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Significance Statement  

Nearly 90% of lethal antibiotic-resistant infections in the US are caused by 

Gram-positive pathogens—Staphylococcus aureus accounting for over 

half of them (11,300 deaths/year). Antibiotic resistance is often encoded by 

plasmids and integrative elements that are exchanged freely between 

bacteria through conjugative DNA transfer. During conjugation, a relaxase 

protein binds, nicks, and covalently attaches to the 5’-end of the DNA 

molecule, guiding it to the recipient cell, where it restores its circular closed 

form. We show that relaxase MobM from the promiscuous plasmid pMV158 

uses a hitherto unseen mechanism for DNA nicking/closing that is based 

on the formation of a protein-DNA phosphoramidate adduct. Moreover, our 

analysis reveals that MobM-like histidine relaxases account for 85% of all 

relaxases in S. aureus isolates. 
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Abstract 

Relaxases are metal-dependent nucleases that break and join DNA for the 

initiation and completion of conjugative bacterial gene transfer. 

Conjugation is the main process through which antibiotic resistance 

spreads among bacteria, multidrug-resistant staphylococci and 

streptococci infections being a major threat to human health. The MOBV 

family of relaxases accounts for about 85% of all relaxases found in 

Staphylococcus aureus isolates. Here we present six structures of the 

MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex 

with several origin of transfer DNA fragments. A combined structural, 

biochemical and computational approach reveals that MobM follows a 

previously uncharacterized histidine/metal-dependent DNA processing 

mechanism, which involves the formation of a covalent phosphoramidate 

histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical 

features of the high-energy phosphorus-nitrogen bond shape the dominant 

position of MOBV histidine relaxases among small promiscuous plasmids 

and their preference towards Gram-positive bacteria.  
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Introduction 

Acquisition of exogenous genetic material by bacteria is achieved via conjugative 

DNA transfer of mobile genetic elements, such as plasmids and especially 

Integrative and Conjugative Elements (ICEs), and Integrative and Mobilizable 

Elements (IMEs) (1). Such processes of horizontal gene transfer (HGT) are 

considered a strong driving force in bacterial evolution and in the ability of 

bacteria to colonize different niches (2). In addition to permitting the rapid 

evolution of the bacterial pangenome, HGT is involved in the acquisition of 

genetic traits that may confer selective advantages to the recipient bacteria, 

among them antibiotic resistance (3). This is particularly important when 

resistance genes encoded by mobile elements are explosively spread among 

bacteria in hospitals, posing a serious threat to the public health systems 

(www.cdc.gov/drugresistance/threat-report-2013; 

www.who.int/drugresistance/documents/surveillancereport/en/). Thus, the so-

called mobilome (4) participates in the spread of antibiotic resistance, that is 

expected to cause 10 million casualties per year by 2050 and the consequent 

huge economic burden (http://amr-review.org/sites/default/files/Report-

52.15.pdf). This has aroused a unanimous claim for novel approaches to deal 

with infectious diseases caused by pathogenic bacteria (5).  

A main performer in HGT is a protein termed relaxase, which is a 

topoisomerase-like enzyme that cleaves supercoiled plasmid DNA in a strand 

and sequence-specific manner and ligates it after cell-to-cell transfer. Relaxases 

start DNA transfer by conjugation upon recognition of their target DNA, the origin 

of transfer (oriT), upon which they mediate generation of a hairpin-loop structure 

that leaves the dinucleotide to be cleaved (the nic site) in a single-stranded (ss) 

DNA configuration (Fig. 1B) (6, 7). On the oriT, the relaxase assembles with other 

proteins participating in HGT, namely the coupling protein (CP) and the proteins 

that constitute the Type-IV Secretion System (T4SS). To date, relaxase-mediated 

nucleophilic attack at the nic site has been shown to generate a covalent linkage 

between a tyrosine residue and the 5’-phosphate DNA of the cleaved dinucleotide 

(8). This reaction leaves a free 3’-hydroxyl end that serves as primer for DNA 
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replication by conjugative rolling-circle replication (RCR) (9, 10). The current 

model for conjugation hypothesizes that the covalent phosphotyrosine DNA-

relaxase complex is pumped to the recipient cell by means of the CP and the 

T4SS (11, 12). In the recipient cell, as shown for small mobilizable plasmids that 

replicate by the RCR mechanism, the transferred ssDNA is converted into 

double-stranded (ds) DNA molecules by replication from a lagging strand origin 

(13), followed by a second relaxase-mediated reaction to close the newly 

synthesized strand and supercoiling of the dsDNA by the recipient gyrase (9). 

On the basis of homologies along the first 300 residues, relaxases were 

classified into six families: MOBF, MOBQ, MOBP, MOBV, MOBH, MOBC (14). The 

first four families include ‘classical’ plasmid-encoded conjugative relaxases that 

belong to the superfamily of HUH endonucleases (8, 14). These endonucleases 

are characterized by the presence of the HUH motif (two His residues used for 

metal coordination, separated by a hydrophobic residue) and the Y motif 

containing either one (Y1) or two (Y2) active site Tyr residues which deliver the 

nucleophilic hydroxyl group(s) for endonuclease-recombinase reactions (8). HUH 

endonucleases depend on a single metal ion for the activation of the scissile 

phosphate for DNA cleavage and formation of a transient protein-5’-DNA 

covalent adduct, and finally for the joining of the nicked DNA ends. Crystal 

structures of members of the Y1 and Y2 relaxase families are known; from the 

Y1-MOBQ relaxases: MobA_pR1162 (15) and NES_pLW043 (16), and from the 

Y2-MOBF relaxases: TrwC_pR388 (17, 18), TraI_pF (19), and TraI_pCU1 (20). 

Biochemical and biophysical, but not structural, studies have been 

performed on relaxases encoded by small plasmids, most of them belonging to 

the MOBV family (also termed MOBPre) (14, 21). To date, the best characterized 

relaxase encoded by these plasmids is MobM from the promiscuous plasmid 

pMV158, which has become the prototype for the MOBV1 subfamily of relaxases 

(14, 21). To advance in our knowledge of these proteins, we undertook the 

structural characterization of the relaxase domain of MobM (MobMN199; a 

construct that retains DNA-binding and relaxase activities (7, 22). The different 

crystal structures solved in complex with oriT DNA sequences reveal that, 

unexpectedly, MOBV relaxases use a histidine (H22 of MobM), and not a tyrosine, 
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as catalytic residue. Prompted by this finding, which implies a hitherto 

undescribed metal-dependent mechanism for DNA cleavage, protein-DNA 

adduct formation, and DNA ligation, we dissected the active site mechanism by 

mutating all the residues involved and tested the functional effect. In addition, we 

performed a computational study to describe the catalytic mechanism at the 

atomistic scale. Interestingly, the theoretical calculations show that a conserved 

glutamate (E129 of MobM) serves as: i) a general acid by protonating the 3’ 

oxygen-leaving group in the nicking reaction (while the phosphodiester bond is 

broken by H22), and ii) a general base abstracting a proton from the 3’-hydroxyl 

nucleophilic end in the DNA-joining reaction (phosphoramidate bond breaking). 

