the kouti

fluxes moutij associated with the reactions which consume

metabolite i, poutij ¼ moutijP
j¼1;kout

i

mout
ij

. The key point is that a few

incoming links carry a significant value of pinij and a few

outgoing links carry a significant value of poutij . We charac-

terize the disparity in the local distribution of incoming and

outgoing fluxes around i with the disparity measures [17,18]

!iðkini Þ � kini

X

j

ðpinij Þ2

!iðkouti Þ � kouti

X

j

ðpoutij Þ2:

Under perfect homogeneity, when all the incoming links

share the same amount of the total flux of reactions pro-

ducing metabolite i, !iðkini Þ ¼ 1 independently of kini ,

whereas for perfect heterogeneity, when one of the links

carries all the flux, !iðkini Þ ¼ kini . The same is for !iðkouti Þ.
Usually, an intermediate behavior is observed in real sys-

tems.

To assess the relevance of the fluxes of reactions associ-

ated with a given metabolite, a null hypothesis is used

which provides the expectation of the disparity measure

when their total flux is distributed at random according to

a uniform distribution. The filter then proceeds by identify-

ing which fluxes must be preserved. To do this, we compute

the probability aij that a normalized flux pij is noncompati-

ble with the null hypothesis. This probability is a P-value

which is compared with a significance level a, and thus

links that carry fluxes with a probability aij\a can be con-

sidered nonconsistent with the null model and so significant

for the metabolite. The null model is applied separately to

producing and consuming reactions and the probabilities

aij for incoming and outgoing connections are computed

with the expressions (see Ref. [19]).

ainij ¼ ð1� pinij Þk
in
i �1

aoutij ¼ ð1� poutij Þkouti �1:

Once the significant fluxes have been selected, we con-

struct the significant flux backbone by placing a directed

link between two metabolites if there is a reaction whose

flux is simultaneously significant for the consumption of

one metabolite and for the production of the other, see

Fig. 1 for an illustration of the filtering process. The filter

cannot decide on nodes with just one connection. Accord-

ing to our maximization-of-nodes-minimization-of-links

principle, we use the prescription to preserve the reaction

associated with metabolites with only one incoming or out-

going connection.

M1

M
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M4M3
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R2

R4R3

M1

M

M2

M4M3

R1
R2a

R4R3

R2b
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M

M2

M4M3

R1
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R4R3
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M2

M4M3

Filtering OMP

Fig. 1. Disparity filter. Gray circles correspond to metabolites and green squares denote reactions. Incoming connections to metabolites are

represented by red arrows, outgoing connections with blue arrows, and bidirectional connections with dark yellow arrows. The width of the

arrows is proportional to the value of the fluxes, i.e., the larger the flux, the wider the arrow. After the Filtering step, only links with an

unexpectedly high flux remain in the filtered bipartite subnetwork. OMP denotes One-Mode Projection and the links in the final SFB appear

in grey.
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Connected components

A connected component of an undirected network is a sub-

set of the network in which any two nodes are connected

by at least one path. Nodes in a connected component do

not share connections with nodes belonging to a different

connected component [8].

Directedness in network connections introduces a rich

substructure in the connected components. Inside the con-

nected component of a directed network, the so-called

bow-tie structure emerges [21]. Bow-tie structures are

formed by a strongly connected component (SCC), IN and

OUT components, tubes, and tendrils. A SCC is a subset

of the connected component where any node is reachable

from any other by a directed path. The IN component con-

tains nodes that can access the SCC but not vice versa. The

OUT component is formed by nodes that can be reached

from the SCC but that cannot return there. A tube is a

sequence of nodes that connect the IN and the OUT com-

ponent without going through the SCC. Tendrils are com-

posed by nodes that have no access to the SCC and are not

reachable from it.

Construction of environments in Escherichia coli

Luria-Bertani broth

We consider a rich medium called Luria–Bertani Broth.

This nutritionally rich medium contains the set of com-

pounds defining the minimal medium [4], i.e., a set of min-

erals salts and four metabolites representing carbon,

nitrogen, phosphorus, and sulfur sources, in addition to the

following compounds: amino acids, purines and pyrimidi-

nes, biotin, pyridoxine, thiamin, and the nucleotide nicoti-

namide mononucleotide (see Ref. [28] for specific details).

Minimal media

We use the different minimal media defined in Ref. [4].

More precisely, these media contain a set of minerals

salts and four extra metabolites representing carbon,

nitrogen, phosphorus, and sulfur sources [4]. To deter-

mine FBA solutions in different media we change the

carbon source while we fix the sources of nitrogen, phos-

phorus and sulfur to the standard metabolites in each

class, which are ammonia, phosphate, and sulfate, respec-

tively. In this way, each carbon source determines a dif-

ferent minimal medium. In the same way, other minimal

media are constructed using the same procedure of

changing the nitrogen, phosphorus, or sulfur source while

keeping the standard metabolite unchanged for the rest

of categories; note that, in these cases, the standard car-

bon source is fixed to glucose. Five hundred and fifty-five

media can be constructed using this procedure, 333 of

them allowing growth in silico.

