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千里之行，始於足下 

“Un llarg camí comença amb un sol pas” 

“A journey of a thousand miles begins with a single step” 

Lao-Tzu, Chinese philosopher (604 BC - 531 BC) 
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ABSTRACT 

The aorta is the main artery of the body, whose function is to collect the blood ejected 

by the heart and distribute it to all tissues. The elastic degree of the aortic wall necessary 

to withstand blood pressure is mainly provided by the distribution of collagen fibres and 

elastic lamellae. Fibrilin-1 is an essential protein of the elastic lamellae, which is mutated 

in Marfan syndrome (MFS), a connective tissue disorder characterized by the formation 

of aortic aneurysms with a high risk of mortality. Multiphoton microscopy and the 

microCT, among other approaches, have been used to evaluate the structural 

characteristics of the aortic tissue, the but there is currently little information about the 

three-dimensional histopathological structure of the MFS aorta. Besides, the differences 

in the protein content with respect to the healthy aorta have been analysed by means of 

studies that used conventional cell culture, neglecting the effect of the mechanical forces 

that the vascular smooth muscle cells (VSMC) constantly perceive in vivo due to blood 

pressure. 

In this context, we have developed four innovative technologies that have allowed us to 

generate new data on the histopathological structure and the protein content of the aorta 

MFS in comparison to healthy samples: 

- A multiphoton microscopy and image processing methodology was applied to MFS 

mouse aortae to visualise and analyse the microscale morphology of the elastic lamellae. 

Bigger and more abundant fenestrae were observed in the aorta of MFS compared to 

those of the WT. With this results, fenestrae become potential markers of lamellar 

damage in MFS. 

- A microCT and image processing protocol to evaluate the histological integrity of the 

aortic wall. This technology was applied to MFS and WT mice aortae, and an increase 

in the area and the thickness of the tunica media and other histological parameters was 

observed in relation to age progression (3, 6, and 9 months (mo)). This increase was 

parallel between WT and MFS, but the SMF 9mo showed values significantly higher than 

the WT 9m. Therefore, we hypothesise that the MFS aorta may undergo an accelerated 

middle-ageing process. 

- A bioreactor of mechanical stretching to examine the protein content of VSMCs of 

healthy human aorta and MFS cultivated under in vivo-like mechanical conditions. The 

MFS cells showed an altered reaction to the administration of stretch, not related to the 

content or distribution of phenotypic markers. Therefore, the MFS VSMCs show altered 

cell-matrix communication not linked to the phenotype. 

- Finally, by means of the systematic review of the scientific literature, the most complete 

human aortic tissue proteome to date was generated. It is divided into a healthy and an 

aneurysmal databases, containing 919 and 724 different proteins, respectively. 

The application of these technologies has provided new knowledge in the field of 

vascular biology, especially with regard to Marfan syndrome.
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RESUM 

L'aorta és la principal artèria del cos, la funció de la qual és recollir la sang expulsada 

pel cor i distribuir-la cap a tots els teixits. El grau elàstic de la paret aòrtica necessari per 

a suportar la pressió sanguínia ve donat principalment per la distribució de fibres de 

col·lagen i lamel·les elàstiques. La fibrilina-1 és una proteïna essencial de les lamel·les 

elàstiques, la qual es troba mutada en la síndrome de Marfan (SMF), un trastorn del 

teixit connectiu caracteritzat per la formació d’aneurismes d’aorta amb alt  risc de 

mortalitat. Per a avaluar les característiques estructurals del teixit aòrtic s’han utilitzat, 

entre d’altres, la microscòpia multifotó i el microCT, però avui encara hi ha poca 

informació sobre l'estructura histopatològica tridimensional de l'aorta SMF. D'altra 

banda, s’han analitzat les diferències en el contingut proteic respecte l’aorta sana 

mitjançant estudis que empraven cultiu cel·lular convencional, descuidant l'efecte de les 

forces mecàniques que les cèl·lules musculars llises vasculars (VSMC) perceben 

constantment in vivo a causa de la pressió arterial. 

En aquest context, hem desenvolupat quatre tecnologies innovadores que han permès 

generar noves dades sobre l'estructura histopatològica i el contingut proteic de l'aorta 

SMF en comparació a mostres sanes:  

- Una metodologia de microscòpia multifotó i de processament d'imatges es va aplicar a 

aortes de ratolins SMF per a visualitzar y analitzar la morfologia microscala de les 

lamel·les elàstiques. Es van observar fenestres més grans i abundants en l'aorta de SMF 

en comparació amb les del tipus WT; esdevenint les fenestres potencials marcadors del 

dany lamel·lar en la SMF. 

- Un protocol de microCT i processament d'imatges per a avaluar la integritat histològica 

de la paret aòrtica. Aquesta tecnologia es va aplicar a aortes de ratolins SMF i WT, i es 

va observar un increment de l'àrea i el gruix de la túnica media i d’altres paràmetres 

histològics en relació amb la progressió en edat (3, 6 i 9 mesos (mo)). Aquest increment 

fou paral·lel entre WT i SMF, però el SMF 9mo mostrà valors significativament més alts 

que els WT 9mo. Per tant, plantegem la hipòtesi que l'aorta SMF deu patir un procés 

accelerat d'envelliment a edat adulta mitjana. 

- Un biorreactor d'estirament mecànic per a examinar el contingut proteic de VSMCs 

d’aorta humana sana i SMF cultivades sota un ambient mecànic similar al real. Les 

cèl·lules SMF van mostrar una reacció alterada a l'administració de l'estirament, no 

relacionada amb el contingut ni distribució de marcadors fenotípics. Per tant, les VSMCs 

de SMF mostren una comunicació cèl·lula-matriu alterada no associada al fenotip. 

- Finalment, mitjançant la revisió sistemàtica de la literatura científica es va generar el 

proteoma de teixit aòrtic humà més complet de l’actualitat, dividit entre les bases de 

dades sana i aneurismàtica, que contenen 919 i 724 proteïnes diferents, respectivament.  

L'aplicació d'aquestes tecnologies ha proporcionat nous coneixements al camp de la 

biologia vascular, especialment pel que fa a la síndrome de Marfan. 
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ABBREVIATIONS 

 

ADAM A disintegrin and metalloproteinase 

ADAMTS A disintegrin and metalloproteinase with thrombospondin motif 

AEBP1 Adipocyte enhancer-binding protein 1 

BAV Bicuspid aortic valve 

BMP Bone morphogenetic protein 

BSA Bovine serum albumin 

CT Computed tomography 

D Dynamic (bioreactor chip condition) 

DOI Digital object identifier 

E Static (bioreactor chip condition) 

ECM Extracellular matrix 

EGF Epidermal growth factor 

EMILIN Elastin microfibril interface located protein 

FBN1 Human fibrillin-1 gene 

Fbn1 Murine fibrillin-1 gene 

FGF Fibroblast growth factor 

FN Fibronectin coating 

GAG Glycosaminoglycans 

GUI Graphical user interface 

IEL Internal elastic lamina 

LOX Lysyl oxidase 

LOXL LOX-like 

LTBP Latent TGF-β binding proteins 

MAGP Microfibril-associated glycoprotein 

MF Marfan syndrome (mice or cell culture condition) 

MFS Marfan syndrome (human disease) 

microCT X-ray computed micro-tomography 

MMP Metalloproteinases 

mo months old 

MRI Magnetic resonance imaging 
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PBS Phosphate-buffered saline 

PCR Polymerase chain reaction  

PDL Poly-D-lysine 

PDMS Polydimethylsiloxane 

PFA Paraformaldehyde 

RNA Ribonucleic acid 

ROI Region of interest 

SD Standard deviation 

SEM Scanning electron microscopy 

SHG Second harmonic generation 

SLRP Small-leucine-rich repeat proteoglycans 

SM22α Transgelin 

SMA Aortic smooth muscle actin 

SOD Superoxide dismutase 

TBS Tris-buffered saline 

TBS-T TBS-Tween buffer 

TEM Transmission electron microscopy 

TGF Transforming growth factor 

TGM2 Protein-glutamine gamma-glutamyltransferase 2 

TIMP Tissue inhibitor of MMPs 

TPEF Two-photon excitation fluorescence 

UV Ultraviolet light 

VSMCs Vascular smooth muscle cells 

WT Wild-type (murine condition) 

2D Two-dimensional, two dimensions 

3D Three-dimensional, three dimensions 
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1. The nature of the Aorta 

 
The primary role of the cardiovascular system is to distribute essential substances to 

tissues and remove metabolic byproducts from them1. The heart is the pump of this 

system, and the vasculature is the closed network of tubes that propels blood from the 

heart to the tissues and back. In mammals, the aorta is the main and largest artery of 

the body, measuring 1.2 m in length and ~26 mm in diameter in a healthy adult human2,3. 

This vessel directly collects the blood ejected by the heart, and branches out into arteries 

of gradually diminishing diameter up to billions of capillaries that ultimately regroup into 

a single vena cava that discharges de blood back to the heart4,5. 

 

1.1. Anatomy of the aorta 

The shape of the aorta is that of a candy cane, where the initial end emerges from the 

left ventricle of the heart, and the opposite end culminates by bifurcation at the lumbar 

region of the body6,7. Taking into account this shape, the aorta is divided into ascending, 

arch, and descending segments (figure 1A). The aortic descending part runs along the 

spine nourishing the thoracic organs, passes through the diaphragm, branches to supply 

the abdominal organs, and finally, it splits up into the two iliac arteries that irrigate the 

lower limbs6–8. Moreover, the vessels that supply blood to the animal’s head and the 

upper limbs (brachiocephalic, left common carotid, and left subclavian arteries) arise 

from the aortic arch (figure 1B). In summary, the aorta passes through the chest and 

abdomen, allowing all organs and tissues to be perfused with oxygenated blood from the 

heart. 

 

Figure 1. Anatomy of the aorta. A. Anatomical localisation of the whole aorta and its portions. B. Parts of 

the aorta confined within the thorax: ascending, arch, and thoracic descending. C. Aortic root localisation, 

disposition, and components. 
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The ascending aorta is constituted by the aortic root at the proximal end and the 

ascending tubular aorta that is a vertical tube that joins the aortic arch, the border 

between both ascending aorta parts is called the sinotubular junction (figure 1B)7. The 

aortic root is a physiologically dilated vessel space that is placed inside the heart and 

hosts the aortic semilunar valve, which regulates blood entrance to the aorta (figure 1C). 

This structure is a tricuspid valve, constituted by three cusps or leaflets, that opens 

passively due to blood ejection in systole and closes passively in diastole, impeding 

retrograde blood flux to heart4,8. The vessel tube of the root is constituted by three round 

dilatations in the shape of sacks, named Valsalva sinuses, that allow the valve leaflets 

to open up to 90º 2. In addition, the origins (ostia) of the coronary arteries that irrigate the 

cardiac tissue arise from these sinuses (figure 1C). 

 

1.2. Histology of the aorta 

The aorta is classified as an elastic artery since its wall is structured to serve as conduct 

that pushes the blood forward. Accordingly, its wall is divided into three layers: tunicae 

intima, media and adventitia9 (figure 2). The innermost layer named the tunica intima is 

composed of a continuous monolayer of endothelial cells and a thin subendothelial bed 

of loose connective tissue that together cover the luminal surface of the vessel10. The 

tunica media, the middle and thickest layer, is composed of a series of elastic lamellae 

alternating with circumferentially oriented layers of smooth muscle cells (VSMCs) (see 

below for further detail). The tunica adventitia, the outermost layer, is composed of loose 

fibroelastic connective tissue enriched in collagen fibres arranged longitudinally, 

fibroblasts, some elastic fibres, macrophages, small nerves and vasa vasorum11. Oxygen 

and nutrients are supplied to the aortic wall by simple diffusion from the lumen on one 

side, and, in the case of thick aortic walls (human, but not mice), on the outer side they 

are supplied by the vasa vasorum capillary network, which extends from the adventitia 

to the last layers of the tunica media7,9. The internal elastic lamina (IEL), which is the first 

lamella, separates tunicae intima and media, and the external elastic lamina often lines 

the boundary between tunicae media and adventitia5. 
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Figure 2. Histological elements in the aortic wall: tunicae intima, media, and adventitia, and intrinsic 

components. Adapted from ref.12. 

The tunica media has a complex, highly interrelated matrix structure that occupies most 

of the aortic wall’s thickness. Within it, elastic lamellae or laminae are elastic fibres 

arranged as fenestrated sheets that organise as multiple concentric cylinders (figure 2). 

Additionally, lamellae are woven into a three-dimensional (3D) interconnecting network 

with thin elastic fibres connecting lamellae one to another and with the VSMCs9. The 

interlamellar space (i.e. between lamellae) is filled by VSMCs that are surrounded by 

extracellular matrixA (ECM) components such as collagen fibres, proteoglycans, 

signalling factors, and fibronectin13,14. 

 

1.3. Aortic biomechanics 

Environmental cues in tissues can be classified into biochemical (pH, oxygenation, 

growth factors, cytokines, chemokines, hormones and lipoproteins) and biomechanical. 

Regarding the latter, the aortic wall is continuously subjected to three types of 

physiological mechanical stressesB: shear stresses originated from the blood flow 

rubbing the vessel lumen surface, circumferential stresses from the pulsatile blood 

pressure, and longitudinal stresses from surrounding tissue (mainly due to motion of the 

heart)9. To optimally bear aortic mechanical stresses, VSMCs orient in the 

circumferential direction, in contrast to the endothelial cells, which are oriented parallel 

to the blood flow direction in the vessel (figure 2, left panel)8,11.  

In the aorta, shear and longitudinal stresses are much smaller than the circumferential 

one15. In systole, the generated pressure by ventricle contraction pushes the blood 

through the aortic valve and onward the arterial tree (figure 3A). The aorta lumen 

expands to accommodate the whole volume of this ejected blood, and stores a fraction 

of the volume in the expanded part4 (approximately the 50% of the ventricular stroke16). 

Then, during diastole, the vessel recoils progressively back to the initial diameter, 

propelling the stored blood volume forward even though no force is being exerted by the 

heart5,11. The specific structural arrangement and composition of the aorta wall allow this 

elastic response to the intermittent blood pumping by the heart, which serves to 

withstand the circumferential stress caused by the hemodynamic pressure (figure 3B)7. 

Additionally, the distension of the aorta with every heartbeat dampens the pulsatile 

nature of blood flow, turning the intermittent cardiac output into a nearly continuous flow 

downstream1,5. This phenomenon is the so-called Windkessel effect of the large arteries 

                                                      
A The extracellular matrix (ECM) is the three-dimensional, non-cellular structure that serves as framework 

for all tissues. 

B Stress is the force applied to an object divided by the area over which that force is applied. Strain is the 

quantitative measure of the deformation of an object induced by a given force. 
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and is made possible by means of a specialised ECM uniquely designed to provide 

regulated elastic recoil4,9,17. 

 

Figure 3. Circumferential stress occurring at the ascending aorta. A. Systolic blood ejected by the heart 

opens the aortic root cusps and flows through the ascending aorta. The blood volume pushes the vessel 

wall outwards, augmenting the volumetric capacity. In diastole, the walls recoil back to the initial size, 

pushing more blood forward. B. Schematic displaying the direction of the forces involved in the 

circumferential stress in the aortic wall. Adapted from ref. 4. 

The tunica intima is particularly important in atherosclerosis and restenosis but 

participates little in the mechanical properties of the normal conducting vessel. Moreover, 

VSMCs do not contribute appreciably to the elastic behaviour of the aortic wall, as 

opposed to their crucial contraction role in smaller vessels4,9. Notably, the components 

of the arterial wall that account for the majority of the aorta mechanical properties are 

the collagen and elastin deposited by smooth muscle cells in the tunica media9. The 

large amount of elastin present in the tunica media makes the vessel highly distensible 

(i.e. compliant, elastic) so that it can effectively stretch to fit all the volume of ejected 

blood and gradually de-stretch afterwards1. Elastic lamellae are essentially a highly 

elastic network of fibres, capable of stretching more than 100% under physiological 

conditions and passively return to their original length when the tension is released4,5. 

Conversely, collagen fibres are far less extensible than lamellae, as they can be 

stretched only 3% to 4% under physiological conditions. Thus, the substantial 

distensibility or compliance of the aortic wall under normal conditions results mainly from 

the reversible extension of the elastic lamellae in the media7. Yet, the adventitial collagen 

fibres ultimately govern the tensile strength of the aortic wall to limit the extent of 

stretching and thereby prevent rupture of the tissue2,11,18. To provide this distention limit, 

collagen fibres are usually attached to the other components of the aortic wall with some 

slack, so that they are normally not under tension. The stretching of these other 

components takes up the slack, which then tautens the collagen fibres, and finally, they 

restrict greater distention of the tissue4. In addition, the elastin-to-collagen ratio is 70:30 

at proximal aorta, allowing the maximum shock-absorbing effect of the cardiac output. 

With age, elastin content decreases whereas collagen increases, thus augmenting 

vascular stiffness in ageing15. 

As previously explained, the circumferential stresses occur when the blood pressure 

pulls apart the walls in the radial direction from the centre of the lumen, and thus stretch 
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the aortic wall (figure 3B). In particular, the mechanical pressure acts perpendicular to 

the direction of blood flow at 66 beats per minute in humans, which corresponds to a 

frequency of 1.1 Hz19. This generates circumferential stress in the wall, which in turn 

induces a ~13% strain in diameter (averaged value of data from refs. 19–21). Then, the 

wall recoils back to its original size. This process is repeated cyclically for every 

heartbeat.  
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2. Aortic pathology: Aneurysm 

 
As previously mentioned, aortic wall components are strictly structured to provide the 

elasticity needed for propelling the blood downstream22,23. Therefore, it is of fundamental 

importance to preserve its integrity in order to maintain effective vessel function24,25. In 

some vascular disease conditions, the aortic structure is severely altered, which 

compromises its vital role in blood conduction. Aortic diseases range from atherosclerotic 

stenosis to ulcer, calcification, thromboembolic disease, aneurysm, pseudoaneurysm, 

intramural haematoma, aortic tumours, and dissection. Similar to other arterial illnesses, 

aortic diseases may be diagnosed after a long period of asymptomatic development, or 

they may have an acute presentation26. 

 

2.1. Epidemiology of aortic aneurysms 

Aneurysm is the second most frequent disease of the aorta after atherosclerosis26. This 

condition is the irreversible pathological dilatation of the aortic diameter with loss of wall 

parallelism26,27 (figure 4A-B). Aortic aneurysms are currently a major health concern in 

the Western countries due to its high incidence and fatal outcome owing to dissection 

and rupture (figure 4C). They are the 20th cause of death in all ages in the United States 

of America (USA) in 2015, with more men affected than women26, causing more deaths 

than human immunodeficiency virus (VIH)28,29. Although abdominal aorta aneurysms are 

more common, approximately 10.4 per 100,000 people in the USA develop thoracic aorta 

aneurysms each year28. However, the real number is likely to be higher since many cases 

often stay undiagnosed. To avoid undiagnosing life-threatening aneurysms, screening 

programs are progressively being implemented in the European primary care system26. 

 

Figure 4. Aortic aneurysm and dissection schematics. A. Shape of a healthy human aorta. B. Shape of an 

aorta with aneurysms throughout all its length. C. Aortic wall dissection. Dark red marks luminal blood 

penetrating in between aortic wall layers. 
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2.2. Aetiology of aortic aneurysms 

Aortic wall degeneration due to atherosclerosis is the most common cause of aortic 

aneurysms, especially of the abdominal portion30,31. Thus, age, male gender, cigarette 

smoking, atherosclerotic cardiovascular disease, and hypertension are risk factors 

associated with the presence of aneurysms26,30. Other causes of aortic aneurysm are 

genetic connective tissue disorders (Marfan, Loeys-Dietz, and vascular Ehlers-Danlos 

syndromes), congenital anomalies of the aortic valve (for instance, bicuspid aortic valve), 

familial genetic variants (coding for altered aortic smooth muscle actin (SMA), myosin-

11, fibrillin-1, SMAD3, TGF-β (transforming growth factor-beta), and TGF-β receptor 

type-2 proteins, among others), inflammatory diseases (syphilitic, Takayasu and giant 

cell aortitis), and trauma2,7,30,31. Genetically triggered aneurysms behave differently from 

atherosclerotic aneurysms7. Many patients with connective tissue disorders also present 

bicuspid aortic valve, which increments the risk of aortic rupture and death. Furthermore, 

patients with an aortic aneurysm are at increased risk of cardiovascular events, mostly 

unrelated to the aneurysm, but plausibly related to inflammation and risk factors such as 

smoking or hypertension26. 

 

2.3. Prognosis of aortic aneurysms  

An aneurysm is a clinically silent, but lethal, disease that is often asymptomatic before 

an acute event occurs: dissection or rupture of the aortic wall26,28. Dissection is the 

separation of aortic wall layers by intramural bleeding (figure 4C), often with subsequent 

formation of a false lumen32. Furthermore, an aortic rupture affects the whole thickness 

of the vessel wall, leading to haemorrhage towards surrounding tissues and fatal 

exsanguination7,10. Only 30-59% of patients with sudden aneurysm rupture reach the 

hospital alive, and an additional 27-40% die in the hospital7,28. The chance of aortic 

dissection occurrence is related to the aortic diameter31, being more probable as the 

aneurysm grows24,28,33. In the ascending aorta, >60 mm is the diameter “hinge point” 

where there is a dramatic increase in the risk of acute complications26,28. To prevent 

premature death caused by aneurysm rupture, early clinical diagnosis and subsequent 

surveillance and treatment are essential.  

 

2.4. Diagnosis of aortic aneurysms 

The natural history of aneurysms is the gradual expansion of the aorta over a period of 

years and eventual rupture7. The long period of subclinical growth in the diameter is 

asymptomatic, thus aortic aneurysm detection is often an incidental finding on abdominal 

or chest radiography performed for other medical purposes26. Once identified, ultrasound 

echography (e.g. echocardiography) is the principal imaging method for aortic aneurysm 

monitoring in clinical practice (figure 5A-B), because of its ability to measure the aortic 

size and detect wall lesions, and because of its wide availability, painlessness, no risk, 
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and low cost26,30. Given that ultrasound-derived measurements of vessel diameter are 

not accurate at all, many experts recommend the use of ultrasound for follow-up of small 

aneurysms and the use of computed tomography (CT) or magnetic resonance imaging 

(MRI) for larger aneurysms and surgery planning7,30. These relatively non-invasive 

imaging modalities permit visualising the entire aorta in 3D to identify the affected parts 

adequately (figure 5C-E)26,31. Compared to MRI, CT requires a shorter time for image 

acquisition and processing, and it is a widely available technique26. Conversely, although 

contraindicated in patients with metal implants, MRI does not require dangerous ionising 

radiation as CT, thus it is highly suitable for serial follow-up studies in patients with known 

aortic disease. MRI also allows to visualise and measure blood flow, thus pulse wave 

velocities and wall shear stress can be determined26.  

 

Figure 5. Diagnosis imaging of aortic aneurysms. A. Echocardiography of a healthy ascending aorta. B. 

Echocardiography of ascending aorta aneurysm. Note that the sinotubular junction, the border between the 

aortic root and the tubular ascending aorta, is no longer present. C. Slice of thorax CT, displaying the aorta, 

vertebrae, and other tissues26. D. 3D reconstruction of the aorta at the CT acquisition. E. 3D reconstruction 

of an aorta with a descending thoracic aneurysm. The heart is included in this reconstruction2. 

 

2.5. Treatment of aortic aneurysms 

After detection of an aneurysm, yearly follow-up of the aortic diameter should be 

performed, since the greatest vascular diameter is the decisive element in establishing 

the aneurysm growth30,31. The aneurysmal thoracic aorta grows increasing by about 1 

mm each year, yet growth in patients with familial thoracic aneurysms is accelerated at 

2.1 mm/year rate28. Today, there is no effective treatment to slow down aneurysm 

growth. Thus, because of the tight relation of aneurysm and atherosclerosis, minimising 

cardiovascular risk factors is recommended. Hence, aortic aneurysm patients should 

give up smoking, perform moderate physical activity, avoid competitive sports, and 

control their blood pressure to reduce aortic wall stress7,26,30. The preferred 
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pharmacological approach to reduce blood pressure in the aneurysmal aorta is the 

administration of β-blocker drugs, like propranolol or atenolol30,31. However, although 

successful in animal models of abdominal aneurysms, two large clinical trials 

demonstrated no benefit of propranolol treatment in patients with small abdominal 

aneurysms7. In addition, statin use can be recommended for almost all patients with 

abdominal aneurysms based on the presence of coexisting atherosclerotic disease7. 

Moreover, other drugs, such as aspirin or renin-angiotensin inhibitors (like losartan), are 

nowadays administered in various centres for aneurysmal patients. Importantly, current 

pharmacological therapies for aneurysm often only benefit a small subset of aneurysm 

patients, possibly as a consequence of heterogeneity of the underlying disease 

pathology34. 

To prevent final rupture or dissection of the aorta, timely surgical operation on a patient 

with a known dilatation of the aorta is advised30,31. The rationale for elective surgical 

treatment of aneurysms is that it is a safer procedure than an emergency surgical 

intervention28. Indications for surgery are based mainly on aortic diameter and growth 

rate pondered by the underlying cause of the aneurysm (kind of disease or anomaly), 

and the balance between the risk of rupture against the surgical risk26. In general terms, 

surgical intervention of the aorta should be performed when the ascending aortic 

diameter reaches 55 mm and, in the setting of bicuspid aortic valve, Marfan syndrome, 

or familial thoracic aneurysm, when it reaches 50 mm7. Surgical treatment of aneurysms 

can be performed by open surgical repair or by endovascular aneurysm repair (EVAR), 

with most patients undergoing EVAR as it is a less invasive intervention7. Endovascular 

therapy is the implantation of a stent-graft inside the aneurysmal vessel to conduct blood 

through it, and thus avoiding blood pressure on the real aortic wall. Conversely, open 

surgical repair replaces the aneurysmal region by a prosthetic vessel graft that is sewn 

to the remaining aortic wall2.  

Nonetheless, aortic diameter alone is not sufficient to explain aortic dissection, and there 

is a need for additional risk markers31. Although the size of the aneurysm is the most 

important factor in predicting rupture, wall thickness, intraluminal thrombus thickness, 

and peak wall stress may also contribute to predicting risk for rupture7. For this reason, 

many research is and has been performed on understanding this pathology to finally 

develop earlier or more accurate diagnosis approaches.  

 

2.6. Marfan syndrome 

One of the genetic disorders leading to an aortic aneurysm is Marfan syndrome (MFS)35. 

MFS is the most frequent heritable connective tissue disorder26, impacting on 1.5-17.2 

out of 100,000 inhabitants in the general population36, yet many affected individuals 

remain undiagnosed30. Symptomatology varies depending on the syndrome’s severity, 

but it mainly affects the skeletal, ocular, and cardiovascular systems37. More specifically, 

patients may present a strong susceptibility to ascending aorta aneurysm, long-bone 
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overgrowth, scoliosis, eye lens dislocation, and dural ectasia (figure 6). The leading 

cause of premature death in MFS patients is acute aortic rupture, which is preceded by 

a long period of progressive dilatation of the sinuses of Valsalva at the ascending 

aorta26,27,30,38. The European Society of Cardiology recommends elective surgery in MFS 

patients who have a maximal aortic diameter ≥50 mm 26. In contrast to the former life 

expectancy of MFS patients of 32 years, nowadays the application of an aortic prosthetic 

replacement allows patients to reach age expectancy up to 60 years30.  

MFS is caused by mutations in the fibrillin-1 gene (FBN1), inherited in an autosomal 

dominant manner, although about 30% of MFS cases are sporadic due to de novo 

mutations38. There are more than 3,000 reported different mutations throughout the 

FBN1 gene leading to this disorder, but the most common are punctual missenseC 

mutations usually at a calcium-binding epidermal growth factor (EGF)-like domain of the 

protein35,39–41. Moreover, FBN1 mutations cause an alteration in the secondary structure 

of the protein, delayed secretion, or enhanced degradation susceptibility of fibrillin-1 40. 

The type and localisation of the mutation determine, in some cases, the seriousness and 

variety of symptoms, but the clinical utility of this correlation is nowadays low38. In 

addition, not all mutations in FBN1 lead to MFS, some of them have been associated to 

other disorders such as Weill-Marchesani syndrome, a connective tissue disease that, 

contrary to MFS, is characterised by short stature and unusually short fingers and toes38. 

 

Figure 6. MFS patient characteristic features: long bone overgrowth (tall stature, long arms, legs and fingers 

(arachnodactyly)), indented breastbone (Pectus excavatum), spine deformities (scoliosis), and ascending 

aorta dilatation. 

 

                                                      
C Missense mutation occurs when a single nucleotide changes resulting in a codon change and a different 

amino-acid in the final protein. 
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2.7. Animal models for Marfan syndrome research 

In order to study disease progression in depth, researchers have developed multiple 

animal models that recapitulate the clinical spectrum of human diseases. Generation of 

mouse models of MFS has proven to be an effective substitute to dissect the complexity 

of MFS pathogenesis42. A validated mouse model of MFS is the Fbn1mgR/mgR, which 

expresses a reduced amount of normal fibrillin-1 43. These mice exhibit a more severe 

MFS symptomatology with lethal aneurysm dissection at age 2-3 months old42. 

Furthermore, one of the most representative models is the Fbn1C1039G/+ murine model, in 

which a cysteine is substituted with a glycine at amino acid 1039 in an EGF domain of 

the protein44, mimicking the most frequent type of mutation in human MFS patients. 

Fbn1C1039G/+ mice express an equal amount of normal and mutant fibrillin-1, and compile 

the skeletal and aortic human pathological manifestations42. However, despite their aortic 

affectation, their life expectancy is standard and do not die of aortic dissection.  
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3. Structure and protein composition 

analysis techniques 

 
The knowledge we currently have on the aortic structure and protein composition has 

been discovered by application of molecular biology and microscopy techniques.  

Protein presence in tissue or in in vitro cultured cells is mainly achieved by using bulk 

whole protein composition approaches or by immune-based techniques specific for 

individual proteins. On the one hand, western blot and immunochemistry are the most 

common immune-based techniques for particular protein detection by antibodies in 

biological samples. On the other hand, two-dimensional gel electrophoresis plus 

subsequent mass spectrometry is the usual approach employed for assessment of bulk 

protein composition of a sample, since it rapidly and reliably identifies what proteins are 

present in the sample45,46. By applying these techniques, many information has been 

historically unravelled regarding the protein content of biological systems. The neXtProt 

database (https://www.nextprot.org/) gathers all the currently known expression patterns 

of proteins in a broad range of human, healthy and diseased, cells and tissues. This 

database annotates protein presence information obtained by immunochemistry (from 

the Human Protein Atlas database, www.proteinatlas.org), by mRNA expression (from 

Bgee database, https://bgee.org/), and by classical proteomics methods (from UniProt, 

www.uniprot.org). To date, the complete set of expressed proteins in the human body, 

i.e. the human proteome, contains 20,199 different proteins. 

Furthermore, analysis methods employing microscopy have gradually unravelled 

information about composition and structure in biological samples. These methods allow 

in some cases the visualisation of the whole tissue or cell, and in other cases, enable 

the observation of specific elements or molecules wherever they are localised within the 

sample. There are many different microscopy techniques, relying on distinct optical 

phenomena, each one with its pros and cons. Besides, several steps must be done in 

advance to prepare the sample for optimal microscopy visualisation. Additionally, many 

microscopy techniques require subsequent computational processing of the acquired 

images to finally provide quantitative data relevant to researchers. 

Here, microscopy will be the only technique to be extensively explained since this 

approach is directly related to the technology development performed in this thesis. 

 

3.1. Basic concepts in optical physics 

Microscopes are optical instruments that allow one to see small objects that are below 

the resolution limit of the human eye47. This limit is the ability to perceive two nearby 
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objects as two separate objects48. In fact, the human’s eye is able to distinguish two 

objects that are at a distance of up to 0.1 mm (i.e. 100 µm), hence, 0.1 mm is our 

resolution limit. The size of most eukaryotic cells varies around 10 to 30 µm, whereas 

prokaryotic cells may be smaller. Thanks to the combination of different lenses, 

conventional optical microscopes provide a resolution limit up to 1 µm and electronic 

microscopes up to a 1 nm 47,49. Thus, microscopes are fundamental elements for the 

study of the morphology of cells and tissues.  

The range of colours that we perceive represents a very small portion of the 

electromagnetic spectrum (figure 7). Unlike humans, imaging machines cover almost the 

entire electromagnetic spectrum and also other important sources of energy, like 

acoustic, ultrasonic, and electronic (i.e. electron beams)50. Photons are the amounts of 

energy contained within electromagnetic waves. According to the energy per photon or 

the wavelength, the electromagnetic spectrum is grouped into (from highest energy to 

lowest, or from shortest wavelength to longest): gamma rays, X-rays, ultraviolet, visible 

light, infrared, microwaves and radio waves. Within the electromagnetic spectrum, the 

light spectrum ranges from ultraviolet to infrared, and the wavelength of the light 

determines its colour48. Thus, the wavelengths of light in the visible light spectrum range 

from 380 nm for violet light to 750 nm for red light, the infrared is longer than 750 nm, 

and the ultraviolet is shorter than 380 nm. White light is a combination of lights of different 

wavelengths in the visible spectrum (i.e. the normal light). It is important to note that the 

wavelength of an electromagnetic wave required to “see” an object must be of the same 

size as or smaller than the object50. 

 

Figure 7. Electromagnetic spectrum. The visible light ranges from 380 to 750 nm (lower panel). X-rays are 

more energetic and have shorter wavelength than the visible light. 

 

The different kinds of electromagnetic waves have very different effects upon biological 

objects. In this context, microscopes create a magnified, detailed image of seemingly 

invisible objects, based on the principles of light-tissue interaction48. When the light beam 

reaches a biological tissue, part of it penetrates the sample and part is reflected at the 

air-tissue interface51. Once inside, the penetrating light propagates while parts of it are 

absorbed, as well as scattered, and the rest is further transmitted across the whole 
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thickness of the sample without interaction. The process of light absorption is the 

transformation of light energy to some other form of energy (heat, sound, fluorescence) 

by specific tissue components such as melanin or haemoglobin. Scattering is the 

physical process where light is forced to deviate from a straight trajectory due to 

localised non-uniformities in the medium through which it passes. Light propagation 

within a tissue depends on the light’s wavelength and on the scattering and absorption 

properties of tissue components, such as size, shape, density, and their refractive index 

(which defines the angle of deviation of the light beam due to reflection or scattering). 

Hence, light absorption and scattering determine how far light can penetrate into a 

specific tissue. Importantly, most of the microscopy images are generated by the incident 

light reflection or absorption produced by the sample being imaged50. 

 

3.2. Sample preparation for microscopy 

Processing of biological samples is necessary to make them adequate for proper 

subsequent microscopy analysis while maintaining their in vivo native structure. The 

common steps in tissue or cell processing are: conservation by fixation, embedding 

within a solid scaffold block, sectioning or cutting thin laminas of the block, and 

highlighting the desired sample structures by staining or addition of marked antibodies 

(figure 8). Each of these steps holds variations depending on the type of biological 

sample, the structures to be observed, or the kind of microscope to be used. Moreover, 

each step induces modifications in the original specimen, which can lead to not-naturally-

present artefacts. 

 

Figure 8. Sample preparation steps for microscopy analysis: sample extraction from animal (A), fixation (B), 

embedding (C), sectioning (D), staining or addition of a marked antibody (E), and visualisation using the 

microscope (F). 

 

Since biological samples are extracted from their native place, fixation is required to stop 

the natural degradation occurring post-mortem (figure 8B)52. Fixation kills the cells and 

preserves the morphology of tissue and cellular components as similar to in vivo as 

possible. However, there is no universally ideal fixative, since each can be adequate for 

specific structures or microscopy techniques47. Particularly, the process of fixation can 

be done physically or chemically, but the latter is the most efficient and utilised approach. 

Biological samples can be fixed by freezing or heating, or by immersing them in chemical 

reagents like formol (formaldehyde), glutaraldehyde, paraformaldehyde (PFA), ethanol, 

methanol, potassium dichromate, osmium tetroxide, picric acid, and acetic acid. To 

reduce the time between sample obtaining and chemical fixation, in animal research, the 
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fixative reagent can be perfused. This method consists in introducing the fixative into the 

circulatory system of the animal before sacrifice, so that all tissues are “naturally” 

irrigated with the reagent and are uniformly fixed.  

Microscopic assessment of tissues essentially requires translucent samples that permit 

the light beam to pass across them. Hence, it is necessary to obtain thin sections of the 

biological specimen to be examined. However, biological samples are not stiff enough 

for successfully cutting them into sufficiently thin laminas at uniform thickness47. 

Therefore, first, samples should be embedded within a solid and stable material that 

provides consistency for posterior sectioning (figure 8C)52. The most widely used 

material for biological sample embedding is paraffin wax (the constituting element of 

traditional candles) due to its low cost and ease of use. Paraffin includes the sample and 

also it infiltrates within the tissue by means of a serial process of dehydration, in which 

the tissue’s internal water is substituted by alcohol and then by paraffin52. Dehydrated 

samples are immersed in molten paraffin contained in a cubic mould. Then, all the set-

up is placed in a cold place to solidify the paraffin and finally obtain a solid, cubic paraffin 

block that includes the biological sample within. 

Once biological samples are fixed and embedded, the next step is to physically cut them 

into thin, uniform sections employing a microtome (figure 8D). This precision instrument 

performs a series of interrupted sections at a specific thickness (3 to 10 µm) to the 

paraffin block47. Besides, for thicker sections and/or in the case of soft samples (fresh or 

not paraffin embedded), a distinct microtome is used, the vibratome. Afterwards 

sectioning, the sample sections are placed on a microscopy glass slide.  

Before observing the samples under the microscope, differential contrast between the 

diverse elements within the colourless tissue or cell has to be achieved. Selective 

staining of certain structures within the sample section increases the contrast and eases 

the microscopic study (figure 8E). Haematoxylin-eosin is among the most typically used 

stainings as it is a universal colourant for tissue that dyes cell nuclei in dark colour and 

dyes pink the cytoplasm and extracellular structures in various degrees of colouration48. 

Additionally, collagen in histological sections dyes blue with Mallory’s trichrome stain, 

green with Masson’s trichrome, and pink with eosin. There are dozens of different 

staining procedures specific for particular tissues. 

To detect specific molecules instead of structures within the sample section, cyto- or 

histochemistry techniques are applied during the staining step (cyto- for cells, histo- for 

tissues)47. Taking advantage of the chemical properties of the molecules, these 

techniques can specifically detect sugars, nucleic acids (ex. DAPI for double-stranded 

DNA), lipids, proteins (ex. phalloidin for filamentous actin) or subgroups within the 

mentioned molecule types. Moreover, the immunohistochemistry or 

immunocytochemistry techniques perform the detection of a certain protein via its 
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recognition by a highly specific antibodyD against this molecule (figure 9). The antibody 

is artificially marked with a fluorescent molecule, a peroxidase or phosphatase enzyme, 

or a colloidal gold particle to allow microscopy visualisation of the antibody-molecule 

binding complex53. Additionally, to increase the sensitivity of the technique, detection and 

marking are performed by two different antibodies: the primary and the secondary, 

respectively. The primary antibody specifically detects the interest molecule, and then, 

the secondary antibody linked to a marker recognises specifically the primary one (figure 

9A-B)48. When performing the detection of more than one molecule in the same sample 

section, special care should be taken to avoid cross-reactivity: the primary antibody for 

detection of molecule A was obtained from host animal species Z, so secondary antibody 

for marking of A should recognize only Z antibodies; in turn, to detect molecule B, primary 

antibody was obtained from species Y and secondary antibody recognizes Y; if both 

primary antibodies were generated in Z animal species, secondary antibody would be 

marking both molecules A and B, without any chance for us to distinguish either; hence, 

when doing multiple detections, different primary antibodies should be originated in 

different host animal species. In summary, in the case that procedures are properly 

performed, immunochemistry is a highly specific and sensitive technique. 

 

Figure 9. Immunochemistry functioning. A. Rabbit antibody specific for the round protein attaches only to its 

target. B. Secondary antibodies specific for rabbit antibody attach to their target. C. The marker in the 

secondary antibodies permits visualisation of the protein localisation in the sample. In this case, the marker 

is a fluorescent molecule that is excited by the incident light. 

 

To conclude, fixed and stained sections of biological samples are mounted in between 

microscopy glass slides. An adequate mounting medium will allow optimal fluorescence 

emission, provide a suitable refractive index, and avoid spherical aberrations and early 

decay of fluorescence47. With this, the samples are ready for further observation under 

the microscope. 

 

 

                                                      
D An antibody, also known as an immunoglobulin, is a large, Y-shaped protein used by the natural immune 

system to neutralize pathogens. Each antibody specifically recognizes a unique molecule, called an antigen, 
and binds to it through the tips of the two short branches of its Y conformation. For immunofluorescence, a 
fluorochrome is attached to the tip of the antibody’s long Y branch, without interfering with its function. 
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3.3. Microscopy image acquisition 

3.3.1. Conventional microscopy 

The widefield or conventional optical microscope bases its functioning on that white light 

passes across a biologic sample, illuminating the field of view47. The sample should be 

sufficiently thin so that the light beam can go through it. Structural details of the sample 

are visualised due to differences in the absorption of the light by different elements within 

the sample. Thus, the widefield microscope is fitted for stained, otherwise colourless, 

biological samples. Importantly, the sample is viewed as a sum of the focused region or 

plane plus the blurred image of all the out-of-focus planes (figure 10A)48. 

 

Figure 10. Example images of conventional (widefield) and confocal fluorescence of a mouse intestine 

section. In the wide field image (A), specimen planes outside the focal plane degrade the information of 

interest from the focal plane, and differently stained specimen details appear in mixed colour. In the confocal 

image (B), specimen details blurred in widefield imaging become distinctly visible, and the image contrast is 

greatly improved. Notice that out of focus signals cause additional structures to appear only in the widefield 

image (white box). Adapted from refs. 47,54. 

 

Based on the conventional optical microscope, many other specific microscopes have 

been developed. The fluorescence microscope allows the detection of fluorescent 

molecules, named fluorochromes or fluorophores, which are those that are excited by 

absorbing light radiation at a specific wavelength and then emit light at a higher 

wavelength. In this manner, the fluorescent structures within the sample appear shiny on 

a dark background (the non-fluorescent rest of the sample) with sufficient contrast to 

permit detection (figure 10A)52. To this end, artificially added fluorochromes could be 

utilised, as well as, the natural fluorescence from the sample itself, emerging from 

endogenous autofluorescent molecules such as vitamins and elastin47. 
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Immunofluorescent techniques employ natural antibodiesD artificially linked to 

fluorochromes to detect within the sample the particular molecule the antibody is specific 

for (figure 9). There are several types of fluorochromes that can be attached to an 

antibody, such as FITC, Alexas, and Cys, and each one exhibits a characteristic light 

absorption/emission spectrum that allows visualisation in a certain colour48. In fact, it is 

possible to detect up to 5 different molecules at the same sample section by carefully 

choosing five different fluorochromes that do not have interfering absorption/emission 

spectra between them. The only modification needed in the microscope to visualise each 

fluorochrome colour is to change the excitation and emission optical filters, which is a 

quick, routine procedure in microscopy48. Besides, importantly, the fluorescence of 

fluorochromes tends to lose intensity with time due to depletion47, whereas the 

autofluorescence of all the tissue augments with time due to natural degradation. 

 

3.3.2. Laser scanning microscopy 

Laser scanning microscopy is a form of optical microscopy in which a specific wavelength 

laser beam is used instead of white light. The confocal laser scanning microscope is an 

adaptation of a fluorescence microscope with a pinhole that allows visualising only a 

chosen particular, thin plane of illumination within the thickness of the whole sample (Z-

axis)47. Hence, one can see only the fluorescence emerging in that particular focused 

plane, eliminating the fluorescence occurring in lower or upper out-of-focus level 

planes48. With this, confocal microscopy produces high-resolution images of optical 

sections of the sample (figure 10B), and can “section” all the sample providing a z-stack 

of optical section images. The parameters of z-stack acquisition, such as the thickness 

(z-step) and the number of optical sections, are tuned for the convenience of the study. 