Our results unravel a singular catalytic mechanism for the metal ion-dependent 

role of the conserved histidine residue present in all MOBV relaxases, thereby 

stressing the role of these proteins in the spread of the thousands of small mobile 

genetic elements found in many pathogenic Gram-positive bacteria, especially 

streptococci, and staphylococci. 

 

Results 
Abundance and features of relaxases of the MOBV family. An in-depth search 

of the bacterial mobilome (Mob_Pre search in NCBI CDD; 

www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) retrieved more than 5,830 

relaxases of the MOBV family (Fig. S1, Table S1). Most of them belonged to 

Firmicutes phylum (5,765 hits), and the top-listed species were encountered in 

life-threatening bacteria like Staphylococcus aureus (3,432 hits), Streptococcus 

agalactiae (453 hits), Enterococcus faecalis (200 hits), and E. faecium (109 hits). 

Genomic data for some pathogenic bacteria like S. aureus are over-represented 

in the data base, and thus a high number of hits is obtained. However, strikingly, 

MOBV members cover about 85% of all conjugative relaxases reported in the 

NCBI Conserved Domains Database for S. aureus (Table S1). Moreover, when 

comparing the number of MOBV relaxases found in S. aureus (the NCBI CDD 

data) with the number of S. aureus genomes and plasmids available in the NCBI 

Genome resource, it can be appreciated that up to 72% of all sequenced isolates 

of S. aureus contain MOBv relaxases (vs 13% with other types of relaxase and 
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~15% without a relaxase discovered to date, relaxases; Table S2). Similar 

analysis for other bacteria revealed that MOBv relaxases are frequent in the 

genomes of Enterococcus faecium (68%), E. faecalis (45%) and S. agalactiae 

(56%) and very rare in S. pneumoniae (3%) and S. pyogenes (3%). Furthermore, 

a NCBI Nucleotide BLAST search on the sequence of plasmid pMV158 oriT 

(oriTpMV158, 41 nucleotides) revealed over 100 almost identical sequences, found 

mainly in S. aureus genomes (Table S3). This figure could be much higher if we 

consider that MobM can cleave sequences that share ~70% identity with the 

oriTpMV158 (23). With the advent of inexpensive genomic sequencing most MOBV 

relaxases are being found to be encoded in bacterial genomes within various 

integrative elements; however they were traditionally found mainly in RCR 

plasmids, MobM being representative of the entire family (21). Depending on 

homologies at their N-200 residues, these relaxases are grouped into two main 

subfamilies represented by plasmids pMV158 (MOBV1) and pBBR1 (MOBV2) (14). 

A further search for plasmids harboring relaxases of the MOBV1 subfamily 

retrieved a high number of mobile elements ranging from 2.7 to 30 kb; half of 

them encoding antibiotic resistance genes or other virulence traits (21). The 

genetic organization of the mobilization region was similar in all members: i) the 

oriT was located upstream, and close to the mob gene; and ii) the nic site was 

found to be in the same strand as the oriT (21). In the case of the MOBV 

relaxases, the following three conserved motifs, from the N- to C-terminus, were 

described (21): i) motif I, H(N/D)(Q/E)R, of no assigned function; ii) motif II, 

NY(D/E)L, in which the Y residue (Y44 of MobM) was proposed to be the catalytic 

one (24), and iii) motif III, HxDExTPHMH which contains the HUH metal-

coordination signature of all relaxases (8). Curiously, residue Y44 of MobM is not 

conserved in all members of the MOBV family (14). Furthermore, single mutants 

of all seven tyrosine residues of the MobpBBR1 relaxase (a member of the MOBV 

family) do not substantially alter the plasmid mobilization frequencies. This 

observation does therefore not support a ‘classical’ single tyrosine-mediated 

initiation of conjugation of this particular plasmid (25). These findings prompted 

us to tackle the structural features of the MobM relaxase in complex with its target 

DNA. 
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General MobM structure. Six crystal structures of the MobMN199 relaxase 

(residues 2-196; (7) in complex with various DNA oligonucleotides were 

determined to 1.9-3.1Å resolution (Table S4). The experimental phases were 

obtained by the SAD method, using a selenomethonine protein derivative data 

set. The overall structure of MobMN199 shows that it has the relaxase α/β plate 

fold, which is reminiscent of the palm domain of the DNA polymerase Klenow 

fragment (Fig. 1). It consists of a central β sheet formed by 5 anti-parallel β-

strands (with topology β1, β3, β5, β4, β2) that are flanked on each side by a pair 

of α-helices, α1/α2 and α4/α6, respectively. The active site is located on one face 

of the β sheet. The histidine triad (H126 and the HUH motif H133 and H135) that 

coordinates the manganese ion required by the protein (7) is located on strands 

β4 and β5, whereas the catalytic histidine (H22; see below) is located at helix α1 

(Fig. 1). The extended α6-α7 loop and the last α-helix (helix α7) create a thumb 

(Region 5) that wraps around the ssDNA substrate and directs it into the active 

site (Fig. 1 and 2). On the opposite side, the active site is flanked by a β-turn 

located on the α1-310 loop (Region 2) and, from the bottom, by the β4-β5 loop, 

which is partially ordered in a β-turn motif. Finally, the α1 helix (Region 1), which 

includes the catalytic H22, closes the active site from the top. Regarding the 

MobM elements that bind the dsDNA, the α2-β3 loop (Region 3) interacts with 

the minor groove of the DNA hairpin, and the fragment composed of the β6-β7 

hairpin, the α5 helix and the α5-α6 loop (Region 4) interact with major groove. 

Details of these interactions are described in the MobM-DNA interactions section 

below. 

