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Abstract

For purposes of ratemaking, time dependence and cross dependence have
been treated as separate entities in the actuarial literature. Indeed, to date,
little attention has been paid to the possibility of considering the two to-
gether. To discuss the effect of the simultaneous inclusion of different de-
pendence assumptions in ratemaking models, a bivariate INAR(1) regression
model is adapted to the ratemaking problem of pricing an automobile in-
surance contract with two types of coverage, taking into account both the
correlation between claims from different coverage types and the serial corre-
lation between the observations of the same policyholder observed over time.
A numerical application using an automobile insurance claims database is
conducted and the main finding is that the improvement obtained with a BI-
NAR(1) regression model, compared to the outcomes of the simplest models,
is marked, implying that we need to consider both time and cross correla-
tions to fit the data at hand. In addition, the BINAR(1) specification shows a
third source of dependence to be significant, namely, cross-time dependence.
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1. Introduction

Insurance ratemaking is one of the main tasks that actuaries perform. To
calculate a premium, actuaries will typically obtain the conditional expecta-
tion of the number of claims, given a set of observable risk characteristics,
and then combine this with the corresponding conditional expectation of
claim amounts. As such, modelling insurance claim count data represents an
essential part of their task. Indeed, the actuarial science literature contains
many studies examining count data models that seek to take into considera-
tion specific features of their data, i.e., unobserved heterogeneity (including
overdispersion and excess of zeros) and, more recently, dependence between
claim counts.

In this paper, we examine the effect of simultaneously including different
dependence assumptions in ratemaking models. Specifically, we focus on
three sources of dependence: first, time dependence, or the serial dependence
between observations of the same policyholder at different points in time;
second, cross dependence, or the dependence between observations of the
same policyholder for different types of claim or coverage; and third, a source
of dependence that combines these first two sources, defined as cross-time
dependence, or the dependence between observations from different types of
claim made by the same policyholder at different points in time.

In the context of automobile insurance, the behaviour of a driver is likely
to change after they have made a claim and, therefore, some kind of time
dependence should be found in a panel count dataset. At the same time, an
automobile insurance contract includes different types of guarantees. A third-
party liability guarantee is often combined with a set of other guarantees
related to driving such as, for example, damage resulting from a collision
with another vehicle/object when the policyholder is at fault. In this case,
when policyholders make a third-party liability claim, it is common for them
also to file a claim on their collision coverage. Hence, the multi-guarantee
nature of the insurance contract gives rise to a source of cross dependence.
But, at the same time, it is possible that a collision claim reported in the
past will influence the number of third-party liability claims reported in the
future, giving rise to cross-time dependence.

Time and cross dependence have been widely addressed in the ratemaking
literature as separate entities. Traditionally, ratemaking has been tackled
in two steps: a priori ratemaking and a posteriori ratemaking. The first
step uses count regression analysis to identify risk factors and to predict



the expected frequency of claims given the observable characteristics of the
policyholders. However, not all the factors influencing a risk can be identified,
measured and introduced in the a priori tariff. In a posteriori ratemaking,
actuaries consider the past claims record of each policyholder in order to
update their a priori premiums, assuming that the number of claims reported
by policyholders reveals unobservable risk characteristics, such as driving
ability or driver aggression. An exhaustive review of ratemaking systems in
automobile insurance using cross-section data can be found in Denuit et al.
(2007).

However, in recent years, insurers have been able to accumulate longi-
tudinal information on their policyholders. In parallel, a growing body of
literature has developed panel count data models applied to the field of in-
surance. By using these models, actuaries can use repeated observations of
each policyholder over time, thus allowing for time dependence. As Boucher
and Inoussa (2014) stress, the advantage of using this information when mod-
elling the number of claims is that it becomes possible to estimate premiums
that depend simultaneously on risk characteristics and on claim experience
and, so, actuaries can avoid the classical two-step approach which is de-
void of all coherence in a panel data setting. Following Molenberghs and
Verbeke (2005), models for discrete panel data can be classified into three
categories: conditional models (e.g. autoregressive and integer-valued au-
toregressive models), marginal models (e.g. multivariate models with serial
correlation) and subject-specific models (e.g. random effects models). An ex-
haustive overview of such models applied to the actuarial sciences is provided
by Boucher et al. (2008).