Furthermore, it is possible to reconstruct a 3D rendering computationally out of a z-stack 

of a given sample, and this rendering can be virtually rotated and cut as desired. 

Laser scanning microscopy is not only restricted to the use of externally added 

fluorochromes into the samples. Indeed, multiphoton laser scanning microscopy is able 

to confocally visualise fluorescent structures without the need for a pinhole, by taking 

advantage of nonlinear optics phenomena. This process is defined as the excitation of a 

fluorochrome by the simultaneous absorption of two or more infrared photons, which 

together sum up the required wavelength for its excitation; as opposed to the excitation 

by one single photon occurring in the conventional fluorescence events (linear optics 

process)48,55. As an advantage, the infrared light laser beam used in multiphoton 

microscopy can penetrate further inside the sample, as compared to conventional 

confocal microscopy, allowing to work with thicker samples. In addition, multiphoton 

microscopy produces far less photodamage to biological samples than one-photon 

fluorescence55. Nevertheless, multiphoton microscopy requires a very well aligned 

microscope setup. 
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The nonlinear optics process is called two-photon excitation fluorescence (TPEF) in the 

case of absorption of two photons by an endogenous or exogenous fluorochrome. A 

fluorochrome that is active by conventional one-photon absorption at a given wavelength 

can often be excited by two photons of twice the wavelength, yet the fluorescence quality 

might decrease55. Furthermore, the excitation by two photons of materials arranged as 

non-centrosymmetric structures, like collagen, microtubules, and muscle myosin, 

produces a nonlinear optical event similar to TPEF, called second harmonic generation 

(SHG). Both TPEF and SHG are currently used for high-resolution laser scanning 

microscopy in the biology field for visualisation of submicron structures (figure 11). 

 

Figure 11. Two isolated binucleated cardiomyocytes as imaged with TPEF (A) and SHG (B)56. A. The TPEF 

signal is due to the cellular nonspecific autofluorescence that arises when a specific fixative is used to 

preserve cells. The four circular gaps correspond to cell nuclei. B. The SHG signal resolves the myosin 

filaments in cardiomyocytes. Scale bar = 15 µm.  

 

3.3.3. Electron microscopy 

Although analogous functioning to optical microscopes, electron microscopy irradiates 

samples with a beam of electrons instead of with a light beam (i.e. photons)50. This 

technique achieves higher resolution images compared to conventional microscopy 

since high power electron beams reach five orders of magnitude shorter wavelength than 

visible light, thus augmenting the resolution limit of the microscope48. There are two types 

of electron microscopy techniques: transmission electron microscopy (TEM) for ultra-

high-resolution imaging of sample sections based on the electron density of their diverse 

endogenous structures, and scanning electron microscopy (SEM) for visualising the 

surface topography of the sample covered by metallic particles47. In Histology, TEM has 

historically served to unravel the microstructure of ECM components such as the various 

collagens. Complementarily, SEM has been useful for characterising the volumetric 

arrangement of the ECM. 

 

3.3.4. X-ray computed micro-tomography (microCT) 

To analyse the 3D structure of relatively large biological samples, optical and electron 

microscopy techniques can be combined with approaches to image several consecutive 

sections of the same sample. However, although there has been a considerable 
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improvement over the last decades, serial sectioning histology remains a tedious and 

specialised task49.  

Alternatively, the internal structures of large biological samples (up to cm3) can be 

visualised without physical sectioning by X-ray computed micro-tomography 

(microCT)49. In this microscopy technique, the X-rays pass through the sample and are 

collected at the opposite end like in clinical X-ray radiographs, yet in microCT, the sample 

rotates providing several acquisitions (figure 12)50. Then, algorithms use the sensed data 

to construct a 3D rendering of the sample and provide virtual serial sections of it, just like 

in clinical CT (figure 12B-C and 5C-E). Biological samples for microCT do not necessarily 

require fixation, added contrast, or physical sectioning, hence living animals can be 

imaged with this approach. However, it is compulsory to use the phase-contrast modality 

of microCT to characterise soft tissues (i.e. non-calcified) at high resolution57,58. 

Furthermore, microCT can be performed at a synchrotron light source to achieve greater 

sample throughput as acquisition times are faster than when using an X-ray laboratory 

source. Synchrotrons are highly-demanded national facilities that act as giant 

microscopes as they generate light 10 billion times brighter than the sun59. 

 

Figure 12. MicroCT basic functioning. A. X-rays are projected to the rotating sample and the camera collects 

the transmitted light. B. The detected signal is computationally reconstructed as a series of virtual sections 

of the sample. C. The scan sections can be used to build a 3D rendering of the sample. In this case, it is a 

mouse embryo60. 

 

3.4. Microscopy image processing and analysis 

Currently, image analysis is applied to a wide range of fields such as robotics, medical 

imaging, astronomy, environmental studies, and archaeology50. The concept of image 

analysis in the context of histology refers to the extraction of significant information out 

of microscopy images, by employing computational image processing techniques47. 

Notably, whereas image processing modifies the original image yielding a transformed 

image, image analysis obtains quantitative data by performing measures on the 

transformed image. 

In this framework, digital images are divided into pixels, which are small square areas, 

all of the same size, which constitute the minimum unit of an image (figure 13A)47. Each 

pixel displays a colour intensity or a grey level within it, which is translated to a discrete 

number from a defined scale (usually greyscale: from black to white) (figure 13B)50. 

Taking this into account, the maximum number of levels or intensities in an image is 
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defined by the number of bits that constitute it (bit depth): 2-bit images contain 2 levels 

(binary image, black and white), whereas 6-bit images contain 64, and 8-bit images 

contain 256 levels (figure 13C). In summary, the intensity of each pixel is defined by a 

number within the range of the bit depth of the image. An image with many levels has 

greater colour resolution than an image with lower bit depth. However, the human eye is 

only capable of distinguishing 64 grey levels, thus images over 6 bits do not provide 

additional visual information, yet this extra data might be relevant for the computer47. 

 

Figure 13. Images as arrays of pixels. A. Example image showing its decomposition into elemental pixels, 

each one with a level of grey or intensity value. B. Histogram of the intensity of all the pixels in an 8-bit image, 

grey levels range from 0 to 255. In this case, a few pixels belong to the object of interest, which is darker 

(closer to 0 intensity value) than the background pixels. C. Visualisation of the same image at different bit 

depths. Higher bit depth provides more grey levels, thus more detail. Last example is a binary image. 

 

Image processing considers histological images as complex pictures, owing to its broad 

range of colours/levels, intensities, and textures, and also to the geometry of its objects 

that is often intricate and might not be completely defined47. These factors make 

challenging to segment the regions of interest (ROI) out of the original histological 

images, in order to finally measure features on them. Hence, previous image processing 

steps are needed to reduce the amount of information (i.e. detail) in the original image, 

and lastly be able to segment the ROI.  

Essentially, image processing operations involve the application of arithmetic 

calculations to the values of grey level of each pixel in an image50. There are many image 

processing operations, thus, here, only the most commonly used in biomedicine will be 

briefly described: spatial and geometric operations, contrast improvement, thresholding, 

illumination correction, binary operations, and logical operations47. An image is rotated, 

translated, scaled, sharpened, and contrasted as desired to aid ROI visualisation. The 

contrast of an image is the difference in grey level between the highest and the lowest 

levels, hence it relates to the image’s range of grey levels, which can spread throughout 
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the bit depth range of levels (from levels 0 to 255, in the case of 8-bit) or can occupy only 

a portion of this range (for instance, from levels 47 to 123). Manipulation of the contrast 

of an image serves to highlight certain features or to improve the general visualisation of 

the image (figure 14A). Besides, a thresholding operation localises all the pixels within 

an image that display a particular grey level (figure 14B). Illumination correction of the 

image is often necessary given that microscopes might present optical imperfections that 

lead to a heterogeneous illumination of the field of view47. The illumination correction is 

made by subtracting to the original image a white image, which is an image taken with 

the same microscope and setup parameters but without any sample. As well, other 

arithmetic operations on images are addition, the already mentioned subtraction, 

multiplication, and division, by other images or by particular numerical values. Logical 

operators (AND, OR and NOT) are also used to perform operations between two images, 

in order to obtain a resulting image with just the pixels present in both images (AND), 

with only the different pixels in both images (OR), or with only the pixels not present in 

any of both images (NOT) (figure 14C)50. Moreover, the operations on binary images 

called dilation and erosion consist in the addition or elimination, respectively, of a layer 

(or more) of pixels on the contour of a binary object (figure 14D)47. These binary 

operators are used to assemble single objects that need to be together or to separate 

individual objects, respectively.  

 

Figure 14. Examples of image processing operations. A. Contrast adjustment of an image: its histogram is 

stretched to occupy all the available grey levels. B. Thresholding selects the pixels from a specific range of 

grey levels and converts the image into binary. In this case, the ROI had brighter pixels than the background, 

so the threshold was set in between both intensities (orange dashed line). Notice that some parts of the 

man’s T-shirt and hair were converted to black instead of white in the binary image because their pixels were 

as dark as the background. C. Logical operators explained in 4-pixel binary images. D. Erosion operation 

followed by dilation operation on a binary image. Although both operations subtract or add a single pixel to 

the whole contour of the white object, the process cannot recover the original image, given that it was a 

complex object. 
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By wisely using these and many other image processing operations, one can modify the 

original image to adequately emphasise the regions or objects of interest for their 

segmentation. Segmentation is defined as the process in which the ROI(s) is separated 

from the rest of the image50. There are countless segmentation methods based on the 

classification of the image pixels relying on their colour, intensity, aggrupation, spatial 

location, or shape or texture of the object containing the particular pixel47. Given the 

complexity of histological images, the employment of multiple segmentation criteria is 

required for an accurate delimitation of the ROI in the image. 

Once the ROIs are extracted, quantification of their features is performed. Typically, 

morphological and densitometric are the two kinds of measurements applied to 

segmented objects. The morphology of the objects is defined by geometric 

characteristics such as number, area, perimeter, diameter, orientation, and distance 

between individual objects47. Additionally, densitometry measurement of the objects 

relies on the quantification of the grey levels within the object’s pixels. 

Image modification processes can be applied to digital images using the free software 

ImageJ 61. For more complex or specialised image processing in 3D, a plausible option 

is to utilise ilastik free software62. Finally, for customised calculations on large amounts 

of images, writing a personalised MatLab code is a good alternative. Besides many other 

features, MatLab software (2016, The MathWorks Inc., Natick, Massachusetts, USA) 

allows the design of simple graphical user interfaces that permit an easy communication 

between the non-experienced user and the raw code.  
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4. Aortic wall structure and 

protein composition  

The application of microscopy and molecular biology techniques has led to the discovery 

of a big part of today’s knowledge of aorta protein composition and structure. 

In the aorta, the ECM constitutes more than half of the mass of the wall and is mainly 

composed of collagen and elastin63. Other components, such as microfibrils, 

proteoglycans, and glycoproteins are all present within the extracellular space of the 

vessel wall. In the tunica media, the ECM is produced primarily by the VSMC during 

development, whereas in the adventitia, collagen is synthesised by the adventitial 

fibroblasts as in other connective tissues of the body11. In addition to providing physical 

support for cells, the ECM actively participates in the establishment and maintenance of 

differentiated tissues by acting as a source of both chemical and physical cues that 

modulate cell behaviour64. This crucial function is achieved through its complex chemical 

composition and organisation.  

 

4.1. Whole aortic wall 

4.1.1. Aortic wall microscopy imaging 

Historically, the study of vascular tissue structure has relied primarily on the visualisation 

of two-dimensional (2D) stained transverse sections by optical microscopy. As previously 

explained, ECM dyes pink with the standard haematoxylin-eosin staining of histological 

sections (figure 15A). However, with this approach, elastic fibres are indistinguishable 

from the rest of the ECM. Hence, to visualise them, vascular samples are coloured with 

Verhoeff’s stain that dyes lamellae in dark (figure 15B). 

 

Figure 15. Aortic wall architecture. A. Hematoxylin-eosin staining of aortic tunica media10. B. Verhoeff’s 

staining of tunicae intima and media. C. TEM imaging showing VSMC (S), elastic lamellae and fibres (E), 

and collagen fibres (C) 65. Scale bar = 1 µm. 



Introduction 

 

33 
 

Electron microscopy has shown that the aortic media consists of lamellar units 

comprising concentric elastic lamellae and intervening VSMCs, elastic fibres, collagen 

fibres, and proteoglycans. VSMCs and lamellae are strongly interconnected to function 

as a whole structure to withstand the repeated motion of the aorta (figure 9C)65. 

Nevertheless, the knowledge obtained using these methodologies is inherently based on 

a two-dimensional perspective of the tissue (transverse cuts of the aortic vessel), which 

is highly limiting to determine the location, progression, and extension of the tunica media 

features when a 3D microstructural analysis is required. Therefore, for further insights, 

more sophisticated microscopy techniques have been progressively applied to the 

cardiovascular system, including the aorta66,67. Serial sectioning (combined with optical 

or electron microscopy) and confocal microscopy may be used to visualise the 3D micro- 

and nano-structure of small pieces of vascular tissue13,49,65.  

In particular, multiphoton microscopy is well suited for arterial wall imaging, since it 

permits visualisation of almost the entire wall, without the need for exogenous 

fluorochromes, or even sample fixation and embedding68. Based on endogenous tissue 

sources of nonlinear signals, the TPEF signal arises from the elastin content in elastic 

lamellae, and the SHG signal originates from collagen fibres located at the adventitia 

and interlamellar spaces (figure 10). Taking into account that these two matrix 

components make up most of the arterial tissue structure, multiphoton microscopy can 

disclose almost all the framework of an unstained aortic wall68. To date, some 

laboratories have applied this technique to image aortic samples in a conventional 

transverse perspective (XZ or YZ axes), as in standard histological preparations (figure 

16A-B) 68,69. A few other groups have applied multiphoton microscopy to image the tissue 

in an en-face view, and subsequently generated a three-dimensional rendering of it70,71. 

The en-face histological perspective consists of visualising the surface of the vessel (XY 

axes) along the depth of its wall (further detail at next section “Elastic lamellae”). An 

illustrative example of en-face visualisation is that obtained by endoscopic vascular 

imaging.  
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Figure 16. Aortic imaging by advanced microscopy techniques. A. Conventional histological preparation of 

rat aorta68. B. Multiphoton microscopy of the same vessel as in A. Elastic lamellae are marked in red, 

collagen in green. C. MicroCT slice of rat carotid artery72. D. 3D reconstruction of a microCT scan of rat 

carotid artery. Tunica media is marked in yellow. 

 

Similar to multiphoton microscopy, phase-contrast microCT of vasculature does not need 

tissue staining or sectioning, nor contrast agent addition, to visualise the 3D 

microstructure of the sample72. Moreover, microCT allows imaging of samples of larger 

volumes, compared to multiphoton microscopy. Taking advantage of these benefits, 

Stergiopulos and coworkers73 used microCT imaging at low resolution to map aortic 

tissue for subsequent histological analysis, whilst Assemat et al.74 characterised aortic 

geometry for numerical simulations. Furthermore, Walton et al.72 reported the 

visualisation of entire rat carotid arteries at high resolution, resolving sub-micron tissue 

structures (figure 16C-D). To our knowledge, there are few articles on vascular micro-

scale imaging by microCT, yet none image the internal structure of the aortic tissue at 

high resolution. 

However, these advanced 3D techniques need specialised machines and expertise, so 

researchers tend to continue using the 2D approach for histological studies. 

 

4.1.2. Aortic wall protein composition 

By means of molecular biology techniques, the scientific community has a clear 

consensus on the gross protein composition of the aorta. In general, this vessel is made 

of ECM, composed by collagen, elastin, microfibril components (fibrillins, fibulins, etc.), 

proteoglycans, and soluble molecules such as growth factors; and by cells, mainly 

VSMCs, whose protein content is explained later in this section. 

Although this current knowledge on aortic protein composition, it does not exist an 

established human aorta proteome since the Human Protein Atlas comprises many 

human body tissues but not the aorta. Hence the data on aortic proteins stated at the 

neXtProt database is all based on indirect protein presence demonstration through RNA 

expression, which cannot be assumed as a definitive aortic proteome. To this goal, 

Didangelos et al.75 attempted to establish the set of proteins present in control human 

aorta samples by mass spectrometry. They characterised 630 unique proteins in the 

aorta, which some of them had never been reported in the vascular tissues before, like 

podocan, sclerostin, and agrin. Nowadays, this is the only extensive list of proteins 

present in the healthy human aorta. Nonetheless, mass spectrometry is not an absolute 

technique, thus there are other proteins in the tissue that were not identified in 

Didangelos study, but are identified by immune-based studies, such as TGF-β. 
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4.2. Elastic lamellae 

4.2.1. Elastic lamellae organisation 

Elastic fibres in the aorta are arranged forming concentric, fenestrated sheets called 

lamellae. Elastic lamellae are a rubber-like material that accounts for most of the 

expansion of the aortic wall at normal systole pressure4. Particularly, lamellae are wavy 

when the aorta is non-pressurized, and straight when subjected to blood pressure76. 

Transversely sectioned, conventional histological preparations of the aortic wall show 

elastic lamellae arranged in almost equidistant parallel layers, whose number depends 

on the animal species and vessel calibre77; for instance, lamellae number is 7 to 8 on 

average for adult mice aorta78 and 40 to 70 for humans7,8,11. Despite resembling parallel 

layers, lamellae branch regularly, resulting in a different number of lamellae in different 

anatomical positions of the same aortic portion13. Moreover, numerous direct 

connections between neighbouring lamellae are present in the tunica media, constituting 

a dense elastic fibre network at the interlamellar spaces (figure 17A). This network forms 

cage-like structures dividing adjacent SMCs, and often also connecting with them13. 

 

Figure 17. Lamellae architecture. A. Lamellae (marked in brown) structure as parallel fenestrated sheets, 

with VSMCs in between (in yellow), and interconnecting elastic fibres (in brown)13. B. SEM of human cerebral 

artery IEL79. C. SEM of rat aorta IEL fenestrae at x3,000 magnifications80. D. en-face TPEF imaging of rat 

mesenteric artery IEL. Lower panel displays the transverse view of the IEL and, in red, the endothelial cells 

of tunica intima81. Scale bar = 10 µm. 

Lamellae surface presents physiological micro-scale holes of 1-10 µm in diameter, called 

fenestrae (figure 17B-D)80. Their size and density depend on the analysed vessel, animal 

species, and age79,82,83. Lamellae fenestrae allow cell communication and free flow of 

nutrients between one interlamellar space and the subsequent, especially between 

tunicae intima and media5,80,84. Additionally, it is thought that fenestrae contribute to the 

developmental modelling of the IEL84. Conventional transverse histological preparations 

are not an adequate method to study fenestrae owing to their small size and localisation 

at the surface of lamellae. Fenestrae can be visualised by SEM (figure 17B-C)79. 

However, this technique can only display the natural surface of the tissue, and hence 

studies have mainly focused on the outermost lamellae, the IEL79,80. Furthermore, the 

recent application of TPEF microscopy on rat artery samples has allowed the 
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visualisation and analysis of fenestrae from only the IEL 83,85, and has also been used in 

combination with exogenous fluorophores (figure 17D)81. 

 

4.2.2. Elastic lamellae synthesis 

Elastic fibres, hence elastic lamellae, are composed of a core of elastin and a mantle of 

microfibrils4,11. Proelastin, the precursor of elastin, is cleaved within the cell and secreted 

as tropoelastin10. In the extracellular space, tropoelastin deposits on the surface of 

microfibrils and interacts with them to facilitate elastin fibre assembly and provide overall 

structure to the growing fibre9,11. Lysyl oxidase (LOX) family members oxidise lysine 

residues of tropoelastin to form covalent cross-links between and within tropoelastin 

molecules9. These bonds induce the aggregation of tropoelastin to build bundles of 

elastic fibres18. Although cross-linked, the individual tropoelastin molecules remain in a 

random-coil configuration. In addition, >80% of tropoelastin’s lysine residues are 

crosslinked, resulting in 15 to 20 crosslinks per elastin unit9. Therefore, the produced 

elastin arrangement is a highly crosslinked 3D network of randomly coiled tropoelastin 

molecules5,18. The random coiling of tropoelastin 

molecules and the high degree of cross-linking 

between them enables the characteristic stretching and 

recoil properties of the elastic fibres that allow their 

rubber-like elastic behaviour (figure 18)5,9. 

 

Figure 18. Elastic fibre micro-structural conformation in stretch and 

recoil. Stretching forces unroll the coiled tropoelastin molecules, 

without breaking the conformation of the elastic fibre. 

 

4.2.3. Elastic lamellae microfibrils 

The microfibrils involved in elastin assembly are composed of glycoproteins and have a 

diameter of approximately 10-15 nm11,16. The structural building blocks of the microfibril 

are the fibrillin molecules, which are stabilised by crosslinks catalysed by the protein-

glutamine γ-glutamyltransferase 2 (former tissue transglutaminase, TGM2)9,86. The 

microfibrils are formed first, serving as a scaffold or template for subsequent deposition 

of tropoelastin monomers in a certain manner that the lysine residues are accessible for 

LOX crosslinking9,11. Moreover, microfibrils also regulate morphogenetic and tissue 

homeostatic programs through direct cell-matrix interactions or indirectly by modulating 

the activity of TGF-β and BMP (bone morphogenetic protein)9. Signalling induced by 

these two growth factors is a potent regulator mechanism of cell survival and 

differentiation, of tissue morphogenesis and homeostasis, and of cellular responses to 

injury86. Hence, microfibril integrity is crucial for overall tissue maintenance.  
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The human genome contains three fibrillins (1,2, and 3), yet fibrillin-1 is the most 

abundant in the mature aorta9. Fibrillins interact with cell surface integrins, elastin, 

heparin sulphate proteoglycans, TGF-β binding proteins (LTBPs), and BMP-787. Fibrillin-

1 has a crucial role in the sequestration and regulation of the activity of growth factors, 

especially of TGF-β, which is a key player in tissue homeostasis, and its deregulation is 

implicated in a variety of diseases25.  

Several other proteins associated with elastic lamellae microfibrils have been described 

in the aorta, but their role is not yet completely clear (figure 19)9,27,86. The best 

characterised are the latent TGF-β binding proteins (LTBP 1-4), EMILINs (elastin 

microfibril interface-located protein), microfibril-associated glycoproteins (MAGPs), and 

members of the fibulin family. The small glycoproteins MAGP-1 and -2 are constitutive 

components of most microfibrils9,27. Their presence is trivial for the elastin assembly 

function, but it is necessary for binding members of the TGF-β growth factor family. In 

addition, fibulins mediate cell adhesion through integrin receptors, influence cell growth 

and motility, and regulate elastic fibre synthesis27,86. They also interact with 

apolipoprotein A, LOX, LOX-like 1 (LOXL1), and superoxide dismutase (SOD) in arterial 

walls. All fibulins except -6 and -7 are found in elastic tissues, with fibulin-2 and -4 at the 

interface between the elastin core and its surrounding microfibrils, -1 located within the 

elastin core, and -5 associated to microfibrils9. Besides, EMILIN-1 has the ability to bind 

both tropoelastin and fibulin-5, suggesting that it may serve a bridging function between 

those two molecules9. Furthermore, LTBPs associated to microfibrils sequester TGF-β 

and regulate its availability in tissue86,88. 

 

Figure 19. Elastic lamellae composition and surrounding key structural components of the tunica media27: 

elastin, microfibrils, vascular smooth muscle cells (VSMCs), collagen fibres, proteoglycans. Crosslinking of 

tropoelastin monomers by LOX forms elastic fibres, which in turn are covered by microfibrils. Microfibrils are 

composed of fibrillin and several microfibril-associated proteins, such as EMILINs, MAGPs, and fibulins. 

Elastic fibres in the aortic wall arrange as sheets, named lamellae. 
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4.3. Collagen 

The collagen structure provides a supportive framework in the tissues, with binding sites 

for other ECM components, signalling molecules, and cells. In the aorta, collagen fibres 

are found in all three tunicae, especially forming large bundles in the adventitia and, to a 

minor extent, around the VSMCs of the media63. Each collagen fibre is composed of 

collagen subunits, made of three polypeptide α chains coiled to form a triple-stranded 

helix, held together by hydrogen bonds (figure 20)5,8. Collagens are a family of proteins 

that share the molecular triple helix structure but have α chains that differ in their amino-

acid composition9. So far, there are 28 different types of collagen, made up by 

combinations of three out of more than 40 distinct α chains, each encoded by a separate 

gene64. The principal collagen fibre types in blood vessels are I and III, in tunica media 

and adventitia respectively, which are both classified as fibrillar collagens4,9. Importantly, 

although one type may predominate in a particular location, it should not be assumed 

that this is the only type present5. In fact, collagen types IV, V and VI have also been 

reported in aorta9,23.  

 
Figure 20. Organisation of collagen fibres. Collagen molecules are triple helixes of α chains. These 

molecules assemble into microfibrils, which in turn aggregate into collagen fibrils. Finally, a collagen fibre is 

the assembly of multiple fibrils. Some proteins involved in the collagen fibre synthesis are LOX, other 

collagens, small-leucine-rich repeat proteoglycans (SLRPs), and metalloproteinases (ADAMTS). 

For fibrillar collagen synthesis, within the cell, three polypeptide α chains are wound 

around one another in a triple helix to generate a rope-like procollagen molecule (figure 

20)18. Many proteins are involved in this helix formation, such as lysyl and prolyl 

hydroxylases, 78 kDa glucose-regulated proteins (GRP78) and GRP9464. Then, 

procollagen is secreted to the extracellular space, where it is converted into a collagen 

molecule by enzymatic cleavage of the non-helical tips of the procollagen conformation11. 

Removal of the peptide tips is carried out by collagen type-specific metalloproteinases 

from the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif), 

BMP1 and tolloid-like families, as well as by furin-like proprotein convertases64. After 

cleavage of procollagen into collagen, the molecules self-assemble into ordered 

polymers called collagen microfibrils, aided by collagens V and XI64. Then, multiple 
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microfibrils associate one to another forming collagen fibrils by interaction with certain 

small-leucine-rich repeat proteoglycans (SLRPs) and FACIT collagens (fibril-associated 

collagens with interrupted triple helices)10,64. Finally, the fibrils often aggregate into larger 

bundles, the collagen fibres (figure 20), which are stabilised by collagen intra- and 

intermolecular covalent crosslinks catalysed by LOXs (figure 20)18,64. This collagen 

supramolecular assembly is crosslinked to a greater or lesser degree depending on the 

required tensile strength18. 

 

4.4. Proteoglycans 

Proteoglycans are characterised by a core multidomain protein that is covalently linked 

to multiple glycosaminoglycans (GAG), which are long, voluminous chains of repeating 

disaccharideE units18,64. This GAG component binds water to provide hydration and 

compressive resistance to the tissue64. Thus, proteoglycans form a highly hydrated, gel-

like “ground substance” in which the cells, the ECM fibrous proteins, and various 

secreted signalling molecules are embedded and settle the tissue18.  

The proteoglycans found in greatest abundance in the vessel wall can be categorised 

into two classes: small (i.e. SLRPs) and large proteoglycans9. Versican is the largest 

proteoglycan in the vessel wall and has been localised at the aortic tunicae intima and 

media. It is known to have a wide variety of functions, including induction of cell adhesion, 

migration, and proliferation. Moreover, the GAG component of the large proteoglycan 

perlecan can inhibit VSMC proliferation and migration, and it binds to fibrillin-1, fibroblast 

growth factor (FGF), and elastin86. Besides, the function of the other large proteoglycan, 

aggrecan, in the vessel wall is unclear. Furthermore, SLRPs bind ECM molecules such 

as collagen, tropoelastin, fibronectin, TGF-β, cytokines, and fibrillin microfibrils, among 

others. The SLRP family in artery includes decorin, biglycan, fibromodulin, mimecan 

(osteoglycin), and lumican9. Decorin and biglycan are directly implicated in the process 

of elastic fibre formation and also regulate collagen packing86. 

 

4.5. Adhesive glycoproteins 

Glycoproteins are ECM molecules constituted by protein chains linked to ramified 

polysaccharides53. Glycoproteins differ from proteoglycans in their higher proportion of 

protein and in characteristic differences in the nature of their polysaccharide side-chains. 

The subgroup of adhesive glycoproteins includes fibronectin, laminin, nidogen (former 

entactin), and vitronectin in the aortic tissue. They mediate attachment of cells to the 

tissue substrate (figure 21), given that most cells do not have the specific receptors to 

bind directly to other ECM molecules, such as structural fibres or soluble growth 

factors5,18. 

                                                      
E A disaccharide is the sugar formed by two covalently linked monosaccharides (simple sugars). 
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Fibronectin assembles into fibrillar structures around cells and has two different functions 

in the aorta64. On the one hand, it has a structural role, as it modifies the mean stress 

and elastic properties of the vessel wall. On the other hand, fibronectin plays the role of 

"master organiser" of matrix assembly since it forms a bridge between cell surface 

receptors, i.e. integrins, and several ECM compounds such as collagen and 

proteoglycans89. The presence of fibronectin at the ECM controls the deposition, 

organisation, and stability of other matrix proteins, including collagen I, collagen III, and 

thrombospondin 1; and modulates cell migration, adhesion, proliferation, and phenotype 

of VSMC90. Specifically, in vessels, fibronectin surrounds closely the VSMCs forming a 

basal lamina-like layer that attaches cells to the ECM and transmits the mechanical cues 

happening at the microenvironment (figure 21)14. 

 

Figure 21. Overview of ECM organisation and connection with cells. Collagen fibres, proteoglycans and 

glycoproteins are abundant components of the ECM. Fibronectin links ECM components with cells through 

integrins, that are cell plasma membrane proteins. In turn, integrins connect with the intracellular 

cytoskeleton. 

 

4.6. Remodelling proteases  

The aortic ECM is a dynamic structure that is constantly rebuilt and remodelled to control 

tissue homeostasis and proper functionality, although at a slow pace91,92. Maintenance 

of a functional ECM requires the coordinated activation, both temporally and spatially, of 

complex sets of ECM proteins as well as the enzymes responsible for their synthesis 

and degradation9. Turnover or replacement of old ECM molecules requires their previous 

degradation. Proteolytic cleavage of ECM components is the main process during ECM 

degradation in remodelling, and besides regulating ECM composition, it releases 

biologically active molecules that were previously sequestered within the matrix (such as 

growth factors)91. The ECM is cleaved by a host of enzymes from different families of 
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proteases: matrix metalloproteinases (MMP), adamalysins (ADAMs and ADAMTSs), Ser 

proteases (such as neutrophil elastase and plasminogen activator) and cathepsins63,91. 

These enzymes are produced by the vascular cells and are stored in a latent form within 

the ECM until they are required63. Proteases are capable of completely proteolysing the 

entire ECM, therefore this process requires tight regulation to avoid excessive tissue 

degradation, especially in response to tissue injury63,91. 

The proteolytic degradation of aortic ECM mainly involves the MMPs, including 

collagenases, gelatinases, stromelysins, metalloelastases, and membrane type-matrix 

metalloproteinases63. Collectively, the 23 reported MMPs can degrade all ECM proteins, 

thus their activity is low in normal conditions91, and in the case of tissue repair or disease, 

MMP activity will be highly stimulated91. Thus, MMPs have a crucial role in vascular ECM 

remodelling, during either physiological or pathological events. Furthermore, MMP 

activity is modulated by transcriptional level processes, by growth factors and cytokines 

(EGF, FGF, TGF-β), and by specific MMP activators and inhibitors (such as 

plasminogen/plasmin)63. Notably, the tissue inhibitor of MMPs (TIMP) family consists of 

four members (TIMP1-4) that reversibly inhibit the activity of MMPs, ADAMs, and 

ADAMTSs. The local MMP-to-TIMP ratio may determine the overall proteolytic activity in 

the tissue91. 

Turnover of collagen fibres is frequent and mediated by collagenase enzymes MMP-1, 

2, 3 and 9 12,23. Conversely, elastin replacement is slow, because the majority of arterial 

elastin is laid down during the perinatal period and there is minimal elastin synthesis in 

the adult animal9,23. This explains why damage to the elastin component in the aorta 

cannot be properly repaired in adulthood. 

 

4.7. Vascular smooth muscle cells (VSMCs) 

4.7.1. Phenotypic modulation of VSMC 

VSMCs are the most abundant cellular components of the aortic wall, whose function is 

to synthesise the ECM components of the tunica media11. VSMCs are commonly 

categorised into two kinds of phenotype that are defined by cell behaviour and 

intracellular protein content (figure 22). On the one hand, the contractile phenotype can 

be identified as a state in which cells are elongated and spindle-shaped. They present 

an assembled contractile apparatus within the cell cytoplasm, have low proliferative 

activity, and low migration9,93. Moreover, they contain the following protein contractile 

markers: aortic smooth muscle actin (SMA), transgelin (or SM22α, smooth muscle 

protein 22), myosin-11 (former smooth muscle myosin heavy chain, SMMHC), calponin, 

smoothelin, caldesmon, and vinculin94,95. Many of these proteins are part of the cell 

cytoskeleton’s contractile apparatus. Particularly, SMA is the predominant actin isoform 

in VSMCs and locates typically in the contractile filaments that form the cell’s 
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cytoskeleton in association with myosin96; and transgelin is a transformation and shape-

change sensitive actin isoform whose function in contraction regulation is currently 

unclear97. On the other hand, cells in a synthetic phenotype show a cobblestone, 

epithelioid or rhomboid shape. Their cytoplasm is full of organelles, which synthesise 

great amounts of ECM and the necessary machinery to proliferate and migrate. Some 

protein markers that can be found in synthetic VSMC are myosin-11, myosin-9, and 

retinol-binding protein 1 (RBP1)95.  

 

Figure 22. VSMCs phenotype modulation98. In response to a variety of stimuli, VSMCs switch between 

contractile phenotype and synthetic phenotype. Contractile phenotype is characterized by high expression 

of contractile proteins and low rates of proliferation and migration. Conversely, synthetic VSMCs express 

low levels of contractile proteins and have increased rates of proliferation and migration. 

VSMC phenotype is determined through the integration of numerous environmental 

cues, including cytokines, cell-cell contact, ECM interactions, injury stimuli, and 

mechanical stresses (figure 22). Thus, regulation of phenotypic switching of VSMC is 

also a complex procedure that is influenced by many factors. In the healthy adult aorta, 

VSMCs proliferate slowly, presenting little synthetic phenotype99. Thus, they tend to be 

found in a contractile phenotype showing many of the contractile markers. However, 

vascular remodelling in normal development or in pathological conditions produces a 

phenotypic change towards a synthetic phenotype100,101. This change allows VSMC to 

increase the capacities of generating ECM, proliferating, and migrating, necessaries for 

the mentioned in vivo remodelling situations.  

 

 

4.7.2. VSMC-ECM communication 

In addition to providing the structural and mechanical properties required for vessel 

function, the aortic ECM delivers instructional signals that induce, define, and stabilise 

VSMC behaviour, and consequently modulate vascular remodelling9,102. These 

instructions can be in the form of biochemical molecules and/or mechanical stress 

diffusion. The effect of biochemical signals on vascular cells has been described earlier 

in this section, whereas the cell-mechanical stress interaction will be defined here. 
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The physical connections between the tunica media ECM and the cells embedded within 

it allow those cells to sense the mechanical cues happening in the environment due to 

blood pressure (mechanosensing). These cell-ECM links are established in cellular 

membrane assemblies called focal adhesions, and are constituted by essential proteins, 

such as integrins, filamin-A, and vinculin, that together connect with the actin 

cytoskeleton (figure 23A). Mechanosensed extracellular stimuli transduce to the cell 

cytoskeleton, and then this information is translated to other intracellular signalling 

pathways, which can finally modulate the aortic wall function, integrity, and response to 

damage (process of mechanotransduction)103. Specifically, cells are able to control the 

synthesis and degradation of matrix components and modify their behaviour according 

to the received biomechanical signals25. Therefore, the morphology, structure, and 

functionality of vascular cells are intimately linked to their local ECM environment. In the 

case of VSMCs, the cyclic stretching of the wall (i.e. circumferential stresses) directly 

influences their behaviour23,96,102. 

 

Figure 23. Cell-ECM communication. A. Cells are physically connected to the surrounding ECM through 

focal adhesions (light purple elements). Focal adhesions are composed by several intracellular anchoring 

proteins, including filamin-A, vinculin, paxilin, talin, α-actinin, and zyxin. Focal adhesions are also linked to 

the cell’s cytoskeleton, which in turn is connected to the nucleus. B. The elastin-contractile unit in VSMCs16.  

Elastic lamellae protrusions link to focal adhesions at the cell membrane, and these link to the contractile 

apparatus or unit. 

The elastin-contractile unit is a functional and structural unit in the aortic tunica media, 

which constitutes a direct connection between the VSMC and the lamellae (figure 23B)16. 

Extensions protrude from the elastic lamellae towards the interlamellar space and are 

attached to the focal adhesions in the VSMC cell membrane. Inside the VSMCs, the 

contractile apparatus is linked to the cytoplasmic side of the focal adhesions. This 

apparatus is composed of SMA-containing thin filaments and myosin thick filaments, 

along with regulatory proteins such as tropomyosin. Also, it interacts with the 

cytoskeleton, which is composed of nonmuscle actins, intermediate desmin-containing 

filaments, and focal adhesions. Contractile and cytoskeletal filaments are, in turn, 

anchored to the nuclear membrane through linkage between SMA and lamin A and other 

nuclear proteins16. This intertwined arrangement of ECM and cellular components, called 
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the elastin-contractile unit, is necessary for mechanotransduction. This unit is uniquely 

designed to transmit forces via integrins from the lamellae to the VSMCs, and thus may 

serve as a mechanosensor unit of the aortic wall. Specifically, the ECM endures the bulk 

of stress that is exerted on the vessel wall, which is typically 100-200 kPa, such that only 

3-5 kPa is exerted on the VSMCs embedded on the aortic wall. The cells sense this 

stress via the elastin-contractile unit and proportionally regulate and remodel the ECM16. 

 

4.7.3. VSMCs cultured under stretch: bioreactors 

For research purposes, many groups culture VSMCs in vitro. However, almost all in vitro 

studies are performed under conventional cell culture conditions, which only mimic the 

biochemical niche of VSMCs (O2, CO2, and surrounding protein concentrations) 

obviating the mechanical cues occurring in vivo. Therefore, taking into account that in 

vivo cell environment is established by biochemical and biomechanical signals, 

occasional studies have used bioreactors to culture cells under a more physiological 

condition104. Vascular bioreactors are platforms where cells are cultured as 

conventionally plus under a mechanical environment105. In the case of VSMCs, 

bioreactors are developed to perform different conditions of substrateF stretching to 

resemble the body’s circumferential stress cycles due to blood flow. These in vitro 

devices can modulate stretch parameters such as its frequency, direction (uni-, bi- or 

equiaxial), pulsatility (constant or variable), and the percentage of deformation of the 

surface106. Hence, it is conceivable to mimic, in a laboratory, the physiological 1.1 Hz 

pulsatile, 13% strain, uniaxial stretch of the in vivo human ascending aorta (as defined 

earlier in the “1.3. Aortic biomechanics” section).  

Furthermore, it exists only one commercial bioreactor (FlexerCell) for cell culture under 

stretch, yet it is an expensive device. Hence, many researchers have designed their own 

bioreactors. One of the latest and more physiological systems developed is a culture 

system in which VSMC are seeded on decellularised human umbilical veins, so they are 

placed on a completely natural ECM107. However, this method relies on the availability 

of adequate human vein donor samples. To overcome this drawback, researchers often 

use polydimethylsiloxane (PDMS), the most widely used silicon-based organic polymer, 

to construct the actual place of the bioreactor where cell seeding and culturing will be 

performed108,109. PDMS is an optically transparent, inert, and non-cytotoxic material 

capable of adopting any given shape. Fabrication of PDMS constructs only requires the 

mould of the desired shape and a source of heat (60ºC for 1 hour) to promote 

polymerisation of the PDMS from the viscous state to solid. In addition, plasma treatment 

is usually employed to strongly adhere together two PDMS constructs or pieces. This 

process activates the surface of the objects by oxidising its molecules, so that when both 

                                                      
F Substrate is the ground material where cells are attached. 
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surfaces are held together, they adhere by forming covalent bonds between the oxidised 

molecules of both sides. 

It is noteworthy to state that the majority of the studies performed with vascular 

bioreactors or FlexerCell device used other cells than VSMCs, such as fibroblasts, 

HUVECS (human umbilical vein endothelial cells) or myoblasts106,110. The few studies 

performed with VSMCs in bioreactors reported, for instance, that after eight weeks of 

culture on stretching decellularised human umbilical veins, VSMC displayed higher 

proliferative capacity forming densely populated regions in the scaffold towards tunica 

intima and adventitia107. Besides, another group cultured VSMC on an artificial 

microchannel that acted as a blood vessel. Then, stretch was applied under different 

conditions as well as shear stress, emulating the two mechanical forces occurring due 

to blood flow111. Cytoskeleton organisation was analysed afterwards, and it indicated that 

the parallel alignment of the cytoskeleton to cyclic stretch was beneficial for VSMC 

adhesion, survival, and proliferation. In addition, many reports state that cyclic strain 

promotes a contractile phenotype in VSMCs102. 

Studies with VSMCs cultured under in vitro stretch do not extend much further than the 

data above, which is comprehensible due to the scarce availability of VSMC primary cell 

lines, the complexity the bioreactors add to the culturing procedure, and the high cost of 

acquiring a FlexerCell device.  
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5. Marfan aortic wall structure and 

protein composition  

 

5.1. Histopathology of the aorta in Marfan syndrome 

An aortic aneurysm is associated with chronic aortic wall inflammation, increased local 

expression of proteinases, excessive collagen deposition, and elastolysis7,42. In this 

context, conventional histological preparations of MFS aorta are characterised by a great 

tunica media disarrangement and fragmentation of lamellae. There is also an 

accumulation of proteoglycans at the interlamellar spaces, fibrotic collagen production, 

and loss of VSMCs (figure 24)24,30,37,40. All these traits worsen as the disease progresses. 

 

Figure 24. Conventional histological preparations of human (A-F) and mice (G-H), control (upper panels) 

and MFS (lower panels) transverse aortic wall. A, D. Haematoxylin-eosin staining, showing GAGs in 

lavender, and cell nuclei in purple112. B, E. Alcian blue staining, showing GAGs in darker blue. C, F. Verhoeff-

van Gieson staining, showing elastic lamellae in darker brown. G, H. Verhoeff-van Gieson combined with 

haematoxylin-eosin staining, showing lamellae in purple and other ECM components in pink113. Scale bar = 

50 µm. D-F, H. MFS samples display accumulation of GAGs, loss and fragmentation of lamellae, loss of cell 

nuclei, and thickening of the interlamellar spaces.  

Histological Verhoeff-van Gieson staining of MFS murine aortae displays wall disruption 

similar to that in humans: the MFS Fbn1C1039G/+ murine model shows the formation of 

ascending aortic aneurysm, with the accompanying destruction of elastic lamellae 

arrangement, thickening of the interlamellar spaces, and apoptosis of VSMCs (figure 

24G-H)44,113. For research purposes, damage severity in mice aortae is often assessed 

by manually counting lamellae breaks in a transverse histological preparation of the 

aortic wall or by establishing a subjective score within a 1-to-4 damage scale113,114. 

However, these approaches are suitable for post-mortem aortic damage assessment as 
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they need a full-thickness piece of aorta subsequently prepared for optical microscopy 

imaging. 

Moreover, TEM revealed the rupture of VSMC-lamella connections115, and SEM 

demonstrated a significant loss of the interlamellar fibres that link neighbouring lamellae 

(figure 25A-D)65. En-face TPEF microscopy has been used in Marfan mice to observe 

elastic lamellae fenestrae changes and thus report an elastolytic process, but with low-

resolution imaging and very limited quantitative analysis (figure 25E-F)116,117. To our 

knowledge, no further data is available on lamellae 3D microstructure features in health 

or disease. 