 

DNA structure. The oriTpMV158 is relatively complex, since it contains three 

inverted repeats (IR1, IR2 and IR3) that can generate mutually exclusive DNA 

hairpins (7, 21) (Fig. S3C). The IR3 sequence spans 31 nucleotides upstream of 

the nic site and is formed by extension of the IR1 hairpin (18 nucleotides) by a 3-

base ATA bulge (IR3 right arm) and a 5-bp IR3 base. The formation of the IR1 or 

IR3 hairpin excludes the formation of the IR2 hairpin, the function of which 

remains unknown.  
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The DNA oligonucleotides used for crystallization trials were chosen based 

on previous work that determined the minimal substrate for MobM binding, 

namely the IR3 sequence without the first five nucleotides (7). We crystallized 

two types of DNA substrates mimicking the IR1/IR3 hairpin in complex with MobM 

(Fig. 1C). One type consisted of a continuous 26-base oligonucleotide upstream 

from the nic site which covers a sequence of the IR1 hairpin extended by 8-bases 

of the IR3 right arm (DNA26 oligonucleotide; bases 6-31 of oriTpMV158, herein 

numbered 1-26; Fig. 1C). The second type comprised two annealed 

oligonucleotides of the IR1 left arm and the IR3 right arm, resulting in a DNA 

molecule that lacks the 4-base loop of the IR1/IR3 hairpin (the nic series of 

oligonucleotides; bases 6-12 and 17-32 of oriTpMV158; numbered 1-7 and 12-27). 

The DNA molecules used for protein-DNA complex crystallization either i) 

terminate at the 3’-oxygen before the cleavage site (dna26 and nic0 

oligonucleotides), which mimics the 5’-side DNA cleavage product (and later 

serves as substrate in the DNA re-joining reaction), or ii) include the scissile 

phosphate (nic0+P, nic0+SP and nic0+1 oligonucleotides), which represents the 

cleavage substrate. In both types of MobM-DNA structure the DNA helix of the 

hairpin stem adopts the B-form. However, the sequence includes a small A-tract 

(A14-A16) that differs from the canonical B-DNA (Fig. 2). A-tracts have a 

compressed minor groove, high-propeller twisted A:T base pairs (bps), and 

bifurcated H-bonds at the major groove (26). This conformation is related to the 

DNA recognition at the stem by the β-turn RxD/N motif (see below).  

The IR1 downstream sequence forms an extended single-stranded 

structure with the exception of a Thy23-Gua26 wobble base pair that holds the 

ends of a U-like turn and directs the scissile phosphate into the active site of the 

protein (the Nic series of structures). In the DNA26 structure, bases of the hairpin 

loop of one protein-DNA complex enter the active site of a neighboring complex 

(Fig. S2C) and form non-canonical base pairs with DNA bases of that neighboring 

complex (wobble Thy23-Gua8’ and sheared Gua24-Ade9’ base pairs); this 

configuration displaces the metal ion and the DNA substrate from the active site 

(Fig. S2D). Intriguingly, in both types of MobM-DNA structures the guanine that 

forms the wobble Thy-Gua bp superimposes perfectly (Gua26 in the Nic series 
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of structures, and Gua8’ in the DNA26 structure), thereby suggesting a preferred 

binding site for guanine in this region of the MobM-DNA complex. 

 

MobM-DNA interactions. The specific recognition of oriTpMV158 by MobM is 

achieved through formation of nine protein side chain-nucleobase hydrogen 

bonds between seven protein residues (R7, K10, R71, R74, K149, Q161 and 

H186) and eight DNA bases (Thy4, Ade6, Ade16, Gua17, Ade19, Ade21, Gua22 

and Thy23) (Fig. 2). Interactions with nucleobases also include seven hydrogen 

bonds between the protein backbone (M8, F152, S182, A184 and K187) and four 

bases (Thy20, Ade21, Gua22 and Gua24). The rest of the protein-DNA 

interactions include 14 hydrogen bonds between 11 side chains of MobM and 

seven sugar-phosphate moieties of the DNA backbone, five hydrogen bonds 

between protein and DNA backbones and a number of van der Waals contacts 

(Fig. 2). 

In all the structures solved herein, MobM binds the DNA hairpin through a 

long track of positively charged residues that stack out from the protein surface 

(Fig. S2F). The specific interactions within the hairpin stem region are limited to 

four bases interacting with the conserved R71, R74 and K149 residues (Fig. 2 

and S3A; note that the R71-Ade6 interaction is visible only in the DNA26 

structure, which has the full DNA hairpin - Fig. S3A). In the R71 to R74 stretch, 

which is part of the α2-β3 loop, the protein backbone runs extended along the 

minor groove, with main-chain amide to phosphate backbone interactions. This 

conformation allows the deep penetration of the two arginines in the minor 

groove, which narrows down to 6.8Ǻ (O4’-O4’ distance), sandwiching the R74 

guanidinium moiety between opposite sugars across the groove. The side chain 

of R74 is stabilized inside the minor groove by the side chain of D76, with 

residues 74 to 77 forming a β-turn. This feature (β-turn RxD/N motif) appears to 

be a characteristic DNA binding motif that is crucial for the specific recognition of 

the oriT hairpin stem (see below and Fig. S4).      

Whereas specific recognition of the IR1 hairpin stem is mediated by only 

three residues, (R71, R74 and K149), which contact only a few bases, a different 

situation arises for the ssDNA bases downstream IR1, namely Ade19-Thy20-
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Ade21 of the ATA bulge and Gua22-Thy23-Gua24-Thy25-Gua26 of the right arm 

of the IR3 stem (IR3-R). Two kinks are observed in the DNA backbone between 

Thy18-Ade19 and Thy20-Ade21 nucleotides of the ATA bulge, which disrupts the 

stacking of respective bases (Fig. 2D and S3B). The C-terminal thumb folds over 

the DNA backbone at the bases Gua22 and Thy23, interacting with every 

phosphate or nucleobase until reaching the scissile phosphate (Fig. 2A, 2D and 

S3B). With the exception of Thy25, which is solvent-exposed, all bases turn 

towards the protein and are, in fact, embedded into the protein surface, whereas 

the phosphate backbone turns outward towards the solvent (Fig. 2A and 2D-E).  

The role of conserved H186 needs to be highlighted since its nitrogen ND1 

atom forms a hydrogen bond with oxygen O4 of Thy23, thereby stabilizing the 

wobble base pair Thy23:Gua26. Moreover, the imidazole ring of H186 stacks with 

the guanidinium group of R7, which itself forms hydrogen bonds with Gua22 (Fig. 