Results

An important feature of the flux solutions obtained

using FBA is that they capture the heterogeneity of

the flux distribution within a single flux state [13]. The

probability distribution function of the obtained FBA

fluxes, insets in Fig. 2 Top, is characterized by a broad

scale distribution of values. We disregarded zero-flux

reactions, such that the set of active reactions and

metabolites is markedly reduced as compared to their

number when all reactions in the genome-scale recon-

struction are considered, see Table S1.

Identification of the Significant Flux Backbone

(SFB) of the metabolic networks

Besides the broad diversity of FBA fluxes at the global

scale of the network, heterogeneity is also present at

the local level in the fluxes of reactions associated with

the production and consumption of a given metabolite.

We calculate the disparity measure for every metabolite

i participating in k producing or consuming reactions

[13,19] as !iðkÞ ¼ k
Pk

j¼1 p
2
ij, where pij is the flux of

reaction j normalized by the total flux of reactions con-

suming or producing metabolite i, pij ¼ mij=
Pk

j¼1 mij,
(see Materials and methods). We treat separately pro-

ducing and consuming reactions. Figure 2 Top displays

the disparity values for all metabolites as a function of

their number of producing and consuming reactions

(incoming and outgoing degree) in E. coli, S. aureus,

H. pylori, and M. pneumoniae (see Fig. S1 in Support-

ing Information for more organisms). The shadowed

areas correspond to disparity values compatible with

the null hypothesis that the total flux of incoming or

outgoing reactions of a metabolite is uniformly dis-

tributed at random among them. The null hypothesis

helps to discount local heterogeneities produced by ran-

dom fluctuations (see caption of Fig. 2). As shown,

most metabolites in the different organisms present dis-

parity values that cannot be explained by the null

hypothesis, meaning that the local distribution of the

fluxes of reactions associated with metabolites is signifi-

cantly heterogeneous. We conclude then that the dis-

parity filter will be able to efficiently extract the

backbone with the most significant connections for the

organisms, while preserving the characteristic features

of metabolism as a complex network. Notice that sig-

nificant fluxes are those with values much above the

average expectation given by the null hypothesis and

that, in absolute terms, they can be high or low (see

Materials and methods).

The disparity filter preserves a reaction in the back-

bone if the probability aij that its normalized flux pij is
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compatible with the null hypothesis (P-value) is smal-

ler than a chosen significance threshold a, which deter-

mines the filtering intensity. For each metabolite i, we

compute the P-value aij for each producing and con-

suming reaction j and compare the obtained P-value

with the significance level a. In this way, all the reac-

tion with fluxes which are significant for the produc-

tion or consumption of a metabolite can be selected,

in contrast to the approach in [13] where only a single

most significant flux was selected so that the obtained

subgraphs presented an obvious linear structure. The

disparity filter can be adjusted by tuning the critical

threshold to observe how the metabolic networks of

the bacteria are reduced as we decrease a from 1 to 0,

a ¼ 1 meaning the complete genome-scale reconstruc-

tion. Notice that, after applying the filter with a speci-

fic value of a, we obtain a bipartite representation of

the metabolic backbone. To avoid working with stoi-

chiometrically nonbalanced reactions, we transform

the filtered bipartite representation into a one-mode

projection of metabolites obtained by placing a direc-

ted link between two metabolites if there is a reaction

whose flux is simultaneously significant for the

consumption of one metabolite and for the production

of the other [19] (see Fig. 1).

Next, we compute the links E, metabolites N and

total flux W remaining in the one-mode filtered net-

works as a function of the significance level a. These
magnitudes are normalized by dividing them by the

corresponding values in the original network, ET, NT,

and WT. In Fig. 2 Bottom, we show N=NT vs E=ET,

and W=WT vs E=ET in the insets, for the one-mode

projections of the filtered networks for the four bacte-

ria (see Fig. S1 in Supporting Information for more

organisms). While the filter can reduce considerably

the fraction of links, the corresponding fraction of

metabolites is maintained at almost the original value.

The number of nodes and the total flux in the back-

bone only starts to drop appreciably after more than

50% of the links are removed. We take the critical

value ac as the point where the fraction of metabolites

starts to decay. This critical value can be seen as an

optimal point which greatly reduces the number of

links in the network preserving, at the same time, most

nodes and therefore much biochemical and structural

information as possible. The values for the four
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bacteria are reported in Table S1 of Supporting Infor-

mation. Notice that lowest value of ac corresponds to

H. pylori, due to a stronger heterogeneity in the local

distribution of fluxes, which allows to reduce further

the fraction of links while preserving all the nodes.

The backbone of a metabolic network corresponds to

the filtered one-mode projection graph using the criti-

cal value ac as the P-value threshold. The backbone

unveils the pivotal pathways of fluxes in metabolism

and at the same time preserves the connectivity struc-

ture, the heterogeneity of the degree distribution, and

the high level of clustering typical of complex net-

works.