 

Figure 25. Advanced microscopy images of control (upper panels) and Marfan (lower panels) mice aortae 

lamellae. A,C. SEM transverse images showing lamellae and interlamellar elastic fibres65. Scale bar = 20 

µm. B,D. TEM transverse images showing elastic lamellae and fibres (dark) and VSMCs (in between 

lamellae)65. Scale bar = 5 µm. E,F. En-face TPEF images displaying a lamella surface117. Arrow indicates 

enlarged fenestrae in Marfan. 

 

5.2. Protein composition of the aorta in Marfan syndrome 

Several proteomic studies have been conducted on aneurysmal aortic tissue, and they 

have identified the following potential protein biomarkersG 118: 

Adipocyte 

enhancer-binding 

protein 1 (AEBP1) 

Fibronectin Peroxiredoxin-2 Thrombospondin-2 

α-1-antitrypsin Filamin-A TGM2 Transthyretin 

                                                      
G A biomarker is a measurable indicator of some biological state or condition. 
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Apolipoprotein A1 
Heat shock protein 

beta-1 (HspB1) 
SOD 

Triosephosphate 

isomerase 

Collagen XII MMP-12 Tenascin Vimentin 

Fibrinogen Periostin TIMP-1 Vitronectin 

However, many proteomic studies of aneurysmal tissue do not classify the samples in 

relation to the underlying pathology of the sample donors. Thus, in some cases, they 

used MFS aneurysmal aortae, but the obtained results become an average between the 

MFS and non-MFS aneurysmal aortae protein content.  

To date, only one article has performed a proteomic analysis of only MFS aortic tissue119. 

They found higher amounts of filamin-A C-terminal fragment, calponin-1, vinculin, and 

myosin-10 in aortic tunica media of MFS aneurysm samples than in controls. Moreover, 

using immune-based techniques, it was demonstrated that MFS aortae had decreased 

MMP-2, increased MMP-12, increased MMP-14, reduced TIMP-3, and elevated TIMP-2 

compared to control tissue120. This observed MMP and TIMP portfolio was different to 

that obtained from non-MFS ascending aorta aneurysms. 

Besides these large protein studies, many other articles report differential protein 

contents between MFS and control aortae. The elastin content in human MFS aorta is 

almost 50% lower than control24,121. In MFS mice, there is upregulation of MMP-2 and 

9122, and MMP-9 expression correlated with aortic wall zones affected by elastolysis of 

lamellae123. Furthermore, our group has previously found that there is an increase in the 

contractile phenotype markers in cultured Marfan VSMC compared to control aorta cells, 

as well as augmented TGF-β signaling93. But at the same time, MFS cells showed a 

higher collagen secretion rate93. Nonetheless, these experiments were performed in 

conventional in vitro conditions, excluding the essential influencing factor of mechanical 

signals. 

 

5.3. Aortic aneurysm pathogenesis in Marfan syndrome 

In latest decades, the previously stated findings on the structure and protein composition 

of the aorta, among many others, have provided significant knowledge about aneurysm 

initiation and progression in MFS. In brief, the various manifestations of MFS are today 

considered to be the result of an overall abnormality in the homeostasis of the ECM, in 

which reduced or mutated forms of fibrillin-1 lead to alterations in the mechanical 

properties of tissues, increased TGF-β activity and signalling, and loss of cell-ECM 

interactions40. 

As previously mentioned, normal fibrillin-1 is the principal component of aortic lamellae 

microfibrils. Apart from the evident structural role of microfibrils in the ECM, they 

sequester certain signalling molecules. In particular, TGF-β is retained and inactivated 
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by LTBP proteins adhered to microfibrils25. Taking this into account, in MFS aorta, 

insufficient or dysfunctional fibrillin-1 induces an aberrant assembly of the lamellae, an 

impaired mechanotransduction in VSMC, and an increase of free bioactive TGF-β38. In 

detail, reduced or mutated fibrillin-1 originates weak lamellae that wear out prematurely 

under the physiological strength of blood pressure and provide impaired mechanical 

stimuli to VSMCs38. Additionally, VSMCs in the MFS aorta receive increased signalling 

due to the pathological overactivation of TGF-β, including excessive phosphorylation of 

SMAD and MAPK (former ERK) proteins through the TFG-β receptors (TGFRs)34,38. 

These cues induce over-secretion of MMPs that results in inappropriate tissue 

remodelling leading to an amplified weakening of the aortic wall25,34.  

 

Figure 26. Hypothetical model of the pathogenic mechanism in aorta of MFS (adapted from ref. 124). A. In 

healthy individuals, VSMCs sense the ECM via the elastin-contractile unit (lamellae, focal adhesion, and 

contractile apparatus). Also, TGF-β is sequestered by LTBP proteins associated to the fibrillin-containing 

microfibrils of the lamellae. B. Mutations in fibrillin-1 disrupt the tunica media ECM, leading to an altered 

mechanotransduction, and an increase of free, active TGF-β that promotes more intracellular signalling than 

in a healthy situation. 

This explanatory model of pathogenesis allows understanding MFS aneurysm 

progression, as well as thoracic aortic aneurysm events due to other causes, since MFS 

has historically served as a prototype for thoracic aortic aneurysms38,87. Nevertheless, 

there are still knowledge gaps in this model that need further exploration. For instance, 

TGF-β has emerged as an important molecular factor of aneurysm progression. In MFS 

patients, higher levels of circulating TGF-β were shown to positively correlate with aortic 

root diameter and have therefore been proposed as biomarker for aortic risk125. TGF-β 

neutralising antibodies as well as the inhibition of TGF-β expression through cross-

activating pathways have been shown to decrease aneurysm formation in the 

Fbn1C1039G/+ animal model of MFS113,126–128. However, several subsequent studies have 

shown that TGF-β neutralisation increased aortic aneurysm size and rupture, for 

example in Fbn1mgR/mgR mice129. Thus, there is currently conflicting evidence for 

pathogenic versus protective roles for TGF-β in MFS aortic aneurysms32. The resolution 

of this conundrum might be relevant to find preventive or less invasive treatments for 

aneurysms occurring in MFS patients and related diseases.
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The overriding aim of this thesis was to perform a multi-scale and multi-approach 

analysis of the healthy and MFS aneurysmal-prone aorta based on the following idea:  

 

 

“Innovative technologies can provide novel and relevant information about      

the histopathological remodelling and the protein content of                               

the aortic wall in Marfan syndrome” 

 

 

 

 

 

To corroborate this idea, the following specific objectives were posed: 

1. Analyse the differential structural microscale arrangement of elastic lamellae in 

healthy and Marfan aortae by developing a multiphoton microscopy protocol. 

2. Evaluate the differential histological integrity between healthy and Marfan aortic walls 

by implementing a microCT and image processing methodology. 

3. Examine the differential protein levels associated with phenotypic modulation of 

healthy and MFS VSMCs cultured onto a newly designed bioreactor. 

4. Assess the differential protein content between healthy and Marfan human aortae by 

creating a proteome database utilizing a literature-based analysis. 

 

 

 

 

 

 

 

In this context, four novel technological methods were developed to generate relevant 

information on the structural and protein nature of the aorta. Taking into account the high 

component of technology development within this thesis, its description was incorporated 

in the results section, and afterwards, the application of the technology was 

characterised on MFS samples in comparison to healthy/wild-type ones. Additionally, 

given the diversity of each one of the four studies, the methods, results, and discussion 

sections were divided into four parts, plus a final joint discussion. The reader is 

encouraged to first read the results section, as the methods section is the finally 

established methodology after its development, explained at the results section. 

 
 
 





 

 

 

 

 

 

MATERIALS  

AND  

METHODS 





Materials and Methods 

 

57 
 

Part 1: High-resolution morphological approach 

to analyse elastic laminae injuries  

of the ascending aorta  

in a murine model of Marfan syndrome 

 

 

1.1. Experimental animals and sample preparation  

Nine-month-old Fbn1C1039/+ mice and age-matched wild-type littermates were used in this 

study (n=4 for WT and n=6 for Marfan mice). Animal care and experimental procedures 

were approved by the University of Barcelona’s independent Committee for Animal 

Welfare, according to the University of Barcelona’s guidelines and the European 

Parliament Directive. The mice were on a C57B/6 genetic background and maintained 

as a heterozygous breeding colony in our animal room facility. Animals were sacrificed 

by isoflurane inhalation, and the aorta was surgically harvested from the aortic root until 

its suprarenal portion, and immediately rinsed in phosphate-buffered saline (PBS) and 

fixed in formol 10% overnight. Thereafter, aortae were cut longitudinally. The open aorta 

was placed on a glass slide covered with mowiol, and some small transverse cuts were 

performed to keep the tissue flat. Each aorta was mounted with the tunica intima facing 

the coverslip. For this study, only the tubular ascending aorta was used for imaging. A 

detailed map image of the entire sample was obtained by mosaic stitching of 308 bright 

field images of 0.8 x 0.5 mm field of view. Bright field images were acquired using a 10x 

0.5 NA objective (Nikon) and Qimaging fast camera, with 0.46 μm pixel size.  

Human aortic samples used for preliminary tests were collected from heart donors (n = 

6) through the organ donation organisation at the Hospital Clínic i Provincial (Barcelona, 

Spain) and Hospital de Bellvitge de l’Hospitalet de Llobregat (Barcelona, Spain). Human 

tissues were collected with the required approvals from the Institutional Clinical Review 

Boards from both clinical centres and was accompanied by the patients’ written consent 

conformed to the ethical guidelines of the 1975 Declaration of Helsinki. 

 

 

1.2. Multiphoton microscope setup and image acquisition  

The microscope setup consisted of a custom-made non-linear optics setting, based on 

a fully motorised Ti eclipse Nikon microscope. Multiphoton excitation was obtained using 

a Coherent mira900 titanium sapphire laser. The laser produced pulses of ~150 fs with 

a repartition rate of 76 MHz, and the power used at the back aperture of the objective 
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was 40 mW. To perform aorta imaging, the laser wavelength was set to 810 nm, 

producing at 405 nm a generation of second harmonic and efficient TPEF signals. The 

filters used were the following: Semrock FF720-SDi01-25x36 for TPEF/SHG generation; 

Semrock FF01750/SP-25 for TPEF detection; Semrock FF735-Di01-25x36 for SHG 

detection; and Semrock FF01-406/15-25 for forward SHG detection. Samples were 

visualised using a 40x 1.3 NA oil objective (Nikon) and the collection of the forward 

second harmonic signal was performed by means of a 1.4 NA oil immersion condenser. 

Image z-stacks of both signals (TPEF/elastin and SHG/collagen) were taken 

simultaneously by custom-made acquisition software coded in Labview. Image stacks 

were carried out at z-step 0.5 μm from the intima until 60 μm deep into the tissue. 

Acquisitions were taken at a pixel size of 0.29 μm, field of view 512x512 pixels, and 

averaged 5 times. Four image stacks at different anatomical locations were acquired for 

each aorta sample, and the exact location was assessed using the bright field image 

map of each sample.  

 

1.3. Computational image processing  

Quantitative data was obtained by an image processing protocol scripted in ImageJ 

macro language (figure 27). The elastin signal image stack was resliced to its YZ 

perspective, and automatically binary thresholded using the Niblack algorithm at radius 

10 to generate an elastin binary mask. The resulting mask stack was separated into 

groups of 15 consecutive images (34 groups), and each group was manually processed 

to select the chosen elastic lamella and isolate it from the other lamellae. This segmented 

lamella mask stack was re-resliced to recover the XY perspective, and small errors of 

segmentation and thresholding were corrected by applying a binary erode routine of 50 

iterations at range 5. Manual rectification of segmentation inaccuracies was executed 

when needed. The corrected lamella mask was applied to the original elastin image stack 

to obtain the isolated segmented lamella, and its maximal projection was created. 

Illumination intensity variations were adjusted. Sauvola local threshold at radius 5 was 

applied to the adjusted maximal projection image to create a fenestrae binary mask. 

Manual check and correction were performed to obtain a verified fenestrae dataset. From 

the fenestrae binary mask, individual area (μm2) and density (fenestrae number/mm2) of 

fenestrae greater than 1 μm2 were measured for each lamella using the “analyse 

particles” algorithm. The number of elastic lamellae ruptures and their area were 

excluded from the analysis. The image processing protocol yielded maximal projections 

of 16 wild-type IEL, 16 wild-type 2nd lamellae, 24 Marfan IEL and 24 Marfan 2nd lamellae. 

A total of 6,400 fenestrae at all maximal projections were quantified. 
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Figure 27. Image processing protocol to obtain en-face segmented elastic laminae and subsequent 

quantitative analysis. A. Representative image of an acquired original en-face TPEF stack. Elastin TPEF 

and background cell autofluorescence signals are visualized in grey scale. B. Representative image of the 

resliced original stack to transverse view. C. Representative image of the binary mask stack that was 

subsequently obtained. Elastin signal and some background spots are automatically marked in white, the 

rest of the tissue is marked in black. D. Representative image of segmented individual lamina mask stack. 

In this case, only the IEL mask was selected. E. Representative image of the resulting en-face IEL stack. F. 

En-face maximal projection comprised of all images within the IEL stack. G. Binary mask of all fenestrae 

seen at the maximal projection (F). H. Representative image of thickness display stack. Highest thickness 

is marked by white colour. I. 3D rendering of the lamella obtained from the IEL stack. J. Representative 

image of lamella skeleton image stack. K. Height map showing global lamella waviness. Yellow denotes low 

and dark blue high heights. Scale bar = 20 μm. 

 

BoneJ plugin in ImageJ was used to automatically quantify lamella thickness from the 

segmented lamella stacks. For an accurate measurement, image stack voxel size was 

rescaled by 0.6 at the X and Y axis, so that voxels had isotropic dimensions (0.5x0.5x0.5 

µm). Then the BoneJ specific measurement of thickness was applied onto each 

segmented lamella stack mask. Data was the mean thickness ±SD of the whole stack, 

and the programme provided a coloured representation of local thicknesses in each 

stack slice. 

To quantify lamella waviness in ImageJ, the YZ segmented lamella mask stack was 

manually checked for any error in the continuity of the lamella. Next, 9 automated series 

of binary erode and dilate were applied to the lamella mask in order to smooth the mask 

surface without losing its path. The YZ mask stack was then converted into its skeleton 

(by the Skeletonize option), depicted as a black background and white single-pixeled line 

tracing the core path of the lamella and branches, in each one of the stack slices. The 

next step was to process the skeleton stack to erase all undesired branching. We 

developed a sophisticated automated algorithm run on MatLab (The MathWorks Inc., 

Natick, MA) that tracked each one of the white pixels in the skeleton and classified them 

into skeleton segments belonging to the lamellar core path or to a branch path. Once the 
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classification had been done in each stack slice, the algorithm joined only the core path 

skeleton segments to finally generate the clean lamella skeleton stack. However, due to 

simplification of the 3D lamella shape into a split 2D skeleton, the smooth lamellar 

continuity was somehow spoiled. Therefore, in ImageJ, 9 series of erode and dilate were 

used automatically, first in the XY perspective and then in the resulting YZ view. Finally, 

a complete clean accurate skeleton stack was obtained from each segmented lamella 

stack. Out of these, we applied another developed MatLab algorithm to generate height 

data. The algorithm tracked each white pixel in the YZ skeleton to get its height value in 

the Z axis, and relativised each value to the minimum height value of the whole skeleton. 

To eliminate noise or tiny details affecting the wave pattern, the XY image (made of the 

relativised height values) was rescaled by 0.15. Likewise, a possible general inclination 

of the lamella was also corrected from the relativised rescaled height image by 

subtracting its own 20 px Gaussian blurred image. In the end, these final height values 

were displayed as a height map where yellow denotes low heights and dark blue 

represents high ones.  

 

1.4. Conventional histology  

Formol-fixed mice aortae were dehydrated and embedded in paraffin. Five µm 

transverse sections were stained with Verhoeff-Van Gieson staining for visualisation of 

elastic fibres. The length of elastic laminae breaks was measured manually from 24 

images, using ImageJ. The mean break length and standard deviation were calculated.  

En-face TPEF lamellar rupture length corresponded to the rupture distance crossed by 

a vertical or horizontal line. To standardise, a 10x10 µm grid was superimposed on all 

the TPEF maximal projection images that showed lamellar ruptures (8 out of the 48 total 

Marfan images). Each rupture yielded multiple length values. The mean length of 

ruptures was calculated by averaging the multiple lengths obtained from all the ruptured 

images. The standard deviation was also calculated in order to show data dispersion. 

Ruptured images were relatively infrequent, distributed among half of the Marfan aortic 

samples, and their anatomical location was randomly selected. 

 

1.5. Statistical method 

Data were analysed using GraphPad Prism 6 (La Jolla, California, USA), and plotted as 

median and interquartile boxplots with minimum and maximum whiskers. As the datasets 

presented various distribution shapes, statistical analysis was carried out using the 

Kolmogorov-Smirnov nonparametric test. The value of P ≤ 0.05 was considered 

statistically significant. The degree of significance was assigned as follows: * for P ≤ 0.05, 

** for P ≤ 0.01, *** for P ≤ 0.001, and **** for P ≤ 0.0001.  
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Part 2: MicroCT imaging of remodelling 

and micro-scale damage in          

Marfan syndrome murine aorta 

 

2.1. Experimental animals and sample preparation 

Three, six, and nine-month-old Fbn1C1039G/+ mice and age-matched wild-type littermates 

were used in this study (n=5 per group, 30 animals in total). Animal care and 

experimental procedures were approved by the University of Barcelona’s independent 

Committee for Animal Welfare, according to the University of Barcelona’s guidelines and 

the European Parliament Directive. The mice were on a C57B/6 genetic background and 

maintained as a heterozygous breeding colony in our animal room facility.  

Animals were sacrificed by isoflurane inhalation, and their aorta was surgically harvested 

from the aortic root until its suprarenal portion. Mice aorta dissection was performed by 

first removing all the anatomical elements of their thorax. Secondly, once the aorta was 

visible, the adipose tissue was removed and the vessel was gently detached from the 

spine. Third, the aortic root was extracted from the inside of the heart by cutting the 

surrounding cardiac tissue. Also, the aortic arch branches were cut and the aorta at the 

abdominal level too. With this, the aorta was completely separated from the body. Finally, 

the aorta was placed on a Petri dish and, there, it was cleaned more thoroughly by 

removing blood and adipose tissue rests. 

Samples were immediately rinsed in PBS and fixed in 4% PFA. Thereafter, aortae were 

dehydrated and embedded in paraffin, as for conventional histological preparations. 

Sample paraffin blocks were manually trimmed to remove embedding surplus 

surrounding the aortic vessel. Samples were vertically glued to a metal cryocap.  

 

2.2. Synchrotron X-ray computed micro-tomography (microCT) 

Aortic paraffin blocks were imaged at the I13-2 beamline of the Diamond Light Source 

(Didcot, Oxford, United Kingdom) by synchrotron phase-contrast microCT72 (figure 28). 

Samples were scanned exposing them to the wide wavelength spectrum beam (pink 

beam, 20-25 keV) of synchrotron light at 0.14 seconds exposure time. The light was 

detected by a pco.4000 camera with a propagation distance of 200 mm. Scans consisted 

of 3001 projections over 180° at a 4x objective magnification, providing a 4.5x3 mm field 

of view and isotropic 1.1 µm voxel size. The region of interest of the sample was placed 

close to the centre of rotation to avoid imaging artefacts. Scan time was 15 minutes per 

sample (acquisition time, plus sample placement and acquisition setting). 
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Figure 28. Study overview. Murine aortae were imaged by synchrotron-based microCT, and the obtained 

scans were computationally processed to evaluate histological parameters of tunica media (between the 

luminal surface in red and the media-adventitia border in green) and flat luminal surface morphology. 

 

2.3. Computational image processing 

Synchrotron scans were reconstructed via filtered back projection, with flat and dark 

correction and ring artefact suppression, without Paganin filtering, using the software 

provided at Diamond Light Source130. After this, the reconstructed image stacks were 

composed of 2,671 32-bit greyscale TIFF images each. Aortic image stacks were 

processed in Avizo software (FEI, Thermo Fisher Scientific) to generate a 3D volume-

rendered image of the whole aortic vessel, by segmenting tissue out of surrounding 

paraffin by means of brightness threshold. The stacks were virtually rotated and 

resampled to obtain an image stack orthogonal to the ascending aorta tube, yielding 

perfect transverse virtual cuts of this vessel region. Finally, stacks were saved as 16-bit 

unsigned TIFF format. When necessary, any dirt or air bubble artefact present in the 

luminal paraffin was manually erased by painting on it with the same grey colour as 

paraffin, with ImageJ. 

For 2D histological quantification, a central 200-images-portion of the ascending aorta 

stack was selected in all the samples. This cropped image stack was visualised and 

quantified by an in-house graphical user interface (GUI) developed in MatLab, which 

performed histological parameter quantification and also the necessary previous image 

processing. Briefly, every single image was firstly binarised to segment the aortic wall 

out of the surrounding external paraffin. Several morphological operations were applied 

to smoothen the segmentation. Then, to segment the tunica media from the adventitia, 

a first limit was automatically calculated by the GUI. To do that, the thickness of the aortic 

wall was computed in all the image slices by computing the Euclidean distance transform 
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of the binary mask and a line was established at the middle of the aortic wall throughout 

the circumference (this line was placed equidistant from both the wall-lumen and the 

adventitia-paraffin limits, so that it divided the aortic wall into two halves). Subsequently, 

the limit between media and adventitia layers was defined by dilating the mask that 

enclosed the inner half of the aortic wall, with a structural element of 0.35*minimum 

thickness of the aortic wall. This size of the morphological dilation was defined after 

visual inspection of several images, as it approximately fitted the real media-adventitia 

limit for all the different aortae sample groups.  

The centreline of the aorta tube was calculated by performing a spline interpolation of all 

the lumen centroids computed in all the image slices. After automatically finding the 

centreline, a local Cartesian to Polar coordinates transformation was applied in order to 

virtually open the aorta, which meant that the aortic wall was converted from a ring into 

a straight line (fig 1C and 1D). This was achieved by using each point of the limit between 

the lumen and the aorta wall as a local centre for the coordinate values swap. The polar 

coordinates of the calculated media-adventitia limit were smoothened using a spline 

function. The GUI enabled the user to modify the limits manually in order to improve the 

automatic estimation of the media-adventitia limit. It is noteworthy to state that it was 

necessary to modify only 2 slices per sample out of the 200 being measured, since the 

GUI readjusted the rest of the images relying on the manual modifications. In summary, 

the media-adventitia and lumen-aorta limits were automatically found by the GUI, which 

allowed the generation of tunica media, aortic wall and lumen masks. 

Once the media-adventitia limit was accurately delimited, the thickness of the tunica 

media, its cross-sectional area and the area occupied by lamellae were computed. The 

thickness was obtained by calculating the Euclidean distance between the media-

adventitia and the media-lumen limits in each image slice. The distribution of all the 

thickness values in the aorta circumference of a slice was plotted as a histogram and 

then fitted to a Gaussian, and thus, the mean thickness and standard deviation were 

achieved for each slice in the stack. Cross-sectional area was calculated as the area of 

the tunica media mask. Then the medial mean thickness and mean cross-sectional area 

of the whole 200-slices stack and their standard deviations were obtained. To calculate 

the lamella area, the “highly contrasted lamellae” were segmented out by brightness 

thresholding the tunica media images, as the intensity of its pixels was higher than the 

rest of the image. Then the total number of lamella pixels was counted and divided by 

the area of the media to compute the % of medial space occupied by lamellae. 

Subtraction of lamellar area to the total medial area yielded the area occupied by the 

interlamellar spaces. 

In the case of some aneurysmal samples, the GUI was not able to perform the media-

adventitia limit nor the virtual opening step, since the vessel circumference was not 

circular but completely irregular. To overcome this issue, the brightest parts of the 

images (mainly lamellae) were thresholded and then a watershed algorithm was applied 

to the resulting binary mask un ImageJ, thus obtaining a mask of a closed tube. Next, 
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the ilastik software was used to identify and segment the lumen from all 200 slices, by 

means of the carving workflow. The resulting lumen mask was applied to the original 

images in order to create an aortic image stack with a black lumen instead of with a grey 

lumen. Then, the media-adventitia limit was manually outlined to allow segmentation of 

tunica media out of the rest of the image. With this, the in-house GUI was used to 

calculate the tunica media cross-sectional area and pixel amount, but it was not able to 

compute the thickness due to the irregularities in the vessel circumference. Therefore, 

the medial thickness of only two irregular samples was manually measured using ImagJ. 

Lumen diameter values were obtained by approximating the vessel internal 

circumference to an ellipse and averaging its major and minor axes.  

The luminal surface of the samples was obtained for all the whole ascending aorta 

region, which included a different number of image slices depending on the sample 

(anywhere from 200 to 800 slices). This region’s image stack was virtually opened and 

lumen and tunica media were labelled, following the previously described procedure 

using the GUI. Next, using an in-house ImageJ macro, we were able to delineate the 

border between the lumen and the aortic wall, which corresponds to the location of the 

IEL. Binary dilatation of this limit by 7 pixels was the ideal to segment the entire IEL. 

Finally, we resliced the segmented IEL stack to the en-face perspective and generated 

the maximal projection of all the images to obtain the visualisation of the luminal surface. 

Quantification of lamella breaks in the maximal projection image was done by manually 

delimitating their contour and measuring their area, in ImageJ. 

The 3D volume render of aortic tissue was generated using Blender software after 

manually processing the images with ImageJ. In brief, a small portion of the entire aortic 

scan was selected, and intensity threshold was applied to obtain the mask of the 

lamellae. Manual smoothening and cleaning of the mask was required. Then, a contour 

mesh was generated for the mask stack in Paraview software131, rendering a lamellae 

3D volume of the aortic tissue piece. Next, the number of mesh faces was reduced using 

Instant meshes software. Finally, the volumetric mesh of the lamellae was visualised by 

Blender software and a movie was recorded. 

 

2.4. Statistical method 

Data were analysed using GraphPad Prism 6 (La Jolla, California, USA), and plotted as 

the 5 data points corresponding to the mean value of each sample, and the group mean 

± standard deviation (SD). Since the data did not follow a Gaussian distribution and also 

presented various distribution shapes, statistical analysis was carried out using the 

Kolmogorov-Smirnov nonparametric test. In the specifically mentioned cases, the F-test 

was applied to evaluate differences in data dispersion between groups, instead of 

differences in the mean value. The degree of significance was assigned as follows: # P 

< 0.08; * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 
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Part 3: Impact of in vivo-like stretch on 

the phenotypic modulation of VSMCs 

of Marfan syndrome patients 

 

3.1. Extraction of human VSMCs 

Human VSMCs were isolated from tunica media of control and Marfan ascending aortas 

of patients using the primary culture explants methodology performed in our lab93. In 

brief, the aorta tube was opened longitudinally with a scalpel blade, and the endothelium 

monolayer was removed by scraping. Aorta was cleaned of fatty tissue and separated 

from intima and adventitia layers by peeling using forceps. Once the tunica media was 

isolated, it was placed in a new Petri dish with 5 mL of serum-free 231 medium (Gibco, 

USA), and it was cut into 1x1 mm cubes, named explants. Aortic media explants were 

transferred to 100 mm culture dishes and covered with 4 mL of 231 culture medium 

supplemented with 25 mL smooth muscle growth supplement from Gibco, supplemented 

with 25mL 100 mg/mL streptomycin and 100 U/L penicillin (i.e. complete medium). Cell 

cultures were maintained at 37°C in a humidified 5% CO2 atmosphere. Explants were 

left undisturbed for 4 days to prevent detachment, and afterwards, the medium was 

changed every 4 days. One or two weeks later, once VSMCs had migrated out from the 

explants, the cells were trypsinised and routinely subcultured. Cells were frozen in 

DMSO and kept in a liquid nitrogen tank until we wanted to use them for the experiments. 

Primary cultures have limited expansion so they were used for experiments between 

passages 3 to 8. 

 

3.2. Stretch bioreactor 

The bioreactor consisted of 

a cell culture platform (chip) 

connected to a vacuum 

system (figure 29), as will be 

thoroughly explained in the 

Results section. 

 

 

 

 

 

Figure 29. Stretch bioreactor 

components. 
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To fabricate the chip, each piece was made separately, and a new chip was built for 

each experiment. The pressure chamber, membrane, culture chamber, and connector 

were made of PDMS 1:10 mix (1 g of curing agent per 10 g of PDMS) in specifically 

shaped moulds. Once PDMS was poured into each mould, it was solidified at 60ºC for 1 

hour.  

On the lateral of the block, a P60 and a P100 culture dishes, five 2 mm holes were made 

with a 2 mm skin punch or drill for later introduction of tubes. Then, a 20 µm thick 

membrane was generated. Rectangular glasses were washed thoroughly with ethanol 

and were activated with high potency plasma treatment for 30 seconds. Then, we 

exposed the glass to Repel Silane vapour, which was used to prevent PDMS from 

sticking too much on the glass surface. Liquid PDMS was poured onto the activated 

glass, and the glass+PDMS was placed into a spin coater machine at 1000 rpm for 1 

minute to achieve a membrane at the desired thickness (20 µm). After this spinning step, 

the glass+PDMS was placed onto a slide warmer (95ºC) during 20 minutes to solidify 

the PDMS membrane.  

To assemble the complete chip, in order to facilitate the adhesion, the membrane and 

the pressure chamber were activated again with plasma treatment and attached one to 

another. To ensure the correct union between them, the borders were sealed with PDMS. 

Then the pressure chamber+membrane block was separated from the glass, and was 

glued with liquid PDMS to a P60 culture dish and, in turn, this P60 was glued to a P100. 

Next, 2 mm tubes were introduced through the holes of the P100, P60, and pressure 

chamber, and after, every hole was sealed with PDMS. Once the chip was constructed, 

its mechanical performance was checked by connecting it to the vacuum system. If the 

membrane stretched properly under cyclic negative pressure application, the chip was 

finally prepared for posterior cell culture: sterilisation by ultraviolet light (UV) for 1 hour, 

sealed with Parafilm (Sigma), and storage at room temperature until it was needed for 

an experiment. Each chip was disposable, just like normal culture cell dishes, so chips 

were built every time from scratch for each experiment.  

 

3.3. VSMC culture onto chip 

Two or three weeks before the experiment, frozen human VSMCs were thawed and 

cultured to achieve enough cell number to seed them onto chips. On the chip cell seeding 

day, a culture chamber and the surface of a chip (membrane) were activated with plasma 

treatment, at maximum power for 1 minute. The culture chamber was adhered to the 

membrane, and the whole chip assembly was sterilised by UV for 20 minutes. Then the 

membrane was coated with fibronectin (F4759, Sigma) at 10 µg/mL for 1h at 37ºC, 

placed into the incubator. Meanwhile, cells were detached from the conventional culture 

dishes with trypsin (1 mL), centrifuged, resuspended in serum-free 231 media (Gibco, 

USA), and counted. Once fibronectin coating incubation was finished, canals were 
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carefully rinsed with phosphate-buffered saline (PBS), and then, cells were seeded at 

different cell concentration regarding its posterior use: 

- 60,000 cells were seeded on the canals aimed to carry out protein extracts.  

- 30,000 cells per canal were seeded for posterior immunocytochemistry analysis.  

 

Cell cultures on chip were maintained in an incubator at 37ºC in a humidified 5% CO2 

atmosphere and were nourished with complete 231 media that was changed every 3 

days, as it is conventionally done. Cells were left unstretched overnight to allow their 

adhesion to the chip membrane, and the day after, the vacuum system was activated to 

generate stretching of the membrane. Finally, the effect of stretch on the VSMCs was 

analysed by immunocytochemistry and western blot at different exposure times: 0 (no 

stretch, only overnight adhesion), 3 and 7 days. Each replicate experiment involved the 

same primary cell line seeded at the same time onto three chips, each one intended for 

one of the 3 exposure times. 

Conventional cell culture at 0, 3 and 7 days was also performed as comparison control 

condition (inherently unstretched). Cells were seeded onto 230 mm2 round coverslips for 

immunocytochemistry (30,000 cells) or 962 mm2 culture wells for western blot (240,000 

cells). Those substrates were fibronectin-coated as in the chips, or were not coated as 

in conventional experiments. Cell seeding was made at the same time for conventional 

and for chip cultures, and both cell cultures were kept in the same incubator. We 

performed this experiment with VSMCs from three different Marfan patients, as well as 

three different control patients.   

For the bioreactor’s optimisation tests, the following coating procedures were applied: 

 Poly-D-lysine (PDL) coating. Incubation during 2 hours at 37ºC of 10 µg/mL PDL 

on the PDMS substrate, and posterior drying at the laminar flow cabinet. 

 Collagen coating. Incubation during 3 hours at 37ºC of 10 µg/mL collagen on the 

PDMS substrate, and posterior rinsing with PBS. 

 Gelatin coating. Dilution of 0.1 g of gelatin powder in 50 mL PBS, then incubation 

of this 0.2% gelatin on the PDMS substrate during 1 hour at 37ºC, and posterior 

rinsing with PBS. 

 PDL-collagen or PDL gelatin coatings. First, PDL coating as described above, 

and secondly, collagen or gelatin coating as detailed above. 

 

3.4. VSMC immunofluorescence 

For immunocytochemistry analysis, VSMC seeded on the canals or glass coverslips 

were fixed with 4% PFA in PBS for 10 minutes and rinsed afterwards in PBS thrice. 

Subsequently, cells were incubated with 50 mM ammonium chloride pH 7.4 for 20 

minutes to block the reactivity of aldehyde groups of the PFA. Then, the samples were 

rinsed in PBS and permeabilised with PBS 0,1% saponin 1% bovine serum albumin 

(BSA) for 10 minutes. Primary antibodies were incubated for 1 hour in a humid, dark 
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chamber. After rinsing the cells thrice, they were incubated with the secondary antibodies 

plus phalloidin-FITC for 45 minutes. All the antibodies were diluted in PBS 1%BSA. The 

membranes of the chip in which the immunostaining had been performed were dissected 

with a scalpel, cutting through their rectangular contour. The cut membranes were 

mounted with the mounting medium DAPI-fluoromount-G on microscopy glass slides and 

covered with a rectangular coverslip. In the case of immunostaining of cells on 

coverslips, coverslips were mounted on slides with the same mounting medium. All the 

procedure was performed at room temperature.  

Stained structures by this protocol were ECM collagen I (goat anti-collagen I, 1/40, 

Abcam; + Alexa Fluor® 488 anti-goat, 1/250, Abcam), cytoplasm SMA (mouse anti-SMA, 

1/500, Sigma; + Cyanine Cy™3 anti-mouse, 1/250, Jackson), transgelin (rabbit anti-

transgelin, 1/500, Abcam; + Alexa Fluor® 647 anti-rabbit, 1/250, Invitrogen), actin 

cytoskeleton (FITC-labelled phalloidin, 1/500, Sigma), focal adhesions (mouse anti-

vinculin, 1/400, Sigma; Alexa Fluor ® 546 anti-mouse, 1/250, Jackson) and nuclei (DAPI, 

from the DAPI-fluoromount-G mounting medium, Southern Biotechnology Associates).  

Fibrillin-1 immunocytochemistry was performed following the methanol protocol adapted 

by Dr Reinhart’s lab. In brief, samples were fixed, blocked, and permeabilised during 

exactly 5 minutes with 70% metOH+30% acetone cooled at -20ºC. Then, samples were 

incubated with 10% FBS for 30 minutes, rinsed, and the antibodies were added orderly 

as described in the above immunofluorescence protocol. Used antibodies were: rabbit 

anti-fibrillin-1, 1/1000, provided by Dr Reinhart, and Alexa Fluor® 488 anti-rabbit, 1/250, 

Molecular Probes. 

Focal adhesion staining by anti-vinculin-A546 antibody complex was imaged with the 

60X objective. Focal adhesions of ten cells of 10 images for each condition were 

analysed by ImageJ applying a threshold that distinguished the vinculin staining. With 

this, the number and the size of vinculin stain spots were measured. Hence, the number 

of focal adhesions per cell area (density) and the ratio between vinculin area and cell 

area (cell occupation percentage) were obtained. 

In the case of cell directionality assessment, actin cytoskeleton staining by FITC-

phalloidin was imaged with the microscope 10X objective with the Hokawo program. The 

direction of all cells was manually marked in five images of each condition of each 

experiment. All direction marks were analysed by ImageJ thresholding to obtain their 

angle value. Angle values ranged originally from 0º to 180º, so values in the range of 90º 

to 180º were converted to the range of 0º to 90º by a simple conversion factor. Also, the 

angles were corrected by the angle of the chip’s cut membrane, since not all mounted 

membranes were placed exactly horizontal, in parallel to the microscope slide. Once the 

angle conversions were done, the direction of all cells was quantitatively analysed in 

reference to applied stretch direction. 
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SMA staining was viewed in an epifluorescence microscope, and Cast software was 

used to count the number of cells (nuclei by DAPI), the number of cells with SMA fibres, 

with diffuse SMA staining (without fibres), and without SMA staining.  

 

3.5. VSMC protein analysis 

Cells seeded on chips were lysed adding 200 µL of RIPA lysis buffer (10 mM Tris-HCl 

pH 7.5, 1 mM EDTA pH 7.5, 0,5mM EGTA, 1% Triton X-100, 0,1% sodium deoxycholate, 

0,1% sodium dodecyl sulfate (SDS); 140 mM NaCl) containing proteases (Aproptin 

1/1000, Pepstatin A 1/1000, Leupeptin 1/1000, and Phenylmethylsulfonyl fluoride 1/200) 

and phosphatase inhibitors (Sodium Orthovanadate 1/100) into the chip canals. The 

membrane was softly scrapped with a scraper for the cells to detach and start to lysate 

by the action of the buffer. Cell lysates were placed into an eppendorf, homogenised with 

a 30G needle (30 strokes), and left 30 minutes on ice. After, they were centrifuged at 

1000 g for 10 minutes at 4ºC. The supernatant was placed into a new eppendorf, and 

protein concentration was determined with the colourimetric DC Protein Assay from Bio-

Rad (Hercules, CA, USA). 

Western blot was performed using 5 or 10 µg of protein lysates. Samples were prepared 

by mixing the protein lysate with 5 µL of loading buffer 5X, containing 10% β-

mercaptoethanol. They were loaded on a 10% SDS -polyacrylamide gel, subjected to 

electrophoresis for ~80 min (35 mA per gel) and transferred to nitrocellulose membranes 

(Promega, USA). The membranes were blocked with 5% BSA diluted in Tris-buffered 

saline (TBS). Then, they were incubated overnight with primary antibodies, diluted in 

TBS with Tween buffer (TBS-T) (20mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20) 

containing 0.02% of sodium azide and 1% of BSA. Used primary antibodies were: anti-

SMA (mouse 1/4000, Sigma), anti-transgelin (rabbit 1/7500, Abcam), anti-collagen I 

(goat, 1/1000, Millipore), anti-elastin (mouse, 1/5000, Sigma), anti-calponin-1 (rabbit, 

1/1000, Sigma), anti-alpha-actin (mouse, 1/20000, Sigma), and loading control anti-

GAPDH (mouse 1/1000, Abcam). The following day, blots were rinsed three times with 

TBS-T for 10 minutes and were incubated with anti-mouse IgG HRP conjugate (1/3000; 

Promega) or anti-rabbit IgG HRP conjugate (1/3000, Promega) secondary antibodies for 

1h in 2,5% BSA diluted in TBS-T. Blots were rinsed thrice with TBS-T for 10 minutes and 

were covered with western blotting luminol reagent (Santa Cruz, Delaware, CA, USA) on 

a cassette. Bands were visualised by exposure of the membrane to hyperfilm 

(Amersham Pharmacia Biotech, Uppsala, Sweden) in a dark room. Band intensities were 

measured by densitometry scanning of the film using ImageJ software. 
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3.6. VSMC RNA analysis 

Total RNA (ribonucleic acid) was isolated using TRIzol protocol (Invitrogen, USA). 

Briefly, culture media was removed, cells were washed in PBS, and samples were 

homogenised in 200 µL TRizol using a scrapper. After incubation of the lysed samples 

for 5 min at room temperature to permit the complete dissociation of the nucleoprotein 

complexes, 150 µL of chloroform was added. Cold centrifugation at 12000 g for 15 

minutes separated the mixtures into three phases: lower red, phenol-chloroform, protein 

phase, middle viscous white, DNA-containing phase, and the upper colourless, aqueous 

RNA phase. The RNA was precipitated from the aqueous phase by mixing it with 375 µL 

cold isopropanol and centrifuging it again. The RNA pellet was washed with 75% ethanol 

and left to dry. RNA pellet was finally dissolved in 20 µL of RNase-free water. The RNA 

concentration and purity were quantified by Nanodrop (Agilent, USA). 

cDNA from 1 µg total RNA was synthesised at a thermal cycler using the High Capacity 

Reverse Transcriptase kit (Applied Biosystems, USA), following the conventional PCR 

(polymerase chain reaction) procedure. Subsequently, the cDNA products were used to 

detect collagen I, myocardin and GAPDH expression by 1.5% agarose electrophoresis 

in combination with the KAPA2Gfast kit. Gel bands were visualised and imaged in an 

ultraviolet light chamber.  

 

3.7. Statistical method 

All data were analysed using GraphPad Prism software (La Jolla, California, USA). 

Significance degree was assigned as follows: *P value <0.05; ** P value <0.01; ***P 

value < 0.001; ****P value <0.0001. 

Focal adhesion quantitative data were expressed as the mean ± SD of vinculin area and 

of the number of focal adhesions per μm2. Statistical analysis was carried out by 

nonparametric Mann-Whitney test since a small size sample should be assumed as non-

Gaussian. 

Analysis of SMA staining patterns was expressed as the mean of the percentage of cells 

with each corresponding staining pattern.  

Western blot data were expressed as the mean ± SD. The ratio between the protein 

content of SMA and transgelin was made in relation to the loading control GAPDH. 

Statistical analysis was performed with a two-way ANOVA.  
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Part 4: Definition of a literature-based proteome 

of the human aorta 

 

4.1. Literature processing and database building 

Manual literature review aided by previous text mining filtering were adapted from Hibbert 

et al.132. In brief, all published scientific articles containing information about proteins in 

human aorta were sought at the Web of Science database (more detail is explained at 

the Results section). The information of all the retrieved articles in this search was 

extracted as plain text using the webpage’s “save to” utility. Then, a custom-made 

bioinformatics text mining code processed the extracted data to provide an MS Excel 

spreadsheet listing the relevant keywords contained in the abstracts of all the articles132. 

Manual revision of each article record was performed to detect the articles that actually 

provided information on specific proteins present in the human aortic tissue. When one 

relevant article was found, it was carefully read, and the following information was 

extracted and put in an MS Access database: protein name, technique used for protein 

presence detection (mass spectrometry and/or immune-based methods), article unique 

DOI, and, if stated, protein location within tissue (tunicae intima, media, adventitia and/or 

other), aortic portion (ascending, abdominal, descending thoracic, or aortic root), age 

and sex of sample donor, and affectation that occasioned the aortic tissue donation. 

Afterwards, the database protein record was complemented with general information 

about the individual protein: official name, UniProt accession number, and encoding 

gene name. In the onset of an article that mentioned an already annotated protein in the 

database, its DOI was added to the already existing protein record. Once revision of the 

whole article list was finished, we assumed that the proteome was complete. Notably, all 

this procedure was performed to generate two databases that contain the human Aorta 

Proteome and the human Aortic Aneurysm Proteome. 
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Part 1: High-resolution morphological approach 

to analyse elastic laminae injuries  

of the ascending aorta  

in a murine model of Marfan syndrome 

 
 

In the context described in the introduction section, our aim was to provide further 

insights into the characterisation of elastic lamellae microstructure. Therefore, a confocal 

multiphoton microscopy and computational methodology was developed, which 

generated the en-face TPEF image of segmented individual lamellae from unstained 

whole aortic samples. Then, this methodology was applied to ascending aorta samples 

of Marfan syndrome mice, as a histopathological model of tunica media alterations that 

typically occur in aortic aneurysms. 