2E and S3B). The last protein-nucleobase specific interactions are found 

between the Gua24 base and K187 peptide bond; however, a number of 

hydrogen bonds between protein residues and the DNA backbone are also found 

in this region. Additionally, the Gua24 base is involved in a stacking interaction 

with F192, which appears to be relevant given the fully conserved ring character 

of the residues (Phe, Tyr or His) at that position (Fig. S3D). Finally, the formation 

of a Thy23-Gua26 wobble bp leads to positioning of the scissile phosphate in the 

center of the MobM active site (Fig. 2A and 2E). 

 

Structural comparison of MobM and other relaxases. In spite of very low 

sequence homology (9 to 13% sequence identity for structurally superimposable 

residues), structural superimposition of the structure of MobM on that of other 

relaxases, i.e. TrwC_pR388, TraI_F and TraI_pCU1 from the MOBF family and 

MobA_pR1162 and NES_pLW043 from the MOBQ family, demonstrate general 

structural similarity among these proteins (2.9 to 4.1Å Cα rmsd for structurally 

superimposable residues) (Fig. S4A). Nonetheless, we observe significant 

differences that distinguish MobM from members of the other families. In general, 

MobM appears to be a simplified version of the fold with smaller loops and less 

additional secondary structure decoration. In this respect, it is closer to the 
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structure of the MOBQ family members MobA_pR1162 and NES_pLW043, which 

are also shorter than the MOBF family representatives. Notably, in MobM, the C-

terminal thumb directing ssDNA to the active site (residues 175-196) adopts an 

extended conformation plus one α-helix (α7) while in MOBF relaxases, like TrwC, 

it is formed by a much longer stretch (residues 210-265) that adopts a mainly α-

helical conformation. In MOBQ relaxases, this element lacks structural 

description, since the MobA structure is based on a shorter protein construct 

(MobA_1-184), and for the NES relaxase construct (NES_2-220) the C-terminal 

residues that would form a thumb (i.e. residues 196-220) are untraceable in the 

crystal structure. The second evident difference is that MobM (MOBV) and NES 

(MOBQ) lack the extensive secondary structures that interact with the tip of the 

DNA hairpin, in contrast to TrwC (MOBF). As a result, the tip region of the hairpin 

is not covered by the protein and protrudes from the complex more prominently 

than for TrwC.  

Regarding similarities, all three MobM, NES, and TrwC relaxase-DNA 

hairpin crystal structures have a common β-turn RxD/N motif (MobM_74-76:RKD, 

NES_78-80:RKN and TrwC_75-77:RQD), which in MobM is located at the Region 

3 of the α2-β3 loop (Fig. 2A-B and S4C-D). Within the motif, as described above, 

the Arg and Asp/Asn residues enter the hairpin minor groove, while the middle 

residue positions itself between the phosphates of the DNA backbone. The 

superimpositions of MobM structure on that of TraI_F, TraI_pCU1, and MobA 

suggest that these relaxases also use this β-turn RxD/N motif to bind DNA 

(TraI_F_68-70: RMD, and MobA_66-68: RAN) (Fig. S4C-D). However, in these 

cases the comparison is impaired due to lack of DNA hairpins in these crystal 

structures. An exception is the TraI_pCU1 relaxase, which does not have the 

RxD/N sequence. Interestingly, TraI_pCU1 binds its cognate DNA weakly and in 

a sequence-independent manner and it was suggested to rely upon a second 

DNA binding protein to selectively bind the pCU1oriT (20). 

 At the major groove of the hairpin, interactions unique to each of the 

relaxases are found. MobM (MOBV1 subfamily) enters the major groove using just 

one residue (K149) from the short 4-residue α5 helix of Region 4, which defines 

the minimal major groove-interacting element among all structurally described 
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relaxases (Fig. S4). The MOBQu relaxase NES places R151, N154, and Y156 

from an 8-residue β hairpin at the major groove (Fig. S4C). In the MOBQ1 relaxase 

MobA, K161 superposes to MobM K149 and presumably would interact in major 

groove. K161 belongs to an 11-residue insertion that includes R143 which 

structurally superposes to MobM R71 of the minor groove-interacting Region 3 

(Fig. S4C). The MOBF1.1 relaxase TrwC and the MOBF1.2 relaxase TraI_F also 

have a single Lys residue (K181 and K179, respectively) equivalent to MobM 

K149. However, the dsDNA-containing crystal structure of TrwC shows that 

MOBF relaxases use additional residues (TrwC R128 and K130; Fig. S4D). These 

derive from an extensive β-hairpin structure that enters the major groove at the 

opposite face of the DNA from where the RxD/N motif enters the DNA minor 

groove. This area of the major groove is solvent-exposed in the MobM complex. 

Thus, MobM seems to have the minimal structural determinants for hairpin stem 

recognition.   
 
Active site architecture. In all Nic0 structures of MobM, residues H126, H133, 

H135 and E129 coordinate the Mn2+ ion with octahedral geometry (Fig. 1D and 

3) which identity was unequivocally confirmed by anomalous diffraction (Fig. 

S2E). In Nic0_A, Nic0_B, Nic0+P and Nic0+SP structures the fifth Mn2+ ion ligand 

is invariably the O3’ oxygen of Gua26 and the sixth ligand is either the scissile 

phosphate oxygen (Nic0+P and Nic0+SP), the catalytic H22 (partial occupancy 

in Nic0_A and full occupancy in Nic0_B), or a water molecule (partial occupancy 

in Nic0_B).  

The asymmetric unit of the Nic0+1 crystal contains two protein-DNA 

complexes that represent two distinct states: i) a DNA-free active site (complex 

B in the crystal asymmetric unit - Nic0+1/molB; Fig. 3A), and ii) an active site in 

which the Gua26 O3’ atom and the scissile phosphate OP1 atom are located at 

a considerable distance from the metal ion (3.6Ǻ and 4.2Ǻ, respectively; note that 

corresponding distances equal 2.7Ǻ and 2.1Ǻ in the Nic0+P structure and 2.2Ǻ 

and 2.3Ǻ in the Nic0+SP structure; complex A in the crystal asymmetric unit - 

Nic0+1/molA; Fig. 3D). In both complexes of the Nic0+1 structure, the metal ion 

attracts H22 for the interaction instead, thereby showing that in the absence of 
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the DNA-scissile phosphate ligand, the metal ion ligates the catalytic H22 (Fig. 