When actuaries are faced with the problem of pricing an insurance con-
tract containing different types of coverage, they usually assume that claim
types are independent. However, such an assumption may not be realistic.
Indeed, Bermidez (2009), Bermudez and Karlis (2011, 2012) and Shi and
Valdez (2014) have reported a positive correlation between types of claim and
introduced different bivariate (or multivariate) regression models to relax the
independence assumption between claims counts arising from the same pol-
icy in a priort ratemaking and cross-section data settings. They concluded
that using a bivariate (or multivariate) regression model provides a better fit,
resulting in an a priori ratemaking that presents larger variances and, hence,
larger loadings than those obtained under the independence assumption.

In short, on the one hand, Boucher et al. (2008) and Gourieroux and
Jasiak (2004) showed that integer-valued autoregressive (INAR) models are
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an acceptable alternative for modelling univariate claim count data when a
panel data structure is available for ratemaking, allowing for time dependence
(autocorrelation or time series correlation). On the other hand, Bermuidez
(2009), Bermudez and Karlis (2011, 2012) and Shi and Valdez (2014) showed
that, when the ratemaking consists of pricing different types of coverage, bi-
variate (or multivariate) regression models for cross-section data provide a
better fit than when using regression models assuming independence, allow-
ing for cross dependence (cross correlation).

The present paper combines these two approaches and extends INAR
models for panel claim count data to the bivariate case. More specifically,
the bivariate INAR process of order 1, BINAR(1), as introduced by Pedeli
and Karlis (2011, 2013), is adapted to the ratemaking problem of pricing an
automobile insurance contract with two types of coverage (third-party lia-
bility guarantee and other guarantees), taking into account both the cross-
correlation between claims from different types of coverage and the serial
correlation between the observations of a given policyholder over time. To
date, little attention has been given to multivariate longitudinal data analysis
for actuarial applications (Shi, 2012); however, Boudreault and Charpentier
(2011) apply BINAR(1) to model earthquake counts, but unlike the ratemak-
ing problem, no covariates were included.

In the section that follows, the BINAR(1) regression model is defined.
In Section 3, a numerical application using an automobile insurance claims
database is presented. Finally, some concluding remarks are given in Section
4.

2. BINAR(1) regression models

2.1. The Models

Let N; be the number of claims for third-party liability and N5 the number
of claims for all the other guarantees contained in an automobile insurance.
Assuming that for each individual we have data for different time points, we
denote as Nj;; the number of claims for claim type j and i-th individual at
time point ¢, where j =1,2,i=1,...,n,and t = 1,...,T; (i.e. we may have
different numbers of observations for each client).

The bivariate integer-valued autoregressive process of order 1, BINAR(1),
is a generalisation of the simple INAR model introduced by Al-Osh and
Alzaid (1987) based on thinning and is described in detail in Pedeli and



Karlis (2011, 2013). It can be defined as
N;,=AoN,_;+Ry

where N and R are non-negative integer-valued random 2-vectors and A is a
2 x 2 matrix with independent elements {ax};x=1,2. It holds that 0 < o, <
1, 7,k =1,2. The operator ‘o’; known as the binomial thinning operator, is
defined as oo N = Zivzl Zs = Z where Z, are independently and identically
distributed Bernoulli random variables with P(Z; =1) =1—P(Z; =0) = «
and « € [0,1]. This operator, developed by Steutel and van Harn (1979),
mimics the scalar multiplication used for normal time series models so as
to ensure that only integer values occur. The elements R; that entered the
system in the interval (¢ — 1,¢] are usually referred to as innovations.

In Pedeli and Karlis (2011) the case with a diagonal matrix A was ex-
amined. For this simpler structure, hereinafter called the Basic BINAR(1)

model,
. 11 0
A= |: 0 Q29 :| ’

where each series is represented as

Nyt = a1 0 Nyjy—1 + Ry
Nojt = agp 0 Nojy—1 + Rojs.