Large-scale structure and pathway composition

of the SFBs

We filter the metabolic networks of E. coli, S. aureus,

H. pylori, and M. pneumoniae, taking into account

only active reactions in glucose minimal medium and

using the identified critical values ac for the signifi-

cance level. The bipartite subnetwork filtered in each

organism retains almost all active reactions in the

FBA solution, more than 90% in all bacteria, and by

definition all metabolites in active reactions, see

Table S1 in Supporting Information. Each filtered sub-

network stands as a bipartite representation with stoi-

chiometrically nonbalanced reactions. To produce the

corresponding SFB, we generate for each of them a

one-mode projection of metabolites placing a directed

link between two metabolites if there is a reaction con-

necting them in the subnetwork obtained with the dis-

parity filter. In the one-mode projection, we remove

metabolites without any connection. The SFB of

E. coli includes, for instance, 436 metabolites linked by

328 reactions as compared to the 445 metabolites

linked by 404 reactions in the bipartite subnetwork

before the one-mode projection. For the four bacteria,

almost all metabolites in active reactions and a very

large fraction of active reactions are preserved in the

SFB of each organism, see Table S1 in Supporting

Information for the specific values.

Next, we analyze in more detail the structure of the

resulting SFBs in terms of connectedness. Metabolic

networks have been found to display typical large-scale

connectivity patterns of directed complex networks,

characterized by a bow-tie structure [21] (see Materials

and methods), with most reactions in a interconnected

core, named the strongly connected component (SCC),

together with in (IN) and out (OUT) components

formed mainly by nodes directly connected to the SCC

component [14,29]. This is the case also for the gen-

ome-scale reconstructions of the bacteria analyzed in

this work, whose SCCs contain the largest part of

metabolites and whose IN and OUT components are

formed, respectively, by nutrients and waste metabo-

lites. Metabolites in the SFB of E. coli are arranged in

a large connected component of 178 metabolites and

41 disconnected small components. Three different

SCCs can be identified in the largest connected compo-

nent of the SFB, each one with 25%, 10%, and 6% of

the metabolites (see Fig. 3 Top). The two smallest

SCCs are in the OUT component of the largest SCC.

Central compounds of metabolism are identified in

these SCCs: protons, water, adenosine triphosphate

(ATP), L-glutamate, phosphate, nicotinamide adenine

dinucleotide (NAD+), diphosphate, adenosine diphos-

phate (ADP) and flavin adenine dinucleotide (FAD+).

These metabolites are highly connected even in the

backbone, highlighting the ability of the disparity filter

to preserve the same structural features of the com-

plete metabolic network while in a reduced version.

However, a comparison of the hubs in the backbone

with the hubs in the nonfiltered metabolic network, i.

e., considering a ¼ 1, shows some deviations. The

most important difference happens for L-glutamate. It

occupies the 4th position in the ranking of the most

connected metabolites, whereas it is located in the 12th

position in the nonfiltered network. Besides, the frac-

tion of reactions producing L-glutamate in relation to

the total number of reactions in which this metabolite

participates is 0.27 in the backbone vs 0.65 in the non-

filtered network. Regarding other metabolites, which

in this case cannot be considered as a hub due to its

smaller degree, we find that FAD+ ranks 12th in the

backbone, while its position for the nonfiltered case is

22nd. Recall that the number of metabolites in the

backbone and in the nonfiltered network is the same.

Another interesting case concerns the metabolite glu-

cose 6-phosphate. It contains no outgoing connections

in the backbone, whereas its outgoing degree in the

nonfiltered network is four.

Since links in the metabolic backbone denote reac-

tions, it is interesting to assess the composition of the

backbone of E. coli in terms of pathways. First, we

start by computing the percentages of pathway partici-

pation in the nonfiltered metabolic network disregard-

ing zero-flux reactions. The five pathways with more

reactions are Cofactor and Prosthetic Group Biosynth-

esis (24%), Membrane Lipid Metabolism (7%),

Exchange (6%), Cell Envelope Biosynthesis (5%), and

Purine and Pyrimidine Biosynthesis (5%). The same

analysis in the SFB gives a different composition, with

pathways such as Oxidative Phosphorylation and the

Citric Acid Cycle gaining weight, as shown in Fig. 3

Bottom and Table S3 in Supporting Information. This
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is in fact due to the pathway participation in the lar-