3A and 3D). In complex B the DNA electron density map ends at phosphate 25, 

indicating that the last three bases are disorder and most probably do not enter 

the active site. In this case, the Thy23-Gua26 wobble-bp is not formed and the 

position of the Gua26 3’-oxygen (O3’) is occupied by a water molecule. In complex 

A, despite the wobble bp formation and the placement of the DNA substrate in 

the active site, the Gua26 3’-oxygen and the scissile phosphate are shifted away 

from the center of the active site.  

In all Nic structures, except the Nic0+1/molA structure, a group of fully 

conserved residues is engaged in the formation of a hydrogen bond network (Fig. 

1D and 3), in which: i) D128 contacts N43 and R25; ii) R25 interacts with the H22 

peptide bond, the scissile phosphate and the metal-ligating E129; and iii) E129 - 

depending on the structure- interacts with either the scissile phosphate OP1 

oxygen (active site with the cleavage substrate; Nic0+P and Nic0+SP structures; 

Fig. 3B and 3E) or the Gua26 O3’ oxygen (active site with the cleavage 

product/ligation substrate: the Nic0_A and Nic0_B structures; Fig. 3C and 3F), or 

the metal-bound water molecule, which superimposes with the Gua26 O3’ 

oxygen (DNA-free active site; Nic0+1/molB structure; Fig. 3D). The Nic0+SP 

structure accommodates an additional contact for E129, a hydrogen bond 

between E129 and N32 (Fig. 1D). In the Nic0+1/molA structure this extensive 

array of contacts is limited to only one, namely the R25 – D128 interaction; this 

is due to displacement of the R25 side chain towards a location that, in other 

structures, would create clashes with N43 (Fig. 3D).  

 
Mobility of the catalytic histidine. Depending on the crystal structure the 

catalytic H22 side chain occupies three distinct positions: the IN position (metal-

bound; the NE2 nitrogen atom is 2.2-2.8Ǻ away from the Mn2+ ion; Fig. 3A, 3C, 

3D and 3F), the INTERMEDIATE position (NE2 nitrogen is 6.2Ǻ away from the 

Mn2+ ion and 4.0Ǻ away from the scissile phosphate phosphorous atom; Fig. 3B) 

and the OUT position (H22 side chain is far from the Mn2+ ion and the scissile 

phosphate; Fig. 3B, 3E and 3F). For structures that were determined at pH>4.6, 

the catalytic histidine side chain is placed in the metal-bound IN position in two 
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settings: i) in the DNA-free and the DNA-misplaced active site structures 

(Nic0+1/molB and Nic0+1/molA, respectively; Fig. 3A and 3D), and ii) in the 

presence of the 5' cleavage product (Gua26 3’OH) in the active site (Nic0_A; Fig. 

3C). The above two cases show that in the absence of the interaction of the 

scissile phosphate with the metal ion, H22 ligates this ion. Conversely, the ligation 

of the scissile phosphate to the active site metal ion causes the catalytic H22 to 

move away from the metal-bound IN position to the INTERMEDIATE and OUT 

positions as can be seen in the Nic0+SP structure, which has the H22 side chain 

in two alternative conformations: the INTERMEDIATE position with major 

occupancy and the OUT position with minor occupancy (Fig. 3B). Similarly, 

protonation of the H22 imidazole ring at pH 4.6 induces the histidine side chain 

to move away from the metal ion, as can be observed when comparing higher 

and lower pH structures containing either the 5' cleavage product (the IN position 

at pH5.5 vs. the IN/OUT positions at pH4.6 for Nic0_A and Nic0_B structures, 

respectively; Fig. 3C and 3F) or the cleavage substrate (the 

INTERMEDIATE/OUT positions at pH6.8 vs. the OUT position at pH4.6 for 

Nic0+SP and Nic0+P structures, respectively; Fig. 3B and 3E). In fact, the 

relaxation activity of the MobM plasmid is highest at pH 6.5, which is slightly 

above the histidine imidazole pKa (6.0) and it decreases steeply below pH 6.0, 

dropping by 30% at pH 4.6 (23). All together, these findings show that the H22 

side chain has freedom of movement and that its interaction with the metal ion 

depends on the stage of the reaction. 

 

One metal-ion catalysis with a histidine as a nucleophile. Nucleases cleave 

phosphodiester bonds by a general acid–base catalysis, where the general base 

activates the nucleophile by deprotonation and the general acid facilitates product 

formation by protonation of the leaving group (27, 28). This reaction goes typically 

through the following three stages: i) nucleophilic attack; ii) formation of a highly 

negative pentacovalent transition state, and iii) breakage of the scissile bond. The 

mechanism requires that the nucleophile, the phosphorus atom and the leaving 

group be in-line. In the case of metal ion-dependent DNA nucleases, metal ion 

B, which resides on the leaving group side and is common for one- and two-metal 
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ion nucleases, stabilizes the pentacovalent transition state and, in certain 

coordination geometries, can promote the nucleophilic attack by destabilization 

of the enzyme-substrate complex (29). The enzymes that cleave by a two-metal 

ion mechanism, use the second metal ion (metal ion A) to activate a catalytic 

water molecule that acts as a nucleophile, as well as to stabilize the transition 

state. In the one-metal ion enzymes, the activation role of the second metal ion 

is performed by a protein residue and the catalytic water molecule can be 

replaced by a serine or a tyrosine hydroxyl group (28, 30). The later was the case 

of the first relaxase described (17, 18), and other relaxases analyzed thereafter. 

In the case of the relaxase MobM, the protein-DNA structures show that a 

constellation of amino acids is required for the formation of the cleavage-

competent active site that is best reflected in the Nic0+SP structure. In this 

structure the Mn2+ ion interacts with both, the scissile phosphate OP1 oxygen 

atom (2.2Ǻ distance), and the Gua26 O3’ oxygen atom (2.3Ǻ distance). This ion 

is therefore well positioned to contribute to the stabilization of the electron-rich 

pentacovalent transition state. Importantly, the catalytic H22 is in the proper 

location for the nucleophilic in-line attack on the phosphorus atom (H22 NE2 

nitrogen being 4.0Ǻ away) and superposes with the position of the catalytic 

tyrosines in the crystal structures of other HUH endonucleases (MOBQ relaxases, 

MOBF relaxases, RepB replication initiator and TnpA transposase; Fig 4). In the 

case of superposition to MobA, which is the most similar to MobM among 

structurally described relaxases, the MobM H22 NE2 nitrogen atom superposes 

perfectly with the MobA catalytic Y25 hydroxyl oxygen atom (Fig. 4A).  