As in every INAR-type process, each series N; is composed of two parts.
The first consists of the survivors of the elements of the process at the pre-
ceding point in time ¢t — 1, denoted by N;_;. The autocorrelation derives from
this part. The second part consists of the innovations R; that are assumed
to be correlated. The cross correlation derives from the joint distribution
assumed for the R;;.

The case with a non-diagonal matrix A was considered in Boudreault and
Charpentier (2011) and in Pedeli and Karlis (2013). This case allows for a
more complicated structure and, hence, for a new source of dependence. The
case of non-diagonal matrix A, hereinafter called the Full BINAR(1) model,

with
A — { 11 Oa2 ]
Qg1 Qg
where each series is now represented as follows:
Niw = a110Np—1 +0q20 Nojyg + Ry
Nojyy = 20 Ngjp1 + oy 0 Nyjyoq + Ry
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The assumption of the diagonality of matrix A implies that the correlation
between innovations is the only source of dependence between the two series.
On relaxing the diagonality assumption, the value of each univariate series
at time ¢ is directly associated not only to its own survivors but also to the
survivors of the elements of the other series at the preceding point in time
t — 1. Hence, this association forms a second source of dependence, referred
to cross autocorrelation in Boudreault and Charpentier (2011).

This more complicated structure allows for the three different sources of
dependence defined in the introduction. The number of claims for third-
party liability at time ¢ (Ny;) is thus correlated with the number of claims
for third-party liability at time ¢t —1 (/N1 ;—1), the number of claims for all the
other guarantees at time ¢ (Ny), and the number of claims for all the other
guarantees at time ¢t — 1 (N3;—1) - that is, autocorrelation, cross correlation
and cross autocorrelation, respectively.

In this paper, we assume that both innovation terms (Ry;;, Ro;) jointly
follow a bivariate Poisson distribution with parameters Ai;, Ag;y and ¢;; with
the joint probability mass function being given by:

—(Ait+HA2it+dit) (/\lit - szt)x <>‘2it - ¢it>y
x! y!

% (0 (=atma)
—5 \S/\¢ A\ it — i) (Naie — dir) )

S

P(Rlit =, Ry = Z/) = €

The bivariate Poisson distribution defined above allows for positive depen-
dence between the random variables N; and N,, which is what we expect
for claims of this type. In the case of negatively correlated claims (a case
not considered here) a more general specification would be necessary. More-
over, ¢; is a measure of this dependence at time t. Obviously, if ¢;; = 0
the two random variables are independent and the bivariate Poisson distri-
bution reduces to the product of two independent Poisson distributions. For
a comprehensive treatment of the bivariate Poisson distribution, the reader
is referrred to Kocherlakota and Kocherlakota (1992). In Pedeli and Karlis
(2011), the model with bivariate negative binomial innovations used in mod-
elling overdispersed bivariate time series, and some additional specifications
for time series data with negative correlation, are also considered.

Despite using a bivariate Poisson distribution, the Full BINAR(1) model
allows for overdispersion since its marginals are no longer Poisson distribu-
tions. This is not the case for the Basic BINAR(1) model.
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Finally note that parameters «, ¢ and \’s are defined as client depen-
dent and, so, can be related to some covariate information. For ratemaking
purposes, we seek to introduce covariates and, thus, we further assume that

log A\iir = X
log Aoy = 24

where x;; and z; are time dependent covariates for the i-th individual, not
necessarily the same, and (’s are the relevant regression coefficients. To
keep the model parsimonious, we do not assume covariates for a’s and ¢
and we also assume that they keep constant across time. We also denote as

a = (aqy, g, a1, Qo).