 

 

1.1. Technology development:  

 Multiphoton microscopy and image processing 

1.1.1. Optimisation of multiphoton microscopy acquisition 

To obtain high-quality en-face images of intact mice aortae that allowed a detailed 

assessment of lamellae microstructural alterations, a new method was established 

involving tissue preparation, image acquisition, processing, and analysis. Image 

acquisition by confocal multiphoton microscopy was performed at Institut de Ciències 

Fotòniques (ICFO) premises. Their setup was a custom-made multiphoton microscope, 

which permitted parallel visualisation of TPEF and SHG, among other signals. The first 

attempt to image murine aortic tissue demonstrated that this setup was able of 

simultaneous visualisation of the elastic lamellae by elastin TPEF signal and collagen 

fibres by SHG (figure 30) of a vascular sample. Thereafter, one could perform an en-

face (XY perspective) confocal stack running into the tissue in the Z-axis (z-stack) to 

acquire the whole thickness of the sample, and then the stack could be visualised 

transversally (XZ or YZ perspectives, figure 30A) and in 3D (XYZ, figure 30B) by ImageJ 

software.  

 



Results 

 

76 
 

 

Figure 30. Representations of a multiphoton confocal z-stack of murine aortic tissue. A. Z-stack displayed 

by ImageJ orthogonal views utility. The central panel shows a particular image of the originally acquired en-

face z-stack, while the lateral and lower panels show the two possible transversal perspectives of the tissue 

(YZ and XZ). B. Volumetric rendering of the tunica media of murine aortic tissue. Elastin is marked in green, 

collagen in red. 

Despite performing the acquisition in a dark room, these first images were noisy (see 

that black zones in figure 30 are crowded with diffuse green granules). To overcome this 

issue, the microscope was covered with a black cape, which effectively attenuated the 

surrounding light (figure 31). Thus, the use of this cape was mandatory for subsequent 

captures. 

 

Figure 31. Multiphoton confocal acquisition of murine aortic tissue, using a black cape. A. Single confocal 

image of TPEF signal corresponding to elastic lamellae. B. Single confocal image of SHG signal 

corresponding to medial collagen fibres. In comparison to figure 1, note that image noise was almost 

inexistent. 
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For these first acquisitions, laser power was set to 30 mW so that it was possible to 

capture collagen both from the tunica media and the adventitia in the same z-stack 

(figure 32). However, to obtain sharper and more intense images of medial collagen, 

laser power should be augmented (figure 32C). Conversely, the laser should be turned 

down to desaturate the adventitial collagen images (figure 32A). 

 

Figure 32. SHG confocal acquisition of murine aortic tissue at 30 mW laser power. A. Single confocal image 

of SHG signal at the tunica adventitia level. Signal saturation happens in the absolute white regions. B. 

Volumetric rendering of SHG signal z-stack of the aorta. Both tunicae collagens were distinguishable by their 

brightness intensity: adventitial collagen mesh on top, and medial collagen below and arranged in layers. C. 

Single confocal image of SHG signal at the tunica media level. Medial collagen is here visualised at low 

intensity. 

Besides, in these assays, some samples had the aortic tissue placed with the 

endothelium in contact with the coverslip, and others on the opposite side. The 

comparison of both situations evidenced that the adventitia layer produced a drastic 

effect on the microscope light: when the light crossed the adventitia first, its intensity was 

highly attenuated, and consequently, the tunica media was hardly imaged (figure 33A). 

This loss of signal was due to ordinary light absorption by the abundant collagen mesh, 

and it was evident at ~50 μm inside the tissue. In contrast, light incidence firstly through 

the tunica intima had a milder effect on the light intensity, consequently, the tissue could 

be imaged further down (figure 33B). Taking this into account, as the aim was to study 

the tunica media, the subsequent samples were all mounted with the tunica intima placed 

in contact with the coverslip, i.e. placed facing the light source.  
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Figure 33. Microscope light penetration into an aortic tissue sample. A. Tunica adventitia placed in front of 

the light source. B. Tunica intima placed in front of the light source. Notice the depth of the light penetration 

in each case. Light incidence comes from the top of the figure. Elastin is marked in green, collagen in red. 

Scale bar = 50 µm. 

In addition, the stack z-step size was set in accordance to the Nyquist criterion: in order 

to not lose information, the sampling rate should be 2*B (in our case, B is the length of 

the z-stack in the Z-axis). Taking into account that tissue thickness of our aortic samples 

was around 80 µm, but some samples achieved 100 µm, the z-stack length was grossly 

averaged to 100 µm since the z-stacks had to cover the full thickness of the tissue. 

Accordingly, sampling rate was required to be (2*100=) 200 images per stack, implying 

a 0.5 µm z-step size. Consequently, all z-stacks from now on were acquired with this z-

step size, even though the sample was thinner than 100 µm. 

In summary, the subsequent aortic tissue z-stacks were consistently performed at 0.5 

µm z-step size, with total surrounding light deprivation, and laser power higher than 30 

mW.  

 

1.1.2. Optimisation of the sample preparation 

Up to this point, the used samples were randomly-located, small pieces of 

paraformaldehyde (PFA) fixed aortae that were positioned flat in between the microscopy 

mounting glasses. To standardise the sample preparation protocol for this study, first, 

the fixation reagent was verified. Formol and glutaraldehyde were tested, besides PFA 

(figure 34). The result was that formol provided a more uniform and intense fluorescence 

signal than PFA (compare figure 34B versus A). Besides, glutaraldehyde fixation 

converted the elastin TPEF pattern to “blue” and stimulated the emergence of 

autofluorescence of the interlamellar space components (figure 34C). Therefore, formol 

was established as the standard fixation reagent. 
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Figure 34. Fixation reagents assessment. En-face (left column) and transverse (right column) confocal 

images of murine aorta fixed with PFA (A), formol (B), or glutaraldehyde (C). In A and B, elastin is marked 

in green and collagen in red. In C, elastin is marked in blue and the interlamellar space components in yellow 

(colour resulting from the mixture of the green and red fluorescence channels). The transverse image is 

displayed without colouring to show the presence of fluorescence everywhere in the wall. Tunica intima is 

placed at the top of all the transverse images. Scale bar = 50 µm. 

Despite the encouraging results of the first acquisitions, other parameters required 

verification. This is the case for the tissue structural modifications owing to sample 

fixation and flattening. A mouse was perfused with formol in order to obtain an aorta fixed 

at physiological pressure to have a realistic reference. Two narrow rings were dissected 

from this aorta, and one of them was cut to open the ring circumference. Both intact and 

open perfusion-fixed rings were mounted on microscope slides, in the transverse 

position, and were imaged by multiphoton microscopy. The obtained images of both 

perfused rings showed that lamellae were straightened due to the applied intraluminal 

pressure by the perfusion procedure (figure 35A and D). Additionally, another murine 

aorta was harvested the same day as the microscopy acquisition, and two rings were 

dissected out: one was left fresh to  know the native configuration of unpressurised 

lamellae, and the other was directly fixed by immersion in formol. Moreover, transverse 

images of the samples used up to this experiment were added to the analysis, as a 

representation of a fixed and then open sample. Examination of these samples’ 

acquisitions revealed that the lamellae in these latter three conditions had a similar wavy 

aspect (figure 35), demonstrating that neither fixation nor ring opening after fixation leads 
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to significant modification in lamellae conformation. Besides, this wavy aspect was like 

that displayed in conventional histological preparations often presented in published 

articles. Therefore, open vessel fixed samples were a valid representation of an 

unpressurised aorta.  

 

Figure 35. Assessment of lamellae conformation in different fixation procedures. A. Formol-perfused aortic 

ring sample. B. Aortic ring sample fixed in formol. C. Fresh aortic ring sample without fixation. Note the 

initiation of degradation. D. Open formol-perfused aortic ring sample. E. Aortic sample fixed in formol and 

then cut open. This image belongs to a previously acquired en-face z-stack. 

Next, the uniformity of lamellae structure along the aorta tube was verified. A prominent 

difference between the aortic root and the tubular ascending aorta was observed in terms 

of lamellae wrinkling (figure 36). This change was clearly seen in bright field microscopy 

(figure 36A) and also at TPEF signal acquisition (figure 36B). Specifically, in the aortic 

root, lamellae were very straight, and there was almost no interlamellar space (figure 

36A), resembling a pressurised vessel (figures 35A and D). Conversely, the tubular 

ascending aorta presented wavy lamellae paths and, at least, a few microns separation 

between lamellae. As aortic aneurysms typically occur at the tubular ascending aorta of 

Fbn1C1039G/+ mice, in the following acquisitions, we focused on this anatomical zone. 
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Figure 36. Lamellae conformation at different anatomical sites. Aortic tissue imaging at the bright field (upper 

panels) and the multiphoton (lower panels) microscopies of aortic root (A) and tubular ascending aorta (B). 

Multiphoton microscopy panels show the sample at en-face (central) and transverse (lateral and below) 

perspectives, with elastin in green and collagen in red. 

Moreover, in some previously imaged aortae, we noticed that second acquisition after 

two months displayed TPEF signal also for aortic cells, besides lamellae. See the large 

endothelial cells on top of the IEL, and the VSMCs packed between lamellae in figure 

37A and B, respectively. Often, the directionality of the cells was evident.  
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Figure 37. Aortic cell autofluorescence. A. Endothelial cells at tunica intima, plus the initiation of the IEL. B. 

VSMCs at tunica media, all aligned to the same direction. Elastin is marked in green, collagen in red. Scale 

bar = 10 µm. 

The cell autofluorescence was a problem because its signal was indistinguishable from 

the elastin one (figure 37 and 38). The most probable explanation for this phenomena 

was that, in general, samples continued slowly degrading even though they were fixed, 

and cell autofluorescence emergence was an indication of this degradation. To verify this 

hypothesis, some samples used one month before were imaged, and the new images 

were compared to the old ones (figure 38B versus A). Indeed, the appearance of cell 

autofluorescence was obvious. Thus, we established that no more than 30 days could 

pass between animal sacrifice and microscopy acquisition. 

 

Figure 38. Aortic cell autofluorescence emergence in the same sample. A. Initial images of the aortic sample 

at en-face (upper panel) and transverse (lower) perspectives. B. Images of the same sample after 40 days. 

Note the apparition of green fluorescence in between lamellae. Collagen signal was sharper in B due to the 

microscopy acquisition improvements made during the 40 days. Elastin is marked in green, collagen in red. 

Scale bar = 9 µm. 

In summary, the following definitive acquisitions were performed by applying all the 

established sample and microscope variables:  

 formol fixed and afterwards cut-open aortae,  

 recently sacrificed animal,  

 endothelium facing the light source,  

 imaging of the tubular ascending aorta,  

 acquisition in total darkness,  
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 0.5 µm z-step size,  

 laser power higher than 30 mW.  

Notably, acquisitions consisted of an en-face z-stack of confocal images, beginning at 

the tunica intima and running until the elastin signal became too low for accurately 

visualise lamellae. 

 

Furthermore, the gathered knowledge on mice aorta imaging was implemented to make 

acquisitions of human aortic samples (figure 39). However, taking into account that the 

thickness of human tissue was ten times thicker than the murine, it was not possible for 

the microscope light to pass through the human tissue. Consequently, samples had to 

be physically cut into ~100 µm thick slices. To do so, the human samples were 

embedded in low melting agarose and were cut with a vibratome. Transverse imaging of 

the obtained slices revealed that human aortic tissue was more complex than that of 

mice (figure 39A). Despite several attempts, it was very hard to cut the sample in parallel 

to the luminal surface, thus we were not able to achieve any en-face visualisation of the 

human tissue (figure 39B and C). For this reason, we decided to continue the project 

with mice aortae and to keep the human samples for perhaps a second phase of the 

study. 

 

Figure 39. Human aortic tissue acquisitions by multiphoton microscopy. A. Transverse perspective of the 

human aortic wall. B and C. Oblique perspectives of the human aortic wall as attempts to obtain en-face 

slices. Note that the cut in C is closer to be in parallel to the lamellae or luminal surface than B. Elastin is 

marked in green, collagen in red. 

 

1.1.3. Image processing of aortic elastin z-stacks 

Once image acquisition parameters were fully optimised, quantification of histological 

features on the en-face tissue images was performed. However, to precisely measure 

those features in a standardised manner, images needed additional computational 

processing before. Hence, we first proceeded by observing the particularities of the 

images and then by scripting code to process them in accordance with the observations. 
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The series of consecutive transverse images of TPEF elastin signal often showed the 

progression of lamella branching, small breaks, crosslinking between neighbouring 

lamellae, and/or abrupt ending of lamellae (figure 40). These findings showed that aortic 

elastic lamellae were arranged in a 3D cage-like network, with irregularities that disrupted 

the apparent parallel arrangement seen in conventional histological preparations.  

 

Figure 40. Consecutive image sequence of elastin signal at transverse perspective. Sequential progression 

is from left to right. Brighter grey signal displays elastic lamellae. Progression throughout the volume shows 

lamellae branching, crosslinking, and breaks.  

However, the transverse view did not allow detailed lamellae microstructure 

visualisation. Hence, segmentation of individual lamellae out of the acquired TPEF z-

stack was then necessary. Consequently, to work with clean individual elastic lamella 

images, a semi-automatic segmentation protocol was developed in ImageJ software that 

processed the original elastin stack (figure 41) (for further detail, refer to the Materials 

and methods section). Briefly, each en-face z-stack (XY) (figure 41A) was virtually 

resliced to build its corresponding transverse image stack (YZ) (figure 41B), and then 

binary auto-threshold function was used to discriminate the elastin signal from the 

background (figure 41C). The chosen elastic lamella was then manually selected, and a 

new mask image stack was created with only this selection (figure 41D). The complete 

lamella mask stack was resliced back to the en-face view, and it was applied to the 

original one (figure 41A) to generate the image z-stack only of the selected individual 

elastic lamella (figure 41E). Finally, all the images of the lamella z-stack were joined into 

a maximal projection in the Z axis (figure 41F), in order to produce a single image that 

provided the 3D information of the lamella. 
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Figure 41. Image processing protocol to obtain en-face segmented elastic laminae. A. Single confocal image 

of an original en-face TPEF z-stack. Elastin TPEF and low background autofluorescence signals are 

visualised in grey scale. B. Representative image of the transverse stack obtained by reslicing the original 

stack. C. Representative image of the binary mask stack that was subsequently obtained by thresholding. 

Elastin signal and some background spots are automatically marked in white, the rest of the tissue is marked 

in black. D. Representative image of segmented individual lamina mask stack. In this case, only the IEL 

mask was selected. E. Single confocal image of the resulting en-face IEL z-stack. F. En-face maximal 

projection comprised of all images within the IEL stack. Scale bar = 20 µm. 

 

It is relevant to state that the developed ImageJ method had several automatic steps, 

but the segmentation of the lamellae was basically manual as their shapes were 

excessively irregular for a simple computer code to understand it. Some subsequent 

manual correction was also required to recover the original pixels placed within the 

fenestrae and ruptures (completely black spots in figure 42 upper panel). Additionally, 

the illumination of the images was corrected by subtracting a white image. 
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Figure 42. Manual correction of lamellae maximal projections. Upper panel shows maximal projections 

obtained after threshold and segmentation. The lower panel shows the same maximal projections after 

detailed manual correction and illumination flattening. Scale bar = 10 µm. 

 

Furthermore, the maximal projection revealed topological and structural information of a 

single lamella, as it displayed its surface (figures 41F and 42). Dark holes in the maximal 

projection of individual lamella were identified as lamellar fenestrations, and they were 

selected and extracted to constitute a fenestrae map (figure 43C). From this map, 

morphological analysis was carried out to assess the density and size of fenestrae.  

Another lamellar feature that could be evaluated from the image acquisitions was the 

waviness of each lamella. To this aim, a new approach was developed based on 

measuring the height of each lamella pixel at the en-face z-stack (figure 43). This 

procedure, however, required a single Z-axis height value per XY pixel position. To this 

aim, a protocol combining ImageJ and MatLab software was created, which produced a 

single-pixel skeleton of the lamella and removed any existent branching on it (for further 

detail, refer to the Materials and methods section). Once the lamella skeleton was clean 

(figure 43F), the MatLab code evaluated its waviness in terms of height variation in the 

Z-axis. Height values were organised into histograms and waviness maps represented 

by colours ranging from yellow (the lowest height) to dark blue (the highest height) (figure 

43G). 
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Figure 43. Image processing for quantitative analysis. A. Single confocal image of the en-face segmented 

IEL z-stack. B. En-face maximal projection of the IEL stack. C. Binary map of all fenestrae seen at the 

maximal projection (B). D. Single transverse image of segmented IEL stack. E. Single image of thickness 

display stack. Highest thickness is marked by white colour. F. Single image of lamella skeleton image stack. 

G. En-face height map showing global lamella waviness. Yellow denotes low height and dark blue high 

height.  

Moreover, the images could also be used to assess lamellae thickness, without any 

further procedure, by applying the already published BoneJ plugin for ImageJ. This 

program quantified lamella thickness and generated a visual colour representation from 

blue (lowest thickness) to white (highest thickness) (figure 43E). 

 

1.2. Technology application to murine Marfan aortae 

As explained above, a complete methodology was developed for quantifying lamellae 

morphological features. Next, the aforementioned methodology was applied to examine 

in detail the elastic lamellae in the ascending aortic tissue in wild-type (WT, n=4) and 

Marfan mice (MF; Fbn1C1039G/+ model, n=6). To begin, the entire aorta was dissected 

from the animal and immediately fixed in formol. Then, the vessel was cut in half 

longitudinally and mounted with the tunica intima facing onto the cover slide. Four en-

face z-stack acquisitions were randomly taken from the tubular ascending portion of each 

aorta sample. The IEL and the elastic lamina located just underneath it (2nd lamina) were 

segmented and analysed (figures 41 and 43). In particular, the maximal projection of 

each of the segmented lamellae was generated, and fenestrae density and size data 
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was quantified from them. Lamellae thickness and waviness were also measured for 

each image stack.  

Observing the samples, the transverse view of the aortic wall obtained by TPEF (figure 

44A and C) closely matched what was seen in conventional histological preparations 

using Verhoeff-van Gieson staining (figure 44B and D). Specifically, Marfan tissue 

visualised by both techniques showed lamellae disruptions and disarrangement (figure 

44C and D) compared to WT tissue (figure 44A and B).  

 

Figure 44. Transverse aortic tissue visualisation by multiphoton microscopy (A and C) and conventional 

histology (B and D) of wild-type (A and B) and Marfan (C and D) samples. In multiphoton images, elastin is 

marked in green and collagen in red. Conventional histological preparations were set using Verhoeff-van 

Gieson staining that marked lamellae in purple. Scale bars, 10 µm. 

The multiphoton en-face maximal projections showed that the IEL in WT animals had a 

flat, continuous aspect with unevenly distributed small fenestrae, which are visualised as 

small black holes (figure 45A). In contrast, the IEL in Marfan mice showed more 

prominent fenestrae and occasional large ruptures (figure 45B). Despite having an 

identical genetic background, Marfan mice showed variable lamina aspect patterns. 

However, the differences with WT mice were evident. Additionally, the structural 

differences between WT and Marfan 2nd laminae were even more evident than in the IEL 

(figure 45). To note, the lamellae shown in figure 16 are matched pairs, which means 

that in reality, each 2nd laminae corresponds to the IEL displayed above it. In some cases, 

the 2nd lamella exhibited the imprint of the IEL waves (see last WT lamellae pair in figure 

45). 
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Figure 45. Representative en-face maximal projections of wild-type and Marfan aortic elastic laminae. 

Maximal projections of segmented IEL and 2nd lamina of WT (A) and Marfan (B) aortae. IEL and 2nd laminae 

images of each column belong to the same z-stack acquisition. In addition, each column corresponds to a 

different animal. Fenestrae are seen as black holes of variable size. Big polygonal black holes were 

considered ruptures and were excluded from fenestrae quantification. Scale bar = 10 μm.  

It could be postulated that these lamellar ruptures might be merely caused by sample 

handling during animal surgery. To elucidate this, the length of the rupture’s hole was 

measured at different points in the en-face maximal projection, mimicking the 

quantification of the length of elastic laminae breaks performed when aortae are 

examined transversally in classic histological preparations. Thus, to resemble 

conventional histological sectioning, a regular grid was used that marked all the 

horizontal and vertical lines where length measurements should be performed for all 

ruptures. As a result, the maximal projection rupture length was on average 20.71 µm at 

IEL and 30.73 µm at the 2nd lamellae. Altogether, the length of Marfan ruptures was 26.52 
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µm (± 19.29 µm) in our en-face images. For comparative reasons, the length of elastic 

laminae breaks was quantified at 24 conventional histological preparations of Marfan 

aortae, giving a mean length of 20.95 µm (± 19.47 µm). In conclusion, the values 

obtained from en-face and transversal histology were very similar and therefore, the 

ruptures in Marfan en-face images of IEL and 2nd lamellae (figure 45B, third column 

panels from the left) corresponded to the classical elastic laminae breaks observed by 

conventional histological methods, and were not primarily caused by sample handling. 

Moreover, importantly, only 8 out of the 48 total Marfan images showed ruptures. 

In reference to lamellae quantification, fenestrae density was 2.5 fold higher in Marfan 

IEL than in WT IEL (figure 46A; median values: 2.14 fenestrae/mm2 in WT vs 5.53 

fenestrae/mm2 in MFS). Marfan mice also had significantly larger fenestrae than WT 

mice (figure 46B; 2.07 µm2 in WT vs 2.25 µm2 in MFS). Consequently, the total area of 

elastic lamina occupied by fenestrae in the field of view was clearly larger in Marfan mice.  

 

Figure 46. Quantitative analysis of density and size of fenestrae seen in IEL and 2nd elastic laminae from en-

face maximal projection images. Fenestrae density (A) and size (B) seen in WT (orange) and Marfan (MF, 

blue) IEL and 2nd lamellae. Statistical significance between groups is indicated by asterisks and defined in 

the Materials and methods section. Interquartile boxplots with minimum and maximum whiskers. Forty 

maximal projections were analysed, and a total of 6,400 fenestrae were quantified. 

The 2nd elastic laminae were segmented and analysed in the same way as the IEL. The 

results of quantitative analysis of the 2nd laminae were very similar to those obtained in 

the IEL when we compared WT and Marfan mice. Fenestrae density and size were 

significantly greater in the 2nd lamellae of Marfan mice than in WT mice (figure 46; 

density: 1.29 fenestrae/mm2 WT vs 4.34 fenestrae/mm2 in MFS; size: 2.43 µm2 WT vs 

3.06 µm2 in MFS). No differences in fenestrae density were observed between the IEL 

and 2nd lamellae in WT and Marfan mice (figure 46A). However, there was a significant 

increase in the size of fenestrae between IEL and the 2nd lamellae in WT and Marfan 

aortae (figure 46B), which was more pronounced in Marfan aortae (WT: 2.07µm2 in IEL 

vs. 2.43 µm2 in 2nd lamina; MFS: 2.25 µm2 in IEL vs. 3.06 µm2 in 2nd lamina). 

Next, a systematic analysis of the density and size of fenestrae was performed in 

different anatomical locations of the tubular ascending aorta. The locations were defined 

as proximal, central, and distal in the longitudinal plane, and as concavity and convexity 

in the circumferential plane (figure 47A-C). A qualitative examination of images of the 
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regions above revealed that laminae obtained in the convexity and proximal zones 

apparently had more microstructural damage (figure 47D and E). 

 

Figure 47. Anatomical regionalisation of ascending aorta used in this study. A and B. Schematic drawings 

of defined tubular ascending aorta anatomical regions used in our study in longitudinal (A) and 

circumferential (B) planes. C. Bright field image map of the longitudinally open aorta (as shown in the inset 

schematic drawing) and the corresponding regions. D and E. Representative maximal projections acquired 

in the proximal-convex region of WT (D) and Marfan (E) aortae. Scale 500 μm in C and 10 μm in D, E. 

Indeed, statistically significant differences were observed between WT and Marfan mice 

in the IEL and in the 2nd elastic lamina, mainly in the proximal and convex regions. In 

particular, the median density of fenestrae in proximally located IEL (figure 48A) and 2nd 

laminae (figure 48B) were 7.5 and 6 times higher respectively in Marfan than in WT mice 

(IEL: 1.02 fenestrae/mm2 WT vs 7.60 fenestrae/mm2 in MFS; 2nd lamella: 1.14 

fenestrae/mm2 in WT vs 6.74 fenestrae/mm2 in MFS). Moreover, Marfan fenestrae were 

significantly larger at proximal and distal IEL (figure 48C), and at proximal and central 

2nd laminae (figure 48D).  
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Figure 48. Quantitative analysis of fenestrae in IEL and 2nd laminae in the longitudinal plane of the tubular 

ascending aorta. The density of fenestrae in the IEL (A) and 2nd lamina (B), and their respective individual 

fenestrae size (C and D, respectively) measured at different longitudinal plane locations (proximal, central 

and distal) of WT (orange) and Marfan (MF, blue) ascending aortae. Statistical significance between groups 

is indicated by asterisks. Interquartile boxplots with minimum and maximum whiskers. Forty maximal 

projections were analysed, and a total of 6,400 fenestrae were quantified. 

The circumferential partition of data (figure 49) showed that fenestrae density in WT IEL 

located at the concavity (cv) was significantly higher than that at the convexity (cx) of the 

aorta (figure 49A; 1.78 fenestrae/mm2 in cx vs 5.81 fenestrae/mm2 in cv). However, this 

was not the case for WT 2nd laminae (figure 49B; 1.27 fenestrae/mm2 in cx, and 2.46 

fenestrae/mm2 in cv). In contrast, Marfan IEL fenestrae density ranges at concavity and 

convexity (2.8-9.1 fenestrae/mm2) were highly similar to that at WT concavity (2.7-9 

fenestrae/mm2), and greater than at WT convexity (1-2.5 fenestrae/mm2) (figure 49A). At 

the 2nd laminae, Marfan fenestrae density was similar to that at the Marfan IEL (compare 

MFcx with MFcv in figure 49A and B), and higher than 2nd laminae WT density in both 

circumferential regions (figure 49B), but was only significant at the convex region. We 

observed a significant difference in the size of fenestrae between Marfan and WT 

convexities both at the IEL and the 2nd laminae (Figs. 49C and D, respectively; IEL: 1.98 

µm2 in WT vs 2.25 µm2 in MFS; 2nd laminae: 2.52 µm2 in WT vs 3.06 µm2 in MFS). In 

summary, structural injuries in the Marfan ascending aortae were regionalised, and were 

preferentially accumulated in the convexity region of the circumferential plane, and 

mainly in the proximal region of the longitudinal plane. 
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Figure 49. Quantitative analysis of fenestrae in IEL and 2nd laminae in the circumferential plane of the tubular 

ascending aorta. The density of fenestrae at the IEL (A) and 2nd lamina (B), and their respective individual 

fenestrae size (C and D) measured at different circumferential plane locations (convexity/cx and 

concavity/cv) of WT (orange) and Marfan (MF, blue) ascending aortae. Statistical significance between 

groups is indicated by asterisks. Interquartile boxplots with minimum and maximum whiskers. Forty maximal 

projections were analysed, and a total of 6,400 fenestrae were quantified. 

Finally, potential differences between WT and Marfan mice were also examined 

regarding lamellae thickness and waviness. Lamellae thickness showed that in WT and 

Marfan, IEL and 2nd lamellae were on average 2.7–3.0 µm, without significant differences 

between them (figure 50A). Also, the measurement of waviness showed that WT and 

Marfan lamellae had the same spectrum of height values (figure 50B and C).  
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Figure 50. Quantitative analysis of lamella thickness and waviness. A. Thickness in wild-type (orange) and 

Marfan (blue) IEL and 2nd laminae. B and C. Waviness by lamella local height histogram of IEL (B) and 2nd 

laminae (C). 

 

In addition, we visually analysed adventitial collagen acquired by SHG signal (figure 51). 

However, we could not distinguish any quantifiable feature, nor we could see differences 

between WT and MF samples. 

 

Figure 51. Adventitial collagen visualisation in wild-type and Marfan tubular ascending aorta samples. 
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Part 2: MicroCT imaging of remodelling 

and micro-scale damage in          

Marfan syndrome murine aorta 

 

Vascular tissue structure is commonly analysed by manual quantification on 

conventional histological preparations. Although this practice has generated much 

knowledge in the field, it lacks the possibility of three-dimensional assessment of the 

tissue volume. To overcome this issue, serial cut studies have been performed, yet this 

kind of tissue processing damages the sample, leading to artefacts in the acquired 

images. In this context, microCT arises as an alternative given that it is a technique that 

works in the three dimensions and images the whole sample at once without cutting it. 

In addition, computational image processing of the microCT scans might provide an 

automatic and objective quantification of tissue structure features. 

Taking into account this scenario, we have developed a methodology involving aorta 

imaging by synchrotron-based phase-contrast microCT and subsequent automatic 

image processing. Once optimised, we applied this methodology to wild-type and Marfan 

mice aortae, and analysed different histological parameters of the arterial wall. 

 

2.1. Technology development: microCT and image processing 

2.1.1. Optimisation of microCT acquisition 

The aorta from the aortic root to the upper abdominal level (figure 52A) was extracted 

from mice as described in the Materials and methods section. As for conventional 

histological preparations, entire aortae were fixed in 4% PFA overnight, followed by 

dehydration in an ethanol series, and then embedding in paraffin wax. Additionally, 

embedding was done under vacuum to remove any air bubble within the vessels. Also, 

the wax surplus around the sample was trimmed to minimise the amount of external 

paraffin that could attenuate the light arrival to the tissue (figure 52B). Finally, the 

paraffin-embedded aortae were glued vertically onto a metal cryocap to provide standing 

stability to the samples (figure 52B). 
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Figure 52. Aorta sample preparation. A. Murine heart (left) and aorta (right) after animal dissection and 

vessel cleaning. The aorta portion is from the root to the upper abdominal level. B. Paraffin-embedded aorta 

block already trimmed and glued onto a metal cryocap. 

Once the samples were prepared, we scanned them by synchrotron microCT without 

staining or sectioning, adapting the expertise from Walton et al.72 on laboratory microCT. 

In detail, we were awarded a 5-days timeslot at the synchrotron I13 beamline at the 

Diamond Light Source, Didcot, Oxford, United Kingdom. There, we performed phase-

contrast X-ray tomography first testing different parameter variations, and then, scanning 

all the project’s aortae.  

To begin, an aorta (paraffin block + metal cryocap) was placed onto the magnetic sample 

stage in front of the objective, and three tomographic scans were performed to find the 

best light propagation distance: 150, 200, or 400 mm. The rest of acquisition parameters 

were as in standard conditions, using the pink light beam, acquiring 6001 projections 

over 180º, and performing a filtered back projection reconstruction. In addition, the 

pco.4000 camera at 4x magnification was used, so that the acquired scan had a wide 

field of view (4.5 x 3.0 mm) at high resolution (isotropic 1.1 µm voxel size). The resulting 

scan evidenced that these settings permitted successful sample imaging (figure 53). 

Particularly they allowed the acquisition of the whole aorta length in only two acquisitions, 

one of the thoracic aorta, and the other of the abdominal aorta. Moreover, comparing the 

three scans obtained applying the different propagation distances, it was clear that 200 

mm yielded the best image sharpness (figure 53B). 

 

Figure 53. Transverse virtual cuts of an aorta by synchrotron microCT at 150 mm (A), 200 mm (B), and 400 

mm (C) light propagation distances. The sharpness of the image is best seen in the tunica media of the 

lower half of the vessel circumference (lower panel zoomed images). Spike artefacts are present particularly 

at the upper half of the vessel circumference, evidencing that the centre of rotation is placed “below” the 

image.  

Furthermore, these first scans evidenced image artefacts in the shape of spikes that 

blurred the details of the tissue (figure 53, upper half of the vessel circumference). This 
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phenomenon was caused by a high distance between the sample and the centre of 

rotation of the sample stage. Thus, it was crucial to place the centre of rotation close to 

the middle of the aortic lumen. Although not always possible due to aorta tortuosity, in 

the following scans, we tried to accurately place the sample core focalised to the centre 

of rotation.  

The next test involved the assessment of the number of scan projections, since this 

parameter directly determined the scan time. Taking into account that the exposure of 

the pink beam was of ~0.14 seconds per projection, we sought to reduce the number of 

projections in the scans. Hence, 6001 projections were tested, as before, and also 3001 

projections. Surprisingly, both scans images were similar, and the reduction of 

projections did not affect scan contrast or sharpness (figure 54). Moreover, the scanning 

time diminished from 14 to 7 minutes. Therefore, 3001 projections was established as a 

standard setting for definitive aortic scans.  

 

Figure 54. Transverse virtual cuts of an aorta by synchrotron microCT at 6001 (A) and 3001 projections (B). 

These cuts belong to the aortic root portion, denoted by the initiation of aortic valve septa (A, marked by 

asterisks) or the entrance of a coronary artery (B, marked by an arrow). Notice the concentric rings that 

evidence the centre of rotation lying in the middle of the lumen.  

 

2.1.2. Aortic microCT scan comprehension 

After mandatory scan reconstruction, microCT scans were stacks of greyscale tiff 

images. In particular, the aortic scans consisted in the whole volume of the aorta divided 

into ~2,600 subsequent images (named slices). In the portion of the ascending aorta, 

those slices were transverse virtual cuts of the vessel, displaying the tissue as in 

conventional histological preparations. As shown in figure 55, one could distinguish the 

tunicae media and adventitia in those images. In detail, tunica media is composed of the 

concentric elastic lamellae, which are brighter than the interlamellar space. The 

adventitia rendered as a dense mesh surrounding the tunica media, with spots as bright 

as lamellae. The amount of adventitia was usually higher at the inner curvature of the 

aorta (upper side in figure 55A-B) than in the rest of the vessel circumference. Although 
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the tunica intima should be present in contact with the luminal paraffin, this cellular layer 

did not produce enough phase-contrast to be displayed in the microCT scan images. 

Thus, the luminal surface visualised in the aorta microCT scans was the IEL, the 

innermost element of the tunica media. 

 

Figure 55. Two illustrative examples of microCT transverse virtual cut slices of mice ascending aortae. 

Histological structures are marked. Scale bar = 100 µm. 

Nevertheless, the singularity of microCT in comparison to conventional histological 

techniques was the possibility to assess the volume of a tissue specimen. Indeed, 

microCT aortic scans went from the aortic root to the arch (figure 56): one could 

progressively see the emergence of the aortic valve leaflets (slice 50 to 400 in figure 56), 

the appearance of the coronary arteries (slices 150, 350, and 500), the tubular portion of 

the ascending aorta (slice 600 to 1150) and the initiation of vessel bending at the aortic 

arch (slice 1200 in figure 56). 
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Figure 56. Aorta scan progression from the aortic root (slice 0) to the aortic arch (slice 1200).  

 

Furthermore, the microCT scans served to generate the whole aorta 3D volume 

rendering in Avizo software (figure 57). Renders could be of the entire organ (figure 57A), 

and the vessel interior could be accessed disclosing the luminal surface (figure 57B), 

where one could observe the wall wrinkles caused by the unpressurisation of the aorta 

without blood pressure. Any piece of the scan could be virtually isolated, such as the 

tubular portion of the ascending aorta (figure 57C). Additionally, to visualise the aortic 

valve, the vessel portion corresponding to the aortic root could be virtually extracted 

(figure 57D for tricuspid valve and E for bicuspid valve), or the whole 3D render could be 

combined with a slice (figure 57F). 
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Figure 57. Three-dimensional renderings of mice aortae. A. Whole vessel from the aortic root to the 

descending or arch. In the first render, note the entrance at the arch of its three branching arteries: 

brachiocephalic artery (Ba), left common carotid artery (LCCa) and left subclavian artery (LSa). B. Inside of 

aortae, where it is shown the luminal surface, the aortic valve, coronary ostium and two of the arch arteries’ 

entrance (Ba and LCCa). C. Tubular ascending aorta portion. D. Tricuspid aortic valve (TAV). E. Pathological 

bicuspid aortic valve (BAV). F. Tricuspid aortic valve represented by a combination of 3D render and 

transverse slice.  

 

Moreover, with these high-resolution scans, the microstructure of the lamellae network 

was observable, and in some cases, it was disrupted (figure 58). Conventionally, 

lamellae breaks are observed in single transverse sections of the arterial wall (equivalent 

to only one slice of figure 58A). However, breaks are not a bi-dimensional entity but a 

volumetric structure, and are unlikely to be confined only to the region visualised in the 

single section but many will extend to preceding and following sections. Hence, a 

sequence of consecutive sections could provide insight on the extension of a particular 

lamella break. Figure 58A shows an image sequence belonging to the wall of an 

aneurysmal aorta, which presents several lamellae breaks. Throughout this sequence, 

distinct breaks appear, grow, and terminate at various sites within the tunica media. A 

break might start as a gap in one lamella (yellow box at slice 20 in figure 58A) and 

progressively grow affecting neighbouring lamellae, and might finally implicate all the 
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lamellae in the media (see slice 340 in figure 58A). This break progression can also be 

easily visualised by means of 3D rendering (figure 58B and C) to be virtually explored in 

detail. 

 

Figure 58. Visualisation of lamella break extension. A. Transverse slice sequence of aortic wall showing the 

course of the lamellae and the emergence and progression of a lamellae break gradually affecting many 

layers (yellow box). B and C. Lateral (B) and en-face (C) view of the volumetric render of the same tissue 

portion as in A. The prominent break corresponded to the one clearly observable in slice 260 of A. Notice 

the extension and depth of the break. Only tunica media lamellae are rendered. Scale bar = 50 µm. 

 

In addition, some aortae showed mild intimal hyperplasia, evidenced by an amorphous 

mass attached to the luminal surface (figure 59). This mass had the same grey level as 

the interlamellar space and, in some spots, it was united to the elements in the 

interlamellar space (see first slices in figure 59). Also, in this case, the attached mass 

progressed as a floating mass in the lumen (from the second row on, in figure 59). 
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Figure 59. Mild intimal hypertrophy image sequence of mice aorta. First rows show the junction between the 

amorphous mass and the interlamellar space. 

 

2.1.3. Image processing of aortic wall 3D scans 

The quantification of histological parameters on these datasets was performed onto 200 

consecutive slices of each sample at the same tubular ascending aorta level, in order to 

provide a robust mean value per sample. Quantified parameters were: ascending aorta 

diameter, tunica media thickness and cross-sectional area, and tunica media area 

corresponding to lamellae and to interlamellar space (figure 60).  



Results 

 

103 
 

 

Figure 60. Illustrative schematic of the histological parameters quantified in microCT transverse aortic slices. 

Two example images with zoomed inset. 

To assess these parameters, a computational image processing protocol was 

developed, which prepared the images and quantified the histological features 

automatically. Particularly, a graphical user interface (GUI) was created in MatLab to 

facilitate its adoption by programming-inexperienced users (figure 61).  

 

Figure 61. Screenshot of the developed GUI that permits interaction between the user and the program. 

Loading and computation panels are on the left. In the centre, the GUI displays the original aorta image on 

the left, the open aorta image down, and the 3D render of the lumen-media (red), media-adventitia (green) 

and adventitia-paraffin (blue) limits. On the upper right, one can choose which displays or limits to show. 

And the quantification panel is placed in the right centre. 

In brief, the in-house algorithm loaded an aorta image stack, and it segmented the tissue 

out of the paraffin and the tunica media out of the tissue, for each image. The first 

segmentation was obtained by simple brightness thresholding, but the second required 

intensive computation as it was based on a mathematical relation. Specifically, the 

thickness of tunica media was not constant, but different throughout the vessel 

circumference and also varied for the different sample groups. Moreover, it was difficult 

to properly distinguish both tunicae based solely on greyscale intensity since they were 

very similar. Therefore, we sought a mathematical manner of outlining the media-

adventitia limit that was applicable to all sample conditions. The media-adventitia limit 
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(green line at figure 61) was found to be placed approximately at a distance 

“0.35*minimum wall thickness (of each particular sample)” from the middle of the aorta 

wall, throughout the vessel circumference (refer to the Materials and methods section for 

further detail). This mathematical relation fitted for most of the wild-type and Marfan 

aortae regardless the age. 

Then, the program computed the transformation of the aortic vessel image from 

Cartesian to Polar coordinates, which permitted to virtually open the vessel 

circumference (lower display in figure 61). The obtained open image was used to apply 

the calculated media-adventitia limit and, if necessary, to manually correct any error. 

Once the tunica media was precisely segmented, the algorithm computed its thickness, 

area and the area occupied by lamellae and by the interlamellar space, in each of the 

stack’s images. 

Moreover, the virtually open images were also useful for visualisation of the luminal 

surface. As previously explained, in the aortic microCT scans, the IEL was the structure 

that was apparently in contact with the luminal paraffin. Hence, an ImageJ macro was 

developed to segment the IEL from the aorta open stacks and change the point of view 

so that the IEL was seen en-face (figure 62) (refer to the Materials and methods section 

for further detail). With this, the visualisation of the luminal surface was achieved like it 

is seen in clinical vascular endoscopy. 

 

Figure 62. Image processing steps for aorta microCT scans. A. Volumetric rendering of an aorta scan from 

the aortic root to descending thoracic aorta. A stack of the tubular ascending aorta (blue box) was selected 

for further processing. B. The blue-box slices were computationally processed to segment the tunica media 

(enclosed between the red and the green lines) and calculate histological parameters. C. Abstract 

representation of the virtual opening step of the aorta piece. D. Resulting flat luminal surface of IEL 

segmentation at the en-face view, after the virtual opening of the tubular ascending aorta. 
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In summary, the image processing methodology, on the one hand, extracted the tunica 

media of ascending aorta images and quantified its histological features; and on the other 

hand, it segmented the IEL, opened it, and displayed it as a flat luminal surface (figure 

62). 

 

2.2. Technology application to murine Marfan aortae 

Once the microCT acquisition settings and the image processing algorithms were 

optimised, we applied them to Marfan mice studies. In particular, 30 aortae from wild-

type (WT) and Marfan Fbn1C1039G/+ mice (MF), at age 3, 6, and 9 months old (mo) (n=5 

per condition) were fixed, dehydrated, and paraffin embedded. All these murine aortae 

were imaged by phase-contrast microCT at Diamond synchrotron, all the datasets were 

modified by image processing algorithms, and different histological parameters of the 

aorta wall were analysed. 

 

2.2.1. Quantitative analysis of histological features 

Collectively, all wild-type aortae showed a normal candy-cane shape (figure 63A), and 

the ascending aorta conduit was circular or ellipsoid (figure 63B) with the lumen diameter 

ranging from 0.3 to 0.9 mm. Marfan samples were more heterogeneous (figure 63C-E) 

than WT, and evident aneurysms occurred in one of 6mo mouse and in three of 9mo 

mice (figure 63E). Owing to this heterogeneity in Marfan aortae, to compare dataset 

dispersion (statistical F-test; dashed lines in the graphs) instead of the mean values 

(Kolmogorov-Smirnov non-parametric test; continuous lines) was key to compute 

statistical differences in this condition. 
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Figure 63. Synchrotron-based microCT scan examples of wild-type and Marfan mice aortae. A. Wild-type 

aorta volumetric rendering. B. Transverse slice of wild-type aorta, corresponding to the yellow line mark in 

A. C. Volumetric rendering of a Marfan aneurysmal aorta, with two different zones: non-dilated (yellow line) 

and dilated (purple line) zones. D. Transverse slice of a Marfan aneurysmal aorta at the non-dilated zone 

(yellow line in C). E. Transverse slice of a Marfan aneurysmal aorta at the dilated zone (purple line in C). 

Scale bars, 100 µm. 

 

More in detail, tunica media of the WT ascending aorta showed no or scarce lamellar 

breaks (figure 64). Conversely, structural remodelling of the tunica media of Marfan 

aortae along age stages and in comparison to WT was clearly seen qualitatively (figure 

64). Lamellae breaks augmented with age and aneurysm occurrence, and so did the 

interlamellar space.  
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Figure 64. Representative transverse slices from microCT scans of wild-type and Marfan mice aortae at age 

3, 6, and 9 months old. Scale bar = 50 µm. 