 The above findings reveal MobM as the first example of a metal-

dependent nuclease that uses a histidine nitrogen atom for the nucleophilic attack 

on the DNA substrate. Moreover, the use of a histidine nitrogen atom, instead of 

an oxygen atom of a tyrosine/serine residue, makes MobM the first example of a 

DNA breaking-joining enzyme that operates through a phosphohistidine adduct. 

Known examples of nucleases belonging to the phospholipase D (PLD) 

superfamily of phosphodiesterases hold catalytic histidines and operate through 

a transient phosphohistidine intermediate adduct. However, these nucleases 

bear no sequence or structure relationship with relaxases, have separate 
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domains for substrate recognition and for cleavage, they are metal ion-

independent enzymes and they do not support DNA ligation (28). Importantly, the 

acid dissociation constant of histidine is the closest to the cytoplasmic pH among 

known nuclease nucleophiles (His pKa=6; Tyr pKa=10; ribose 2’OH pKa=12-14; 

Ser pKa=13; H2O pKa=16) (28). Thus, activation of the histidine imidazole group 

by deprotonation is readily achieved, and no auxiliary residue appears to be 

required for its activation. In contrast, other relaxases that harbor a catalytic 

tyrosine, such as TrwC, appear to have a residue that closely interacts with it (an 

Asp in TrwC) to facilitate proton abstraction.  

In the MobM Nic0-SP structure, the metal-bound phosphate OP1 oxygen 

atom interacts with the R25 NH1 nitrogen atom, taking a position not far from 

K265 of TraI (19) (Fig. 4B), which was proposed to act as the equivalent of the 

second metal ion (30). Similarly, in yeast type II topoisomerase the conserved 

R781 residue contacts and stabilizes the covalent phosphotyrosine moiety of the 

protein-DNA adduct (31) and mutation of this arginine to a residue other than 

lysine dramatically reduces DNA cleavage and relaxation activity (32). In MobM 

R25 is fixed in its position at the active site by a double H-bond interaction with 

D128. 

In the MobM Nic0+SP structure the second oxygen atom of the scissile 

phosphate, OP2, shares a hydrogen bond with the E129 OE1 oxygen, which 

further interacts with the N32 NE2 nitrogen, while the E129 OE2 oxygen ligates 

the metal ion and contacts the R25 NH2 nitrogen (Figs. 1D and 3B). Use of a 

carboxylic residue as fourth protein ligand for metal ion ligation has not been 

described for any relaxase to date. Intriguingly, the MobM genetic companion on 

pMV158, the RepB replication initiation protein (which is not a relaxase although 

it belongs to the HUH superfamily), in addition to the histidine triad, uses D42 for 

the Mn ion ligation (Fig. 4C). However, its role other than metal ion coordination 

was not tested (33). Interestingly, a hydrogen bond between E129 and the DNA 

3’OH end in the Nic0_A and Nic0_B structures suggests that E129 acts as a 

general base in Gua26 3’OH activation for the nucleophilic attack on the H22-

DNA adduct during the DNA ligation reaction (see below Theoretical study of the 

catalytic mechanism).  
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Mutational analysis. To confirm the information derived from the crystal 

structures, several mutations designed to change key residues of MobM were 

constructed, and the resulting mutated proteins were purified. The following 

mutations were done: i) H22 was changed to either Ala (H22A) or Tyr (H22Y); ii) 

R25 was changed to Ala (R25A); iii) E129 was changed to either Ala (E129A) or 

to Gln (E129Q), and iv) Y44 was changed to phenylalanine (Y44F), the latter 

change because Y44 was proposed in a previous study to be the catalytic residue 

(24). The purified mutant proteins were tested for their ability to relax supercoiled 

plasmid DNA (nicking reaction) or to generate relaxosomes in vitro. This latter 

assay is based on the selective precipitation of DNA-protein covalent complexes 

by SDS and KCl (34). In both cases, pMV158 DNA was treated with the purified 

proteins and the reaction products were analyzed on 1% agarose gels. The 

assays performed with the H22A, H22Y, and R25A mutants confirmed the 

essential role of these residues: the wild-type MobM protein generated ~60% 

open circle (oc) relaxation products, whereas no significant oc-forms were 

observed for any of these mutant proteins (Fig. 5A). Equivalent results were found 

when generation of relaxosomes was analyzed: protein-DNA adducts were 

readily detected in the wild-type, but not in the H22 or R25 mutants. This 

observation demonstrates the crucial role of amino acids of Motif I in the cleavage 

and generation of stable DNA-protein adducts (Fig. 5B). Relaxation assays done 

with the Y44F mutant protein showed that it behaved like the wild-type MobM, 

thus also confirming the results of crystal structures. Finally, the E129A and 

E129Q mutants showed a slight (if any) residual relaxation activity (Fig. 5A). 

Neither of the two E129 mutants were able to generate relaxosomes (Fig. 5B), 

thus emphasizing the significance of E129 for the formation of the covalent 

phosphohistidine adduct (see below Theoretical study of the catalytic 

mechanism). Indeed, besides metal coordination, E129 interacts with the scissile 

phosphate and R25, the latter in turn contacting D128. We conclude that R25 of 

MobM contributes to anchoring the scissile phosphate and to the stabilization of 

the transition state and the phosphohistidine adduct, as indicated by the 

calculation performed (Fig. S5D). 
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 The in vivo assays were performed by constructing pMV158-derivative 

plasmids harboring either the H22A or the Y44F mutations. These plasmids have 

a single mutation in the mobM gene (that is, a single amino acid change, H22A 

or Y44F, in the entire 495-residue MobM protein). Mobilization assays were done 

in the conditions previously described (35) using S. pneumoniae cells harboring 

the wild type or the mutated plasmids as donors and either pneumococcal or 

Enterococcus faecalis cells as recipients. The results showed that whereas 

mobilization frequencies of 2.5(±0.2) x 10-4 (average of five experiments) were 

found for pMV158 and pMV158Y44F plasmids, no transconjugant (frequency < 

1.5x 10-10, i.e. the experimental detection limit) was rescued in the five 

independent experiments performed with pMV158H22A (Table S5). Taken 

together, the results from the crystal structure analysis and the functional assays 

demonstrate that the H22 residue is essential for the activity of the protein, 

thereby supporting its role as the nucleophilic residue in the DNA cleavage 

reaction. 