gest SCC, where the major contribution comes from

these two pathways along with Glycolysis/Gluconeo-

genesis and Pentose Phosphate Pathway. It has been

found that Glycolysis (G) and Pentose Phosphate

Pathway can take place without the need of enzymes

[30]. Concerning the Citric Acid Cycle, it is an ancient

pathway that has evolved in order to achieve maxi-

mum ATP efficiency [31] by being coupled to Oxida-

tive Phosphorylation and Glycolysis. In addition, this

coupling helps the organism to decrease their quantity

of reactive oxygen species by modulation of their par-

ticipating metabolites [32], conforming in this way one

of the central pillars of carbon metabolism and energy

production. Another pathway significantly present in

the largest SCC is Glutamate Metabolism. Glutamate

has been reported to be one of the oldest amino acids

used in the earliest stages of life [33]. The second lar-

gest SCC contains links that belong mainly to Mem-

brane Lipid Metabolism (97%) and Cofactor and

Prosthetic Group Biosynthesis (3%). Membrane Lipid

Metabolism supplies the necessary lipids to generate

the cell membrane needing the participation of the

cofactor FAD+/FADH2. It has been shown that the

pathways involved in lipid metabolism exhibit differ-

ences between different lineages in organisms [34],

Amino Acid Metabolism
Carbohydrate Metabolism
Nucleotide Metabolism
Energy Production and Conversion
Lipid Metabolism
Cofactor and Prosthetic Group Metabolism
Transport, Outer Membrane
Transport, Inner Membrane
Cell wall/Membrane/Envelope Metabolism
Inorganic Ion Transport and Metabolism
Others

Links

IN
OUT
Central SCC
SCC in OUT

Connected components

25aics

3hhcoa

3hocoa
5caiz

5drib

accoa

adp

ala-L
asp-L

atp

btcoa
co2[e]

coa

cyst-L

fad

fpram

gar

glc-D[e]

gln-L

glu-L

gly

gtp

h2o
h2o[e]

h

imp

met-L
mththf

nad

nadh nadp

nh4[e]

o2[e]

oc2coa

occoa

pi

pi[e]

ppi

pyr

q8 ser-L
so4[e]

thf

thmpp

ump

utp

val-L

0

25

50

75

100

%
 r

ea
ct

io
ns

SCC
SFB
FBA

E. coli S. aureus H. pylori M. pneumoniae

OP CAC
GG

PPP
GM

Others G PM NM
AAM LM

Others

Others
ATPS

GSAMGRC
CAC PM

FAS
PPB NM

Others

OP  Oxidative Phosphorylation
CAC  Citric Acid Cycle
GG  Glycolysis/Gluconeogenesis
PPP  Pentose Phosphate Pathway
GM  Glutamente Metabolism

G  Glycolysis
PM Pyruvate Metabolism
NM  Nucleotide Metabolism
AAM  Amino Acid Metabolism
LM  Lipid Metabolism

CAC  Citric Acid Cycle
PM Pyruvate Metabolism
FAS Fatty Acid Synthesis
PPB  Purine and Pirimidine Bios.
NM  Nitrogen Metabolism

RC  Respiratory Chain
G  Glycolysis
AM  Alanine Metabolism
GS  Glycerolipid Synthesis
ATPS  ATP de novo Synthesis

E. coli

Fig. 3. Structure of the largest connected component in the SFB of Escherichia coli and pathway composition for different bacteria. Top.

Largest connected component in the metabolic backbone of E. coli. The colors of the metabolites depend on the component each node

belongs to. The color of the links, and its association given in the legend, depends on the functional categories given in Ref. [4], where each

category contains pathways that realize similar tasks. Bottom. Percentage of links in pathways for the largest SCC in the SFB, for the SFB

as a whole, and for the nonfiltered metabolic network disregarding zero-flux reactions (numerical values are given in Supporting Information,

Tables S3–S6). Notice that the list of acronyms under each graph applies only to the corresponding organism.
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whereas pathways related to central metabolism are

more conserved [34]. Finally, pathways related to the

smallest SCC are Purine and Pyrimidine Biosynthesis

(91%). Purines and pyrimidines make ribonucleotides

deoxyribonucleotides, which serve as activated precur-

sors of RNA and DNA, etc. [35,36]. It has been found

that the synthesis of purines and pyrimidines was the

first pathway involving enzyme-based metabolism [37].

Interestingly, the other contribution to this SCC is

Glycine and Serine Metabolism. Glycine is a precursor

of purines and pyrimidines.

When considering a values smaller than the critical

one, implying that the filter is more restrictive, we

observe that the smallest SCCs disappear from the

more stringent sub-backbone. More precisely, it hap-

pens for a value of a ¼ 0:19. Decreasing even more the

significance level to a ¼ 0:15, the second largest SCC

containing reactions in the Purine and Pyrimidine Bio-

synthesis pathway still retains 30% of the nodes in the

backbone, whereas the largest SCC still contains a

86%. At a value of a ¼ 0:14, the second SCC finally

disappears and the sub-backbone only remains a single

SCC, still preserving 82% of the nodes in the back-

bone. Hence, the SCC containing links belonging to

pathways related to energy metabolism shows a large

resistance to get fragmented, even though the filter

becomes progressively more and more restrictive,

which points to increased levels of local flux hetero-

geneities and to flux dependencies for the consumption

and production of metabolites.