 

These histological changes were verified quantitatively. In the case of WT samples, 

ascending aorta mean diameter remained homogeneous throughout the three studied 

age stages (figure 65A, means, 3mo=0.61±0.02, 6mo=0.60±0.03, 9mo=0.66±0.03 mm), 

although a slight growth was corroborated by a P value<0.08. Similarly, tunica media 

thickness increased with age (figure 65B, means 3mo=77±4, 6mo=81±8, 9mo=84±5 

µm), but this increase was not significant when considering P≤0.05 (figure 65B). 

However, this analysis does not take into account the richness of these microCT data 

sets which characterise anatomical variation along the vessel axis. Comparing the 

frequency distributions of media thickness measurements for each slice from each 

animal (n = 1000 slices per condition group) there was a clear shift towards greater media 

thickness with age (figure 65C), which might be biologically significant even though not 

statistically different at conventional P value. Hence, it might be relevant to state that WT 

diameter and media thickness mean values increased significantly with age taking into 

account P<0.08. 
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Figure 65. Transverse histological feature measurements in wild-type (WT) and Marfan (MF) mice aortae at 

3, 6, and 9 months old. A. Ascending aorta luminal diameter (unpressurised). B. Tunica media thickness 

mean values of each aorta. C. Frequency distribution of the 200 thickness values per aorta. Values are the 

mean±SD; #P ≤ 0.08, *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.  

 

Moreover, the cross-sectional area of the WT tunica media augmented also with age 

(figure 66A, means 3mo=0.18±0.01, 6mo=0.19±0.01, 9mo=0.21±0.01 mm2, P<0.08), 

most likely because of the increase of the aorta diameter and of the media thickness. 

This age-associated growth of WT tunica media was mainly due to the significant parallel 

increase in both the area of lamellae (figure 66C, 3mo=0.07±0.003, 6mo=0.08±0.004, 

9mo=0.09±0.003 mm2) and of the interlamellar space (figure 66D, 3mo=0.10±0.007, 

6mo=0.11±0.008, 9mo=0.13±0.01 mm2). Since both medial constituents augmented at 

the same rate, their medial percentage remained constant with age progression (figure 

66B, lamella 3mo=42±1, 6mo=42±1, 9mo=41%±2; interlamellar space 3mo=58±1, 

6mo=58±1, 9mo=59%±2).  
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Figure 66. Transverse histological feature measurement in wild-type (WT) and Marfan (MF) mice aortae at 

3, 6, and 9 months old. A. Tunica media cross-sectional area. B. Tunica media area occupied by lamellae. 

C. Tunica media area occupied by the interlamellar space. D. Tunica media percentage composition. Results 

are the mean±SD; #P ≤ 0.08, *P≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.  

 

In the other hand, in Marfan aortae, a significant increase was observed in the luminal 

diameter in relation to age (figure 65A, 3mo=0.58±0.07, 6mo=0.64±0.03, 

9mo=0.92±1.13 mm). Besides, the progressive thickening tendency of the tunica media 

was observed (figure 65B, 3mo=88±7, 6mo=96±7, 9mo=103±15 µm) in comparison to 

WT (mean of ages=80±6 µm), together with the significant enlargement of the tunica 

media cross-sectional area (figure 66A, 3mo=0.18±0.007, 6mo=0.23±0.027, 

9mo=0.35±0.082 mm2), and the gradual decrease of the percentage medial space 

occupied by lamellae (figure 66D, MF 3mo=40±1, 6mo=38±2, 9mo=31%±9 of media, 

wild-type mean of ages 42%±1). This change in lamellae percentage was principally not 

caused by a reduction in lamellae area (figure 66B), but by a two-fold increase in the 

area of the interlamellar space (figure 66C, 3mo=0.11±0.01, 6mo=0.14±0.02, 

9mo=0.25±0.08 mm2).  

Regarding WT and MF datasets together, MF 9mo aortae displayed significantly higher 

values than same age WT specimens in all the quantified histological parameters: MF 

9mo had larger diameter, thicker tunica media, and bigger media, lamellae and 

interlamellar space areas than WT 9mo (figures 65 and 66). MF tunica media thickness 
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and lamellae percentage were already increased at age 3mo (figures 65B and 66D), 

whereas the MF areas at 6mo were higher than the WT 6mo (figure 66). Finally, MF 6mo 

aortae showed higher tunica media thickness than WT 9mo vessels (figure 65B). 

One MF 6mo and one MF 9mo developed localized ascending aorta aneurysms that had 

an adjacent non-dilated zone, as displayed in figure 63 (yellow line for non-dilated, purple 

line for dilated). In addition, two MF 9mo mice showed an aneurysm that occupied the 

whole ascending aorta, hence no adjacent non-dilated zone existed. In this context, up 

to now, the quantitative analysis of this study was performed on the same ascending 

aorta region for all samples. Thus, the MF 9mo group included measurements at 

“normal” non-dilated zones from three animals, and also measurements at the dilated 

zones of the two aortas without non-dilated zone. Taking this into account, to evaluate 

more in detail the impact of aneurysm occurrence on the remodelling of the MF aortic 

wall, the analysis of the histological parameters was categorised into non-dilated (MF 3,6 

and 9mo in figure 65 and 66) and dilated (MF dilated in figure 67, and purple line in figure 

63) groups. Thus, the histological parameter values  of the two entirely dilated aortae 

previously assessed in the MF 9mo group (dark blue dataset in figures 65 and 66) were 

now transferred to the MF dilated group (purple dataset in figure 67).  

  

Figure 67. Transverse histological parameters in dilated and non-dilated aged Marfan (MF) mice aortae. 

Anatomically evident dilated MF aortae were grouped apart (purple data, and purple line in figure 12). A. 

Ascending aorta luminal diameter (unpressurised). B. Tunica media thickness mean values. C. Tunica media 

cross-sectional area. D. Tunica media area occupied by lamellae. E. Tunica media area occupied by the 
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interlamellar space. F. Tunica media percentage composition. Values are the mean ± SD; #P ≤ 0.08, *P ≤ 

0.05, **P ≤ 0.01, and ***P ≤ 0.001.  

Comparative analysis of this new MF dataset categorisation revealed that, in most cases, 

histological features were significantly higher in the dilated aorta zone group 

(represented in purple) compared to the younger Marfan groups (blue-based coloured 

datasets) (figure 67). Dilated zones obviously had a greater diameter than the other MF 

groups (figure 67A, 1.09±0.27 mm vs mean of ages 0.62±0.06 mm). Likewise, tunica 

media cross-sectional area also significantly increased in MF dilated compared to the 

other MF groups (figure 67C, 3mo=0.18±0.008, 6mo=0.23±0.028, 9mo=0.30±0.056, 

dilated=0.42±0.035 mm2), as well as the interlamellar space area (figure 67E, 3mo, 

0.11±0.01; 6mo, 0.14±0.02; 9mo, 0.19±0.04; dilated, 0.30±0.04 mm2). However, the 

tunica media thickness and the lamellae area remained similar in all Marfan groups 

(figures 67B and 67D; mean of MF conditions 100.3±10.5 µm and 0.09±0.02 mm2, 

respectively). Altogether resulted in the significant decrease of the percentage of 

lamellae in media (figure 67F, MF aortae in %: 3mo, 40±1; 6mo, 38±2; 9mo, 37±2; 

dilated, 27±8 of media). Particularly, non-dilated and non-aneurysmal MF 9mo samples 

did not show different diameter, media thickness and lamellae area, compared to MF 

6mo and MF 3mo. Moreover, a higher tunica media and interlamellar space areas were 

only observed between MF 9mo and MF 3mo, but no longer between MF 9mo and MF 

6mo, as happened prior to dataset categorisation. This structural remodelling was clearly 

seen in the aortic wall images (figure 64). 

 

 

2.2.2. Lamellae luminal surface break analysis 

To get an informative single image of damage progression in the aortic wall, the luminal 

surface of ascending aortae was virtually generated for all the samples to visualise the 

breaks occurring in the IEL at en-face perspective. Representative luminal surface 

images of WT and MF aortae at different ages are shown in figure 68, in which it can be 

seen the IEL breaks and their extension. Note that IEL breaks are viewed as dark 

irregular cracks. Luminal surface images denote the break severity evolution with 

disease progression (figure 68). 
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Figure 68. Representative images of ascending aorta luminal surface of wild-type and Marfan aortae at 

different age stages. IEL breaks are visualised as irregular dark cracks. Scale bar = 200 µm. 

On the one hand, WT luminal surfaces of any age were wavy and continuous (figure 68). 

Occasionally, they presented a small break (figure 69A, luminal surface space occupied 

by breaks 3mo=0±0, 6mo=0.6±0.4, 9mo=0.3%±0.3) and/or darker zones owing to intimal 

mild hypertrophy (figure 69). On the other hand, Marfan luminal surfaces showed several 

lamella breaks, mainly in the longitudinal axis, whose number and extension 

progressively increased with age (figure 68). Indeed, the total luminal surface space 

occupied by breaks significantly increased with age (figure 69A, Marfan 3mo=0.3±0.5, 

6mo=2.5±1.3, 9mo= 10%±10) and with aneurysm manifestation (figure 69B, 

9mo=6.6±6.1, dilated=15%±8.3).  
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Figure 69. Luminal surface breaks analysis. A. Percentage of ascending aorta luminal surface occupied by 

breaks. B. Percentage of ascending aorta luminal surface occupied by breaks, after categorising aneurysmal 

datasets into dilated and non-dilated. Results are the mean±SD; *P≤0.05, **P≤0.01.  

Moreover, the anatomical location of the luminal surface breaks was evaluated in four 

different ascending aorta locations: outer curvature, inner curvature, frontal, and dorsal 

sides. Even though not significant in most cases, Marfan damaged samples showed a 

tendency to present more luminal surface breaks at the outer curvature than in the rest 

of the vessel circumference (figure 70).   

 

Figure 70. Luminal surface break quantification in different anatomical regions of ascending aorta. Results 

are the mean±SD; *P≤0.05. 
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Part 3: Impact of in vivo-like stretch on 

the phenotypic modulation of VSMCs 

of Marfan syndrome patients 

 

Taking into account that stretching is a key component of VSMC physiological 

environment, other groups have already seen that in vitro applied mechanical forces 

have a key role in the modification of VSMC’s phenotype that can affect their contractile 

protein levels102. Moreover, physiological mechanical forces trigger the reorganisation of 

cell stress actin fibres111. 

Previous results in our laboratory show that Marfan aortic tissue and cultured VSMC 

overexpress contractile makers, such as SMA, transgelin, calponin1, smoothelin, and 

the contractile machinery regulator myocardin93. However, all these data were acquired 

culturing cells on conventional in vitro conditions. For this reason, here we have designed 

and optimised a novel bioreactor device that allows culturing cells under in vivo-like 

stretching in vitro conditions. After demonstrating its overall suitable functioning, as a 

proof of concept, this bioreactor was employed to seed control and Marfan VSMCs, and 

its effect was assessed on their cytoskeleton organisation and contractile protein levels.  

 

 

3.1. Technology development: stretch bioreactor 

3.1.1. Origin of the device 

The bioreactor employed in this project was an adaptation of an original bioreactor 

developed at the group of Dr Daniel Navajas from the Biophysics and Bioengineering 

unit of our Department. Their design was meant for hypoxia treatment of mesenchymal 

cells, hence it was aimed at controlling gas circulation within the bioreactor133. We 

performed several modifications to finally convert this hypoxia bioreactor into a stretch-

inducing device for VSMCs. 

The original bioreactor consisted of a single-use cell culture platform and a permanent 

gas source system. The platform, named chip, had a surface where cells were seeded 

and that was permeable to gases but not to liquids. This surface was a 10 µm-thick 

membrane placed on top of a well (figure 71). The well was a hole on a PDMS block that 

served as a gas chamber where gas circulation was introduced through the gas source 

pipe system. The chip was made of PDMS silicone placed within a conventional cell 

culture dish for an improved manipulation. A new chip had to be constructed for each 
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experiment, but fabrication was possible in the laboratory (refer to the Materials and 

methods section for more detail).  

 

Figure 71. Original bioreactor’s chip from which we developed our stretching bioreactor. Cells are seeded 

onto the portion of the membrane covering the well. Tubes connected the well of the chip to the gas source 

system. In order to facilitate chip handling, it is all attached to a P35 culture dish.  Pictures originally published 

at ref. 133. 

 

3.1.2. Mechanical stimulus optimisation 

The first change on the original device was the substitution of the gas source system by 

a vacuum system, which applied negative pressurisation to aspirate the air within the 

wells. This modification was relevant because as the negative pressure reached the chip, 

it deformed the membrane downward and consequently applied stretch to the cells 

seeded on top (figure 72).  

 

Figure 72. Schematic drawing of membrane stretch application. When negative pressurisation (i.e. vacuum) 

is activated, the otherwise flat chip membrane gets deformed downward and cells (in yellow) too.  

 

Also, the shape of the wells was changed from circular to rectangular (now named 

canals), and their size was augmented, to accomplish a uniaxial membrane stretching. 

In detail, circular wells under negative pressurisation displayed a circumferential strain 

of the membrane (figure 73A). Conversely, rectangular canals under negative 

pressurisation implied stretch through the long and the short sides of the membrane 
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(figure 73B). Despite this biaxial strain, the tension at the long side of the rectangle 

(transverse direction) was greater than the tension at the short side (axial), due to the 

ratio between both sides’ lengths. Hence, only cells placed very close to the short side 

edge sensed the axial stretch, but all the cells seeded on the membrane felt the 

transverse stretch. Taking this into account, we excluded, in posterior analyses, the cells 

close to the short side edge of the canal, in order to quantify only the effect of the 

transverse stretch on cells (uniaxial strain) (figure 73C). Additionally, membrane 

deformation from the centre to the side edges decreases gradually to zero at the edge134. 

Therefore, cells seeded at the edges are not subjected to deformation. 

 

Figure 73. Stretch directions under negative pressure. A. Circular wells deform downward circumferentially. 

B. Rectangular canals display axial and transverse stretch of the membrane. C. Excluding the membrane 

portions next to the short sides, only transverse deformation occurs.  

 

The surface dimensions of the cell culture were feasible up to 75x50 mm, which was the 

maximum size of the platform where the membrane was fabricated. Subtracting the 

margins and the space occupied by the chip’s walls, the stretching-effective cell culture 

surface in a chip was 625 mm2. However, due to the fabrication process, it was not 

possible to achieve a 625 mm2 membrane on top of the chip without intermediate pillars 

for additional support. Hence, this area was divided into five equal 25x5 mm canals, with 

125 mm2 culture surface each and resistant side-pillars of 2 mm thickness (figure 74). A 

rigid, plastic mould was fabricated with these dimensions to serve as a cast for the 

subsequently constructed chips. To sum up the changes in design, the chip had a 

rectangular aspect with five rectangular canals, all within a P60 cell culture dish (figure 

74C) and connected to a vacuum system. 

 

Figure 74. Chip shape and arrangement. A. Chip was composed of a PDMS pressure chamber and a thin 

PDMS membrane on top. B. The pressure chamber divided the membrane into 5 canals where stretch 

occurs. Cell culture is on the membrane. C. Picture of a chip with latest improvements: pressure chamber 

plus membrane within a P60 culture dish. 
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Next step was to optimise the vacuum system conditions to yield a mechanical behaviour 

similar to that occurring at the physiological aorta: sinusoidal cyclic uniaxial stretching at 

1 Hz and 13% deformation or strain. The vacuum system performance was established 

by a servo controller instrument that monitored the pressure signal parameters before 

arriving at the chip, such as negative pressure magnitude, waveform, and frequency. 

However, the real negative pressure magnitude at the chip level was different to that 

monitored by the servo controller since the resistance caused by the conducting tubes 

delayed the pressure signal movement. Therefore, we established a real 13% negative 

pressure at the chip level by quantifying the deformation of the membrane in situ. We 

used a dissecting microscope to measure the change in distance between the 

microscope focused on the membrane at no pressure and at pressurisation. This 

displacement procedure was repeated 3 times for each negative pressure magnitude 

achieved by the servo controller: 10, 20, and 30 mmHg. The following mathematical 

deduction was used to find the membrane deformation value in the transverse axis out 

of the obtained focus displacements: 

Lateral section of the pressurised membrane was approximated to an arc of a circle, 

where the arc width (W) was the original unpressurized membrane width (5 mm), 

and the arc height (H) was the measured focus displacement distance. 

 

1. Radius of circle (r) given the width (W) and height (H) of the arc: 

𝑟 =
𝐻

2
+
𝑊2

8𝐻
 

2. Arc angle (θ) given the circle radius (r): 

cos 𝜃 =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
=
𝑟2 + 𝑟2 −𝑊2

2𝑟𝑟
 

3. Arc length (s) given the arc angle (θ): 

𝑠 = 2𝜋𝑟 ∗ (
𝜃

360
) 

4. Deformation ratio by comparing the unpressurized (W) and the pressurised (s) 

widths. 
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With this calculus, the membrane deformation was obtained for each pressure level, as 

stated in table 1. In the end, the servo controller was set to 20 mmHg in order to achieve 

the physiological 13% stretch deformation. Nevertheless, the overall system allowed 

maximum pressure frequency at 0.81 Hz as to maintain the 13% of deformation. An 

increase in the frequency of stretch would mean a decrease in the percentage of 

deformation of the membrane. Taking this into account, we decided that deformation was 

more important than frequency. Thus, in summary, the aortic bioreactor was set to 

subject cultured cells to a pulsatile stretch of 13% deformation and 0.81 Hz frequency.  

Table 1. Membrane deformation rate under different pressure magnitudes. 

Pressure magnitude Focus displacement (n=3) Average membrane strain 

0 mmHg 0 mm 0% 

10 mmHg 0.62, 0.83, 0.65 mm 5.14% 

20 mmHg 1.11, 1.20, 1.04 mm 12.97% 

30 mmHg 1.29, 1.51, 1.40 mm 19.97% 

 

Furthermore, three separate chips were connected to active pulsatile negative 

pressurisation during 10 days with culture medium on top to assess whether the liquid 

permeated the chip’s membrane. Once the determined time passed, no liquid had gone 

through the membrane. The focus displacement procedure was done again on these 

chips to evaluate any pressure performance changes in comparison to intact chips. As 

described before, the membrane deformation percentage was calculated for each 

pressure magnitude, and resulting values were displayed in table 2. Comparing 

deformation values before and after pressurisation during 10 days (table 1 vs table 2), 

we concluded that the chips’ membranes did not suffer substantial mechanical fatigue 

after culturing under stretch. 

Table 2. Deformation rate under different pressure magnitudes of stretched membranes for 10 days. 

Pressure magnitude Focus displacement (n=3) Average membrane strain 

0 mmHg 0 mm 0% 

10 mmHg 0.45, 0.79, 0.65 mm 4.18% 

20 mmHg 0.82, 1.23, 1.11 mm 11.38% 

30 mmHg 1.35, 1.39, 1.37 mm 18.71% 

 

In sum, the aortic bioreactor consisted of a single-use cell culture chip and a permanent 

vacuum system (figure 75). The vacuum system was composed of a vacuum machine, 

a servo controller to monitor the pressure, and a water trap to retain any liquid leak and 
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avoid its penetration into the servo controller that could damage it. All components were 

connected by means of flexible plastic tubes, and were all placed outside (but close to) 

the cell culture incubator. The chips were put inside the incubator, and connected to the 

vacuum system. The tube from the water trap to the chip had to enter into the incubator, 

thus it was covered by a rigid sheath that protected the tube from being pressed by the 

incubator door. Once inside, the tube was joined to a PDMS connector that distributed 

equally the pressure signal to the 5 different canals of a chip, using 2 mm diameter tubes 

previously sealed into the chip. Moreover, it was possible to connect up to three chips to 

the system at the same time, only by adding one or two T connectors. 

 

 

Figure 75. Schematic of the aortic bioreactor. The chip within an incubator received the negative pressure 

signal originated by the vacuum machine and modulated by the servo controller. The water trap prevented 

water drops from the incubator part to go inside the vacuum system. 

 

3.1.3. Cell adhesion to chip 

VSMCs were tested to adhere to PDMS, as it was the conforming material of the chip’s 

membrane. Since the thickness of the whole chip was too high to allow the visualisation 

of the seeded cells by an inverted conventional microscope, first adhesion experiments 

had to be done on PDMS surfaces outside the chip. Hence, PDMS flat laminas of 

thickness 1 mm were fabricated and placed at the bottom of the wells of cell culture multi-

well plates.  

Different standard surface coatings were applied to the PDMS laminas to promote cell 

adhesion and prevent cell detachment due to substrate stretching: collagen, gelatin, 

poly-D-lysine (PDL), or fibronectin. Then, primary VSMCs were seeded on top. As a 

result, cells were almost not able to adhere to PDMS without a coating and formed small 

detached, floating clusters (figure 76A). Coatings facilitated cell adhesion to PDMS, but 

cells in gelatin tended to form bigger detached clusters after adhesion to the substrate 

(figure 76B). Moreover, although PDL and fibronectin coatings stimulated cell adhesion 

to the substrate (figure 76C and D), after 3-5 culturing days, the entire monolayer of 

adhered cells usually detached from the PDMS (figure 76E) and crumpled while floating 

in the culture well (figure 76F).  
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Figure 76. Cell culture onto coated PDMS. A. No coating. B. Gelatin coating. C. Fibronectin coating. D. PDL 

coating. E. Cell monolayer detachment from PDMS. F. Crumpled detached cell monolayer. 

To enhance coating attachment to the PDMS substrate, a previous step of standard 

plasma treatment was inserted in the protocol: 30 seconds at the maximum power of 

surface plasma activation. This procedure led to correct cell adhesion in all coating 

conditions (figure 77). Furthermore, cells on fibronectin and on PDL+collagen were also 

able to proliferate up to confluence and to spread themselves throughout all the available 

coated substrate (figure 77B and F). Owing to the effect of the plasma treatment, cells 

did not detach from the substrate after 7 days of culture. 

 



Results 

 

121 
 

Figure 77. Cell culture onto coated PDMS with previous plasma treatment. A. No coating. B. Fibronectin 

coating. C. PDL+gelatin coating. D. PDL coating. E. Collagen coating. F. PDL+collagen coating. Scale bar 

= 50 µm. 

In the next assay, cells were seeded on PDMS laminas coated with fibronectin or 

PDL+collagen, as previous experiments showed their successful performance. Cells 

were cultured for 7 days and the medium was supplemented with 50 µg/mL ascorbic acid 

to stimulate the ECM secretion by cells93,135. ECM formation was assessed by performing 

immunofluorescence of collagen since it is one of the main components of aortic tunica 

media ECM. Indeed, cells in these both coating conditions generated a three-

dimensional mesh of collagen fibres (figure 78).  

 

Figure 78. Immunofluorescence of cells (actin cytoskeleton marked in red) and collagen fibres (marked in 

cyan). A. Cell culture on PDMS lamina coated with PDL+ collagen. B. Cell culture on PDMS lamina coated 

with fibronectin. Scale bar = 20 µm. 

In the case of PDL+collagen, we observed that collagen coating was obviously labelled 

by the anti-collagen I antibody of the immunofluorescence procedure (see the blue 

labelling outside the places where cells are located in figure 79). This drawback plus the 

required time of incubation (5 hours), refrained us from using collagen in the standard 

coating procedure for chips, and established fibronectin coating as the optimal chip 

coating. In detail, fibronectin coating protocol involved the incubation of 10 µg/mL 

commercial fibronectin on the plasma-activated PDMS substrate during 1 hour at 37ºC. 
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Figure 79. Immunofluorescence of cells (actin cytoskeleton in red) and collagen fibres (in cyan) onto PDMS 

lamina coated with PDL+collagen. A. Zone at the edge of a group of cells. B. Zone without cells. Note 

collagen staining where no cells are present. Scale bar = 20 µm. 

This determination on fibronectin coating for cell adhesion to PDMS was transferred to 

actual cell seeding onto chips. However, a new element had to be introduced into the 

chip design first, in order to retain the cell culture medium on the canals. A five-canal 

culture chamber was created to fit on top of the chip’s membrane coinciding with the five 

canals of the chip pressure chamber (figure 80). The culture chamber allowed 500 µL of 

culture medium per canal, which was an adequate volume for cell culturing on a 125 

mm2 area. On the experiment day, a culture chamber was attached to the chip 

immediately after plasma treatment, taking advantage of the material attachment 

properties that plasma activation provides. However, on the 2nd day of culture, the culture 

chamber slowly detached from the chip, leading to a loss of cell culture medium. Hence, 

plasma treatment time was increased to 1 minute, in order to guarantee culture chamber 

attachment to the chip for at least 7 days. 

 

Figure 80. Chip components. A chip was composed of a PDMS pressure chamber, a PDMS membrane, and 

a PDMS culture chamber on top. The culture chamber divided cell culture into 5 separated canals. 

 

To conclude, 10 µg/mL fibronectin coating with previous plasma treatment worked fine 

for cell attachment to chip membrane. The seeding protocol in detail consisted in:  

1- on the day of the experiment, a plasma treatment was performed on the chip at 

maximum power for 1 minute;  

2- the culture chamber was firmly attached to the chip;  

3- 20 minutes of ultraviolet light sterilisation were applied to the chip, since all the 

previous steps were done out of an antiseptic ambient;  

4- the membrane was coated with fibronectin at concentration 10 µg/mL for 1 hour 

at 37ºC (incubator);  
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5- the coated membrane was rinsed thrice with PBS and the cells in culturing 

medium were gently pipetted in the canals;  

6- the seeded chip was finally placed into a cell culture incubator at 37ºC in a 

humidified 5% CO2 atmosphere;  

7- the culturing medium was changed every 2 days.  

After 7 days, a phalloidin immunocytochemistry procedure was performed to 

demonstrate cell presence on the chips (figure 81A) (this methodology is explained in 

detail at the following section “Immunocytochemistry, protein, and mRNA analysis in the 

bioreactor”). The same procedure was done with another chip, but in this case, the 

stretch stimulus was activated the day after cell seeding. Particularly, cells were left 

unstretched overnight to allow a strong adhesion to the chip’s membrane and avoid cell 

detachment when the vacuum system was activated to generate stretching of the 

membrane. The immunofluorescence images demonstrated that this procedure was 

successful in maintaining cells onto the chip’s membrane even in stretching condition 

(figure 81B). 

 

Figure 81. Cell actin cytoskeleton immunofluorescence. A. Cell culture on chip during 7 days. B. Cell culture 

on chip during 7 days under stretching condition. 

 

3.1.4. Cell culture on chip 

Once the bioreactor’s mechanical performance and cell adhesion were optimised, cell 

culture parameters were standardised for subsequent experiments. The number of 

seeded cells was the next variable to optimise, in order to achieve cell confluence the 

day after seeding for ideal posterior analyses. We conducted experiments comparing 

40,000, 60,000 and 100,000 cells seeded onto a chip’s canal (figure 82). The concluding 

result was that 60,000 cells per canal was the ideal cell seeding number to yield overnight 

confluence (figure 82B). Taking into account the posterior use of a canal, cells were 

seeded to confluence (60,000 cells) for protein and mRNA analysis, and were seeded to 

semi-confluence (30,000) for posterior immunocytochemistry so that individual cells 

could be appropriately observed under the microscope. 
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Figure 82. Cell confluence assessment after overnight attachment to chip. Immunocytochemistry of 40,000 

(A, D), 60,000 (B, E) and 100,000 (C, F) cell seeding conditions. Cell actin cytoskeleton marked in red, cell 

nuclei marked in purple. Scale bar = 20 µm. 

Although chips were sterilised with ultraviolet light before cell seeding, some 

experimental chips were contaminated by bacteria or fungi. This fact made clear that 

sterilisation and cleaning ought to be more severe, since chips were fabricated on the 

non-sterile general workbench and there was too much manipulation within the 

incubator. Hence, a step of ultraviolet sterilisation during 1 hour was introduced right 

after chip fabrication termination. Next, chips remained sealed until the experiment day. 

Then, the chip was opened to perform the usual established steps for cell seeding: 

plasma treatment and culture chamber attachment in a non-germ-free environment, 20 

minutes of ultraviolet light sterilisation, fibronectin coating and cell seeding in a sterile 

laminar flow cabinet. Besides, all bioreactor experiments were performed in a separate 

incubator only meant for this purpose, which was cleaned and disinfected for each new 

experiment. 

Another fact that was evident in long-term culture within chips was the evaporation of 

culture medium due to incubator conditions. This phenomenon is common in 

conventional cell culture, albeit it is not apparent since culture dishes are usually filled 

with exceeding cell culture medium. In our case, the chips had a little amount of medium 

(500 µL per canal) combined with an extended evaporation surface (~125 mm2), which 

led to the evaporation of half of the medium in one night. To overcome this issue, the 

chip was entirely glued into a P100 cell culture dish and this dish was filled with sterilised 

water, so that the total amount of evaporation surface at the chip was increased. With 

this improvement, there was very little evaporation of culture medium.  

Adding this new element to the device, the final aspect of an optimised chip is as 

illustrated in figure 83.  
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Figure 83. Final stretching bioreactor components. 

 

3.1.5. Immunocytochemistry, protein, and mRNA analysis in the bioreactor 

After cell culture on a chip, the collection of cell lysate for protein and mRNA analysis 

was performed as usual, but using an adapted scrapper. This scraper was cut to fit inside 

a canal and had to be used gently not to tear the fragile membrane. Cell lysis reagent 

was initially TRIzol so that protein and mRNA could be extracted from the same sample. 

However, the protein concentration obtained with this procedure was too low, making 

not feasible to extract mRNA and protein from the same sample with TRIzol. Hence, the 

subsequent experiments used different canals for each component extraction, protein or 

mRNA, and for further protein analysis, the conventional RIPA lysis buffer was used for 

protein and TRIzol for mRNA. Verification assays of protein and mRNA quantity 

demonstrated that cell lysate from a whole chip could yield ~100 µg of protein or 101.5 

ng/µL of mRNA, which was sufficient for subsequent analyses. At protein level, elastin, 

actin, collagen, and calponin-1 proteins presence were checked by western blot on 

control samples of cells seeded on chips (figure 84A). Also, collagen I, myocardin, and 

GAPDH mRNA presence were checked by PCR on control samples of cells seeded on 

chips (figure 84B). With these verifications, we concluded that protein and mRNA 

analyses were possible on cells cultured on bioreactor chips.  
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Figure 84. Example of protein (A) and mRNA (B) analysis of control cell lysate from bioreactor chip culture. 

 

On the other hand, the standard immunocytochemistry procedure was performed entirely 

on the chip since the membrane was not as rigid as a coverslip to be accurately handled 

as in a conventional manner. The steps were the same as in a standard 

paraformaldehyde procedure, but all reagents were poured onto the chip’s canals, and 

in the end, the membrane was dissected with a scalpel and mounted between a 

microscope slide and a coverslip (refer to the Materials and methods section for more 

detail). It is important to note that all liquids on the chip had to be gently removed by a 

micropipette instead of with a vacuum aspirator that could fatally suckle the chip’s 

membrane and tear it. As a proof of concept, we did an ECM immunofluorescence to 

verify the proper functioning of the established protocol. Fibrillin-1 and collagen I were 

stained on control samples of cells cultured on chips under stretching conditions during 

7 days. A prominent ECM was observed (figure 85 and 86). These experiments jointly 

with the immunostainings for cell confluence and adhesion assays demonstrated the 

possibility of performing immunocytochemistry procedures on the chips. 

 

Figure 85. Immunofluorescence marking collagen I (A) and fibrillin-1 (B). Scale bar = 50 µm. 
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Figure 86. Confocal images of collagen staining. A. Collagen mesh at the centre of cell culture. B. Collagen 

mesh at the edge of a cell group. Scale bar = 100 µm. 

 

In addition, PDMS membranes alone were assessed for autofluorescence and for 

unspecific antibody binding. An immunocytochemistry procedure was applied to intact 

chip membranes without seeded cells. Microscopy examination of these samples 

revealed no staining. Therefore, PDMS membranes had no autofluorescence and did 

not bind to random primary or secondary antibodies or BSA. 

 

3.2. Technology application to human Marfan VSMCs 

3.2.1. Study overview 

Once all bioreactor parameters were optimised, we applied the device for Marfan 

syndrome studies. To evaluate the effect of mechanical stretching on VSMCs at different 

exposure times, stretched cells cultured on chip were compared to cells cultured on chips 

but without the stretch, as well as to cells seeded on conventional culture substrates 

(glass coverslips for immunocytochemistry and 6-well polystyrene culture plates for 

western blot). Chips with activated stretch condition were named “dynamic cultures”, 

whereas conventional culturing and non-stretching chips were called “static cultures”. 

VSMC culture conditions were maintained during 0 (only overnight adhesion), 3, and 7 

days under stretch. In accordance with the mentioned culture parameters, we have 

established the following nomenclature (visually explained in figure 87). Samples of cells 

seeded on chips were named with an “E” for static or a “D” for dynamic, plus the number 

of culture days (0, 3, or 7). In addition, some specified conventional culture substrates 

were fibronectin-coated to see if this coating, also used on chip seeding, was responsible 

for any possible difference on the results. Thus, samples of cells seeded on conventional 
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substrates were designated with the culturing days’ number followed by the specification 

of fibronectin coating presence: positive or negative (labelled FN+ or FN-). Note the 

abbreviated nomenclature for each condition in Figure 17, as it will be used in the 

following sections.  

 

Figure 87. Labelling of the different conditions in which the cells were seeded depending on the substrate, 

coating and time.  

 

3.2.2. Focal adhesion analysis 

To demonstrate real cell adhesion to the chip’s membrane, we analysed the vinculin 

staining as an approximation of focal adhesion distribution in the cells. 

Immunocytochemistry of vinculin and actin staining was carried out on cells seeded onto 

a chip without stretch (static) and onto glass coverslip (the conventional 

immunofluorescence substrate). In addition, this assay was performed with control and 

Marfan VSMCs. Indeed, for both genotypes, the vinculin linked to the actin stress fibres 

was clearly observed (figure 88). 
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Figure 88. Focal adhesion immunofluorescence. Control and Marfan VSMCs seeded on chips without stretch 

activation. Scale bar = 25 µm. 

 

Focal adhesion quantitative analysis was performed in terms of the vinculin area related 

to total cell area and the density of focal adhesion. On the one hand, we studied the area 

in the aforementioned two culturing conditions for both VSMCs genotypes (figure 89A). 

Importantly, there were significant differences between the static coverslip and the static 

chip conditions in control and in Marfan VSMCs:  VSMCs had greater focal adhesion 

area on the rigid surface of coverslips than on the soft surface of the chip’s membrane. 

On the other hand, we also studied the density of focal adhesion (number/μm2) under 

these conditions and genotypes (figure 89B). There was a significant difference between 

the static coverslip and the static membrane controls. The Marfan results remained 

highly similar between both culture conditions.  

 
Figure 89. Focal adhesion quantitative analysis. A. Focal adhesion area related to total cell area on control 

and Marfan VSMCs cultured on coverslip or static chip. B. Number of focal adhesions per μm2 on control 

and Marfan VSMCs cultured on coverslip or static chip. Control VSMCs samples, n=3; Marfan VSMCs 

samples, n=3. Ten cells were analysed per replicate of each genotype. * P value <0,05; ** P value <0,01.  

 

 

3.2.3. Cultured VSMC orientation 

The direction of the cultured cells was considered a parameter of mechanically induced 

cytoskeletal reorganisation by the effect of imposed stretch. Therefore, the directionality 

of control and Marfan VSMC was studied by actin cytoskeleton immunofluorescence 

staining. A tendency of alignment towards the stretch direction was observed in some 

conditions both from control and Marfan samples (figure 90). 
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Figure 90. Control and Marfan VSMCs cytoskeleton immunofluorescence. Representative images of some 

conditions are shown. Actin cytoskeleton staining of static (E0), dynamic 3, and dynamic 7 conditions of 

Marfan and control VSMCs. Scale bar = 100 µm. 

 

To quantify this cell alignment tendency, the direction of each cell present in an image of 

actin staining was manually marked, and their direction angle in relation to the applied 

stretch direction was measured (figure 91). Cell angle values ranged from 0º to 180º, 

being 0º the stretch direction. Biologically, it is relevant that cells orient parallel, 

perpendicular, or oblique to stretch direction, but it is irrelevant if obliquity is on the left 

or on the right sides. Hence being oriented in the range of 90 to 180 degrees is 

biologically the same as being oriented in the range of 0º to 90º. Thus, values in the 

range of 90º to 180º were converted to the range of 0º to 90º.  
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Figure 91. Example of cell directionality analysis. A. Example images of cell directionality assessment. 

Marfan VSMCs on two conditions, static 0 (yellow) and dynamic 7 (red) with the directionality of the cells 

marked in green, ready for the following angle analysis. Scale bar = 50 µm. B. Graphs of cell directionality 

assessment of example images in figure 91. Marfan VSMCs on two conditions, static 0 (yellow) and dynamic 

7 (red).  Both graphs plot relative frequency by angle direction from 90º to 0º. Importantly, 0º is the stretch 

direction. 

 

Cell directionality was analysed related to the alignment of cells towards the stretch 

direction (0º). Obtained cell directionality values were represented using two types of 

graphs: histogram and linear regression analysis representation graph (figure 91). 

Histogram graphs showed the distribution of cell directionality regarding frequency of 

each angle group (from 90º to 0º in groups of ten angles). Linear regression was obtained 

to assess statistical significance between histogram distributions of all the conditions. It 

generated a slope that represented the global distribution of the histogram and computed 

whether the histogram slope was significantly different to zero. Zero represented 

horizontality, which meant the absence of pendent. In our study, a horizontal slope meant 

that there was no preferential cell alignment to any angle, so cells individually had 

random directionalities (yellow example in figure 91). Conversely, slopes significantly 

different to zero had a pendent. If the slope tended to higher angles (downhill), the cell 

alignment was perpendicular to stretch direction. In contrast, if the slope tended to lower 

angles (uphill), cell alignment was parallel to stretch (red example in figure 91). 
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With this methodology, the influence of long time stretch application on control and 

Marfan VSMCs direction alignment was analysed. Histogram graph distributions 

revealed control VSMCs cultured on chips under static condition overnight (E0) and 

under the dynamic condition for three days (D3) were equally oriented in all directions 

(figure 92A), meaning that cells were not aligned to any particular direction. Notably, 

control VSMCs cultured under the dynamic condition for seven days (D7) showed an 

alignment towards the stretch direction (0º). Analysis of linear regression graphs showed 

that D7 control VSMCs’ slope was significantly non-zero (figure 92B), demonstrating a 

significant trend to the stretch direction angle. 

 
Figure 92. Directionality assessment of control VSMCs under stretch exposure on chips. A. Histogram of 

control VSMCs directionality frequencies under static and dynamic conditions. B. Linear regression of control 

VSMCs directionality based on the histogram values. Control samples, n =3. Approximately 1,000 cells were 

counted per replicate. ***P value <0.001.  E0 corresponds to static 0 days, D3 to dynamic 3 days, and D7 to 

dynamic 7 days. 

 

Moreover, Marfan VSMCs cultured under E0 condition also remained randomly oriented 

in all directions as the control counterparts (figure 93A). Furthermore, Marfan VSMCs 

cultured under dynamic conditions for 3 or 7 days (D3 or D7) showed a slight tendency 

toward low angles. However, any Marfan VSMCs slope was significantly non-zero, 

although it could be observed that the generated linear regression of D3 and D7 was not 

horizontal but slightly sloped (Figure 93B). In summary, both genotypes showed a 

tendency to align towards stretch direction at seven days of exposure to stretch, although 

only control cells had a statistically significant result. 
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Figure 93. Directionality assessment of Marfan VSMCs under stretch exposure on chips. A. Histogram of 

Marfan VSMCs directionality frequencies under static and dynamic conditions. B. Linear regression of 

Marfan VSMCs directionality based on the histogram values. Marfan samples, n=3. Approximately 1,000 

cells were counted per replicate. E0 corresponds to static 0 days, D3 to dynamic 3 days, and D7 to dynamic 

7 days. 

 

 

Furthermore, we completed our experiments by adding a whole set of cell culture control 

conditions: conventional culture (seeded on glass coverslip with or without fibronectin 

coating) as well as static culture on chips at the established different culture days (figure 

94). The cell directionality of those samples was evaluated, and the obtained results 

were compared to the previous ones. Altogether, control VSMCs showed significant 

alignment on 0 FN-, 7 FN-, E7 and D7, but it was not towards the stretch direction in 

most cases (figure 94A). The condition 3 FN- on control cells also displayed a tendency 

to align perpendicular to the stretch, but it was not statistically significant. Moreover, 

Marfan VSMCs only displayed significant alignment towards the stretch on condition E3, 

and it was towards the opposite direction of stretch (figure 94B).  

 

Figure 94. Directionality of the eleven different conditions for both genotypes, control (A) and Marfan (B). 

Control samples, n=3; Marfan samples, n=3. Approximately 1,000 cells were counted per replicate of each 

genotype. *P value <0.05; ** P value <0.01; ***P value <0.001. FN- corresponds to coverslip; FN+ to 

coverslip with fibronectin coating; E0,3,7 to static chip for 0,3 and 7 days; and D3 and D7 to dynamic chip 

for 3 and 7 days (refer to section 3.2.1 for culture condition details). 
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In summary, most of the assayed culture conditions rendered randomly placed cells, but 

control cells subjected to 7 days of stretch exposure were aligned toward the stretch 

direction. Also, control cells seeded on non-coated coverslips tended to align towards 

90º, as well as, the ones cultured 7 days on a static chip. Furthermore, differential 

culturing substrate seemed not to have this same effect on Marfan VSMCs, with the 

exception of culture on static chip for 3 days (E3).  

 

3.2.4. Cell distribution of contractile phenotype markers in VSMCs 

To assess the cellular distribution of the main contractile phenotype marker proteins, an 

immunocytochemistry protocol was carried out to stain SMA, transgelin, and F-actin 

proteins. Gross observation of the contractile markers showed that SMA staining worked 

well and cells showed good staining (figure 95). Conversely, transgelin showed diffuse, 

unspecific staining in cell cytoplasm (figure 96). We could not optimise the transgelin 

staining, so it was not possible to analyse it quantitatively. 

 

 

 

Figure 95. Immunofluorescence staining of SMA, F-actin, and DAPI and the merged image of the three 

stainings. Representative images of some conditions are shown: Marfan VSMCs cultured on a chip under 

static condition overnight and under dynamic condition for three days and seven days. Green corresponds 

to actin staining, red corresponds to SMA staining, blue corresponds to DAPI nuclei staining, and orange 

corresponds to colocalization between SMA and actin proteins. Scale bar = 50 µm. 
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Figure 96. Immunofluorescence staining of transgelin, example images. 

To integrate the SMA observations along with quantitative values, the cytoplasmic 

distribution pattern of SMA was measured in the samples. To do so, the occurrence 

percentage of each of three different SMA staining patterns was quantified: VSMC with 

organised fibres positively stained for SMA (SMA+fibres+); VSMC with cytosolic diffuse 

SMA staining (SMA+fibres-), which meant that these cells had SMA monomers but they 

were not assembled into fibres; and negative staining for SMA (SMA-), meaning these 

cells had very low expression of SMA (figure 97). Actin and DAPI staining allowed the 

visualisation of all cells, particularly those without SMA staining.  

 

 
Figure 97. Example image of the actin cytoskeleton and SMA staining of same cells to illustrate the different 

SMA cytoplasmic distribution patterns: SMA+fibres+, SMA+fibres-, and SMA-. Scale bar = 25 µm. 

  

Percentage of cells with these staining patterns was done for control and Marfan VSMCs 

(figure 98). In summary, the percentage of cells with each staining pattern was similar 

between all conditions of both VSMCs genotypes. Furthermore, statistical analysis 

showed no significant differences between any conditions (figure 98). 
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Figure 98. Analysis of the SMA staining pattern. Plots of the percentage of control and Marfan cells with 

each SMA staining pattern in each condition. Control VSMCs samples, n=3; Marfan VSMCs samples, n=3. 

Approximately 1,500 cells were analysed per replicate of each genotype. 

 

3.2.5. Contractile marker levels in VSMCs 

Finally, the contractile marker protein levels were analysed in control and Marfan VSMCs 

in relation to different exposures to stretching condition. Protein extraction and western 

blot analysis were performed for each one of the eleven conditions (figure 99). As a 

result, SMA and transgelin protein levels remained similar between different static and 

dynamic conditions in control and Marfan VSMCs (figure 99B and C). However, although 

not significant, Marfan VSMCs showed, more contractile protein quantity than control 

VSMCs, in the majority of the culture conditions (darker bars vs lighter bars at figure 99B 

and C). 