2.2. Fitting the models

As in Pedeli and Karlis (2013) the conditional likelihood for a BINAR(1)
model is the convolution of binomials and a bivariate Poisson and, hence, the
contribution of the i-th policyholder is

T;
L; = Hf(nlityn%tlnli,t—l,n2i,t_1,0é,)\ut,)\zit,gb)
t=1

In this formula, f(ny;,n2;|-) represents the conditional distribution at
time t given the previous time point. In the general case of non-diagonal
matrix A, this bivariate distribution is represented as a convolution of four
binomial random variables and a bivariate Poisson, and, hence, it involves a
quadruple summation
N1t N2it N1it—k n2it—s
ZZ Z Z J1(n1ie — k) f2(nos — 5) f3(n1i —k —m) fa(noi — s — L) f5(k, s)
k=0 s=0 m=0 (=0
with f;, 7 = 1,...,4 being the probability function of a binomial distribution,
while f5(-,-) is the probability function of a bivariate Poisson distribution.
Based on all of these, the full likelihood is simply the product of the likelihood
for each client, i.e.

(o) =

Maximization is possible via standard numerical optimization. Further de-
tails can be consulted in Pedeli and Karlis (2013). We have used R code to
fit the model to the data. Obviously, for reduced models, e.g. the diagonal
case, the calculation is much easier as fewer summations are needed.
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2.8. Predictions

Bearing in mind that INAR models are constructed for use as predictive
distributions, the following results are used in the numerical application for
premium calculations. For further details, see Pedeli and Karlis (2011, 2013).
The conditional expectations (given the past value) are

E(N1it|Niig—1 = x) = ane + oy + di

E(Noit|Nojyi—1 = y) = ooy + o180 + O

while for the variances we obtain that
Var(Nyi|Niii—1 = ) = an(l —an)z + ara(1 — a12)y + A + dit

Var(Ny;t|Noit—1 = y) = ao2(1 — aa2)y + a1 (1 — qo1)x + Aai + ¢ur.
Finally, for N; = Ny, + Ny we obtain that

E(Ny|Niit—1 = 2, Noiz—1 =y) = (o1 + ao1)x + (g2 + a12)y

+ Arit + Aoit + 204

Var(Ny|Nyg—1 = 2, Noip1 =y) = (1 —oan)an + (1 —ag)as)z
+ (1 — ag2)age + (1 — cu2) o)y
+ Avie + Aaoie + 4.

3. Ratemaking application

3.1. Data

The data used in this section are drawn from an automobile portfolio
belonging to a major insurance company operating in Spain. The data have
been used previously in Bermidez (2009) and Bermudez and Karlis (2011,
2012, 2017). Only cars categorized as being for private use were considered.
The data contain information for 14,386 policyholders with full coverage,
policies that include third-party liability (claimed and counted as N; type),
a set of basic guarantees that include emergency roadside assistance or le-
gal and medical assistance (claimed and counted as Ny type) and, finally,
comprehensive coverage (damage to the policyholder’s vehicle caused by any
unknown party, including damage resulting from theft, flood or fire) and
collision coverage (damage resulting from a collision with another vehicle or



object when the policyholder is at fault), also claimed and counted as N
type.

We use seven years of data for each policyholder. This means that for
each individual we have seven observations made at successive time points
for the two types of claim considered here (i.e. third-party liability and all
other guarantees). For each individual, we also dispose of a set of covariates,
some of which vary across time. For illustrative purposes, we have only opted
to employ several of the more usual covariates for pricing an automobile in-
surance contract. In Table 1 these exogenous variables are described. Figure
1 presents the observed proportions for each variable across the 7 years of
study. We see that for some of the covariates, as expected, the proportion
changes during the years. Also Figure 2 shows the joint frequencies for the
two types of claims across years. We can see that this remains relatively
stable across years with minor changes.

GEN Equals 1 for women and 0 for men

ZON  Equals 1 when zone is deemed high risk (northern Spain)

LOY Equals 1 if the client has been with the company for more than five years
AGE Equals 1 if the insured is 30 years old or younger

POW Equals 1 if the vehicle’s horsepower is equal to or greater than 5500 cc

Table 1: Explanatory variables used in the application
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For comparative purposes, three different, yet representative, profiles were
selected from the portfolio (see Table 2). The first was chosen from among
the profiles considered to be good drivers, with a lower mean value than that
of the average for the portfolio. A profile with a mean lying very close to
this average was chosen for the second profile. Finally, a profile considered
to represent a bad driver (with a mean above the average) was selected.