We performed the same analysis in the SFBs of

S. aureus, H. pylori, and M. pneumoniae, see Table S2

in Supporting Information for a summary statistics of

connected components, and Fig. 3 Bottom and Tables

S4–S6 in Supporting Information for pathway compo-

sition values. See also Fig. S2 in Supporting Informa-

tion for a display of the structure of the largest

connected component in M. pneumoniae. In all cases,

the composition of the nonfiltered metabolic networks

(disregarding zero-flux reactions) is consistent with the

composition of the corresponding SFBs, as in E. coli.

Another common feature is that the main SCC of the

largest connected component is enriched in links

related with energy metabolism. The dominant path-

ways in the SCCs are again the Citric Acid Cycle, Gly-

colysis and Pyruvate Metabolism and Respiratory

Chain. As mentioned above, the CAC is used by aero-

bic organisms to release stored energy through oxida-

tion processes and its central role in metabolism

postulates it as one of the earliest components. Both

Glycolysis and Pyruvate Metabolism are pathways

that were even present in the earliest stages of life [38],

when no oxygen was present in the early atmosphere.

The SFB of Escherichia coli encodes potential

adaptation capabilities

In the previous section, we analyzed the pathway com-

position of the significant flux backbone of E. coli in

glucose minimal medium and found that pathways in

the central core are related to energy metabolism. The

analysis of the backbone also revealed that the synthe-

sis of nucleotides and the metabolism of lipids form

smaller cores which rely critically on energy metabo-

lism; but not conversely. In this section, we study how

changes in the environment modify the SFB of E. coli

in relation to the one obtained in glucose minimal

medium, which exposes potential adaptation capabili-

ties.

First, we calculate the FBA fluxes that maximize the

biomass production rate of E. coli in the rich medium

Luria–Bertani (LB) Broth [28,39] (see Materials and

methods). Afterwards, we apply the disparity filter to

extract the SFB in this new environment, that is

obtained for a significance critical threshold ac ¼ 0:4.

This value is noticeably larger than ac ¼ 0:21 identified

for the glucose minimal medium. Interestingly, this rich

medium activates 400 reactions, 11 less than in glucose

minimal medium. Of them, 279 are active in both

media, of which 247 have a larger flux in LB Broth. An

analysis of the connected components in the metabolic

backbone of E. coli in rich medium is also performed.

We find that it contains a large connected component

with 188 metabolites and 60 small disconnected compo-

nents. The connected component contains also three

SCCs. However, two of them are tiny with only two

metabolites, whereas the largest one encloses 34% of

the metabolites in the connected component. Interest-

ingly, the pathway contributing more reactions to this

large SCC is Membrane Lipid Metabolism (see

Fig. 4A). This fact is in accordance with Ref. [40],

where the authors found that the expression of the

genes which synthesize fatty acids was generally ele-

vated in rich medium. Another important difference is

the relative loss of prominence of Oxidative Phosphory-

lation and the Pentose Phosphate Pathway. This might

seem surprising since the Pentose Phosphate Pathway is

typically the main source of nicotinamide adenine dinu-

cleotide phosphate (NADPH). However, in rich med-

ium the functionally significant production of this

metabolite takes place in the Citric Acid Cycle pathway

[41]. This also evidences the importance of the Citric

Acid Cycle to produce NADPH, and so its importance

in the synthesis of membrane lipids. Nevertheless, links

associated with both Oxidative Phosphorylation and

Pentose Phosphate Pathway are also present in the

backbone, located outside the SCCs.

1444 FEBS Letters 591 (2017) 1437–1451 ª 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Detecting the Escherichia coli backbone O. G€uell et al.



Next, we consider the set of minimal media given

in Ref. [4] (see Materials and methods) where differ-

ent carbon, nitrogen, phosphorus, and sulfur sources

are alternated. For each minimal medium, we scan

for ac. In Fig. 4B,C we plot, respectively, the proba-

bility distribution function of the collection of ac val-

ues and of the fraction of links remaining in the

metabolic backbone for all media. We find that these

magnitudes present a characteristic value, meaning

that the flux structure is very similar across media in

spite of the difference in the composition of nutrients.

The presence of these characteristic value of ac and

the stability of the retained fraction of links in the

SFB in the different media motivated us to combine

all of them into a single merged metabolic backbone,

obtaining a network which we call SSFB. The links

in this SSFB correspond to reactions that passed the

filter in any of the external media considered, and are

annotated with a weight that corresponds to the

number of media in which the corresponding meta-

bolic backbone contains the link. The histogram of

the distribution of these weights is shown in Fig. 4D,

characterized by a clear bimodal behavior. One peak

corresponds to links being common to all media, and

the other corresponds to the most common situation

of links specific to a few media.

An analysis of connectedness shows that the SSFB

contains a large connected component and 11 discon-

nected components. The connected component with

1090 metabolites is composed by a large SCC con-

taining 43% of its metabolites, in addition to three

small SCCs containing only two nodes each. A path-

way composition analysis in the large SCC indicates

that, again, we obtain significantly different results

from the glucose minimal medium (see Fig. 3 Bottom

and Fig. 4A). The most prominent pathway is Alter-

nate Carbon Metabolism, in agreement with Ref.