 

Theoretical study of the catalytic mechanism. We performed theoretical 

calculations including classical Molecular Dynamics (MD) simulations and 

Quantum Mechanics/Molecular Mechanics (QM/MM) free energy calculations to 

describe the catalytic mechanism performed by MobM. Two MobM-DNA crystal 

structures were used for MD simulations. One, in which the H22 NE2 nitrogen is 

positioned in-line for the nucleophilic attack on the reaction center (i.e. 

phosphorus atom of the scissile P-O bond) from the opposite site of the O3’ 

leaving group, i.e. the Nic0+SP structure, and the other one, in which H22 ligates 

the Mn ion and the above mentioned atoms are not in line (the Nic0+1/molA 

structure). We were able to model the covalent complex between H22 and the 

DNA substrate showing the expected inverted configuration of the phosphorus 

atom for the former (Fig. S5B) but not for the latter, for which modeling of the 

nucleolytic reaction failed (Fig. S5C). Moreover, we observed that the formation 

of the covalent intermediate is possible only when the O3’ leaving group atom is 

assumed to be protonated.  

The proposed mechanism of the histidine-mediated attack to the 
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phosphodiester bond, as well as the corresponding free energy profile, is 

depicted in Fig. 7A and 7B, respectively. The reaction takes place through an 

associative SN2-like mechanism involving a pentacoordinated phosphorus 

transition state (TS, see Fig. S5B), just as described in the theoretical study of 

the CheA histidine kinase (36). Moreover, E129 would protonate the O3’ atom 

thus playing a role of general acid in the catalytic mechanism (Fig. 6A). This 

glutamate is hydrogen-bonded to the OP2 of the target phosphate group in the 

pre-catalytic structure (Fig. 6A-B), as also suggested by visual inspection of the 

MobM Nic0+SP structure. During catalysis the HE2 proton from E129 reorients 

to form a hydrogen bond with its final acceptor atom (i.e. O3') to finally be 

transferred (Fig. 6A-B). It should be noted that in our modeling study this proton-

transfer process takes place spontaneously (i.e. it was not explicitly considered 

in the reaction coordinates; see Fig. 6B), thereby supporting the hypothesis of 

E129 acting as the general acid in the nucleolytic reaction. Moreover, the proton 

transfer process lags behind the nucleophilic attack and is concomitant with the 

drop in energy observed right after the maximum in the free energy profile (Fig. 

6B). 

The free energy barrier and reaction energies computed were 14.2 and 5.3 

kcal/mol, respectively (Fig. 6B). Moreover, consistent with the very low (if any) 

residual activity observed for the E129A and E129Q mutants (Fig. 5A) we were 

not able to find a catalytic pathway for these mutants. 

Finally, our calculations also support the electrostatic stabilizing role of R25 

and, accordingly, the observed inactivity of the mutant R25A (Fig. S5D). 

 

Phosphoramidate bond chemistry and consequences for pMV158 lifestyle. 

The phosphoramidate bond in phosphohistidine is thermodynamically less stable 

than the phosphoester bond in phosphotyrosine (37). Free phosphohistidine has 

a half-life of seconds in acidic solution, and of a few minutes at pH=7. Such lability 

would impair the transfer of the protein-DNA adduct across the cell membranes, 

to the receiving cell. However, in proteins the stability of the P-N bond is 

influenced by the protein environment, in particular by the side chains 

surrounding the phosphohistidine at the active site. For instance, a hydrogen 
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bond to the non-phosphorylated imidazole nitrogen would make the 

phosphoramidate bond significantly less labile. There are two partially conserved 

residues, namely N23 and H30, that could establish a hydrogen bond with the 

H22 ND1 nitrogen, once the adduct is formed. N23 is the residue adjacent to the 

catalytic histidine, and already makes a hydrogen bond to the H22 ND1 in the 

Nic0_B structure. H30 is located in a flexible loop after helix α1 where the catalytic 

histidine is located. This loop is disordered and could not be traced in most of our 

structures, except in the Nic0+SP structure where H30 ND1 is located 4.4Ǻ away 

from the H22 ND1 nitrogen, while a water molecule bridges the interaction. A 

structure of the MobM-His22-DNA adduct could clarify if these residues (or other) 

are critical in regulating the stability of the P-N bond. Unfortunately, so far we 

have not been able to crystallize such adduct.   

The physiological consequences of the use of a highly transferable 

phosphohistidine versus highly stable phosphotyrosine bond for the DNA transfer 

process in MOBV relaxases remain to be unveiled. However, we propose that 

MOBV1 relaxases lost the need for a tyrosine hydroxyl and evolved to employ a 

different group for substrate attack because of the lowest pKa (6.0) of histidine 

among known nucleophiles, thus making histidine independent from 

deprotonating/activating auxiliary residues which are, however, required for other 

nucleophiles (tyrosine pKa ~10-11). From the physiological point of view, we have 

to consider that most MOBV relaxases are encoded by Firmicutes with low G+C% 

content and that many of these bacteria tend to strongly acidify the media (below 

to pH 5.5), perhaps as a mechanism through which to out-compete other bacterial 

species. Furthermore, since these small plasmids (average size ~5 kb; (21)) lack 

partitioning systems, they need to achieve the average copy number (~30 copies 

per genome equivalent) before cell division so that newborn cells should receive 

enough plasmid copies to guarantee stable inheritance (38). Having an easy to 

break relaxase-DNA covalent link would confer a selective advantage, allowing 

rapid reconstitution of dsDNA-replicating molecules. In this regard it is worth 

mentioning that the RCR-replicase protein of plasmid pMV158 (RepB), although 

being a tyrosine HUH endonuclease, generates unusually transient and difficult 

to capture protein-DNA intermediates (39). 
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An interesting difference between tyrosine and histidine relaxases is that 

the former are found in both Gram-positive and Gram-negative bacteria, whereas 

the newly described histidine relaxase like MobM, appear to be found almost 

exclusively in the Gram-positive Firmicutes phylum (Fig. S1). It has been 

suggested that relaxases of the MOBV family have been evolutionary selected by 

small/mobilizable plasmids (40). We could relate this notion to the high energy of 

the P-N bond between the scissile phosphate and the catalytic histidine, which 

makes the phosphate group readily transferable to other groups (37). In such 

scenario, the use of a catalytic histidine could facilitate the DNA closing reaction; 

on the other hand it would also limit the size of the DNA cargo, since the P-N 

bond would be prone to breakage if the DNA transfer takes too long. 