GEN ZON LOY AGE POW

Good 0 1 1 0 0
Medium 0 0 1 0 1
Bad 0 0 0 1 1

Table 2: Three different profiles for comparison

3.2. Results

Leaving the covariates to one side in order to demonstrate the conve-
nience of using models with full dependence assumptions, we first fitted the
BINAR(1) models considered above together with three models that present
more restrictions as regards their dependence assumptions. These included
a model that does not assume any dependence assumptions; a model that
assumes no time series correlation, and hence considers the data as bivariate
Poisson observations, as in Bermudez (2009); and a model where no cross
dependence is considered, and hence it fits two independent INAR(1) models,
as in Boucher et al. (2008). The estimated parameters and the log-likelihood
of the fitted models are presented in Table 3.

Model éu1 oo M As ¢  Log-likelihood
No time nor cross dependence 0.0766  0.0969 -53465.48
No cross dependence 0.0391 0.0667 0.0736 0.0902 -53171.69
No time dependence 0.0625 0.0828 0.0141 -52420.80
Basic BINAR(1) 0.0349 0.0627 0.0601 0.0768 0.0138 -52149.43
Full BINAR(1) Az[g;gig 3;82§} 0.0583  0.0756 0.0137  -52100.40

Table 3: Fitting different models, without covariates, to the data

Table 3 shows the marked improvement achieved when using the BINAR
models compared to the results obtained with the simplest models. This
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means that we need to consider both time and cross correlations to fit the
available data. Once the effectiveness of the BINAR(1) models had been
assessed, covariates to model A\; and Ay were included. Table 4 shows the
log-likelihoods, together with AIC and BIC, of the regression models fitted.

Model Restrictions Log-likelihood AIC

No time nor cross dependence {ajx}jr=12=¢ =0 -53244.29 106512.58 106626.81
No cross dependence ¢=0 -52982.14 105990.28 106114.78
No time dependence {0 }je=12=0 -52228.24 104482.48 104606.91
Basic BINAR(1) a1 = a9 =0 -51999.60 104029.20 104172.57
Full BINAR(1) No restriction -51968.70 103971.40 104133.81

Table 4: Fitting comparison for different regression models

The same conclusions as those obtained in the case with no covariates can
be derived from the respective regression models. Again, the improvement
achieved with the BINAR(1) regression models, compared to the simplest
models, is apparent. If we compare the simplest regression models, it seems
that cross correlation is more significant than autocorrelation for these data,
since the improvement in log-likelihood is larger for the model with only
cross correlation. Finally, if we compare the BINAR(1) regression models,
we see that a more complicated structure, allowing for cross autocorrelation,
is needed for these data.

Tables 5 and 6 show the results of fitting the Basic BINAR(1) and the
Full BINAR(1) regression models, respectively. In the case of dependence
parameters, a’s and ¢ are significant in all cases, implying that time de-
pendence and cross dependence must be considered to fit the data at hand.
Moreover, Table 6 validates the presence of cross autocorrelation because of
the significance of a1 and aip;. The largest dependence effect is that provided
by sy, which measures the influence of past third-party liability claims on
the number of claims against all the other guarantees.

If we focus on the covariates, most are significant and present similar
effects in both models. However, note that GEN and LOY are only significant
with respect to the claims for all other guarantees. In this case, women are
more likely to report claims of this type, while policyholders with more than
5 years in the company are less likely to do so. Some covariates, i.e. ZON
and POW, present opposite effects on the number of claims depending on the
type of coverage. Northern Spain is really a higher risk zone with respect to
third-party liability coverage; however, driving in that zone would decrease
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the expected number of claims for all other guarantees. A similar pattern
is found when the horsepower of the car is equal to or greater than 5500cc,
reducing the expected number of claims for the third-party liability guarantee
and increasing it for the rest of guarantees. Finally, AGE is significant in both
models and being a younger driver caused the expected number of claims to
increase for both types of claim.