[42], where the authors found that Alternate Carbon

Metabolism is related to genes whose expression

depends on external stimuli, particularly on alteration

of carbon sources. It is also in agreement with results

in Ref. [43], where the authors hypothesized that

Alternate Carbon Metabolism can adapt to different

nutritional environments, and also with results in

Ref. [16], where Alternate Carbon Metabolism is

found to be an important intermediate pathway in

the network of pathways. The second most abundant

pathway corresponds to Transport, Inner Membrane,

which again is in agreement with Ref. [42] and Ref.

[16]. This pathway is in charge of the transport of

metabolites between periplasm and cytosol. Finally, if

we retain links present at least in 25% of the mini-

mal media, the network fragments into 40 compo-

nents with the largest one containing five SCCs,

which indicates that links with small weight, i.e. links

specific for a few media, have an important role in

order to prevent the fragmentation of the superback-

bone.

A B

C D
Fig. 4. Dependence of the SFB of

Escherichia coli with the composition of

the environment. (A) Histogram of the

fraction of links belonging to each pathway

(x axis) for the largest SCC of the

backbone in the 333 minimal media (blue)

and in the rich medium (sky blue). (B)

Probability distribution function of ac for all

minimal media. (C) Probability distribution

function of the fraction of links in the

SFBs for all minimal media. (D) Histogram

of relative frequency of weights of links in

the SSFB, where the weight of the links

counts the number of media in which the

corresponding SFB contains the link.
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Consistency of the SFB of Escherichia coli

We compared our SFB definition against two very dif-

ferent approaches which also use genome-scale models

to identify the reactions or genes which dominate the

functioning of metabolism.

The high-flux backbone of a metabolic network is a

one-mode projection in the space of metabolites of a

metabolic network for which the reaction fluxes are

known. Typically, fluxes are computed using FBA and

two metabolites are connected if the reaction produc-

ing one of them with the highest flux happens to be

the reaction consuming the other with the highest flux

[13]. The resulting backbones present a linear structure

with very little interconnectivity and so they necessar-

ily lack the characteristic complex features of real

metabolic networks. Nevertheless, high-flux backbone

contains information about the reaction that domi-

nates the production or consumption of each metabo-

lite in active reactions and, given the local

heterogeneity in the distribution of the fluxes consum-

ing or producing metabolites, it is mostly contained in

the SFB. We calculated the high-flux backbone of

E. coli in glucose minimal medium and found that it is

formed of 362 metabolites connected by 237 reactions

mediating 390 links, of which 355 metabolites (98%),

225 reactions (95%) and 297 links (76%) are also in

the SFB. However, we observe that the SFB is not

merely a parsimonious relaxation of the high-flux

backbone. The SFB includes not only most of the

highest fluxes but also other significant (maybe small)

fluxes and related metabolites (18% of its metabolites,

69% of its reactions, and 45% of its links are exclusive

to it), which leads to a greater chance of more metabo-

lites being connected than in the high-flux backbone

but still using a reduced set of connecting links.

A different approach defined the model-based core

proteome of iOL1554-ME, a metabolism-expression

model for E. coli, as the minimal set of genes that are

consistently used across a large number of environ-

mental conditions [22]. This core proteome is based on

a genome-scale model that accounts for metabolism

and gene expression under the 333 different environ-

ments used in the previous subsection and described in

Methods. Genes in the core proteome are those

expressed for optimal growth across all simulation

conditions and it is defined to be a list of 356 genes,

many of them with enzymatic function. We compared

the core proteome with the list of genes associated

with reactions in the SSFB of E. coli iJO1366. The

number of genes associated with reactions in the meta-

bolic network of E. coli iJO1366 is 1366 and 198 of

them overlap with the core proteome. Of the common

set, 164 (83%) are contained in the SSFB, 19% of the

842 different genes associated with reactions in the

SSFB. We obtain similar percentages if we take the

most conservative criterium of only considering the

genes or protein complexes of reactions in the SSFB

without alternative isoenzymes. In this case, we find

that the metabolic network has 974 associated genes

and 165 overlap with the core proteome, of which 131

(79%) are present in the SSFB, 23% of the 568 differ-

ent genes associated with reactions in the SSFB. In

conclusion, we found that the SSFB is enriched with

genes of the metabolic network in the core proteome.