MOBV/Mob_Pre relaxases are also found in long plasmids as in the case of 

closely related multi-drug resistance plasmids pSK41 (46.4 kb) and pGO1 

plasmid (54 kb), the latter being the prototype for class III staphylococcal 

plasmids (41). However, in these multi-drug resistance/multi-relaxase plasmids, 

which use MOBQ-type relaxases for conjugative transfer, the MOBV relaxase-

encoding gene is located (together with aminoglycoside and bleomycin 

resistance genes) within a transposable 5 kb cassette-like module flanked by the 

IS257-mediated recombination elements. Whether they support alternative 

conjugative transfer events of the 5kb integrant or the full plasmids remains to be 

explored. Another characteristic chemical feature of the phosphoramidate bond 

is its acidic liability (37). The existence of MOBV/Mob_Pre nucleases almost 

exclusively in Gram-positive bacteria could be related to the fact that there is no 

maintenance of the pH homeostasis in the periplasm of Gram-negative bacteria, 

i.e. the periplasm pH matches that of the external environment (42). Therefore, 

conjugal DNA transfer mediated by a His relaxase in Gram-negative bacteria in 

an acidic environment could lead to the P-N bond exposure to low pH and 

breakage of the relaxase-DNA complex during the transfer through type IV 

secretion system (T4SS) spanning the periplasm. On the contrary, in the case of 

Gram-positive bacteria, conjugation is mediated by a cell-wall hydrolase (43), 

which allows intimate cell-to-cell contacts without the need for the transferred 

DNA to be exposed to extracellular low pH. 
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Conclusion  
The work presented here provides the first structure-function analysis of the 

representative member of the MOBV1 family of relaxases. Our combined 

approach of X-ray crystallography, protein-DNA biochemistry, in vivo and 

computational has allowed us to describe a novel metal-dependent histidine 

nucleolytic catalysis, represented by the MobM relaxase, which is encoded by a 

promiscuous plasmid actively involved in the spread of antibiotic-resistance. 

Homologs of MobM are found in many plasmids and other mobile genetic 

elements of pathogenic bacteria such as S. aureus (Table S1 and S2). MobM is 

the first example of a metal-dependent nuclease that uses histidine nitrogen for 

the nucleophilic attack on the scissile phosphate. Furthermore, it is also the first 

example of a histidine relaxase, a DNA-breaking and -joining enzyme, that 

operates through a phosphorus-nitrogen protein-DNA adduct for cell-to-cell DNA 

transfer. 

 
Materials and Methods 

A detailed description of protein purification, relaxation and, mobilization assays, 

crystallography and theoretical calculations can be found in SI Materials and 

Methods.  
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Figures  
 

 
 
Fig. 1. Structure of the MobM-DNA complex. (A) Crystal structure of the N-terminal 

MobM relaxase domain bound to the nic0+SP oligonucleotide containing the scissile 

phosphate (Nic0+SP structure). (B) Scheme of oriT processing by MobM. (C) 

Oligonucleotides used for crystallization, structure names and pH. (D) Active site details.  
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Fig. 2. MobM-DNA interactions. (A) Scheme representing the MobM–DNA interactions 

in the Nic0+SP complex structure. Brown lines indicate hydrogen bonds, blue lines 

water-mediated hydrogen bonds, and black dashed lines van der Waals contacts. 

Residues that form side chain-DNA hydrogen bonds are indicated in bold (positively and 

negatively charged residues are shown on blue and red background, respectively). 

Nucleotides that form nucleobase-protein hydrogen bonds and the Thy23-Gua26 wobble 

bp are indicated in boldface letters.  (B) Major groove binding by MobM Region 3 (loop 

α2-β3). (C) Minor groove binding by MobM Region4 (helix α5). (C) ATA bulge binding by 

MobM Core Region (strand β1 and helix α6). (D) MobM-ssDNA binding by the Core 

Region, Region5 (loop α6-α7 and helix α7), Region2 (loop α1-3101) and Region1 (helix 

α1). Residues that form side-chain – DNA hydrogen bonds are labeled in black. 

Residues that form main-chain – DNA hydrogen bonds are labeled in grey.  
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Fig. 3. Active site snapshots (A) Nic0+1/molB – DNA-free active site: H22 ligates Mn2+; 

(B) Nic0+SP – active site with the DNA substrate (up to the scissile phosphate, here as 

a thio-phosphate): H22 is in the proper position for catalysis, in-line with the scissile bond 

atoms; R25 and E129 interact with the scissile phosphate. (C) Nic0_A – active site with 

the 5’ DNA product/ligation substrate: H22 ligates Mn2+; E129 interacts with the Mn2+-

bound DNA O3’ of Gua26. (D) Nic0+1/molA – active site with the DNA substrate placed 

in a non-productive manner: the scissile phosphate does not interacts with the Mn2+ ion; 

H22 ligates Mn2+; a number of interactions between E129, D128, R25 (partially 

disordered) and N43 (disordered) are broken. (E) Nic0+P – a low pH active site with the 

DNA substrate: as in (B), but H22 protonation favors the OUT position of this side chain. 

(F) Nic0_B – a low pH active site with the 5’ DNA product/ligation substrate: as in (C), 

but H22 protonation favors the OUT position of this side chain. H22 minor occupancy 

rotamers in (C) and (E) are shown faded. 
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Fig. 4. MobM Nic0+SP structure active site superimposition with other HUH 
endonucleases. (A) MOBQ family of one-tyrosine (Y1) relaxases MobA_pR1162 and 

NES_pLW1043. (B) MOBF family of two-tyrosine (Y2) relaxases TraI_pF and 

TrwC_pR388. (C) Replication initiation protein RepB_pMV158. (D) Transposase 

TnpA_Dra2 of bacterial insertion sequence ISDra2. 
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Fig. 5. In vitro activity of MobM mutant proteins. (A) MobM nucleolytic activity by 

plasmid relaxation assay and (B) covalent adduct formation and stabilization by protein-

DNA pull-down assay. MobM activity is shown as change of plasmid supercoiled (Fl) 

form to open circle (Fll) form; S, supernatant (DNA fraction), and P, pellet (protein and 

protein-DNA fraction). After nicking, the relaxase remains covalently bound to plasmid 

DNA.  

 

 

 
Fig. 6. Theoretical calculations. (A) Proposed mechanism of nucleolytic reaction 

catalyzed by MobM and (B) the corresponding QM/MM free energy surface. The 

distance relative to the protonation of the O3’ leaving group atom by E129 is depicted. R 

(Reactants), TS (Transition State), P (Products). RC, Reaction Coordinate. Free energy 

is in kcal/mol and distances, including RC are in Å. 



 

32 
 

 