N1 N2
Estimate s. err z-value  Estimate s. err z-value
(Intercept)  -2.8122  0.0447 -62.913* -2.4884  0.0408 -60.990*

GEN 0.0476  0.0390 1.221 0.0860  0.0339  2.537*
ZON 0.2241 0.0346  6.477* -0.3052  0.0361  -8.454%*
LOY 0.0135  0.0305 0.443 -0.2586  0.0261  -9.908*
AGE 0,3001 0.0388  7.735* 0.2837  0.0330  8.597*
POW -0.1115  0.0397  -2.809* 0.1124  0.0377  2.981*
o1 0.0322  0.0012 26.817*
92 0.0490  0.0014 36.275*
0] 0.0129  0.0008 16.177*

Table 5: Results from fitting the Basic BINAR(1) regression model

N]_ N2
Estimate s. err z-value  Estimate s. err z-value

(Intercept)  -2.8435  0.0460 -61.617* -2.7352  0.0446 -61.322*

GEN 0.0611 0.0403 1.517 0.1034  0.0351  2.949*
ZON 0.1827  0.0363  5.033* -0.2715  0.0369  -7.355%*
LOY -0.0151  0.0316  -0.477 -0.1403  0.0273  -5.144*
AGE 0.2987  0.0401  7.448* 0.2934  0.0345  8.494*
POW -0.1058  0.0411 -2.573* 0.2404  0.0410 5.856*
o1 0.0397  0.0016 25.341*
Q2 0.0389  0.0019 20.129*
o2 0.0178  0.0010 18.653*
21 0.0582  0.0017 34.121*
0] 0.0133  0.0004 34.676*

Table 6: Results from fitting the Full BINAR(1) regression model

3.3. Ratemaking
An analysis of the impact of using these models for ratemaking was also
conducted, as the differences between the models proposed in Section 2 were
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analysed through the mean (pure premium) and the variance (necessary for
loaded premium) of the number of total claims (N7 + N3) per year for certain
profiles of the insured parties. First, Tables 7 and 8 compare the mod-
els’ means and variances, respectively, of the three profiles for the different
claims reported in the last year. Secondly, Tables 9 and 10 compare the BI-
NAR(1) regression models by focusing on the Medium profile and expanding
the number of claims reported in the last year.

Tables 7 and 8 show that including different dependence assumptions
in the models may lead to very different premiums. The first two columns
(models without autocorrelation) present constant means and variances since
they are independent of the number of claims in the last year. The model
in the second column, which includes cross correlation, differs from that in
the first column in that the variances are larger (due to cross correlation).
The model in the third column (with only autocorrelation) presents means
that depend on the claims reported in the last year and that are larger than
those in the two previous models when a claim was reported. In the last two
columns, i.e. BINAR (1) models that simultaneously include autocorrelation
and cross correlation, the means also depend on the claims reported in the
last year. While the means and variances of the Basic BINAR(1) model are
close to those for the model with only autocorrelation, the Full BINAR(1)
model presents larger means and variances when a claim was reported in the
last year, especially a third-party liability claim. Otherwise, lower means and
variances are obtained when no claims were reported. Therefore, allowing for
cross autocorrelation leads to a significant change in premiums. In particular,
their range of variation is larger. It is worth recalling that this model allows
for overdispersion.

Following the above discussion concerning the inclusion of cross auto-
correlation, and hence allowing for overdispersion, Tables 9 and 10 show
that the range of premiums for the Medium profile is much wider in the
case of the Full BINAR(1) model than it is in that of the Basic BINAR(1)
model. The former moves from a premium of 0.152 when no claim of any
type was reported to a premium of 0.616 when three claims were reported
for each type of claim. In the case of the Basic BINAR(1) model, this range
moves from 0.161 to 0.405. A closer inspection shows that the presence of
third-party liability claims in the last year has a crucial role in this pattern.
When no third-party liability claims were reported, premiums for the Full
BINAR(1) model were lower than they were for the Basic BINAR(1) model.
This reduction in premiums is offset by the larger premiums obtained when
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Profile Last year aii=aos aj1=a ¢=0 Basic Full