 

Figure 99. Contractile protein marker levels in VSMCs. A. Representative western blot bands of indicated 

SMA and transgelin or SM22α contractile proteins in control and Marfan VSMCs cultured at all the study 

conditions. B and C. Quantitative analysis of the indicated contractile protein levels from control and Marfan 

VSMCs. Protein levels were expressed as the ratio between protein and GAPDH, the loading control. 

Control, n=3; Marfan, n=3. Bar graphs represented by mean ± SD.   
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Part 4: Definition of a literature-based proteome 

of the human aorta 

 

Taking into account that current protein databases are incomplete regarding the aortic 

tissue, we sought to build a thorough Aorta Proteome. Since aortic tissue is a difficult 

kind of sample to obtain from humans, it was ethically mandatory to exploit all publicly 

available data instead of performing actual protein analysis on tissue. Specifically, we 

took advantage of the work previously published by hundreds of researchers and we 

collected all the relevant information they reported on protein presence in human aorta. 

With this we constructed a database containing all the proteins that have been reported 

in human aortic tissue, together with extra information such as details of the used 

samples, experimental method of protein assessment, associated disease, and article(s) 

where it is mentioned. This procedure was based on that performed by Sherratt and co-

workers on the Manchester Skin Proteome132. 

 

4.1. Technology development: literature processing and database 

Aiming to gather all the current knowledge on protein presence in aortic tissue, we 

performed a meticulous literature revision. Up to November 2017, there were in total 142 

million scientific publications included in the Web of Science (WOS) 

(https://clarivate.libguides.com/webofscienceplatform/coverage). To avoid reviewing all 

those publications to find those specifically reporting protein presence in human aortic 

tissue, we filtered them by introducing the following specifications at the WOS search 

engineH: 

- aort*  includes: aorta, aortic, aortae, aortas.  

- AND human OR patient* OR subject* OR individual* OR participant* OR donor* 

- AND (each protein name)  a search was done for each of the 20,239 currently 

reviewed proteins by Uniprot, plus for their alternative protein names. 

- [in English] 

- [only scientific articles]  excluding books, proceedings, reviews, and meeting 

abstracts. 

- [from year 2000 to 2016]  to avoid scanned old articles that cannot be read by 

a computer. 

                                                      
H An asterisk in search procedures broadens the search by finding keywords that start with the same letters. 

AND will search sources that mention all the stated keywords, whereas OR will search sources that mention 
either stated keyword. 
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With this search keywords and parameters, the WOS retrieved 22,318 scientific articles 

that their topic was related to aorta, human, and any protein.  

Once the abstracts of all those articles were downloaded, we were exclusively interested 

in the articles where authors employed human aortic tissue samples. However, taking 

into account that WOS search engine looked for keywords at the article’s abstract and 

title but also in the articles referenced by the article of interest, many articles’ abstracts 

did not actually display the “aort*” and “human/patient/etc.” keywords. In addition, many 

articles used other animals’ aortae or aortic cell cultures instead of human aortic tissue. 

Hence, it was necessary to discard these false positive articles. For this purpose, a 

bioinformatics code processed all the downloaded article abstracts to assess the 

occurrence of the following specific keywords: 

- aort* 

- human, patient*, subject*, individual*, participant*, donor* 

- [any protein name] 

- proteom* 

- mass spec*, MS 

- immunohisto*, histochem*, stain*, “western blot*”, ELISA 

- “mice /rat /rabbit /porcine /bovine /murine aort*” 

- “human aortic endothelial cells” 

- “human aortic smooth muscle cells” 

 

The output of this process was a spreadsheet file listing all the 22,318 articles’ unique 

DOIs (digital object identifier) arranged by alphabetical order of the first protein name 

mentioned at their abstract (table 3). The rest of the columns after the DOI and the first 

mentioned protein included the other sought keywords that were also mentioned at the 

abstract.  
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Table 3. Example of article list classified by interest keywords. Green box marks the indispensable mentions 

and yellow box marks the mentions that can be positive or negative, depending on the other keyword 

mentions in the same abstract. Red box marks the abstracts that are not going to be further examined due 

to its mentioned keywords list. 

With this list we were able to easily identify which abstracts should be further examined 

manually (i.e. reading by a person). If an abstract mentioned the “aort*” keyword, it was 

further read (1st- 3rd, 5th-8th and 9th DOI rows at table 3), with the exception of those where 

the “aorta” mention was related to another animal or cell culture and “human/patient/etc.” 

was not mentioned (9th DOI row at table 3). Conversely, if “aort*” was not mentioned, the 

abstract was not assessed (4th DOI row at table 3). This protocol assumed that authors 

usually declared the use of human aortic tissue at the abstract of their article, since it is 

a very difficult biological sample to obtain. 

Following this strategy, we immediately learnt that the abstracts that mentioned both the 

“aort*” and “human/patient/etc.” keywords (first and 10th DOI rows at table 3) were the 

most likely to contain useful information for our purpose. Nevertheless, many abstracts 

mentioned these two keywords at the introductory part or at the final future perspectives 

section of the abstract, which indeed was a mention not related to the samples they 

employed, and hence, it was information not relevant for our aim. Also, other articles that 

were discarded after abstract assessment were those that studied the human aorta in 

vivo for calcification, stenosis, or regurgitation analysis, and did not work on protein 

examination within the tissue. In addition, clinical articles that only used the aorta for 

blood extraction or for vessel clamping were dismissed too. Finally, articles that analysed 

row Article DOI 
First mentioned 

protein 
Other keyword 

Other 

keyword 

Other 

keyword 

Other 

keyword 

1 10.1093/cvr/cvv027 5'-nucleotidase aort.* human   

2 10.3727/096368912X657701 Alpha-1-antitrypsin 
von_Willebrand_ 

factor 
aort.* 

mouse_ 

aort.* 
donor* 

3 10.1074/jbc.M703115200 Aladin aort.*    

4 10.1371/journal.pone.072111 
Alpha-1-

antichymotrypsin 

Carbonic_ 

anhydrase_1 
Vitronectin proteom.* 

mass_ 

spectrometry 

5 10.1006/mvre.2001.2384 
Angio-associated_ 

migratory_ cell_protein 
aort.*    

6 10.1093/cvr/cvt245 
Angiotensin-

converting_enzyme_2 

Angiotensin-

converting_enzyme 

Apolipo- 

protein _ E 
aort.*  

7 10.1073/pnas.1001253107 
Angiotensin-

converting_enzyme_2 

Low-density_ 

lipoprotein_ 

receptor 

aort.* human 

human_ 

aortic_ 

endothelial_ 

cells 

8 10.1016/j.regpep.2010.9.005 
Angiotensin-

converting_enzyme_2 

Angiotensin-

converting_enzyme 
Profilin-1 aort.*  

9 10.1089/ars.2014.6070 
Angiotensin-

converting_enzyme_2 

Angiotensin-

converting_enzyme 
stain.* 

mouse_ 

aort.* 
 

10 10.1161/ATVBAHA.114.30613 
Angiotensin-

converting_enzyme_2 

Angiotensin-

converting_enzyme 
immunohisto.* aort.* subject.* 
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mRNA or that employed other human vessels than aorta were also discarded. In 

summary, only the abstracts that demonstrated protein analysis on human aortic tissue 

were accepted for further reading of the full article. 

After applying this strategy to the originally obtained 22,318 articles, more than a half 

were further read, and only 268 articles provided useful information on protein presence 

in the human aortic tissue. In particular, these articles demonstrated the presence of 

1086 unique proteins by means of mass spectrometry and/or immune-based techniques 

(western blotting, immunohistochemistry, and ELISA). The reported information of these 

proteins in these articles was gathered in a database. Thus the proteome database 

contained the following information for each protein record: the Uniprot accession 

number, the article(s) where the protein presence in aorta was reported, the specific 

information on the samples used (donor age and sex, aortic region, tissue layer), the 

analysis technique, and reported relation to diseases. With all this gathered information, 

we established the human healthy Aorta Proteome and the human Aortic Aneurysm 

Proteome, which are completely listed in the Appendix section of this thesis. 

 

4.2. Technology application to human aorta data 

4.2.1. The human healthy Aorta Proteome 

Regarding the healthy human aorta, literature review revealed the presence of 919 

different proteins in the tissue. This number was higher than any other reported aorta 

proteomic characterization to date, being the greatest of 630 proteins75 (figure 100A). 

Additionally, our Aorta Proteome contained all the proteins retrieved by searching aort* 

at UniProt and at the Human Protein Atlas (figure 100B). It is noteworthy to state that 

aort* mentions in these two databases was related to disease description, instead of 

annotation of protein presence in the aortic tissue, neither healthy or diseased. 
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Figure 100. Total protein number relationship between different proteomic sources. A. The here presented 

Aorta Proteome (purple) was composed by proteins reported at Didangelos et al. 2010 (629 proteins)75, 

Didangelos et al. 2011 (612)136, Kjellqvist et al. 2013 (32)137, among other minor sources. B. The Aorta 

Proteome included all the UniProt and the Human Protein Atlas protein records that mention aort*. 

The aortic presence of each protein in the database was reported by one or more 

published articles, and each report was performed by mass spectrometry and/or by 

immune-based techniques (western blot, immunohistochemistry, and ELISA). For further 

analysis, reliability of protein presence in aortic tissue was determined by the number of 

articles that reported it and the diversification of the reporting techniques. Taking this into 

account, the most proved protein presences where those validated by both experimental 

methodologies. 

Specifically, the 81% of total proteins in the Aorta Proteome was validated by mass 

spectrometry and the remaining 29% by immune-based methods (figure 101). Many 

database proteins were validated by more than one report (72%). In particular, the Aorta 

Proteome had 90 totally validated proteins (10%) out of 919, so their aortic presence was 

guaranteed by diverse reports and techniques. Conversely, the 28% of the proteome 

was only validated in a single article, either by mass spectrometry or immune-based 

methods, hence there was a moderate confidence level for their real presence in aortic 

tissue. 

 
Figure 101. Validation sources of protein presence in aorta. Proteins in the Aorta Proteome were validated 

by one or more articles, and by mass spectrometry and/or immune-based techniques.  

 

More in detail, within the totally validated protein group there were some of the “most 

popular”138 aortic proteins: elastin, collagens, fibrillin-1, LTBP-1, fibronectin, TIMP-1, 

MMP-2, myosin-11, aortic smooth muscle actin (also known as SMA), smoothelin, and 

transgelin. In table 4, one can get an insight of the available information in the Aorta 

Proteome database regarding these proteins: official name, UniProt accession number, 

encoding gene, experimental validation technique (immune-based and/or mass 

spectrometry), reporting articles of protein presence, protein location in aortic tissue 
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(tunicae intima, media and/or adventitia), and data about the sample donors (aortic 

region source, age, sex, and type of control patient). Refer to the Annex 1 for the full list 

of proteins of the human Aorta Proteome and their associated information. To note, many 

reports did not state all of this information, thus, the Aorta Proteome had, in some cases, 

blank spaces. 

 

Table 4. The Aorta Proteome database information of ten relevant proteins in aorta research. Columns 

correspond to (from left to right): official name of the protein, UniProt accession number, kind of protein 

analysis technique used for tissue presence assessment, number of articles reporting the protein in tissue, 

location of protein within the tissue (if reported or if deducible from histological images), aortic portion of the 

employed samples, average age of sample donors in each report (in years), their biological sex (male, 

female, or both; M, F, or B), and type of control sample referring to cardiovascular healthy donor autopsy 

sample, coronary artery bypass grafting (CABG) patient sample, valve replacement patient sample, or other. 

 

Taking into account the source of the examined control samples in the reports, the vast 

majority of the samples was obtained from ascending aorta of valve replacement surgery 

patients (70%), and only the 4% of the whole proteome was validated on actual 

cardiovascular healthy donor autopsy samples (figure 102A). Moreover, average age of 

sample donors was 42 ± 11 years old, although it ranged from foetal stage to 76 years 

(figure 102B). Both biological sexes were equally represented in the database records 

(figure 102C). Therefore, we established that the Aorta Proteome was globally 

representative of ascending aorta of middle-aged, aorta-healthy individuals. Yet, 

information regarding younger, descending aorta, and/or completely cardiovascular 

healthy samples was also included in the database. Importantly, there were 33 proteins 

assessed on cardiovascular healthy autopsy donor aortae, of which 13 were totally 
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validated (for instance, MMP-2, SMA, and SOD1) and 20 were only assessed by 

immune-based techniques (such as MMP-9 and MAPKs).   

 
Figure 102. Population data of the reported control aortic samples. A. Type of control sample: valve 

replacement surgery, coronary artery bypass graft (CABG) surgery, cardiovascular (CV) healthy donor 

autopsy, other, or unreported in the source article. B. Biological sex of sample donors: source articles worked 

on male, female, or both kinds of samples. C. Frequency histogram of age of control aortic sample donors. 

 

As for the total 919 proteins in the healthy Aorta Proteome, 279 were described in relation 

to aortic diseases. The most frequently reported aortopathy was aneurysm, and the rest 

of diseases were occasionally mentioned (dissection, calcified aorta, aging, 

atherosclerosis, aortic stiffening, and valve pathology). 

 

Furthermore, in reference to the compiled proteins in our Aorta Proteome, their location 

within the tissue was scarcely reported in the articles (only in the 26% of cases; figure 

103A). This meant that, in most articles, total tissue lysates were employed, but they did 

not mention it. Regarding the actually located proteins, most of them corresponded to 

the tunica media (13% of total proteome), and the rest belonged to tunicae intima, 

adventitia, and the periaortic adipose tissue (8, 4, and 1%, respectively). In addition, 

more than half of the Aorta Proteome were intracellular proteins (61%; figure 103B; for 

instance, histones, ribosomal proteins, ATP synthase subunits, SMADs, and tubulin 

chains). Extracellular proteins, such as chemokines and immunity complement 

molecules, constituted the 29% of the total Aorta Proteome. ECM proteins were the less 

diverse group in the Aorta Proteome (10%) and it was composed by 66% glycoproteins, 

21% collagens, and 13% proteoglycans (figure 103C).  
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Figure 103. Overall protein data. A. Reported protein location within the aortic tissue: tunicae intima, media, 

adventitia, periaortic adipose tissue, or whole tissue or unreported. B. Protein classification relying on sub-

tissue location: intracellular, extracellular, or ECM component. C. Classification of ECM proteins into 

glycoproteins, collagens, or proteoglycans.  

 

 

Given that elastic lamellae fragmentation is the most evident aortic histological feature 

in the event of aneurysm, we checked the existence of lamellae proteins in the Aorta 

Proteome (table 5). Elastin, the most abundant component of elastic lamellae, was 

completely validated in human aortic tissue by several reports and both assessment 

techniques. This was exactly the same for fibrillin-1, but fibrillin-2, was not reported by 

any article in human control aortic tissue. Main fibulins (1, 2, and 5) were existent in the 

Aorta Proteome, although not fibulins 3 and 4. Moreover, the presence of the lamellae 

associated proteins families LOXs and LTBPs in control aorta tissue was seldom 

reported. Conversely, biglycan, decorin, fibronectin, TGM2 (formerly tissue 

transglutaminase) and vitronectin were completely validated (table 5), hence their 

presence in human aortic tissue was guaranteed.  

 

Table 5. Existence of lamellae components and associated proteins in the Aorta Proteome, and statement 

of validation technique of their presence in human control aortic tissue. 

 

Additionally, the presence of VSMC contractile phenotype markers in control aortic 

tissue, such as SMA, transgelin, myosin-11, smoothelin, calponin, and vinculin, was 
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totally validated (table 6). The synthetic phenotype protein marker myosin-11 was also 

double validated, but myosin-9 was only assessed by mass spectrometry, and RBP1 

was not reported in aortic tissue. 

 

 

 

 

 

Table 6. Existence of VSMC phenotype associated 

proteins in the Aorta Proteome, and statement of 

validation technique of their presence in human 

control aortic tissue. 

 

 

4.2.2. The human Aortic Aneurysm Proteome 

The same literature review was performed searching for protein presence in human MFS 

aortic tissue. Nonetheless, only 32 proteins were reported, including SMAD2 (more 

phosphorylated than control samples), transgelin (downregulated), TGF-β1 

(upregulated), decorin (upregulated in tunica media), vinculin (upregulated), and nitric 

oxide synthases (NOS2 upregulated, NOS3 downregulated). Therefore, we broadened 

our study by searching protein presence in human aneurysmal aortic tissue. Importantly, 

there was one protein solely reported in Marfan aneurysmal tissue: fructose-

bisphosphate aldolase C. 

The human Aortic Aneurysm Proteome contained 724 protein records, and comprised 

data from bulk proteomic analyses119,136,137,139,140 and from individual immune-based 

studies (figure 104). In detail, 10% of the total proteins was certainly validated by both 

techniques, whereas the 76% was assessed only by mass spectrometry (12% 

demonstrated in several articles, plus 64% corroborated in one article) and the rest by 

immunohistochemistry or western blot (9% in several articles, 5% in one article). Totally 

validated protein percentage was similar to that of the healthy Aorta Proteome. 

Surprisingly, proteins like MMP-2, MMP-9, CD68, IL6, and IL8, have been reported many 

times by immunohistochemistry and western blot in human aneurysmal aortae, but were 

not found by mass spectrometry studies. Refer to the Annex 2 for the full list of proteins 

of the human Aortic Aneurysm Proteome and their associated information. 
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Figure 104. Validation sources of protein presence in aneurysmal aorta. Proteins in the Aortic Aneurysm 

Proteome were validated by one or more articles, and by mass spectrometry and/or immune-based 

techniques. 

The majority of the protein data within the proteome was originated from abdominal aortic 

aneurysms (87%), but source articles did not state the underlying cause of the pathology 

in most cases (85%) (figure 105A). Taking into account the current knowledge on 

epidemiology and aetiology of abdominal aneurysms, we assumed that the cause of 

these aneurysms was atherosclerotic disease. Additionally, the rest of the data (13%) 

was obtained from aneurysmal ascending aortae of MFS (4%) and bicuspid aortic valve 

(9%) patients. Moreover, the whole set of aortic samples, either abdominal or ascending, 

were principally extracted from senior men, with an average age of 66 years old (figure 

105B-C). 

 

Figure 105. Population data of the reported aneurysmal aortic samples. A. Cause of the aortic aneurysm: 

unreported (being most likely due to atherosclerosis), degenerative, bicuspid aortic valve, and Marfan 

syndrome. B. Biological sex of sample donors: source articles worked on male, female, or both kinds of 

samples. C. Frequency histogram of age of aneurysmal aortic sample donors. 
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Protein location in the tissue was often unreported or performed on the whole tissue 

without specific allusion in the source article (89%) (figure 106A). Only few proteins were 

reported in particular locations: 2% at tunica intima, 4% at tunica media, 3% at tunica 

adventitia, 1% at inflammation regions within the aortic wall, and 1% at the adjacent 

thrombus. Moreover, the kind of protein pattern was similar to that of the healthy Aorta 

Proteome. More than half of the Aortic Aneurysm Proteome were intracellular proteins, 

and 31% were soluble extracellular proteins (figure 106B). The remaining 11% were 

ECM proteins, composed by 63% glycoproteins, 22% collagens, and 15% proteoglycans 

(figure 106C). 

 

Figure 106. Overall protein data. A. Reported protein location within the aortic tissue: tunicae intima, media, 

adventitia, inflammation regions, thrombus, or whole tissue or unreported. B. Protein classification relying 

on sub-tissue location: intracellular, extracellular, or ECM component. C. Classification of ECM proteins into 

glycoproteins, collagens, or proteoglycans. 

 

Furthermore, aortic wall ECM proteins were analysed in detail in the Aortic Aneurysm 

Proteome (table 7, second column). Surprisingly, elastin was only validated by immune-

based techniques, and fibrillin-1 only by mass spectrometry. Several collagen chains 

were present in the database, and many were totally validated. Proteoglycans and 

adhesive glycoproteins, such as fibronectin, vitronectin, thrombospondin-2, tenascin, 

decorin, and biglycan, were also assessed by both kinds of techniques. Elastic lamellae 

associated proteins were in some cases present in the Aortic Aneurysm Proteome (like 

EMILIN-1, fibulin-1 and 5, LOX, and MFAP-4) but only partially validated. Additionally, 

proteins involved in remodelling processes were abundant in the aneurysmal aorta 

reports, as the presence of MMP-12, 14, 2, 9, TIMP-1, 2, 3, and α-1-antitrypsin, was 

described in the human diseased tissue. Moreover, EMILIN-2, fibrillin-2, fibulin-4, ficolin-

2, LOXL2, LOXL3, and MFAP-2 were not reported either in the aneurysm nor the healthy 

proteomes (tables 5 and 7). 
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Table 7. Existence of ECM proteins in the Aortic Aneurysm Proteome, statement of validation technique of 

their presence in human aneurysmal aortic tissue, and report of protein level changes in relation to control 

tissue. Protein level changes could be described by more than one published article and these reports could 

be contradictory. Hence, in the database we annotated all possible scenarios. 

 

The Aortic Aneurysm Proteome also contained information on the changes in the protein 

levels as compared to control tissue, when reported by the source articles (table 7, third 

column). In general, MMP expression was augmented, but TIMPs and α-1-antitrypsin 

(an inhibitor of serine proteases) displayed different expression patterns depending on 

the reporting article results. Elastin, extracellular SOD [Cu-Zn], fibulin-1, transthyretin, 

fibulin-5, and versican were diminished in aneurysmal tissue. Conversely, vitronectin, 

tenascin, and fibronectin were increased. Fibrillin-1 was also augmented, but, 

importantly, it was reported on abdominal aneurysm samples not related to MFS.  

Moreover, proteins related to VSMC functioning and phenotype were also present in the 

Aortic Aneurysm Proteome: calponin-1, filamin-A, myosins, SMA, smoothelin, transgelin, 

vimentin, and vinculin (table 8A). However, synthetic phenotype marker RBP1 was not 

reported by any article in human aortic aneurysm tissue, but, in turn, it was not even 

reported for healthy tissue (table 6). Regarding the present markers, either phenotype 

proteins were augmented compared to control samples, except for SMA and transgelin 

that reports described contradictory protein level changes. In addition, TGF-β signalling 
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proteins in aneurysmal aorta were present, and augmented or similar as compared to 

control tissue (table 8B). To our surprise, no article reported TGF-β receptors in human 

aneurysmal aorta samples. 

 

Table 8. Existence of VSMC proteins in the Aortic Aneurysm Proteome relative to cell phenotype (A) and 

TGF-β signalling (B), statement of validation technique of their presence in human aneurysmal aortic tissue, 

and report of protein level changes in relation to control tissue. Protein level changes could be described by 

more than one published article and these reports could be contradictory. Hence, in the database we 

annotated all possible scenarios. 

 

Besides, there were 188 proteins reported in aneurysmal tissue but not in healthy human 

aorta tissue. Within this unique protein group there were four collagen alpha chains, 

MMP-12, LOX, ADAM17, RBP4, and several immunity-related proteins (complement 

factors and antibody chains). 
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Part 1: High-resolution morphological approach 

to analyse elastic laminae injuries  

of the ascending aorta  

in a murine model of Marfan syndrome 

 

 

In this study, we reported the implementation of a new multiphoton microscopy image 

processing method for elastic lamellae microstructure examination, based on obtaining 

series of en-face images from unstained aortic tissue. We used healthy and MFS murine 

aortae as tissue models and determined the anatomical distribution of fenestrae 

alterations that occur in elastic laminae.  

In the last decade, a lot of data have been generated about histological damage in the 

aortic wall in MFS, using routine histological techniques following the conventional 

sequence of fixation, paraffin embedding, sectioning and histological staining. 

Technological improvements in microscopy and, importantly, in image processing have 

provided a new panorama to the histopathology field13. Accordingly, here we applied en-

face multiphoton microscopy and a segmentation protocol to assess lamellae 

morphology. The advantages of our new approach are: (i) it can produce high-resolution 

en-face confocal stacks that enable detailed visualization of histological structures; (ii) it 

can obtain quantitative information belonging to the three dimensions XYZ, which 

increases our understanding of 3D histological arrangements; and (iii) the entire aortic 

vessel can be viewed, for straightforward monitoring of different anatomical regions. 

 

1.1. Analysis of lamellae 3D microstructural data 

Although TPEF confocal microscopy has been used to obtain the elastin signal of vessels 

in other studies68, our report is the first to our knowledge in which a semi-automatic image 

processing protocol is systematically implemented to segment individual lamellae and 

quantitatively analyse histological microstructural changes. Furthermore, this unique 

analysis was performed on en-face images of ascending aorta tunica media of a murine 

model of MFS, in which elastic fibre ruptures are known to be associated with the 

formation and progression of aortic aneurysm44. Related previous studies in MFS 

reported “disruptions” in en-face images from pressurized adult MFS descending aortae, 

but without any quantitative analysis116; and also reported a ≈40 μm “hole” diameter 

measurement based on non-segmented lamellae of diseased tissues only (from another 

MFS murine model)117. In addition, the measurement of elastic laminae features of 

transversely viewed parts of Marfan mice aortae obtained by multiphoton microscopy 

was reported as an alternative to conventional histological methods141. Here, we 
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complement these studies and highlight the relevance of en-face multiphoton 

microscopy and image processing for generating quantitative 3D microstructural data on 

individual elastic lamellae. We report new histopathological alterations in the aortic media 

in the murine Fbn1C1039G/+ model of MFS: lamellae in the ascending aorta show larger 

and more fenestrae than WT tissue. The density of fenestrae in Marfan elastic laminae 

is at least double than that found in WT. These fenestrae alterations probably represent 

lamellar micro-damage, which could be directly related to the characteristic elastic 

lamellae fragmentation and disarrangement happening in Marfan aortae141. Thus, we 

propose the density of fenestrae as a potential aortic microscale damage marker. The 

hypothetical future application of our imaging and processing method as a basis for the 

vascular endoscopy examination of MFS patients or related diseases might provide an 

early evaluation tool for aortic histological damage prior to the irreversible appearance 

of the aneurysm. 

Interestingly, our results show that alterations in the density and size of fenestrae did not 

occur uniformly in the entire Marfan ascending aortic media, but were mostly restricted 

to the proximal and convex regions. This is in accordance with results reported by 

Trachet et al.142 in the ascending aorta of angiotensin II-infused ApoE-/- mice. Using 

conventional histological techniques, they reported that the largest aortic wall dissections 

occurred in the outer convex quadrant, which corresponds to the central part of the aortic 

convexity. We speculate that the regionalized structural changes reported here could be 

due to a preferential impact of the blood flow on the convex and proximal ascending 

aortic regions. It is known that deviant blood flow can be caused by aortic valve 

dysfunction3. In particular, the convexity of ascending aorta is the preferential blood flow 

impact zone found in bicuspid aortic valve disease143, which is accompanied by 

differential lamellae fragmentation and matrix protein expression patterns in comparison 

to the concavity144. In the case of MFS patients, aortic root dilatation usually entails aortic 

valve dysfunction145, which in turn causes aortic blood flow disturbance145,146 leading to 

mild or moderate aortic regurgitation146,147. Therefore, it is reasonable to hypothesize that 

MFS disturbed flow could be mainly impacting on this particular anatomical zone, just as 

happens in bicuspid aortic valve pathology. This premise should be confirmed by further 

detailed hemodynamic studies on Marfan patients and murine models, which to our 

knowledge are not currently available.  

A recent paper reported a transmural gradient of lamellar injury, in which elastic laminae 

break number varies significantly amongst lamellae142. In particular, central lamellae 

including the 2nd showed more breaks than peripheral ones. The results of our 

comparisons of fenestrae density and size between the IEL and the 2nd lamina also 

suggest a histological injury gradient, where the damage is more severe in the 2nd lamina 

than in the IEL. Again, we can only speculate about the significance of this difference. It 

could be related to intrinsic robustness of the IEL, whose structure and organization 

might be better adapted to support the mechanical impact of blood flow than the rest of 

laminae. In this respect, aortic transmural mechanical behaviour has been studied in 

relation to transmural structural properties148,149. Results show that the porcine thoracic 
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descending aorta wall is divided into transverse outer and inner tunica media halves, 

which differ in their mechanical and molecular composition. In addition, the alignment of 

bovine elastic and collagen fibres due to mechanical load varies in lamellae localized 

close to the endothelium and in the subsequent lamellae150. We are aware that this 

variance cannot be directly extrapolated to mice, due to differences in the animal model 

used and the aortic portion examined in terms of wall thickness and lamellae number. 

Nonetheless, it cannot be discarded that similar structural variance between lamellae 

occurs in mice as well. Our results suggest that this variance might take place between 

IEL and successive lamellae. In the case of Marfan mice aortae, we hypothesise that the 

weakness of the tunica media121 plus the intrinsically different primary structure of each 

lamina could explain the here reported dissimilar injury pattern occurring between the 2nd 

laminae and the IEL.  

Regarding the other lamellar parameters assessed by our methodology, it was previously 

shown by SEM that medial elastic laminae of adult rat aorta were 2-3 µm thick and had 

an irregular profile151. Moreover, an average of 2.74 µm was reported in mouse152. 

Therefore, our lamella thickness values (2.7-3.0 µm) are in accordance with those 

measured in mouse152 and rat aortae151,153. 

There are few data about lamellae undulation assessment either in health or disease. 

Wolinsky and Glagov76 established the waviness index, which consisted in obtaining the 

ratio of the lamellar length to the straight line distance between two reference points. 

Other developed undulation assessment techniques quantified the folding154 and fibre 

angular undulation69 of lamellae. Globally, these three methods are all based on 

individual transversal sections, and hence they provide 2D data. Conversely, our 

waviness quantification approach takes into account area values as in earth topography 

studies, and therefore it is much more informative about the 3D structure of the tissue. 

With this method, we showed no differences in lamellar waviness between WT and 

Marfan aortic tissue.  
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Part 2: MicroCT imaging of remodelling 

and micro-scale damage in          

Marfan syndrome murine aorta 

 

In this study, we show a potential outcome of using synchrotron-based microCT imaging 

in vascular biology: to image large volumes of aortic tissue at microscale resolution. 

Aortic scans of WT and Marfan mice (3, 6, and 9 months old) were automatically 

processed by our in-house image processing code to quantify a variety of histological 

features, providing at the same time highly informative 3D-based morphology images of 

the ascending aorta luminal surface. Besides, all the histological parameters here 

reported have been quantified onto 200 consecutive images, which has yielded a robust 

mean value for each sample, as opposed to the one-to-ten sections usually measured in 

conventional histology. Altogether, this study represents a significant insight in the 

understanding of structural alterations at micro-scale resolution occurring in the tunica 

media of aortic aneurysms in Marfan syndrome. Additionally, this study allows to infer 

some conclusions about aortic wall remodelling with early and middle ages (3 to 9 

months old), and complements other ageing studies that use elder mice (24 months 

old)78. 

 

2.1. Validation of the transverse histological feature values in microCT 

images 

To demonstrate the validity of microCT for vascular histological feature assessment, we 

compared the obtained quantitative data with that already published. For instance, 

unpressurized ascending aorta diameter of wild-type animals (~600 µm) was coincident 

to that thoroughly measured by mechanical studies (ascending aorta inner diameter 

~675 µm at 0 mmHg, 6-months-old Fbn1+/+ mice)78. The diameter data cannot be 

compared to that reported in other publications because this feature is commonly 

measured in vivo by ultrasound and, hence, in pressurised aorta. However, Mariko et 

al.78 also performed this in vivo measurement for the same aortae mentioned above, 

yielding 1.7 mm systolic to 1.48 mm diastolic diameters of ascending aorta of 5 to 7 

months old Fbn1+/+ mice. This diameter size is ordinary for mice129,142,155, thus we can 

extrapolate that our aortic diameter measurements of WT mice are correct.  

Regarding the aortic tunica media thickness, diverse values have been previously 

reported: ~85 µm at 3-months-old wild-type mice156 (85 comes from 95 µm of the 

reported total wall minus 10 µm 142 of the expected adventitia), ~75 µm at 3-months-old 

wild-type mice142, ~70 µm at ~3-months-old wild-type mice152, and ~55 and ~83 µm 
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media thickness at ~8-months-old wild-type and Marfan mice, respectively113. Our 

measurement of thickness of tunica media in 3-months-old wild-type mice (77 µm) was 

similar to that previously reported (85, 75, and 70 µm)142,152,156. Despite this coincidence, 

the remaining previously reported value was lower than ours. However, this same report 

measured a 1.5-fold increase in Marfan tunica media thickness compared to that of wild-

type113,116, which is close to our resulting 1.2-fold widening (84 and 103 µm media 

thickness in wild-type and Marfan 9mo samples, respectively). Taking into account this 

similarity in ratio, it is feasible to attribute the absolute value discrepancy to the different 

imaging and quantification methods used by both groups. We are confident of our 

quantitative analysis since with computational quantification the potential human-

induced bias is omitted, and also we have used of a large number of images, which 

provides a robust average.  

Wild-type tunica media cross-sectional area measured in our study (0.19 mm2 in 

average) agreed with the ~0.2 mm2 reported on wild-type 5-6 months old mice157. 

Furthermore, Chung et al.122 earlier published the changes in elastic fibres’ area 

percentage in tunica media in differently aged mice and confirmed that lamellae area 

remained constant at ~50% in wild-type 3, 6, and 9-months-old aortic arches, and that 

Marfan non-aneurysmal thoracic aorta at 3 months-old was similar to the wild-type, but 

it decreased to ~44% in 6 and 9 months old mice, and to ~34% at 9-months-old 

aneurysmal samples. Notice that these values followed the same tendency and ratios as 

our results, but approximately 10 points above, as our results showed constant wild-type 

lamellae area at 42% and Marfan decreasing from 40% at 3mo to 31% at 9mo, and to 

27% at dilated zones. This shift between their results and ours could be explained by the 

use of different imaging approaches (histological stainings122 vs phase-contrast), which 

might alter differently the real size of lamellae. In conclusion, our quantitative analysis of 

several histological features is in accordance with those previously reported in WT and 

MF aortae using other imaging approaches. Hence, high-resolution microCT stands as 

a valid imaging technique for vascular wall assessment at transverse perspective, and it 

could be applied for the study of tissue remodelling associated to aneurysms. 

 

2.2. Age-dependent histological remodelling in wild-type and Marfan aortic 

walls 

Both in WT and Marfan aortae, we observed a gradual age-dependent increase in the 

luminal diameter, tunica media thickness, and cross-sectional area mean values. Similar 

results were also present for the lamellae and interlamellar space areas, but whereas in 

WT mice the resulting lamellae concentration remained invariant with age, in Marfan, a 

decrease was produced due to a two-fold increase of the interlamellar space area. 

Notably, Marfan aortae during age progression showed a similar tendency as WT for 

most of the examined histomorphometric parameters, but in the end, MF 9mo (without 

categorising datasets) showed significantly greater values than WT 9mo, that is higher 
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ascending aorta diameter, tunica media thickness, and the areas of the media, lamellae 

and interlamellar space. Moreover, tunica media thickness at MF 3mo was as elevated 

as in WT 9mo. In general terms, our results with the happloinsuficiency model of Marfan 

syndrome (Fbn1C1039/+) complement previous ones using a hypomorphic model 

(Fbn1+/mgΔ)78, which together suggest that the genetic deficiency of fibrillin-1 seems to 

represent a pathological model of accelerated ageing in large arteries. 

The aged-dependent increase in the thickness of the WT tunica media resulted from the 

parallel increase in lamellae and interlamellar space areas. Although it is reported that 

there is almost no elastin deposition during adulthood9,23, here we observed a significant 

increase in wild-type elastic lamellae area with ageing. Nevertheless, nowadays it is not 

known which components provide microCT contrast to lamellae. Thus, we postulate that 

other lamellae components, but not elastin, might be overexpressed, causing an 

increase in lamellae area. The future use of phase-contrast microCT in mice models 

genetically defective for fibrillins, fibulins, or other lamellae components will undoubtedly 

help to solve this question. 

Notably, Marfan aortae showed a similar age-related tendency as WT for most of the 

examined histological parameters: higher ascending aorta diameter, tunica media 

thickness, and the area of the media, caused by more lamellae area but proportionally a 

lot more interlamellar space area. Yet at 9mo, Marfan aortae showed significantly greater 

values than WT 9mo, indicating an exponential increase in tissue remodelling. Hence, 

the histological features examined as potential indicators of structural remodelling in WT 

and MF tunica media suggest that in both models, the age-dependent tunica media 

changes are similar, but in MF they occur in an accelerated manner. Furthermore, this 

increase in MF 9mo values was mainly caused by dilated aortic datasets, because when 

these were categorized apart, MF 9mo (non-dilated) displayed similar values to those of 

WT 9mo, and MF dilated was significantly different to the rest of MF groups in most of 

the parameters. We hypothesise that the histological parameters that were not altered 

when dilated and non-dilated datasets were separated, are the ones directly implicated 

in ageing and Marfan disease progression, but not in the aneurysmal evolution. Hence, 

lamellae area and tunica media thickness are not related to aneurysmal tissue 

remodelling. In fact, Marfan medial thickness was already augmented at 3 months old, 

age in which there was no aneurysm occurrence.  

Furthermore, significant lamella damage, i.e. luminal surface breaks, also occurred 

before (6mo) the appearance of an aneurysm (9mo). Moreover, although early lamellae 

fragmentation has been already documented in Marfan syndrome114,122, this is the first 

report that visualises damage in the luminal surface of the vessel. These breaks 

resembled those IEL cracks mentioned by Robertson and Watton23, which are a form of 

mechanically-induced damage. We suggest that these breaks/cracks start as a small 

rupture between abnormally enlarged fenestrae158 (as reported in the part 1 of this 

thesis), and progressively extend due to high tensile circumferential stresses15. 

Therefore, our data of lamellae break/crack progression caused by tensile stress failure 
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might be of interest for the research groups working on computational modelling of 

aneurysms17,159 and blood flow simulations143. In fact, the mechanical interpretation of 

this data might provide an explanation to previously published reports on the altered 

mechanical behaviour of Marfan aortae116,122,160. Moreover, these IEL breaks might be 

related to contrast agent infiltration within the aortic wall, as suggested by Logghe et 

al161. 

Finally, we have to note that for some histomorphometric parameters the observed age-

depended increases did not always reach the usually accepted statistical significance (at 

least a P ≤ 0.05), but this does not necessarily mean that they are not having a biological 

impact in tissue homeostasis162. We are strongly confident of our quantitative analysis 

since the obtained final average values came from the non-human-biased measurement 

of 200 images per sample, which is not the case for conventional histology analyses. 

Also, all the datasets, except MF 9mo, showed homogeneous average values with low 

dispersion. Therefore, the mentioned image processing outputs were satisfactory to 

assess MF murine aortae as a model of aneurysmal formation in comparison to age-

dependent WT aortic remodelling. 

2.3. Potentiality of vascular tissue imaging by phase-contrast microCT 

High-resolution phase-contrast microCT is here revealed as a valid and potent technique 

for the study of vascular tissues providing both a transverse and 3D perspectives. This 

imaging approach overcomes the limits imposed by conventional histological methods 

such as small size, staining, and sectioning of samples. Indeed, X-ray phase-contrast 

microCT imaging offers the great advantage to visualise large volumes of unstained and 

unsectioned soft tissues, providing new structural information that helps to understand 

tissues and organs in health and disease (Tsukube et al.163 and references therein). 

Although here we used ex vivo synchrotron-based microCT imaging, laboratory microCT 

devices are already capable of performing high-resolution acquisitions of vascular 

samples, in detriment to scanning time72. Therefore, the examination of luminal surface 

damage by microCT is a novel and feasible way of aneurysm assessment in research. 

Moreover, microCT devices are currently capable of in vivo vascular imaging164–166, and 

it might only need a bit of further instrumental improvement to achieve higher resolution 

scans that permit visualisation of vascular microarchitecture in vivo. Thus, probably in a 

near future the luminal surface of aorta could be monitored in vivo by microCT to obtain 

microstructural information of the aneurysm in real time, complementing the data 

provided by echocardiography, in pre-clinical research and clinical diagnosis167.  
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Part 3: Impact of in vivo-like stretch on 

the phenotypic modulation of VSMCs 

of Marfan syndrome patients 

 

The overriding aim of this thesis part was to build a custom-made system to culture 

VSMCs in a pseudo-physiological environment. To this aim, we have successfully 

developed a stretching bioreactor that subjected VSMCs to an in vivo-like mechanical 

environment, and we have assessed its influence on proteins associated to phenotypic 

modulation.  

 

 

3.1. Functioning assessment of the stretch bioreactor 

The implemented aortic bioreactor was built to serve as a cell culture platform providing 

a stretching stimulus that mimicked the in vivo environment. The intensity and frequency 

of this stimulus were set taking into account the physiological values for these 

parameters: 13% strain at 1.1 Hz 19–21. Nonetheless, the overall bioreactor system was 

able to produce the exact physiological strain rate, but at slightly lower frequency (0.81 

Hz). We accepted this shortfall given that the mechanical environment achieved by the 

aortic bioreactor was highly similar to that of a human aorta, and that no other setup 

improvement could accomplish the required 1 Hz (aside from acquiring the FlexerCell© 

instrumentation). 

Besides, the aortic bioreactor was proved valid for culture of human primary VSMCs, by 

previously applying a fibronectin coating and plasma treatment to the culture surface (the 

chip membrane). Posterior protein analysis by adapted immunofluorescence and 

western blot techniques was also successfully demonstrated. In addition, effective long-

term culture of cells with and without stretch application was confirmed by means of 

these techniques. Furthermore, the effect of stretch stimulus on control cell directionality 

demonstrated that VSMCs actually sensed the mechanical tension occurring on the 

culturing substrate and reacted to it (mechanotransduction). 

Cell attachment to the membrane was evidenced by focal adhesion assessment. Control 

and Marfan VSMCs seeded on chips displayed numerous focal adhesions, yet their area 

was significantly lower than that of cells seeded on coverslips without fibronectin. 

Moreover, chip-cultured control VSMCs had significantly lower number of focal 

adhesions than conventionally-cultured cells. Paraphrasing, VSMCs were firmly 

attached to the bioreactor substrate, but they required less strong adhesion than on a 

stiff surface as glass coverslips. This result is in accordance with earlier reports stating 
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that focal adhesions are smaller in soft substrates, and also the number of focal 

adhesions is almost significantly lower168,169. At the same time, contractile filaments are 

less abundant in the cytoplasm of cells on soft substrates, as they are unable to generate 

a notable traction when pulling the unstable elements conforming the soft surrounding 

environment. Conversely, in stiff substrates, the sufficient traction reinforces cell-

substrate attachment allowing the establishment and growth of multiple focal 

adhesions169.  

In summary, with these experiments, we demonstrated the validity of the mechanical 

environment created by the aortic bioreactor for the long-term culture of human primary 

VSMCs and the posterior protein analysis. 

 

3.2. Interpretation of cultured VSMCs orientation  

Cell directionality towards the stretch direction in the case of cells cultured on coverslips 

(FN- and FN+ conditions) was negligible, because the substrate was circular and had no 

actual stretch direction. Hence, the stretch direction as an orientation indicator was only 

valid for cells cultured on chip, either static or dynamic. For coverslips, cell directionality 

assessment was only relevant for collective cell alignment, regardless the direction. 

Control cells cultured onto coverslips without fibronectin coating (conventional culture) 

frequently showed a significant collective alignment. In contrast, VSMCs seeded on 

coverslips with fibronectin coating did not tend to collectively align as individual cells 

were randomly oriented. In the case of culture onto chips for 7 days, either static or 

dynamic, the substrate (fibronectin-coated soft PDMS) drove control cells to collectively 

align. Hence, the stiff glass substrate promoted cell alignment, but its combination with 

a soft fibronectin coating stimulated a scattering in cell directions. Moreover, cells on 

chips (always with fibronectin coating) were collectively aligned. In summary, whatever 

the direction the cells aligned to, fibronectin seems to produce a chaotic effect on glass 

and an organising effect on PDMS. Indeed, it has previously been reported that the 

stiffness of the substrate can trigger changes on cell behaviour170 (for instance, the above 

explanation on focal adhesions). However, fibronectin itself might not be the cause of 

this behaviour shift because in both cases the stiffness is the same: that provided by the 

fibronectin coating. The difference relies on the underlying substrate, which is glass or 

PDMS. We suggest that the fibronectin coating might detach from the glass substrate 

when cells pull from it to spread and migrate. This detachment may happen in some 

regions and depending on the amount of pulling cells. Thus, cells might turn the 

completely coated coverslips to patched, that is with alternating soft and stiff parts. This 

irregular fibronectin coating might induce “confusing” signals to VSMCs, and hence, 

might promote a random orientation of cells. 