Discussion

Identifying high-flux routes in metabolic networks has

been useful in order to, for example, propose principal

chains of metabolic transformations [13,44,45]. In this

work, we go beyond the identification of high-flux

routes with metabolic pathways. Using FBA maxi-

mization of the biomass production rate in a certain

environment and a filtering tool which needs no a pri-

ori assumptions for the connectivity of the filtered net-

work, we are able to extract a significant flux

backbone as a reduced version of the metabolic net-

work. The SFB is globally connected and retains the

characteristic complex features of the metabolic net-

work as a whole. It contains not only high-flux reac-

tions but also many low-flux reactions which are

significant for the production or consumption of a cer-

tain metabolite. These reactions can be both intra- and

interpathway. As an explanation for the strong depen-

dence between both types in the SFB, one could say

that the overall performance depends critically on

cross interactions. This fact reinforces the idea that

pathways are not isolated identities functioning inde-

pendently of one another [16].

As stated in Ref. [46], properties that originate from

evolutionary pressure should not be observed in ran-

dom networks. In our investigations, the effect of evo-

lutionary pressure is understood to favor the

maximization of the biomass yield of the organism

[47–49], in accordance to FBA and its assumptions. It

is important to note that the assumed objective func-

tion used to compute FBA can have a direct effect on

the diversity of fluxes in the metabolic network and so

in the proportions of pathways in the filtered back-

bone and its cores. The analysis of the significant flux

backbone of E. coli, S. aureus, H. pylori, and M. pneu-

moniae in glucose minimal medium shows that, for the

four organisms, the SCCs are mainly composed by

reactions that belong to ancient pathways that were

already present at the first stages of life. A very
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different composition is obtained when considering the

backbone as a whole (see Fig. 3 Bottom) and even

more when comparing with the nonfiltered metabolic

network. In the SFB of E. coli, each of the three SCC

has a different and definite metabolic function. The

largest SCC contains pathways related to energy meta-

bolism and its composition is dominated by the Citric

Acid Cycle, Oxidative Phosphorylation, and Glucoly-

sis/Gluconegenesis, in accordance with the fact that

the Citric Acid Cycle has evolved toward an optimal

chemical design [31] by coupling to Oxidative Phospory-

lation and Glycolysis [50]. A second SCCs corresponds

to the metabolism of lipids, the most important con-

stituents that compose the cell membrane. The smaller

SCC is responsible for the synthesis of purines and

pyrimidines, vital for DNA / RNA synthesis. Two find-

ings relating the two small SCCs deserve also special

attention. Firstly, the two small SCCs are located in the

OUT component of the large SCC. Secondly, as the fil-

ter becomes more restrictive, the small SCCs fragment,

while the large SCC still maintains a large part of links

and nodes. These features could be explained in terms

of functional requirements. On the one side, the smaller

cores need chemical energy to perform their tasks and,

on the other side, they need also basic building blocks.

These needs are covered by the large SCC, which sug-

gests that the smaller SCCs were added to the OUT

component of the largest SCC in later steps of evolu-

tion. In contrast, a simpler organism like M. pneumo-

niae has no other relevant SCCs apart from energy

metabolism, as a result of its parasitism, which has led

to the loss of many metabolic functions [25]. More pre-

cisely, in M. pneumoniae the Citric Acid Cycle and Oxi-

dative Phosphorylation do not take place [25,51],

meaning that it must rely on organic acid fermentation

to obtain energy. Moreover, changes in the growth rate

greatly affect the fluxes through Glycolysis and Pyru-

vate Metabolism [25].

An analysis of the connectivity of the hubs reveals

that L-glutamate acquires in the backbone a functional

relevance as a reactant, which emphasizes its impor-

tance as the amino group donor for nearly all nitro-

gen-containing metabolites of the cell, in contrast to

its role in the nonfiltered network, where it could be

classified rather as a product since in minimal medium

it must be synthesized. The case of glucose 6-phos-

phate is also very interesting in the sense that it pre-

sents no outgoing connections in the backbone. Hence,

we conclude that, in glucose minimal medium, no

route consuming this metabolite can be considered

more significant than another. However, it is known

that this metabolite has many metabolic fates. There-

fore, glucose 6-phosphate is a functional precursor of

important metabolites but there is no preference and it

is equally important for the production of any of

them. At the same time, it is critically produced by

others, as confirmed by its presence in the OUT com-

ponent of the backbone, a fact which magnifies its cru-

cial role in metabolism.