(z,y)  =¢=0 =0 BINAR(1) BINAR(1)
Good (0,0) 0.1446  0.1255 0.1386  0.1493 0.1384
(0,1) 0.1446  0.1255 0.2010  0.1983 0.1951
(1,0) 0.1446  0.1255 0.1767  0.1815 0.2363
(1,1) 0.1446  0.1255 0.2391  0.2305 0.2930
Medium  (0,0) 0.1776  0.1477 0.1673  0.1616 0.1524
(0,1) 0.1776  0.1477  0.2297  0.2106 0.2091
(1,0) 0.1776  0.1477  0.2054  0.1938 0.2502
(1,1) 0.1776  0.1477  0.2678  0.2427 0.3069
Bad (0,0) 02420 02118 02275  0.2218 0.2078
(0,1) 0.2420  0.2118  0.2899  0.2708 0.2645
(1,0) 02420 02118  0.2656  0.2540 0.3057
(1,1) 0.2420  0.2118  0.3280  0.3030 0.3624

Table 7: Premium Calculations from different models: Means

a third-party liability claim was reported.

3.4. Predictive ability

In order to assess the predictive ability of the Full BINAR(1) model we
ran the following experiment. We randomly selected 11,500 clients (that is,
80% of our data set) and used them as a training set, while the remaining
2,886 (20%) clients were used for out of sample prediction. For this set, we
predicted the value at ¢ = 7, based on previous experience and available
covariate information.

Table 11 presents the prediction sum of squared error (PSSE) for the
different models together with the observed frequency of some basic cells,
namely (0,0), (0,1), (1,0) and (1,1). As can be seen from the PSSE, all the
models behave almost the same, although the Full BINAR(1) model behaves
slightly better. This is no surprise since all the models can capture the mean
effect. The interesting contribution of BINAR(1) models lies in the effect of
time dependence, cross dependence and overdispersion. In this sense, mod-
els with cross correlation predict the cells much better. The Full BINAR(1)
model also allows for overdispersion and, hence, is better for prediction pur-
poses. Note that this model presents the best predictions among the fitted
models, but still not good enough for pairs (0,1) and (1,0).

To examine in greater detail the predictions from the Full BINAR(1)
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Profile Last year aii=aos aj1=a ¢=0 Basic Full

(z,y)  =¢=0 =0 BINAR(1) BINAR(1)
Good (0,0) 0.1446  0.2214  0.1386  0.1752 0.1650
(0,1) 0.1446  0.2214  0.1971  0.2218 0.2199
(1,0) 0.1446  0.2214 0.1753  0.2063 0.2579
(1,1) 0.1446  0.2214  0.2338  0.2529 0.3128
Medium  (0,0) 0.1776  0.2436  0.1673  0.1875 0.1789
(0,1) 0.1776  0.2436  0.2258  0.2340 0.2338
(1,0) 0.1776  0.2436  0.2039  0.2186 0.2719
(1,1) 0.1776  0.2436  0.2624  0.2652 0.3267
Bad (0,0) 02420  0.3077 0.2275  0.2477 0.2344
(0,1) 0.2420  0.3077  0.2860  0.2943 0.2893
(1,0) 0.2420  0.3077  0.2641  0.2788 0.3274
(1,1) 0.2420  0.3077  0.3226  0.3254 0.3822

Table 8: Premium Calculations from different models: Variances

model for each observation in the test set, we calculated the joint pmf con-
ditional on the past. By summing all the observations in the test set, we
created the expected frequencies for all pairs. Figure 3 presents barplots for
the two different types of claim, i.e. we report only the marginal frequencies.
A comparison with the observed frequencies shows that the model makes
sufficiently good predictions of the expected number of claims for the last
period conditional on the information from the previous time points. Thus,
the use of the model for premium calculations is well supported.

4. Conclusions

In this paper, we have discussed the effect of simultaneously including
different dependence assumptions in ratemaking models. Specifically, we
have focused our attention on three sources of dependence: cross depen-
dence, time dependence and cross-time dependence. BINAR(1) regression
models are presented as an instrument that can account for the underlying
correlation between two types of claim arising from the same policy, the se-
rial correlation between the observations of the same policyholder and the
correlation resulting from a combination of these two previous correlations.