Regarding the aligned cells, we hypothesise that general alignment of cells on coverslips 

could be a consequence of a “collective intelligence” process of cells171, in which the first 
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cells that adhered to the substrate influenced the other ones to align in their same 

direction172. Additionally, in the case of the chip’s rectangular membranes, the cell 

directionality was also influenced by the shape of the substrate since control cells after 

7 days of static culture were aligned parallel to the long axis of the rectangle. However, 

this alignment shifted to perpendicular (i.e. towards the stretch direction) when control 

cells were cultured under dynamic conditions. This fact was relevant because VSMCs in 

the aortic tissue (in vivo) arrange circumferentially aligned, which is parallel to the 

direction of the physiologic stretch tension8,11. Therefore, we showed that control VSMCs 

cultured under dynamic condition tended to align towards the bioreactor’s stretch 

direction, as it occurs in vivo. 

 

3.3. Effect of in vivo-like stretch onto Marfan VSMCs  

As previously explained, static control cells tended to align perpendicular to the stretch 

direction, but stretching stimulus induced control cells to align parallel to its direction, as 

this was the optimal state to bear the mechanical tension. In contrast, Marfan cells 

showed scarce collective alignment in any condition. Particularly in dynamic chips, cells 

were less aligned towards the stretch direction in comparison to control, since histogram 

shift indicated a tendency without reaching statistical significance. This tendency started 

at day 3, which was earlier than in control cultures (day 7). We postulate that this 

alteration of the proper cell alignment when a stretching stimulus was applied might be 

due to an altered cell-ECM signalling in Marfan VSMCs. This impaired 

mechanotransduction process could be caused by a failure in the initial mechanosensing 

or in the execution of cell migration in response to the mechanical stimulus. Thus, cell-

ECM linking proteins or contractile proteins might be affected. These proteins, in turn, 

might be permanently altered by the aberrant fibrillin-1 ECM occurring in the Marfan 

condition (demonstrated in parts 1 and 2 of this thesis). In summary, the altered reaction 

of Marfan cells to substrate stretching might be a consequence of an impaired 

communication between the cell and its surrounding ECM.  

To unravel this question, further experiments were required to see whether this different 

directionality behaviour of Marfan VSMCs was due to a variation in any protein of the 

cell-ECM anchoring or the phenotypic modulation signalling pathways. To begin with, the 

vinculin in Marfan cells showed a similar expression distribution to that of control cells. 

Moreover, the contractile protein per excellence, SMA, was evaluated in terms of 

cytosolic staining patterns. It showed no significant differences between all conditions in 

both cell genotypes. Furthermore, there were no specific SMA and transgelin protein 

level differences between control and Marfan VSMCs seeded in culture dishes and in 

chips, subjected to static and dynamic conditions. Hence, we postulate that the abnormal 

cell-ECM communication in human Marfan VSMCs over time exposure to stretch is, in 

principle, not related to focal adhesion constitution by vinculin, or to SMA subcellular 

distribution, or to total SMA and transgelin protein content in cells. These results open 
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the door to explore other proteins that might be involved in the altered 

mechanotransduction process in Marfan syndrome, such as myosins or integrins 

associated to fibronectin binding. We also propose the evaluation of the focal adhesion 

protein filamin-A, since an increase in its fragmentation has been reported in aortic 

aneurysms of MFS patients119. 

 

3.4. Effect of in vivo-like stretch onto human VSMC phenotypic modulation 

As explained at the Introduction section, VSMCs contractile phenotype is principally 

distinguished by the overexpression of contractile markers SMA and transgelin93, and 

cell phenotype modulation can be promoted by mechanical stimuli95,173. For these 

reasons, we expected a change in the levels of SMA and transgelin on cells seeded 

under stretch conditions in comparison to the static cultures. Nonetheless, both protein 

levels remained similar in control and Marfan VSMCs under stretch compared to the 

static counterparts. Therefore, unexpectedly, we observe that there is no phenotypic 

switch involving SMA and transgelin in stretch-cultured human VSMCs. However, we 

propose that cell phenotype should be analysed using more markers other than these 

two contractile markers, given that VSMCs phenotype is considered, by some authors, 

as a continuous spectrum between the contractile and synthetic states in which there are 

more than two phenotypes95,99,102. In fact, in in vitro settings, some studies found VSMCs 

to be in intermediate phenotypes, for instance, in Marfan aorta, contractile protein 

upregulation occurred in parallel to increased synthesis of collagen I 93.  

Taking this into account, in our experiments, SMA and transgelin might not be sufficiently 

representative of phenotypic changes happening in human primary VSMCs cultured 

under stretch stimulus. Therefore, other markers such as calponin-1, smoothelin, or 

myosin-11 should be considered for further analysis, as well as secreted ECM proteins 

like collagens and proteoglycans. 
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Part 4: Definition of a literature-based proteome 

of the human aorta 

 

To date there is not a well-established human aorta proteome174–176. The leading protein 

databases, namely UniProt and the Human Protein Atlas, do not provide direct protein 

information on the aortic tissue132. In addition, the biggest mass spectrometry proteomic 

analyses on human healthy and aneurysmal aortic tissue state 630 and 522 proteins, 

respectively75,136. However, mass spectrometry is not an absolute technique138,175,177, 

thus there exist other proteins in the tissue that were not identified by those studies. In 

this context, we have gathered all the published scientific information regarding protein 

presence strictly only in the human aortic tissue132. As a result, we state that there are at 

least 919 different proteins in the human healthy Aorta Proteome and 724 proteins in the 

human Aortic Aneurysm Proteome. Out of these total proteins, there exists solid 

demonstration of presence of 659 and 198 proteins, respectively, in aortic tissue, 

validated by more than one article or technique. 

 

4.1. General information provided by our aortic Proteomes 

In reference to the sources of the protein data, it is important to highlight that the 

variability of human samples and the processing of the samples varied for each source 

article. As an advantage of establishing a proteome, gathering all the data of those 

articles minimises the peculiarities or false positives of individual studies177. Thus, the 

here developed proteomes stand as databases that provide averaged information about 

protein presence in the aorta. This means that the Aortic Aneurysm Proteome can be 

utilised to acquire information for all types of aneurysms. But, it should be kept in mind 

that the proteome might be more representative of the kind of samples that are the 

majority in the database, which, in the case of the Aortic Aneurysm Proteome are 

atherosclerotic ageing-associated, abdominal aortic aneurysmal samples of senior men. 

Furthermore, the Aorta Proteome is actually not representing a completely healthy 

population, as it is obviously infrequent to obtain this kind of aortic samples118. Instead, 

the Aorta Proteome mainly contains information about ascending aorta of middle-aged, 

aorta-healthy individuals that were subjected to a valve replacement surgery 

intervention. Nevertheless, for practical reasons, this data can be extrapolated as healthy 

population information, but should be interpreted with caution118.  

Besides, it is important to note that the aphorism “the absence of evidence is not 

evidence of absence” applies for the here presented study175. In other words, the proteins 

listed in the Proteomes could be not the only ones existing in the aortic tissue. Given the 
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limitations of mass spectrometry175,177, it is plausible to keep in mind that (few) other 

proteins in the aorta samples are not being detected, especially those at low 

concentrations in tissue. Proof of this is the relevant proportion of protein records in the 

Proteomes only validated by immune-based techniques (19% in healthy and 14% in 

aneurysmal tissues), such as interleukin-6, -8, MMP-9, -14, TIMP-2, TGF-β1, 2, and 3, 

in both Proteomes. In addition, it is possible that proteins not detected by mass 

spectrometry are also not identified by immune-based techniques due to unavailability 

of specific antibodies, inaccessibility of the antigen, or merely due to that no research 

group has had the interest to look for the protein in human aortic tissue. Furthermore, 

the absence of a protein in the Proteomes could be caused by a human error during the 

literature review process. On the one hand, the reader could have missed a useful 

article(s) during manual revision of the abstracts. On the other hand, the authors of the 

articles may have written other protein name not officially stated at the UniProt database 

or did not specify the “human/patient/etc.” or “aort*” keywords in their abstract, hence the 

WOS search engine or the bioinformatics algorithm were not able to filter this article as 

a positive match. Last but not the least, it also could be that certain proteins are not 

present in the human aorta. However, this affirmation should be backed by experimental 

verification. In fact, a very reduced number of proteins, like MMP-2 and -13, were 

reported in human aorta by some articles136,178,179, whereas other articles stated that 

there was no presence of these proteins in the aorta180,181. 

 

4.2. Protein-specific analysis of the aortic Proteomes 

Examining changes in the proteome might provide insights into understanding the 

molecular mechanisms of diseases177. Regarding the variation in the aneurysm 

Proteome in comparison to the healthy one, we found that 146 proteins had significantly 

altered levels and 188 proteins were only reported for the diseased tissue. These 

proteins were diverse, but our detailed analysis demonstrated that many of them were 

related to tissue remodelling (MMPs and TIMPs), inflammation and fibrosis (TGF-β1, 

interleukins, collagens), VSMC phenotype (SMA, transgelin, vinculin), and aortic ECM 

structure (proteoglycans, adhesive glycoproteins, and lamellae components). Indeed, 

these mentioned functions are those already known to be involved in the aneurysm 

pathogenesis. In particular, transgelin and vinculin were reported to be altered in MF 

aneurysmal aortae, in contrast to the results obtained in part 3 of this thesis. 

Nonetheless, in some cases, the same protein was reported to show different alteration 

patterns depending on the various source articles, and their experimental conditions. For 

instance, transgelin in aneurysmal tissue displayed the same136, higher137, or even lower 

protein levels119,140,182 in comparison to control samples. Thus, by scrutinising the 

proteome, one can get the full picture of the alterations occurring within the tissue, 

identifying the sites where there is controversy or there is a need for additional analysis. 
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4.3. Potentiality of proteome establishment 

Importantly, the proteome is a summary of the current knowledge on protein presence in 

the aorta. Above we have indicated some of the benefits for the scientific community of 

establishing a proteome: it is useful as an information baseline reference that provides 

the big picture of the whole protein content in the tissue, whereas also links to sources 

with detailed information about each protein. These advantages are relevant since a 

proteome can serve as a starting point for further deepening or large array exploratory 

studies175,183. Additionally, the checking of a proteome before launching a research 

project could avoid duplicating protein validations that are already reported, which is a 

crucial issue given the low availability of human aortic tissue for scientific purposes. In 

the field of vascular tissue, the consultation of our Proteome databases might reduce the 

number of redundant experiments and help focus the assays towards specific proteins 

proven to be of interest138. Moreover, our Proteomes will support large-scale molecular 

phenotyping of aneurysmal patients in the era of precision medicine, as proteomic 

reports based on mass spectrometry already do175,176. 

Furthermore, the simple methodology here presented based on literature reviewing can 

be applied to other tissues, conditions, or animal species, only by adjusting the specific 

keywords during Web of Science search and bioinformatics processing. In fact, we have 

already published the human Skin Proteome132, and we are currently performing the 

human Cartilage Proteome. Notably, this methodology could be accelerated by machine 

learning implementation so that new proteomes could be built more efficiently, and the 

already existing proteomes could constantly be updated with the newest published 

articles. 
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Final remarks 

 

We have successfully accomplished four novel technologies to analyse different aspects 

of the histopathological structure and protein content of healthy and aneurysmal-prone 

MFS aortae: 

 Multiphoton microscopy and image processing by ImageJ protocol 

 Synchrotron-based microCT and image processing by MatLab method 

 Bioreactor for aortic cell culture subjected to mechanical stretch 

 Human Aorta and Aortic Aneurysm Proteomes 

The application of these technologies provides new information in the field of vascular 

biology. Particularly, MFS disease progression affects the IEL, the innermost ECM 

structure in the aortic wall, which can be accessed using clinical endoscopy. The IEL 

gets gradually disrupted like an old cloth subjected to stretching forces: first, at the 

microscale, the naturally-occurring fenestrae enlarge158, and then, these disruptions 

continue growing becoming big lamellae breaks of hundreds of micrometres. All these 

alterations are involved in the aberrant cell-ECM communication happening in MFS. We 

can affirm that in this context, SMA and transgelin total protein levels in VSMCs are not 

responsible for the aberrant MFS mechanotransduction, and neither is the cytosolic 

distribution of SMA and vinculin (at least, in our laboratory conditions). However, the 

proteome analysis has shown that aneurysmal aortic tissue of MFS patients actually 

presents altered levels of SMA, transgelin, and vinculin proteins in comparison to control 

tissue. Notably, tissue manipulation is not the same as for in vitro cultured VSMCs, 

hence, these results are not fully comparable. Nonetheless, this discrepancy stresses 

out the importance of establishing standard protocols and comparative studies to 

precisely know the difference between the experimental models and what occurs in a 

tissue/organ context in reality.  
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1. The analysis of the microstructure of elastic lamellae of arteries is feasible using the 

here developed multiphoton microscopy and image processing protocol. Its 

application established the density of aortic fenestrae as a potential microscale 

damage marker in Marfan syndrome histopathology, being mainly accumulated in 

the proximal and convex regions of the ascending aorta. 

2. The evaluation of tissue remodelling in the vascular wall is achievable by employing 

the here implemented microCT and image processing methodology. Its application 

revealed that the aortic wall of middle-aged Marfan mice displays a histopathological 

remodelling resembling that of an accelerated middle-ageing process. 

3. The examination of the behaviour and content of vascular smooth muscle cells 

cultured under an in vivo-like mechanical environment is possible by utilising the 

here designed stretch bioreactor. Its application proved that aortic vascular smooth 

muscle cells from Marfan patients show an altered cell-ECM communication, which 

is not related to a phenotypic switch defined by SMA or transgelin. 

4. The assessment of the current scientific information about protein presence in the 

human aorta is plausible by performing a systematic literature review. Its application 

yielded the Aorta Proteome and the Aortic Aneurysm Proteome databases, which 

stand as the largest aortic proteomes to date, and will serve as a baseline reference 

for the vascular biology scientific community. 
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PUBLICATIONS AND CONFERENCE COMMUNICATIONS 

 

The following section includes the publications and conference communications derived 

from the research conducted by the PhD candidate during her thesis. 

 

 Lopez-Guimet J, Andilla J, Loza-Alvarez P, Egea G. High-Resolution Morphological 

Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine 

Model of Marfan Syndrome. Sci Rep. 2017;7(1):1505. Available at: 

http://dx.doi.org/10.1038/s41598-017-01620-8 . IF = 4.259, Q1. 

This article is available at Appendix 3 of this thesis. 

 

 Lopez-Guimet J et al. MicroCT imaging of remodelling and micro-scale damage in 

Marfan syndrome murine aorta. Under review. 

 

 

 

 

 Lopez-Guimet J et al. Novel morphological approaches to analyse elastic lamellae 

damagein murine Marfan syndrome aortae. Oral presentation and poster at the 

Elastin, Elastic Fibers & Microfibrils – Gordon Research Seminar and Conference. 

29th July – 4th August 2017, University of New England, USA. 

 Lopez-Guimet J et al. High-resolution morphological study by two‐photon excitation 

microscopy of the aortic wall in a murine model of Marfan syndrome. Oral presentation 

at the 9th European Elastin Meeting, 17-19th June 2016, Stuttgart, Germany. 

 Lopez-Guimet J et al. Synchrotron X-ray micro-tomography of aged and diseased 

cardiovascular tissues. Oral presentation and poster at the Tomography for Scientific 

Advancement symposium, 3-4th September 2015, University of Manchester, UK. 
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Appendix 1.  

Aorta Proteome list 



 

 
 

 



AORTA PROTEOME

Protein Name UniProt# Gene Name DOI or PMID #DOI
Experimental 

Evidence
Aorta location Wall Location Age Sex

Type of                  

control sample Associated disease

14‐3‐3 protein beta/alpha P31946 YWHAB 10.1074/mcp.M112.021873, 10.1002 2 Mass Spec ascending valve replacement

increased in ascending 

aneurysm

14‐3‐3 protein epsilon P62258 YWHAE 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

14‐3‐3 protein eta Q04917 YWHAH 10.1002/prca.201200064 Mass Spec

14‐3‐3 protein gamma P61981 YWHAG 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

14‐3‐3 protein theta P27348 YWHAQ 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

augmented in ascending 

aneurysm

14‐3‐3 protein zeta/delta P63104 YWHAZ

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

asc dilation. 

10.1021/pr070380o says 

there's no 14‐3‐3zeta in 

control aortae

1‐phosphatidylinositol 4,5‐bisphosphate  P51178 PLCD1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

3‐hydroxyacyl‐CoA dehydrogenase type‐ Q99714 HSD17B10 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

3‐hydroxyanthranilate 3,4‐dioxygenase P46952 HAAO 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

3‐hydroxybutyrate dehydrogenase type 2 Q9BUT1 BDH2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S14 P62263 RPS14 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S15a P62244 RPS15A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S16 P62249 RPS16 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S19 P39019 RPS19 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S2 P15880 RPS2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S20 P60866 RPS20 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S21 P63220 RPS21 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S25 P62851 RPS25 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S27 P42677 RPS27 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S3 P23396 RPS3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S3a P61247 RPS3A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S4, X isoform P62701 RPS4X 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S5 P46782 RPS5 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S8 P62241 RPS8 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein S9 P46781 RPS9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

40S ribosomal protein SA P08865 RPSA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

5'‐nucleotidase P21589 NT5E 10.1093/cvr/cvv027 Immuno aortic valve 58 B

augmented in calcific 

disease

60 kDa heat shock protein, mitochondria P10809 HSPD1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

60S acidic ribosomal protein P0 P05388 RPLP0 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L11 P62913 RPL11 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L12 P30050 RPL12 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L13 P26373 RPL13 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L17 P18621 RPL17 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L18 Q07020 RPL18 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L18a Q02543 RPL18A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L23 P62829 RPL23 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L24 P83731 RPL24 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L26‐like 1 Q9UNX3 RPL26L1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L27a P46776 RPL27A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L30 P62888 RPL30 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L36 Q9Y3U8 RPL36 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L4 P36578 RPL4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L6 Q02878 RPL6 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

60S ribosomal protein L9 P32969 RPL9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

6‐phosphogluconolactonase O95336 PGLS 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

72 kDa type IV collagenase P08253 MMP2

10.1053/hupa.2001.27107, 

10.1111/eci.12618, 

10.1016/j.amjhyper.2004.11.011, 

10.1016/j.atherosclerosis.2004.11.0

21, 

10.1161/HYPERTENSIONAHA.107.0

89409, 10.1074/mcp.M110.001693, 

10.1067/mva.2002.121124, 

10.1074/mcp.M111.008128, 

10.1042/CS20140696 11

Immuno;Mass 

Spec

ascending, 

abdominal intima;media

64.1, 

71.5, 61, 

60.9, 25, 

20, 68.9, 

37.5 B

autopsy CV 

healthy;CABG;valve 

replacement

less active in aneurysm, 

augmented in aneurysm, 

dissection, aging and 

atheromatous plaques, 

10.1016/j.jtcvs.2012.04.008 

says there's no mmp2 in 

control ascending. Not 

detected in abdominal 

aneurysm by mass spect

78 kDa glucose‐regulated protein P11021 HSPA5 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Acetyl‐CoA acetyltransferase, mitochond P24752 ACAT1 10.1074/mcp.M111.008128, 10.1074/mcp.M1Mass Spec ascending 37.5 B valve replacement

Actin, alpha cardiac muscle 1 P68032 ACTC1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Actin, alpha skeletal muscle P68133 ACTA1

10.1016/j.ejcts.2009.07.025, 

10.1067/mva.2002.121124 2 Immuno;Mass Spascending 68.9 B, M CABG

decreased in aneurysm, 

increased in aneurysm and 

in dissection

Actin, aortic smooth muscle P62736 ACTA2

10.14670/HH‐27.103, 

10.1111/j.1440‐1827.2011.02699.x, 

10.1161/CIRCRESAHA.110.235390,1

0.1161/HYPERTENSIONAHA.107.08

9409, 

10.1161/ATVBAHA.115.305529, 

10.1002/prca.201200064, 

10.1016/j.jtcvs.2009.07.075, 

10.1074/mcp.M110.001693, 

10.1002/path.2516 13

Immuno;Mass 

Spec

abdominal, 

ascending intima;media

47.3, 

39.7, 40 B

autopsy CV 

healthy;CABG;valve 

replacement

increased in aneurysm, 

increased in dissection 

adventitia, decreased in 

aneurysm and medial 

dissection

Actin, cytoplasmic 1 P60709 ACTB 10.1074/mcp.M111.008128, 10.1002 5

Immuno;Mass 

Spec

thoracic, 

ascending

37.5,59, 

68.9 B

CABG;valve 

replacement

Actin‐related protein 2 P61160 ACTR2 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Actin‐related protein 2/3 complex subun O15144 ARPC2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Actin‐related protein 2/3 complex subun P59998 ARPC4 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Actin‐related protein 2/3 complex subun Q9BPX5 ARPC5L 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Actin‐related protein 3 P61158 ACTR3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Adenosylhomocysteinase P23526 AHCY 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Adenylate kinase isoenzyme 1 P00568 AK1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Adenylyl cyclase‐associated protein 1 Q01518 CAP1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Adenylyl cyclase‐associated protein 2 P40123 CAP2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Adipocyte enhancer‐binding protein 1 Q8IUX7 AEBP1 10.1002/prca.201200064, 10.1074/m 3 Immuno;Mass Spascending 37.5 B valve replacement augmented in aneurysm

Adiponectin Q15848 ADIPOQ 20145358, 10.1002/prca.201200064 2 Immuno;Mass Spabdominal periaortic adipose tissue autopsy CV healthy decreased in atherosclerosis

ADP/ATP translocase 2 P05141 SLC25A5 10.1002/prca.201200064 Mass Spec

ADP/ATP translocase 3 P12236 SLC25A6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

ADP‐ribosylation factor 1 P84077 ARF1 10.1002/prca.201200064 Mass Spec

ADP‐ribosylation factor 6 P62330 ARF6 10.1159/000339430 Immuno descending thoraci intima

Aggrecan core protein P16112 ACAN

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Agrin O00468 AGRN 10.1074/mcp.M111.008128, 10.1074 2 Immuno;Mass Spascending intima 37.5 B valve replacement

Alcohol dehydrogenase [NADP(+)] P14550 AKR1A1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Alcohol dehydrogenase 1B P00325 ADH1B 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Alcohol dehydrogenase class‐3 P11766 ADH5 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Aldehyde dehydrogenase X, mitochondri P30837 ALDH1B1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Aldehyde dehydrogenase, mitochondrial P05091 ALDH2 10.1074/mcp.M111.008128, 10.1016 3 Mass Spec abdominal, scending 37.5,53.91B valve replacement

Aldo‐keto reductase family 1 member C2 P52895 AKR1C2 10.1002/prca.201200064 Mass Spec

Aldose 1‐epimerase Q96C23 GALM 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Alpha‐1‐acid glycoprotein 1 P02763 ORM1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement



Alpha‐1‐antichymotrypsin P01011 SERPINA3 10.1074/mcp.M111.008128, 10.3892 4 Immuno;Mass Spascending, abdomi adventitia;intima 37.5 B valve replacement

decreased in abdominal 

aneurysm

Alpha‐1‐antitrypsin P01009 SERPINA1 10.1074/mcp.M111.008128, 10.1016 4 Immuno;Mass Spascending 37.5,58 B,M

other;valve 

replacement

decreased in aneurysm and 

in dissection

Alpha‐1B‐glycoprotein P04217 A1BG 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Alpha‐2A adrenergic receptor P08913 ADRA2A 10.1152/ajpheart.00268.2003 Immuno ascending adventitia 1‐44 B

Alpha‐2‐antiplasmin P08697 SERPINF2 10.1002/prca.201200064 Mass Spec

Alpha‐2‐HS‐glycoprotein P02765 AHSG 10.1093/ndt/gfp137 Immuno intima;media 68 B augmented in CDK patients

Alpha‐2‐macroglobulin P01023 A2M 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Alpha‐actinin‐1 P12814 ACTN1

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1074/mcp.M110.001693, 

10.1002/prca.201200064 4 Mass Spec ascending 37.5 B valve replacement

increased in dilation, 

increased or decreased in 

BAV dilation

Alpha‐actinin‐4 O43707 ACTN4 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

dilation

Alpha‐aminoadipic semialdehyde dehydr P49419 ALDH7A1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Alpha‐crystallin B chain P02511 CRYAB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Alpha‐enolase P06733 ENO1

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1016/j.jvs.2011.10.033, 

10.1016/j.ejcts.2009.07.025, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693 6 Mass Spec abdominal, ascending 37.5,53.91B, M valve replacement

not affected in abdominal 

aneurysm, augmented in 

aneurysm and diminished in 

dissection

Alpha‐parvin Q9NVD7 PARVA 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending valve replacement

Angiogenin P03950 ANG 10.1016/j.jvs.2006.11.020 Immuno abdominal adventitia;media 55 B

Angiopoietin‐1 Q15389 ANGPT1 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

augmented in aneurysm, 

not sure if control aorta has 

it because suppl info is not 

available online

Angiopoietin‐2 O15123 ANGPT2 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

augmented in degenerative 

aneurysm, not sure if 

control aorta has it because 

suppl info is not available 

online

Angiotensin‐converting enzyme P12821 ACE 10.1161/HYPERTENSIONAHA.107.089409 Immuno descending intima 20 M autopsy CV healthy auigmented with aging

Angiotensin‐converting enzyme 2 Q9BYF1 ACE2 10.1161/ATVBAHA.114.304613, 10.1161/HYPEImmuno abdominal, ascend intima;media 53.6, 50, 4M,B

Upregulated in BAV, less in 

abdominal aneurysm

Angiotensinogen P01019 AGT

10.1016/j.atherosclerosis.2009.01.0

03, 

10.1097/FJC.0000000000000276, 

10.1093/abbs/gmv047 3 Immuno ascending 50, 60 B

autopsy CV 

healthy;CABG

augmented in ascending 

thoracic and idiopathic 

ascending aortic aneurysm, 

in abdominal aneurysm and 

atherosclerosis

Ankyrin‐3 Q12955 ANK3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Annexin A1 P04083 ANXA1 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

Annexin A11 P50995 ANXA11 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Annexin A2 P07355 ANXA2 10.1074/mcp.M111.008128, 10.1016 4 Mass Spec abdominal, ascending 37.5,53.91B valve replacement

decreased in abdominal 

aneurysm

Annexin A3 P12429 ANXA3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Annexin A4 P09525 ANXA4 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

Annexin A5 P08758 ANXA5 10.1074/mcp.M112.021873, 10.1074 5 Mass Spec abdominal, ascending 37.5,53.91B valve replacement

decreased in abdominal 

aneurysm

Annexin A6 P08133 ANXA6 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Annexin A7 P20073 ANXA7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Antileukoproteinase P03973 SLPI 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Antithrombin‐III P01008 SERPINC1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

AP‐2 complex subunit alpha‐1 O95782 AP2A1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Apelin Q9ULZ1 APLN 10.1016/j.carpath.2014.02.003 Immuno abdominal intima;media

negatively correlated with 

aortic atherosclerosis

Apelin receptor P35414 APLNR 10.1016/j.carpath.2014.02.003 Immuno abdominal intima;media

positively correlated with 

aortic atherosclerosis

Apolipoprotein A‐I P02647 APOA1

10.1161/CIRCULATIONAHA.108.843

516, 

10.1161/CIRCULATIONAHA.113.002

624, 10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 5 Immuno;Mass Spascending 60, 23, 37. B

other;valve 

replacement

augmented in 

atherosclerosis and 

abdominal aneurysm, 

decreased in Marfan 

aneurysm

Apolipoprotein A‐IV P06727 APOA4 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Apolipoprotein B‐100 P04114 APOB

10.1016/j.atherosclerosis.2009.01.0

38, 10.1161/hs1101.098520 , 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 5 Immuno;Mass Spabdominal, ascend intima 1, 7.9, 0, 4 B valve replacement

augmented with aging and 

abdominal aneurysm

Apolipoprotein D P05090 APOD

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 2 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Apolipoprotein E P02649 APOE

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 3 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Aquaporin‐1 P29972 AQP1 10.1002/prca.201200064 Mass Spec

Aspartate aminotransferase, cytoplasmic P17174 GOT1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Aspartate aminotransferase, mitochondr P00505 GOT2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Asporin Q9BXN1 ASPN 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Astrocytic phosphoprotein PEA‐15 Q15121 PEA15 10.1002/prca.201200064 Mass Spec

ATP synthase subunit alpha, mitochondr P25705 ATP5A1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

ATP synthase subunit beta, mitochondria P06576 ATP5B 10.1074/mcp.M111.008128, 10.1016 4 Mass Spec abdominal, ascending 37.5,53.91B valve replacement

ATP synthase subunit gamma, mitochond P36542 ATP5C1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

ATP synthase subunit O, mitochondrial P48047 ATP5O 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

ATP‐dependent RNA helicase A Q08211 DHX9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

ATP‐dependent RNA helicase DDX1 Q92499 DDX1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

ATP‐dependent RNA helicase DDX3X O00571 DDX3X 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Azurocidin P20160 AZU1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

BAG family molecular chaperone regulat O95817 BAG3 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

 Band 3 anion transport proteinBand 3 an P02730 SLC4A1 10.1002/prca.201200064 Mass Spec

Basal cell adhesion molecule P50895 BCAM 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Basement membrane‐specific heparan su P98160 HSPG2 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Basigin P35613 BSG

10.1016/j.atherosclerosis.2004.11.0

21 Immuno intima 25

augmented in atheromatous 

plaque, 

10.2353/ajpath.2009.08084

5 and 10.1042/CS20080235 

say that control aortas do 

not have basigin

Beta‐2‐glycoprotein 1 P02749 APOH 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Biglycan P21810 BGN 10.1002/prca.201200064,10.1074/m 4 Immuno;Mass Spascending media 37.5 B valve replacement decreased in aneurysm

Biliverdin reductase A P53004 BLVRA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Bone morphogenetic protein 2 P12643 BMP2 10.1093/ndt/gfp137 Immuno intima;media 68 B augmented in calcified aorta



Bone morphogenetic protein 4 P12644 BMP4 10.1074/mcp.M111.008128, 10.1161 3 Immuno;Mass Spabdominal, ascend media 37.5 B valve replacement

prominent expression in 

foam cells in the lipid core 

of atheroma

Brain acid soluble protein 1 P80723 BASP1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Breast cancer anti‐estrogen resistance pr P56945 BCAR1 10.1038/srep17189 Immuno ascending intima;media 62 B

augmented in aortic 

stiffening

Brefeldin A‐inhibited guanine nucleotide Q9Y6D5 ARFGEF2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Bromodomain adjacent to zinc finger dom Q9UIF8 BAZ2B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

BTB/POZ domain‐containing protein KCT Q96CX2 KCTD12 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cadherin‐1 P12830 CDH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cadherin‐13 P55290 CDH13 10.1016/j.carpath.2014.02.003, 10.1002/prca Immuno;Mass Spabdominal intima;media less in atherosclerosis

Caldesmon Q05682 CALD1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Calmodulin‐1 P0DP23 CALM1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Calnexin P27824 CANX 10.1002/prca.201200064 Mass Spec

Calpain small subunit 1 P04632 CAPNS1 10.1002/prca.201200064 Mass Spec

Calpain‐1 catalytic subunit P07384 CAPN1

10.14670/HH‐11‐691, 

10.1161/HYPERTENSIONAHA.112.1

96840 2 Immuno ascending, descendintima;media 61.6, 20 B, M

increased expression with 

aging and ascending 

aneurysm

Calpain‐2 catalytic subunit P17655 CAPN2 10.1161/CIRCULATIONAHA.108.8435 4 Immuno;Mass Spascending intima;media 60,61.6, 26B, M valve replacement increased in atherosclerosis

Calpastatin P20810 CAST 10.14670/HH‐11‐691 Immuno ascending media 61.6 B augmented in aneurysm

Calponin‐1 P51911 CNN1 10.1074/mcp.M111.008128, 10.1161 4 Immuno;Mass Spascending intima;media 37.5 B valve replacement

increased in Marfan 

aneurysm

Calponin‐2 Q99439 CNN2 10.1002/prca.201200064 Mass Spec

Calponin‐3 Q15417 CNN3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Calreticulin P27797 CALR 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

cAMP‐dependent protein kinase type I‐a P10644 PRKAR1A 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Carbonic anhydrase 1 P00915 CA1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Carbonic anhydrase 2 P00918 CA2 10.1002/prca.201200064 Mass Spec

Carbonyl reductase [NADPH] 1 P16152 CBR1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Carboxypeptidase Q Q9Y646 CPQ 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cartilage oligomeric matrix protein P49747 COMP

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 2 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Caspase‐1 P29466 CASP1 10.1016/j.hlc.2014.04.256 Immuno ascending media 61.5 B CABG

Caspase‐3 P42574 CASP3 10.1016/j.jtcvs.2009.07.075 Immuno ascending media CABG higher in aneurysm

Cathepsin B P07858 CTSB 10.1111/j.1365‐2613.2012.00819.x 1 Immuno intima;media 52.9 B

augmented in abdominal 

aneurysm media

Cathepsin D P07339 CTSD

10.1016/j.atherosclerosis.2009.01.0

03, 10.1111/j.1365‐

2613.2012.00819.x, 

10.1074/mcp.M110.001693, 

10.1002/prca.201200064, 

10.1074/mcp.M111.008128 5 Immuno;Mass Spascending intima;media 52.9, 37.5 B

autopsy CV 

healthy;valve 

replacement

augmented in abdominal 

aneurysm

Cathepsin G P08311 CTSG 10.1016/j.jvs.2014.06.004, 10.1002/p 5 Immuno;Mass Sp

abdominal, 

ascending 37.5,50 B

autopsy CV 

healthy;valve 

replacement

augmented in abdominal 

aneurysm and 

atherosclerosis

Cathepsin K P43235 CTSK

10.1111/j.1365‐2613.2012.00819.x, 

10.2353/ajpath.2007.060522 2 Immuno abdominal intima;media 52.9, 48 B

augmented in aneurysm 

(pro‐ and active forms)

Cathepsin L1 P07711 CTSL 10.1111/j.1365‐2613.2012.00819.x,  3 Immuno

abdominal, 

ascending 52.9, 48 B

augmented in abdominal 

aneurysm (pro‐ and active 

forms)

Cathepsin S P25774 CTSS

10.1111/j.1365‐2613.2012.00819.x, 

10.2353/ajpath.2007.060522 2 Immuno abdominal intima 52.9, 48 B

augmented in aneurysm 

(pro‐ and active forms) and 

appearing in its media. 

10.1074/mcp.M111.008128 

says there's no cathepsin S 

in control aorta

Cathepsin Z Q9UBR2 CTSZ

10.1074/mcp.M110.001693, 

10.1002/prca.201200064, 

10.1074/mcp.M111.008128 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm or not detected

Caveolin‐1 Q03135 CAV1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

C‐C motif chemokine 15 Q16663 CCL15 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

C‐C motif chemokine 2 P13500 CCL2 10.1161/CIRCULATIONAHA.111.0834 4 Immuno abdominal intima;media 68.9, 20, 5M, B autopsy CV healthy

augmented in aneurysm and 

aging

C‐C motif chemokine 22 O00626 CCL22 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

C‐C motif chemokine 3 P10147 CCL3 10.1161/CIRCULATIONAHA.111.0834 1 Immuno abdominal

augmented in abdominal 

aneurysm

C‐C motif chemokine 5 P13501 CCL5 10.1161/CIRCULATIONAHA.111.0834 4 Immuno abdominal, ascend adventitia;intima 68.9, 55 B

augmented in abdominal 

aneurysm

C‐C motif chemokine 7 P80098 CCL7 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

CCR4‐NOT transcription complex subunit A5YKK6 CNOT1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

CD59 glycoprotein P13987 CD59 10.1002/prca.201200064 Mass Spec

CD9 antigen P21926 CD9

10807738, 

10.1002/prca.201200064 2 Immuno;Mass Sp

thoracic 

descending 17.5 autopsy CV healthy

CD9 is very weak or virtually 

negative in non‐

atherosclerotic aortae, and 

it is strong in atherosclerotic

Cell division control protein 42 homolog P60953 CDC42 10.1002/prca.201200064 Mass Spec

Cell surface glycoprotein MUC18 P43121 MCAM 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Centlein Q9NXG0 CNTLN 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 valve replacement

Centromere‐associated protein E Q02224 CENPE 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 valve replacement

Ceruloplasmin P00450 CP 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

cGMP‐dependent protein kinase 1 Q13976 PRKG1 10.1002/prca.201200064, 10.1074/mcp.M110Mass Spec ascending valve replacement

Chloride intracellular channel protein 1 O00299 CLIC1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 valve replacement

Chloride intracellular channel protein 4 Q9Y696 CLIC4 10.1074/mcp.M112.021873, 10.1002 2 Mass Spec ascending valve replacement

Chymase P23946 CMA1

10.1074/mcp.M111.008128, 

10.1161/CIRCULATIONAHA.109.849

679, 

10.1016/j.atherosclerosis.2009.01.0

03, 10.1074/mcp.M110.001693 4 Immuno;Mass Spabdominal, ascending 37.5,41.9,  B

autopsy CV 

healthy;valve 

replacement

augmented in abdominal 

aneurysm and 

atherosclerosis

Clathrin heavy chain 1 Q00610 CLTC 10.1074/mcp.M111.008128, 10.1002 2 Mass Spec 37.5 valve replacement

Clusterin P10909 CLU 10.1111/j.1365‐2362.2009.02216.x,  4 Immuno;Mass Spvalve, ascending 60, 37.5 M, B valve replacement

increased in aortic valve 

pathology and abdominal 

aneurysm

Coagulation factor IX P00740 F9 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 valve replacement

Coagulation factor XIII A chain P00488 F13A1 10.1002/prca.201200064 Mass Spec

Cofilin‐1 P23528 CFL1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 valve replacement

Cofilin‐2 Q9Y281 CFL2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 valve replacement

Coiled‐coil domain‐containing protein 18 Q8N715 CCDC185 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cold‐inducible RNA‐binding protein Q14011 CIRBP 10.1016/j.surg.2016.01.007 Immuno >50

augmented in abdominal 

aneurysm

Collagen alpha‐1(I) chain P02452 COL1A1 10.1093/icvts/ivs421, 10.1016/j.atho 6 Immuno;Mass Spascending 47.7, 37.5 B

other;valve 

replacement

decreased in aneurysm, 

augmented in ascending 

disection



Collagen alpha‐1(III) chain P02461 COL3A1

10.1016/j.ejvs.2014.10.018, 

10.1093/icvts/ivs421, 

10.1067/mva.2000.109743, 

10.1016/j.athoracsur.2009.04.030, 

10.1161/CIRCULATIONAHA.105.000

240, 10.1074/mcp.M110.001693 6 Immuno;Mass Spascending media 58,47.7 B CABG;other

decreased in aneurysm and 

in myocardial infarction, 

augmented in ascending 

dissection and aneurysm

Collagen alpha‐1(IV) chain P02462 COL4A1 10.1074/mcp.M111.008128, 163775 4 Immuno;Mass Spascending 37.5,33 B valve replacement augmented in aneurysm

Collagen alpha‐1(V) chain P20908 COL5A1 10.1074/mcp.M111.008128, 10.1016 3 Immuno;Mass Spascending 37.5 B

other;valve 

replacement augmented in aneurysm

Collagen alpha‐1(VI) chain P12109 COL6A1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐1(VIII) chain P27658 COL8A1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐1(XI) chain P12107 COL11A1 10.1016/j.athoracsur.2009.04.030 Immuno ascending other increased in aneurysm

Collagen alpha‐1(XII) chain Q99715 COL12A1 10.1002/prca.201200064, 10.1074/m 3 Immuno;Mass Spascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Collagen alpha‐1(XIV) chain Q05707 COL14A1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Collagen alpha‐1(XV) chain P39059 COL15A1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐1(XVIII) chain P39060 COL18A1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Collagen alpha‐1(XXII) chain Q8NFW1 COL22A1 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐1(XXVIII) chain Q2UY09 COL28A1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Collagen alpha‐2(I) chain P08123 COL1A2 10.2353/ajpath.2007.060522, 10.101 6 Immuno;Mass Sp

abdominal, 

ascending 47.7, 37.5 B

other;valve 

replacement

augmented in ascending 

dissection and abdominal 

aneurysm and dissection

Collagen alpha‐2(IV) chain P08572 COL4A2 10.1074/mcp.M111.008128, 10.1002 4 Immuno;Mass Sp

thoracic, 

ascending 37.5,59 B valve replacement

decreased in some 

aortopathies

Collagen alpha‐2(V) chain P05997 COL5A2

10.1074/mcp.M111.008128, 

10.1016/j.athoracsur.2009.04.030, 

10.1074/mcp.M110.001693 3 Immuno;Mass Spascending 37.5 B

other;valve 

replacement

augmented in aneurysm, 

10.1074/mcp.M111.008128 

says there's no collagen a‐

2(V) in control ascending 

aorta

Collagen alpha‐2(VI) chain P12110 COL6A2 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐2(VIII) chain P25067 COL8A2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Collagen alpha‐3(VI) chain P12111 COL6A3 10.1002/prca.201200064, 10.1074/m 4 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Collagen alpha‐6(IV) chain Q14031 COL4A6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Collagenase 3 P45452 MMP13

10.2353/ajpath.2007.060522, 

10.1007/s10016‐004‐0050‐5 2 Immuno abdominal, whole media 48 unknown

10.2353/ajpath.2009.08084

5 says that control aortas do 

not have mmp13

Complement C1q subcomponent subunit P02745 C1QA 10.1002/prca.201200064 Mass Spec

Complement C1q subcomponent subunit P02746 C1QB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Complement C1q subcomponent subunit P02747 C1QC 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Complement C1q tumor necrosis factor‐r Q9BXJ0 C1QTNF5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Complement C1r subcomponent P00736 C1R 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Complement C1s subcomponent P09871 C1S 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Complement C3 P01024 C3 10.1074/mcp.M111.008128, 10.1111 4 Immuno;Mass Spvalve, ascending 37.5,60 B,M valve replacement

increased in aortic valve 

pathology

Complement C4‐A P0C0L4 C4A 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Complement C4‐B P0C0L5 C4B 10.1002/prca.201200064 Mass Spec

Complement C5 P01031 C5 10.1111/j.1365‐2362.2009.02216.x,  2 Immuno;Mass Spvalve 60 M

increased in aortic valve 

pathology

Complement component C6 P13671 C6 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Complement component C8 beta chain P07358 C8B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Complement component C8 gamma cha P07360 C8G 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Complement component C9 P02748 C9 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Complement decay‐accelerating factor P08174 CD55 10.1002/prca.201200064, 10.1074/m 2 Mass Spec ascending valve replacement

Complement factor B P00751 CFB 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Complement factor H P08603 CFH 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Complement factor H‐related protein 1 Q03591 CFHR1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Connective tissue growth factor P29279 CTGF 10.1177/1708538112472282, 10.101 4 Immuno ascending adventitia;media 62.1, 59, 4 B valve replacement

increased in thoracic 

aneurysm and dissection

Coronin‐1A P31146 CORO1A 10.1002/prca.201200064 Mass Spec

Coronin‐1C Q9ULV4 CORO1C 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

C‐reactive protein P02741 CRP 10.1159/000362997, 10.1016/j.ather 3 Immuno abdominal intima;media 68.9, 10, 6 B augmented in aneurysm

Creatine kinase B‐type P12277 CKB 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