The study of the dependence on the environment of

the E. coli SFB allows us to identify potential adapta-

tion capabilities. Regarding rich medium, we observe

that the critical value of a is substantially different

than the one in glucose minimal medium, suggesting

that this enriched medium modifies significantly the

flux structure compared to the glucose minimal med-

ium. The bacterium in rich medium displays less active

reactions than in glucose minimal medium since, in

minimal medium, many reactions must be active in

order to synthesize biosynthetic precursors that in the

rich medium can be obtained from the environment, in

agreement with Ref. [40]. Membrane lipid metabolism

achieves a high relevance, being the most abundant

pathway in the largest core of the rich medium meta-

bolic backbone. This may happen because the prolifer-

ation response of E. coli to the rich medium increases

lipid biosynthesis, since lipids are not present as nutri-

ents even in rich media due to its water insolubility. In

contrast, biosynthesis of other components, especially

amino acids, is obviously reduced. To satisfy the high

lipid demand to generate new cells [40], fast-growing

cells must synthesize membrane lipid components more

rapidly. This leads to an overexpression of the genes

related to membrane lipids which, in terms of metabo-

lism, is observed in terms of a high relevancy of the

Membrane Lipid Metabolism pathway. Another fea-

ture that we find is the loss of prominence of the Pen-

tose Phosphate Pathway. Although this may suggest to

a deficiency of the metabolite NADPH, we find that,

in the rich medium backbone, the functionally signifi-

cant production of this metabolite takes place in the

Citric Acid Cycle pathway [41]. This evidences the

importance of Citric Acid Cycle to produce NADPH,

which is tightly related to the synthesis of membrane

lipids. An alternative explanation for the increase of

the appearance of the Citric Acid Cycle in the back-

bone is that more metabolites need to be catabolized

in rich medium, and the Citric Acid Cycle is the pri-

mary site for catabolism of many nonsugar substrates

through anaplerotic reactions.

The analysis of the adaptation of E. coli to 333

different minimal media shows that the fraction of

links in the significant flux backbone is practically

independent on the composition of the nutrients pre-

sent in these environments (see Fig. 4C). This permits

the construction of a super significant flux backbone
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that comprises all the links in the SFB in each differ-

ent media and in which each contributing SFB has

uniform representation in fraction of links. This leads

to the identification of pathways whose associated

reactions are potentially more sensitive to changes in

the environment, unveiling Alternate Carbon Metabo-

lism as the pathway with more capabilities to

respond to external stimuli, in accordance with exist-

ing works [42,43]. This finding could also be seen as

a successful positive control for the methodology

applied here. Interestingly, the SSFB is enriched with

genes of the metabolic network in a core proteome,

defined as the minimal set of genes that are consis-

tently used across environmental conditions on the

basis of a genome-scale model that accounts for

metabolism and gene expression [22], even if our

methodology is only based on gene-scale metabolic

information and does not require the processing of

gene expression data.

Finally, our computational approach presents some

limitations. The connectivity structure and pathway

composition of the backbones may in principle depend

both on the ability of FBA to predict correctly the flux

distribution of real bacteria in certain conditions and

on the FBA optimal flux solution considered. On the

one hand, in E. coli FBA has predicted the uptake and

release rates of certain metabolites, cell growth rate

under different environmental conditions, and gene

essentiality with great success [52–54]. On the other

hand, FBA flux vector solutions are not unique in a

given condition and it is known that there are a large

number of possible flux distributions which maximize

the biomass production rate. Nevertheless, the linear

high-flux subgraph of the metabolic network of E. coli

iJR904 obtained by applying the method in [13] shows

small variation across alternate optima in minimal

medium, with only a 3–11% of variability [55]. The

fact that the high-flux backbone is conserved across

optima and it is mostly contained in the SFB, and the

preservation by the filtering method of almost all

nodes in the unfiltered network, reinforce the hypothe-

sis that the backbone of E. coli iJO1366 is mostly con-

served in alternate optima, both in terms of

constituents and in terms of patterns of connection.

Conclusion

The use of filtering methods usually implies a drastic

reduction of the complexity of metabolic maps, which

weakens the validity of potentially inferred conclu-

sions. In contrast, the application of the disparity fil-

ter, based on a flux significance analysis to produce

significant flux backbones, enables to reduce the

system while maintaining all significant interactions

according to ac and so it becomes a useful tool to

unveil sound biological information. Notice that these

reduced versions must be seen as a map of the most

significant connections, even though other metabolic

reactions must be present to achieve viability and to

satisfy the physico-chemical laws governing metabolic

networks depending on nutritional conditions and

other stresses applied to the cell. Our investigations in

different bacteria revealed SFBs mainly composed of a

core of reactions belonging to ancient pathways that

still retain at present a central role in the evolved

metabolism. Besides, in E. coli, the analysis of the core

reveals a dominant direction with the synthesis of puri-

nes and pyrimidines and the metabolism of lipids ensu-

ing after energy metabolism. Our approach can be

potentially useful in biotechnology and biomedicine.

For instance, the SFB highlights the most significant

links connecting metabolites present in the one-mode

projection of a metabolic network, which correspond

to specific reactions with an associated flux responsible

for the significance of the link. Given the relation

between metabolic genes and enzymatic reactions, the

SFB indicates possible gene knockouts that would sig-

nificantly modify the associated fluxes so as to obtain

a desired effect on the production or consumption of

certain metabolite and, at the same time, the SFB

allows to assess possible relevant collateral effects on

the rest of the network. Another potential application

exploiting the capabilities of the SFB is the recognition

of pathways and particular reactions more sensitive to

environmental changes.
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Appendix S3. Global connectivity of backbones.
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Fig. S2. Structure of the largest connected component

in the metabolic backbone of M. pneumoniae.
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Table S4. Pathway composition for S. aureus.
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Table S6. Pathway composition for M. pneumoniae.
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