Using an automobile insurance database recording the claim frequency
history of policyholders (seven years) with two types of coverage (third-party
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Ny
0 1 2 3
Ny Mean Var Mean Var Mean Var Mean Var
0.161 0.187 0.193 0.218 0.225 0.249 0.258 0.280
0.210 0.234 0.242 0.265 0.274 0.296 0.307 0.327
0.259 0.280 0.291 0.311 0.323 0.342 0.356 0.374
0.308 0.327 0.340 0.358 0.372 0.389 0.405 0.420

w N = O

Table 9: Premiums based on the Basic BINAR(1) model and past history for Medium
policyholder profile

Ny
0 1 2 3
Ny Mean Var Mean Var Mean Var Mean Var
0.152 0.179 0.250 0.272 0.348 0.364 0.446 0.458
0.209 0.233 0.306 0.326 0.404 0.419 0.502 0.512
0.265 0.288 0.363 0.381 0.461 0.474 0.559 0.567
0.322 0.343 0.420 0.436 0.518 0.529 0.616 0.622

W N = O

Table 10: Premiums based on the Full BINAR(1) model and past history for Medium
policyholder profile

liability guarantee and all other guarantees), we fitted the BINAR(1) regres-
sion models presented above together with a number of other models that
included various restrictions with regards to the dependence assumptions.
The implications for the ratemaking problem of pricing an automobile insur-
ance contract, including the fitting of the models and a predictive analysis,
have been considered.

The best fit, in terms of AIC and BIC, was obtained for the Full BI-
NAR(1) regression model, implying that the three sources of dependence
must be taken into account simultaneously. A comparison of the simplest
regression models shows that cross correlation appears to be more significant
than autocorrelation for these data, since the improvement in log-likelihood
is greater for the model with only cross correlation.

Different dependence assumptions in the models can lead to very different
premiums. In fact, the dependence assumptions may reveal different aspects
of the data. We know, for example, that the assumption of time dependence
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PSSE for Frequency of

Model Ny No Ny + Ny (0,00 (0,1) (1,00 (1,1)
No time nor cross dependence 415.7 466.2 881.9 2451 217 182 16
No cross dependence 416.8 464.9 881.6 2450 217 183 17
No time dependence 416.1 466.3 882.3 2480 187 152 46
Basic BINAR(1) 415.5  464.5 880.1 2482 188 148 44
Full BINAR(1) 415.2 464.4 879.6 2488 185 137 42
Observed 2518 144 108 36

Table 11: Out of sample prediction summary

Ny g - N

1000 1500 2000 2500
I I I |
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1
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I

500
1
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Figure 3: Observed (dark grey) and predicted (light grey) frequencies for the 2,886 clients
in the test set. Full BINAR(1) model

enables us to account for the unobserved heterogeneity captured by the past
claims experience of policyholders. Likewise, the assumption of cross depen-
dence enables us to account for the positive correlation derived from the fact
that the same accident can lead to a claim of each type and, hence, we take
this extra variability into consideration. Finally, when cross-time dependence
is assumed, as in the Full BINAR(1) with a bivariate Poisson innovation dis-
tribution, overdispersion is taken into account, since the marginals are no
longer a Poisson distribution.

To test the model’s predictive ability, an out of sample study was con-
ducted, from which we conclude that the Full BINAR(1) regression model
presents the best prediction sum of squared error and the best estimations
for the most common cells, which supports its use for premium calculations.
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Finally, the study reported here might be extended in two directions.
First, although overdispersion is sufficiently captured here by the covariates
and by the model structure of the Full BINAR(1) model, the assumption of
bivariate Poisson innovation might be replaced with an overdispersed bivari-
ate pdf at the added cost of a more complicated, yet less well-known model.
Second, the time dependence assumption is overly limited by the number
of claims reported in the last insurance period. This means, for example,
that no time dependence is implied for an insured with no claims in his last
contract. Models based more firmly on time structure could be used like
BINAR(p) models.
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