C‐type lectin domain family 11 member A Q9Y240 CLEC11A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cyclic nucleotide‐gated cation channel b Q9NQW8 CNGB3 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Cyclin‐dependent kinase 2 P24941 CDK2 10.1067/mlc.2003.23 Immuno ascending 64

Cyclin‐dependent kinase 4 P11802 CDK4 10.1067/mlc.2003.23 Immuno ascending 64

Cyclin‐dependent kinase inhibitor 1 P38936 CDKN1A 10.1067/mlc.2003.23 Immuno ascending 64

Cyclin‐dependent kinase inhibitor 1B P46527 CDKN1B 10.1067/mlc.2003.23 Immuno ascending 64

Cystatin‐B P04080 CSTB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Cystatin‐C P01034 CST3

10.1111/j.1365‐2613.2012.00819.x, 

10.2353/ajpath.2007.060522 2 Immuno abdominal intima 52.9, 48 B

less or more in abdominal 

aneurysm

Cysteine and glycine‐rich protein 1 P21291 CSRP1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Cysteine and glycine‐rich protein 2 Q16527 CSRP2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Cysteine‐rich protein 2 P52943 CRIP2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Cytochrome b‐c1 complex subunit 2, mit P22695 UQCRC2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cytochrome c P99999 CYCS 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Cytochrome P450 1A1 P04798 CYP1A1 10.1055/s‐0034‐1367735 Immuno ascending adventitia;intima;m58.13 B CABG augmented in aneurysm

Cytoplasmic dynein 1 heavy chain 1 Q14204 DYNC1H1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Cytoplasmic dynein 1 intermediate chain Q13409 DYNC1I2 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Cytosol aminopeptidase P28838 LAP3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

D‐3‐phosphoglycerate dehydrogenase O43175 PHGDH 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Decorin P07585 DCN

10.1074/mcp.M110.001693, 

10.1002/path.2516, 

10.1074/mcp.M111.008128 3 Immuno;Mass Spascending adventitia;intima 37.5 B valve replacement

augmented in abdominal 

aneurysm, in media in 

aneurysm

Dedicator of cytokinesis protein 9 Q9BZ29 DOCK9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Delta(3,5)‐Delta(2,4)‐dienoyl‐CoA isomer Q13011 ECH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Dermatan‐sulfate epimerase‐like protein Q8IZU8 DSEL 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Dermatopontin Q07507 DPT 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Desmin P17661 DES 10.1074/mcp.M111.008128, 10.1159 3 Immuno;Mass Spinfrarenal, ascendinintima;media 37.5,47 B valve replacement

decreased in abdominal 

aneurysm

Desmoplakin P15924 DSP 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Destrin P60981 DSTN 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Dihydropteridine reductase P09417 QDPR 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Dihydropyrimidinase‐related protein 2 Q16555 DPYSL2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Dihydropyrimidinase‐related protein 3 Q14195 DPYSL3 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

DNA repair protein REV1 Q9UBZ9 REV1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

DNA‐(apurinic or apyrimidinic site) lyase P27695 APEX1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Drebrin Q16643 DBN1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Dual specificity mitogen‐activated protei Q02750 MAP2K1 10.1016/j.jamcollsurg.2012.06.414 Immuno

more phosphorilated in 

abdominal aneurysm

Dual specificity mitogen‐activated protei P36507 MAP2K2 10.1016/j.jamcollsurg.2012.06.414 Immuno

more phosphorilated in 

abdominal aneurysm

Dual specificity protein phosphatase 3 P51452 DUSP3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Dystrophin P11532 DMD 10.1017/S1047951105000144, 10.1074/mcp.MImmuno;Mass Sparch, ascending intima;media 11 M valve replacement

disarranged in aortic 

coarctation

E3 ubiquitin/ISG15 ligase TRIM25 Q14258 TRIM25 10.1016/j.mce.2003.12.008 Immuno intima

Echinoderm microtubule‐associated prot O00423 EML1 10.1074/mcp.M111.008128, 10.1074/mcp.M1Mass Spec ascending 37.5 B valve replacement



Echinoderm microtubule‐associated prot O95834 EML2 10.1074/mcp.M111.008128, 10.1074/mcp.M1Mass Spec ascending 37.5 B valve replacement

EF‐hand domain‐containing protein D1 Q9BUP0 EFHD1 10.1002/prca.201200064 Mass Spec

EGF‐containing fibulin‐like extracellular m Q12805 EFEMP1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

EGF‐containing fibulin‐like extracellular m O95967 EFEMP2 10.1177/1708538112473976 Immuno ascending 58 B less in aortic dissection

EH domain‐containing protein 2 Q9NZN4 EHD2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

EH domain‐containing protein 3 Q9NZN3 EHD3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Elastin P15502 ELN

10.1016/j.jvs.2012.09.062, 

10.1093/icvts/ivs421, 

10.1002/ajmg.a.37638, 

10.1002/prca.201200064, 

10.1016/j.jvs.2010.11.035 5 Immuno;Mass Sp

abdominal, 

ascending media 46.1, 59.8 M other

decreased in dissection and 

ruptured abdominal 

aneurysm

Elongation factor 1‐alpha 1 P68104 EEF1A1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Elongation factor 1‐gamma P26641 EEF1G 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Elongation factor 2 P13639 EEF2 10.1002/prca.201200064, 10.1074/mcp.M110Mass Spec ascending valve replacement

EMILIN‐1 Q9Y6C2 EMILIN1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Endoglin P17813 ENG 10.1093/cvr/cvu196 Immuno ascending adventitia 51 B decreased in aneurysm

Endoplasmin P14625 HSP90B1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Endothelin‐1 receptor P25101 EDNRA 10.1097/00005344‐200036051‐00109 Immuno media

ERO1‐like protein alpha Q96HE7 ERO1A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Erythrocyte band 7 integral membrane p P27105 STOM 10.1002/prca.201200064 Mass Spec

Estrogen sulfotransferase P49888 SULT1E1 10.1016/S0002‐9440(10)63492‐X, 10 2 Immuno abdominal media 57.7,24 B

varies depending on 

atherosclerotic stage

Eukaryotic initiation factor 4A‐II Q14240 EIF4A2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Eukaryotic translation initiation factor 4 g O43432 EIF4G3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Eukaryotic translation initiation factor 4E Q9NRA8 EIF4ENIF1 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Eukaryotic translation initiation factor 4H Q15056 EIF4H 10.1002/prca.201200064 Mass Spec

Extracellular superoxide dismutase [Cu‐

Zn] P08294 SOD3 10.1074/mcp.M110.001693, 10.1002 3 Immuno;Mass Spascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Ezrin P15311 EZR 10.1002/prca.201200064 Mass Spec

F‐actin‐capping protein subunit alpha‐1 P52907 CAPZA1 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

F‐actin‐capping protein subunit beta P47756 CAPZB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Far upstream element‐binding protein 2 Q92945 KHSRP 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Fatty acid‐binding protein, heart P05413 FABP3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Fermitin family homolog 2 Q96AC1 FERMT2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Fermitin family homolog 3 Q86UX7 FERMT3 10.1002/prca.201200064 Mass Spec

Ferritin heavy chain P02794 FTH1 10.1074/mcp.M111.008128, 10.1074 3 Immuno;Mass Spascending, abdominal 37.5,64.9 B,M valve replacement aneurysm

Ferritin light chain P02792 FTL 10.1074/mcp.M111.008128, 10.1002 4 Immuno;Mass Spascending, abdominal 37.5,64.9 B,M valve replacement aneurysm

Ferritin, mitochondrial Q8N4E7  FTMTFTMT 10.1159/000362997 Immuno abdominal 68.9 augmented in aneurysm

Fibrillin‐1 P35555 FBN1

10.1159/000157436, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 4 Immuno;Mass Sp

thoracic, 

ascending 35, 37.5 B valve replacement

increased in abdominal 

aneurysm

Fibrinogen alpha chain P02671 FGA 10.1074/mcp.M111.008128, 10.1002 4 Mass Spec ascending 37.5 valve replacement

Fibrinogen beta chain P02675 FGB 10.1074/mcp.M112.021873, 10.1074 5 Mass Spec ascending 37.5 valve replacement

Fibrinogen gamma chain P02679 FGG 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 valve replacement augmented in aneurysm

Fibroblast growth factor 1 P05230 FGF1 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B augmented in aneurysm

Fibromodulin Q06828 FMOD 10.1002/prca.201200064, 10.1074/mcp.M110Mass Spec ascending 37.5 B valve replacement

Fibronectin P02751 FN1 10.1016/j.ijcard.2011.08.079, 10.101 6 Immuno;Mass Spabdominal, ascend intima;media 39.7, 37.5 B

other;valve 

replacement augmented in aneurysm

Fibulin‐1 P23142 FBLN1

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128, 

10.1016/j.jvs.2010.11.035 4 Immuno;Mass Spascending 46.1, 37.5 M, B valve replacement

decreased in aortic 

dissection and abdominal 

aneurysm

Fibulin‐2 P98095 FBLN2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Fibulin‐5 Q9UBX5 FBLN5 10.1093/cvr/cvw082, 10.1074/mcp.M 4 Immuno;Mass Spascending media 37.5 B valve replacement

decreased in abdominal 

aneurysm

Filamin A‐interacting protein 1‐like Q4L180 FILIP1L 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Filamin‐A P21333 FLNA 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Filamin‐binding LIM protein 1 Q8WUP2 FBLIM1 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement augmented in BAV dilation

Filamin‐C Q14315 FLNC 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Focal adhesion kinase 1 Q05397 PTK2 10.1038/srep17189 Immuno ascending intima;media 62 B

augmented in aortic 

stiffening

Four and a half LIM domains protein 1 Q13642 FHL1

10.1074/mcp.M111.008128, 

10.1016/j.jvs.2010.11.113, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693 4 Immuno;Mass Spascending 47.4 M

autopsy CV 

healthy;valve 

replacement decreased in dissection

Four and a half LIM domains protein 2 Q14192 FHL2 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Four and a half LIM domains protein 3 Q13643 FHL3 10.1002/prca.201200064 Mass Spec

Four and a half LIM domains protein 5 Q5TD97 FHL5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Fructose‐bisphosphate aldolase A P04075 ALDOA 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Fructose‐bisphosphate aldolase C P09972 ALDOC

10.1161/CIRCULATIONAHA.108.843

516 Mass Spec ascending 60 B valve replacement

decreased in Marfan 

aneurysm

Fumarylacetoacetase P16930 FAH 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Galectin‐1 P09382 LGALS1 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

asc dilation

Galectin‐3 P17931 LGALS3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Galectin‐3‐binding protein Q08380 LGALS3BP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Gamma‐enolase P09104 ENO2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Gamma‐synuclein O76070 SNCG 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Gelsolin P06396 GSN 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

augmented in TAV and BAV 

ascending dilation

Glia‐derived nexin P07093 SERPINE2 10.1161/ATVBAHA.113.301327 1 Immuno ascending media 54 B

augmented in aneurysm, 

10.1074/mcp.M111.008128 

says there's no glia‐derived 

nexin in control ascending 

aorta

Glucose‐6‐phosphate isomerase P06744 GPI 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Glucosidase 2 subunit beta P14314 PRKCSH 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glutamate dehydrogenase 1, mitochond P00367 GLUD1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glutamine‐rich protein 2 Q9H0J4 QRICH2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glutathione peroxidase 3 P22352 GPX3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Glutathione S‐transferase A4 O15217 GSTA4 10.1080/01926230500369907 Immuno arch media 22 B

augmented in 

atherosclerotic plaques

Glutathione S‐transferase Mu 3 P21266 GSTM3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glutathione S‐transferase omega‐1 P78417 GSTO1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glutathione S‐transferase P P09211 GSTP1 10.1074/mcp.M111.008128, 10.1055 4 Immuno;Mass Spascending 37.5,58.13B

CABG;valve 

replacement augmented in aneurysm

Glutathione synthetase P48637 GSS 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glyceraldehyde‐3‐phosphate 

dehydrogenase P04406 GAPDH

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1016/j.jvs.2011.10.033, 

10.1002/path.2516, 

10.1002/prca.201200064, 

10.1016/j.atherosclerosis.2009.01.0

03, 10.1074/mcp.M110.001693 7 Immuno;Mass Sp

thoracic, 

abdominal, 

ascending

37.5,53.9

1, 50 B valve replacement

reduced in abdominal 

aneurysm, augmented in 

ascending TAV and BAV 

dilation

Glycogen phosphorylase, brain form P11216 PYGB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Glycogenin‐1 P46976 GYG1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Glyoxalase domain‐containing protein 4 Q9HC38 GLOD4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Group 10 secretory phospholipase A2 O15496 PLA2G10

10.1016/j.atherosclerosis.2006.08.0

62 Immuno intima;media

augmented in 

atheriosclerosis

Group 3 secretory phospholipase A2 Q9NZ20 PLA2G3

10.1016/j.atherosclerosis.2006.08.0

62 Immuno intima;media

augmented in 

atheriosclerosis



Group IID secretory phospholipase A2 Q9UNK4 PLA2G2D

10.1016/j.atherosclerosis.2006.08.0

62 Immuno intima;media

augmented in 

atheriosclerosis

Group IIE secretory phospholipase A2 Q9NZK7 PLA2G2E

10.1016/j.atherosclerosis.2006.08.0

62 Immuno media

augmented in 

atheriosclerosis

Growth/differentiation factor 15 Q99988 GDF15 10.1159/000362997 Immuno abdominal 68.9 augmented in aneurysm

GTPase Kras P01116 KRAS 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

GTP‐binding nuclear protein Ran P62826 RAN 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Guanine nucleotide exchange factor DBS O15068 MCF2L 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Guanine nucleotide‐binding protein G(I)/ P62873 GNB1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Guanine nucleotide‐binding protein G(I)/ P62879 GNB2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Guanine nucleotide‐binding protein G(o) P09471 GNAO1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Guanine nucleotide‐binding protein subu P29992 GNA11 10.1002/prca.201200064 Mass Spec

Haptoglobin P00738 HP 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heat shock 70 kDa protein 1A P0DMV8 HSPA1A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heat shock 70 kDa protein 1B P0DMV9 HSPA1B 10.1074/mcp.M110.001693 1 Mass Spec ascending 37.5 B valve replacement

Heat shock 70 kDa protein 4 P34932 HSPA4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heat shock cognate 71 kDa protein P11142 HSPA8 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Heat shock protein beta‐1 P04792 HSPB1 10.1074/mcp.M112.021873, 10.1074 5 Immuno;Mass Spascending 37.5,47.4 B,M

autopsy CV 

healthy;valve 

replacement augmented in dissection

Heat shock protein beta‐6 O14558 HSPB6 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Heat shock protein beta‐7 Q9UBY9 HSPB7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heat shock protein HSP 90‐alpha P07900 HSP90AA1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Heat shock protein HSP 90‐beta P08238 HSP90AB1 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

asc dilation

Heat shock‐related 70 kDa protein 2 P54652 HSPA2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Hematopoietic progenitor cell antigen 

CD34 P28906 CD34

10.1159/000439169, 

10.1016/j.jvs.2009.03.055 Immuno

abdominal, 

infrarenal adventitia;intima 66.1,46.6 B,M autopsy CV healthy

associated to adipose‐

derived stem cells 

appearance in abdominal 

aneurysm, augmented in 

aneurysm

Heme‐binding protein 2 Q9Y5Z4 HEBP2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending valve replacement

Hemicentin‐1 Q96RW7 HMCN1 10.1002/prca.201200064 Mass Spec

10.1074/mcp.M111.008128 

says there's no hemicentin‐1 

in control ascending aorta

Hemoglobin subunit alpha P69905 HBA1 , HBA2 10.1074/mcp.M112.021873, 10.1074 5 Mass Spec ascending 37.5,60 B valve replacement

decreased in Marfan, BAV 

and unknown aneurysm

Hemoglobin subunit beta P68871 HBB 10.1074/mcp.M112.021873, 10.1074 5 Mass Spec ascending 37.5,60 B valve replacement

decreased in Marfan, BAV 

and unknown aneurysm

Hemoglobin subunit delta P02042 HBD 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

decreased in Marfan, BAV 

and unknown aneurysm

Hemopexin P02790 HPX 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Heparin cofactor 2 P05546 SERPIND1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Hepatocyte growth factor P14210 HGF 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B decreased in aneurysm

Hepatoma‐derived growth factor P51858 HDGF 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterochromatin protein 1‐binding prote Q5SSJ5 HP1BP3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei P51991 HNRNPA3 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei Q14103 HNRNPD 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei P55795 HNRNPH2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Heterogeneous nuclear ribonucleoprotei P61978 HNRNPK 10.1002/prca.201200064 Mass Spec

Heterogeneous nuclear ribonucleoprotei P52272 HNRNPM 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei O43390 HNRNPR 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei Q00839 HNRNPU 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei Q9BUJ2 HNRNPUL1 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei Q1KMD3 HNRNPUL2 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei P22626 HNRNPA2B1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Heterogeneous nuclear ribonucleoprotei P07910 HNRNPC 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

High mobility group protein B1 P09429 HMGB1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histidine‐rich glycoprotein P04196 HRG 10.1002/prca.201200064 Mass Spec

Histone deacetylase 1 Q13547 HDAC1 10.1242/dmm.024513 1 Immuno abdominal 58 B autopsy CV healthy augmented in aneurysm

Histone deacetylase 2 Q92769 HDAC2 10.1242/dmm.024513 1 Immuno abdominal 58 B autopsy CV healthy

augmented in abdominal 

aneurysm

Histone deacetylase 4 P56524 HDAC4 10.1242/dmm.024513 1 Immuno abdominal 58 B autopsy CV healthy augmented in aneurysm

Histone deacetylase 7 Q8WUI4 HDAC7 10.1242/dmm.024513 1 Immuno abdominal 58 B autopsy CV healthy augmented in aneurysm

Histone deacetylase 9 Q9UKV0 HDAC9 10.1161/STROKEAHA.111.000217 Immuno intima;media

Histone H1.2 P16403 HIST1H1C 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histone H1.4 P10412 HIST1H1E 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histone H1.5 P16401 HIST1H1B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histone H2A type 1‐B/E P04908 ST1H2AB, HIST1H210.1002/prca.201200064 Mass Spec

Histone H2A type 1‐D P20671 HIST1H2AD 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Histone H2A type 2‐A Q6FI13 HIST2H2AA3 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Histone H2A type 2‐C Q16777 HIST2H2AC 10.1002/prca.201200064 Mass Spec

Histone H2A.Z P0C0S5 H2AFZ 10.1002/prca.201200064 Mass Spec

Histone H2B type 1‐B P33778 HIST1H2BB 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histone H2B type 1‐C/E/F/G/I P62807 HIST1H2BC 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Histone H2B type 1‐K O60814 HIST1H2BK 10.1002/prca.201200064 Mass Spec

Histone H3.1 P68431 HIST1H3A 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Histone H3.3 P84243 H3F3A, H3F3B 10.1242/dmm.024513, 10.1002/prca 2 Immuno;Mass Spabdominal media 58 B autopsy CV healthy decreased in aneurysm

Histone H4 P62805 HIST1H4A 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Homeobox protein MSX‐2 P35548 MSX2 10.1093/ndt/gfp137 Immuno intima;media 68 B augmented in calcified aorta

Hsc70‐interacting protein P50502 ST13 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Hyaluronan and proteoglycan link protei P10915 HAPLN1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Hypoxia‐inducible factor 1‐alpha Q16665 HIF1A 10.1159/000318806 Immuno media

increased in abdominal 

aneurysm

Ig alpha‐1 chain C region P01876 IGHA1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Ig gamma‐1 chain C region P01857 IGHG1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Ig gamma‐2 chain C region P01859 IGHG2 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Ig gamma‐3 chain C region P01860 IGHG3 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Ig heavy chain V‐I region 5 P01602 IGKV1‐5 10.1002/prca.201200064 Mass Spec

Ig heavy chain V‐III region BRO P01766 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ig heavy chain V‐III region CAM P01768 10.1002/prca.201200064 Mass Spec

Ig kappa chain C region P01834 IGKC 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Ig kappa chain V‐III region SIE P01620 10.1002/prca.201200064 Mass Spec

Ig kappa chain V‐III region WOL P01623 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ig lambda‐1 chain C regions P0CG04 IGLC1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ig lambda‐2 chain C regions P0DOY2 IGLC2 10.1002/prca.201200064 Mass Spec

Ig mu chain C region P01871 IGHM 10.1074/mcp.M111.008128, 10.1074/mcp.M1Mass Spec ascending 37.5 B valve replacement

Immunoglobulin superfamily containing  O14498 ISLR 10.1074/mcp.M110.001693 1 Mass Spec ascending valve replacement

Inactive carboxypeptidase‐like protein X2 Q8N436 CPXM2 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Inosine‐5'‐monophosphate dehydrogena P12268 IMPDH2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Inositol monophosphatase 1 P29218 IMPA1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Insulin‐like growth factor‐binding 

protein 1 P08833 IGFBP1

10.1159/000362997, 

10.1093/cvr/cvu196 2 Immuno

abdominal, 

ascending adventitia;media 51 B

augmented in aneurysm in 

media and diminished in 

adventitia

Insulin‐like growth factor‐binding protein P18065 IGFBP2 10.1093/cvr/cvu196 Immuno ascending adventitia 51 B decreased in aneurysm

Insulin‐like growth factor‐binding 

protein 3 P17936 IGFBP3 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

aneurysm, not sure if 

control aorta has it because 

suppl info is not available 

online



Insulin‐like growth factor‐binding 

protein 7 Q16270 IGFBP7

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 3 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Integrin alpha‐1 P56199 ITGA1 10.1002/prca.201200064 Mass Spec

Integrin alpha‐5 P08648 ITGA5 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Integrin alpha‐7 Q13683 ITGA7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Integrin alpha‐8 P53708 ITGA8 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Integrin alpha‐Iib P08514 ITGA2B 10.1002/prca.201200064 Mass Spec

Integrin alpha‐M P11215 ITGAM 10.1155/2015/456582 Immuno adventitia;media 71.42 B

augmented in abdominal 

aneurysm

Integrin alpha‐V P06756 ITGAV 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Integrin beta‐1 P05556 ITGB1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Integrin beta‐3 P05106 ITGB3 10.1002/prca.201200064 Mass Spec

Integrin‐linked protein kinase Q13418 ILK 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Inter‐alpha‐trypsin inhibitor heavy chain  P19827 ITIH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Inter‐alpha‐trypsin inhibitor heavy chain  P19823 ITIH2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Inter‐alpha‐trypsin inhibitor heavy chain  Q14624 ITIH4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Inter‐alpha‐trypsin inhibitor heavy chain  Q86UX2 ITIH5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Intercellular adhesion molecule 1 P05362 ICAM1 10.1159/000362997 Immuno abdominal 68.9 augmented in aneurysm

Interferon gamma P01579 IFNG 10.1161/CIRCULATIONAHA.111.0834 2 Immuno abdominal, ascend intima;media 54.6 B increased in aneurysm

Interferon regulatory factor 7 Q92985 IRF7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Interferon‐inducible protein AIM2 O14862 AIM2 10.1016/j.jvs.2013.03.048 Immuno

adventitia;intima;

media 45 M

10.2119/molmed.2013.0016

2 says there's only AIM2 at 

adventitial single infiltrating 

cells at healthy aorta

Interleukin enhancer‐binding factor 2 Q12905 ILF2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Interleukin enhancer‐binding factor 3 Q12906 ILF3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Interleukin‐1 beta P01584 IL1B 10.1007/s00268‐002‐6690‐0, 10.101 4 Immuno infra‐renal, ascend media 54.6 B unknown

increased in aneurysm and 

dissection

Interleukin‐17A Q16552 IL17A 10.1161/CIRCULATIONAHA.111.0834 1 Immuno abdominal

increased in abdominal 

aneurysm

Interleukin‐2 P60568 IL2 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

Interleukin‐23 subunit alpha Q9NPF7 IL23A

10.1161/CIRCULATIONAHA.111.083

451 Immuno ascending

augmented in abdominal 

aneurysm

Interleukin‐6 P05231 IL6

10.1007/s10353‐007‐0339‐z, 

10.1016/j.jvs.2006.11.020, 

10.1016/j.athoracsur.2015.05.009 3 Immuno

infra‐renal, 

abdominal, 

thoracic 59.5, 55 B

augmented in aneurysm, 

10.1159/000362997 says 

there's no IL6 in normal 

aorta

Interleukin‐8 P10145 CXCL8 10.1161/CIRCULATIONAHA.111.0834 4 Immuno ascending, infra‐re adventitia 51, 59.9, 5 B augmented in aneurysm

Interstitial collagenase P03956 MMP1

10.14670/HH‐11‐691, 

10.1089/ars.2005.7.1195 2 Immuno

ascending, 

abdominal media 61.6 B

augmented in aneurysm, 

10.1053/hupa.2001.27107 

says thare's no MMP1 in 

control ascending aortae

Isocitrate dehydrogenase [NADP] cytopla O75874 IDH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Isocitrate dehydrogenase [NADP], mitoch P48735 IDH2 10.1002/prca.201200064 Mass Spec

Junctophilin‐2 Q9BR39 JPH2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Kallistatin P29622 SERPINA4

10.1074/mcp.M111.008128, 

10.1074/mcp.M110.001693 2 Mass Spec ascending 37.5 B valve replacement

10.1074/mcp.M111.008128 

says there's no kallistatin in 

control ascending aorta

Keratin, type I cytoskeletal 10 P13645 KRT10 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Keratin, type I cytoskeletal 14 P02533 KRT14 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Keratin, type I cytoskeletal 16 P08779 KRT16 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Keratin, type I cytoskeletal 27 KRT27 Q7Z3Y8 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Keratin, type I cytoskeletal 9 P35527 KRT9 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Keratin, type II cytoskeletal 1 P04264 KRT1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Keratin, type II cytoskeletal 2 epidermal P35908 KRT2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Keratin, type II cytoskeletal 5 P13647 KRT5 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Keratin, type II cytoskeletal 6C P48668 KRT6C 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Kinectin Q86UP2 KTN1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Kinesin heavy chain isoform 5A Q12840 KIF5A 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Kit ligand P21583 KITLG 10.1016/j.jvs.2009.03.055 Immuno infrarenal intima 46.6 B neovessels in aneurysm

KN motif and ankyrin repeat domain‐con Q63ZY3 KANK2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Lactadherin Q08431 MFGE8 10.1161/CIRCRESAHA.108.187088, 1 6 Immuno;Mass Spdescending, thorac intima;media 19, 68, 60, B

autopsy CV 

healthy;valve 

replacement

augmented in aneurysm, 

aging, and dissection

Lactotransferrin P02788 LTF 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Lactoylglutathione lyase Q04760 GLO1 10.1002/prca.201200064 Mass Spec

Lamina‐associated polypeptide 2, isoform P42166 TMPO 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Lamin‐B2 Q03252 LMNB2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Laminin subunit alpha‐2 P24043 LAMA2 16377578 Immuno 33

decreased in ascending 

aneurysm

Laminin subunit alpha‐3 Q16787 LAMA3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending B valve replacement

Laminin subunit alpha‐4 Q16363 LAMA4 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

not detected in abdominal 

aneurysm

Laminin subunit alpha‐5 O15230 LAMA5 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Laminin subunit beta‐1 P07942 LAMB1 16377578 Immuno 33

10.1074/mcp.M111.008128 

says there's no laminin beta 

1 in control ascending aorta

Laminin subunit beta‐2 P55268 LAMB2 10.1074/mcp.M111.008128, 163775 4 Immuno;Mass Spascending 37.5,33 B valve replacement

Laminin subunit gamma‐1 P11047 LAMC1 10.1074/mcp.M111.008128, 10.1155 4 Immuno;Mass Spthoracic, ascending 37.5,59 B valve replacement augmented in Marfan

Latent‐transforming growth factor beta‐

binding protein 1 Q14766 LTBP1 10.4261/1305‐3825.DIR.3844‐10.1, 1 4 Immuno;Mass Spascending intima;media valve replacement augmented in aneurysm

Latent‐transforming growth factor beta‐ Q14767 LTBP2 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Latent‐transforming growth factor beta‐

binding protein 4 Q8N2S1 LTBP4 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Left‐right determination factor 1 O75610 LEFTY1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Leiomodin‐1 P29536 LMOD1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Leptin P41159 LEP 20145358 1 Immuno abdominal

periaortic 

adipose tissue autopsy CV healthy

augmented in 

atherosclerosis

Leptin receptor P48357 LEPR 10.3349/ymj.2000.41.1.68 1 Immuno intima 28

augmented in 

atherosclerosis

Leucine‐rich alpha‐2‐glycoprotein P02750 LRG1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Leukocyte elastase inhibitor P30740 SERPINB1 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

LIM and cysteine‐rich domains protein 1 Q9NZU5 LMCD1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

LIM and senescent cell antigen‐like‐conta P48059 LIMS1 10.1074/mcp.M111.008128, 10.1002 2 Mass Spec 37.5 B valve replacement

LIM and senescent cell antigen‐like‐conta Q7Z4I7 LIMS2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

LIM and SH3 domain protein 1 Q14847 LASP1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

LIM domain‐binding protein 3 O75112 LDB3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Lipoma‐preferred partner Q93052 LPP 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Lipopolysaccharide‐binding protein P18428 LBP 10.1002/prca.201200064 Mass Spec

Liver carboxylesterase 1 P23141 CES1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

L‐lactate dehydrogenase A chain P00338 LDHA 10.1074/mcp.M112.021873, 10.1074 4 Immuno;Mass Spascending 37.5 B valve replacement augmented in aneurysm

L‐lactate dehydrogenase B chain P07195 LDHB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Low affinity immunoglobulin gamma Fc r P31994 FCGR2B 10.1159/000362997 Immuno abdominal 68.9 augmented in aneurysm

Low molecular weight phosphotyrosine p P24666 ACP1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Lumican P51884 LUM 10.1097/HJH.0b013e3282f4b3d0, 10 4 Immuno;Mass Spascending media 59, 37.5 M, B valve replacement

Lymphotoxin‐alpha P01374 LTA 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B augmented in aneurysm

Lysozyme C P61626 LYZ 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending valve replacement

Lysyl oxidase homolog 1 Q08397 LOXL1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending valve replacement

Macrophage colony‐stimulating factor 1 P09603 CSF1 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B augmented in aneurysm

Macrophage migration inhibitory factor P14174 MIF 10.1089/ars.2005.7.1195, 10.1002/prca.20120Immuno;Mass Spabdominal media aneurysm



Macrophage‐capping protein P40121 CAPG 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Macrosialin P34810 CD68

10.1016/j.atherosclerosis.2009.01.0

38, 10.1093/ndt/gfp137, 

10.1161/CIRCRESAHA.108.173682, 

10.1016/j.atherosclerosis.2011.06.0

08, 10.1093/cvr/cvr080, 

10.1161/ATVBAHA.115.305529 6 Immuno abdominal intima;media

10, 68, 

44, 64 B

increased in abdominal 

aneurysm, or not, increased 

in CDK calcified intima, 

10.2119/molmed.2013.0016

2 says there's no CD68 in 

healthy aorta

Major vault protein Q14764 MVP 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending valve replacement

Malate dehydrogenase, cytoplasmic P40925 MDH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Malate dehydrogenase, mitochondrial P40926 MDH2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Mast cell carboxypeptidase A P15088 CPA3 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Mast/stem cell growth factor receptor 

Kit P10721 KIT 10.1161/CIRCRESAHA.108.173682 Immuno thoracic descending 44 B

more phosphorilated in 

abdominal aneurysm

Matrilin‐2 O00339 MATN2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Matrilysin P09237 MMP7 10.1093/cvr/cvu196, 10.1016/j.humpath.2008Immuno ascending 51, 50.4 B augmented in aneurysm

Matrix Gla protein P08493 MGP

10.1074/mcp.M111.008128, 

10.1093/ndt/gfp137, 

10.1161/hq1201.100229, 

10.1074/mcp.M110.001693 4 Immuno;Mass Sp

abdominal, 

ascending

adventitia;intima;

media 37.5,68 B valve replacement

augmented in calcified 

aorta, prominent expression 

in foam cells in the lipid core 

of atheroma

Matrix metalloproteinase‐14 P50281 MMP14

10.1067/mva.2001.115962, 

10.1067/mva.2002.121124 Immuno

infrarenal, 

ascending 68.9 B CABG

higher active form in 

abdominal aneurysm

Matrix metalloproteinase‐19 Q99542 MMP19 10.1093/cvr/cvu196 Immuno ascending 51 B augmented in aneurysm

Matrix metalloproteinase‐9 P14780 MMP9

10.14670/HH‐11‐691, 

10.1016/j.jctvs.2006.07.036, 

10.1161/hs1101.098520, 

10.1053/hupa.2001.27107, 

10.1371/journal.pone.0070057, 

10.1016/j.atherosclerosis.2004.11.0

21, 

10.1161/HYPERTENSIONAHA.107.0

89409, 10.1093/cvr/cvu196, 

10.1016/j.jvs.2010.11.035 9 Immuno

abdominal, 

thoracic, 

descending, 

ascending

adventitia;intima;

media

61.6, 

61.4, 7.9, 

0, 42.5, 

71.5, 

44.6, 25, 

20, 51, 

46.1 B, M autopsy CV healthy

less active in aneurysm, 

augmented in thoracic 

aneurysm or not, in 

dissection, in aging, and in 

atheromatous plaque,  

10.1016/j.jtcvs.2012.04.008 

says there's no mmp9 in 

control ascending, 

10731924 says MMP9 is at 

minimal thickened intima of 

controls

Membrane primary amine oxidase Q16853 AOC3

10.1074/mcp.M111.008128, 

10.1074/mcp.M110.001693, 

10.1002/prca.201200064 3 Mass Spec ascending 37.5 B valve replacement

AOC exists in aorta but it's 

reported by radiometry at 

10.1006/taap.2001.9238

Metal transporter CNNM4 Q6P4Q7 CNNM4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Metalloproteinase inhibitor 1 P01033 TIMP1

10.1016/j.jvs.2012.09.062, 

10.1016/j.jctvs.2006.07.036, 

10.1016/j.jtcvs.2012.04.008, 

10.2353/ajpath.2007.060522, 

10.1093/cvr/cvu196, 

10.1067/mva.2002.121124, 

10.1074/mcp.M111.008128 7

Immuno;Mass 

Spec

abdominal, 

ascending adventitia;media

48, 64.1, 

69, 51, 

68.9, 37.5 B CABG;other

decreased or augmented or 

the same in aneurysm, 

10.1053/hupa.2001.27107 

says thare's no TIMP1 in 

control ascending aortae

Metalloproteinase inhibitor 2 P16035 TIMP2

10.1016/j.jvs.2012.09.062, 

10.1053/hupa.2001.27107, 

10.1016/j.amjhyper.2004.11.011, 

10.1016/j.atherosclerosis.2004.11.0

21, 10.1067/mva.2002.121124 5 Immuno abdominal, ascend intima;media 71.5, 60.9, B CABG;other

decreased in aneurysm, 

augmented in atheromatous 

plaque, aneurysm and 

dissection, 10731924 says 

TIMP2 is at minimal 

thickened intima of controls

Metalloproteinase inhibitor 3 P35625 TIMP3 10.1074/mcp.M110.001693, 10.1067 3 Immuno;Mass Spascending 68.9, 37.5 B

CABG;valve 

replacement augmented in aneurysm

Metalloproteinase inhibitor 4 Q99727 TIMP4 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B decreased in aneurysm

Methyl‐CpG‐binding protein 2 P51608 MECP2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

MICOS complex subunit MIC60 Q16891 IMMT 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Microfibril‐associated glycoprotein 4 P55083 MFAP4 10.1074/mcp.M112.021873, 10.1016 5 Mass Spec

abdominal, 

ascending 53.91, 37.5B valve replacement

decreased in abdominal and 

ascending aneurysm

Microfibrillar‐associated protein 5 Q13361 MFAP5 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Microsomal glutathione S‐transferase 3 O14880 MGST3 10.1002/prca.201200064 Mass Spec

Microtubule‐associated protein 1B P46821 MAP1B 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Microtubule‐associated protein 4 P27816 MAP4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Mimecan P20774 OGN

10.1074/mcp.M112.021873, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 4 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm, and in ascending 

TAV and BAV dilation

Mitogen‐activated protein kinase 1 P28482 MAPK1

10.1016/j.jamcollsurg.2012.06.414,

10.1093/abbs/gmv047, 

10.1007/s10735‐013‐9558‐8, 

10.1111/eci.12618 4 Immuno

ascending, 

abdominal adventitia;media 47.3, 61 B

augmented in dissection (p‐

erk), idiopathic ascending 

aneurysm (p‐erk) and 

nonruptured aneurysm

Mitogen‐activated protein kinase 14 Q16539 MAPK14

10.1016/j.jvs.2010.11.113, 

10.1093/abbs/gmv047 2 Immuno ascending 47.4 M autopsy CV healthy

augmented in dissection 

and idiopathic ascending 

aortic aneurysm

Mitogen‐activated protein kinase 3 P27361 MAPK3

10.1093/abbs/gmv047, 

10.1007/s10735‐013‐9558‐8, 

10.1111/eci.12618 3 Immuno

ascending, 

abdominal 47.3, 61 B

augmented in dissection (p‐

erk), idiopathic ascending 

aneurysm (p‐erk) and 

nonruptured aneurysm

Mitogen‐activated protein kinase 8 P45983 MAPK8 10.1093/abbs/gmv047 1 Immuno ascending autopsy CV healthy

more phosphorilated in 

idiopathic ascending aortic 

aneurysm

Mitogen‐activated protein kinase 9 P45984 MAPK9 10.1093/abbs/gmv047 1 Immuno ascending autopsy CV healthy

more phosphorilated in 

idiopathic ascending aortic 

aneurysm

Moesin P26038 MSN 10.1074/mcp.M111.008128, 10.1097 5 Immuno;Mass Spascending 37.5,59 B,M valve replacement

MORC family CW‐type zinc finger protein Q86VD1 MORC1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Mothers against decapentaplegic 

homolog 2 Q15796 SMAD2

10.1016/j.ijcard.2011.08.079, 

10.1161/ATVBAHA.114.304412, 

10.1024/0301‐1526/a000133, 

10.4261/1305‐3825.DIR.3844‐10.1, 

10.1093/cvr/cvq291, 

10.1002/path.2516, 

10.1161/ATVBAHA.113.301327 7 Immuno

thoracic, 

ascending intima;media 54 B

more phosphorylated in 

aneurysm, in non‐syndromic 

dissection and in Marfan 

aneurysm, augmented in 

Marfan aorta interstices

Mothers against decapentaplegic 

homolog 3 P84022 SMAD3

10.1024/0301‐1526/a000133, 

10.1093/cvr/cvq291 2 Immuno ascending

augmented in Marfan aorta 

interstices

Mothers against decapentaplegic 

homolog 4 Q13485 SMAD4

10.1024/0301‐1526/a000133, 

10.1093/cvr/cvq291 2 Immuno ascending

augmented in Marfan 

syndrome

Mothers against decapentaplegic 

homolog 7 O15105 SMAD7

10.1024/0301‐1526/a000133, 

10.1093/cvr/cvq291 2 Immuno ascending

augmented in Marfan aorta 

nuclei

Mucin‐16 Q8WXI7 MUC16 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Multidrug resistance‐associated protein  O15439 ABCC4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Myeloblastin P24158 PRTN3 10.1002/prca.201200064, 10.1074/m 2 Mass Spec ascending valve replacement

Myeloperoxidase P05164 MPO 10.1093/ndt/gfp137, 10.1002/prca.2 4 Immuno;Mass Spascending intima;media 68, 37.5 B valve replacement

augmented in abdominal 

aneurysm

Myosin light chain kinase, smooth muscl Q15746 MYLK 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Myosin light polypeptide 6 P60660 MYL6 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

augmented in TAV and BAV 

asc dilation

Myosin regulatory light chain 12B O14950 MYL12B 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement augmented in BAV dilation

Myosin regulatory light polypeptide 9 P24844 MYL9 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

augmented in BAV asc 

dilation



Myosin‐10 P35580 MYH10 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Myosin‐11 P35749 MYH11 10.1074/mcp.M111.008128, 10.1038 5 Immuno;Mass Spascending media 37.5 B valve replacement increased in aneurysm

Myosin‐4 Q9Y623 MYH4 10.1002/path.2516 Immuno thoracic

Myosin‐7B A7E2Y1 MYH7B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Myosin‐9 P35579 MYH9 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Myosin‐IIIb Q8WXR4 MYO3B 10.1002/prca.201200064 Mass Spec

N(G),N(G)‐dimethylarginine dimethylami O95865 DDAH2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

NAD(P)H dehydrogenase [quinone] 1 P15559 NQO1 10.1016/S0891‐5849(00)00310‐5 Immuno

NADH dehydrogenase [ubiquinone] 1 alp O95182 NDUFA7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

NADH‐cytochrome b5 reductase 3 P00387 CYB5R3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

NADH‐ubiquinone oxidoreductase 75 kD P28331 NDUFS1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nascent polypeptide‐associated complex Q13765 NACA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nck‐associated protein 5‐like Q9HCH0 NCKAP5L 10.1074/mcp.M111.008128, 10.1074/mcp.M1Mass Spec ascending 37.5 B valve replacement

Nesprin‐1 Q8NF91 SYNE1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nesprin‐2 Q8WXH0 SYNE2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nestin P48681 NES 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Neuroblast differentiation‐associated pro Q09666 AHNAK 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Neuropilin‐1 O14786 NRP1 10.1093/ejcts/ezu118 1 Immuno ascending adventitia;intima;m54 B CABG

Neutrophil collagenase P22894 MMP8

10.2353/ajpath.2007.060522, 

10.1159/000362997, 

10.1016/j.jss.2010.05.030 3 Immuno abdominal

48, 68.9, 

57.4 B

augmented in abdominal 

aneurysm (pro‐ and active 

protease)

Neutrophil defensin 1 P59665 DEFA1 , DEFA1B 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Neutrophil elastase P08246 ELANE 10.1002/prca.201200064 Mass Spec

Nexilin Q0ZGT2 NEXN 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nicotinamide 

phosphoribosyltransferase P43490 NAMPT 20145358 1 Immuno abdominal periaortic adipose tissue autopsy CV healthy

augmented in 

atherosclerosis

Nidogen‐1 P14543 NID1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

Nidogen‐2 Q14112 NID2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nitric oxide synthase, endothelial P29474 NOS3 10.1155/2014/760694 Immuno thoracic 59 B valve replacement diminished in aortopathies

Nitric oxide synthase, inducible P35228 NOS2 10.1155/2014/760694 Immuno thoracic 59 B valve replacement

augmented in aortopathies, 

10.1016/S0741‐

5214(03)00148‐4 and 

10.2353/ajpath.2009.08084

5 says that control aortas do 

not have iNOS

Nitrogen permease regulator 2‐like prote Q8WTW4 NPRL2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

NLR family CARD domain‐containing prot Q7RTR2 NLRC3 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Non‐POU domain‐containing octamer‐bi Q15233 NONO 10.1111/his.12434 Immuno ascending adventitia;media 47.8 B decreased in disection

NSFL1 cofactor p47 Q9UNZ2 NSFL1C 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nuclear receptor subfamily 1 group I me O75469 NR1I2 10.1093/cvr/cvr330 Immuno media

Nucleolin P19338 NCL 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Nucleoside diphosphate kinase B P22392 NME2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Nucleosome assembly protein 1‐like 4 Q99733 NAP1L4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Obscurin Q5VST9 OBSCN 10.1002/prca.201200064 Mass Spec

Omega‐amidase NIT2 Q9NQR4 NIT2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Oncostatin‐M P13725 OSM 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B augmented in aneurysm

Ornithine decarboxylase P11926 ODC1 10.1097/HJH.0b013e3282f4b3d0 Immuno ascending media 59 M

Osteocalcin P02818 BGLAP

10.1097/HJH.0b013e3282f4b3d0, 

10.1093/ndt/gfp137, 

10.1161/hq1201.100229 3 Immuno

ascending, 

abdominal

adventitia;intima;

media 59, 68 M, B

augmented in calcified 

aorta, prominent expression 

in foam cells in the lipid core 

of atheroma

Osteopontin P10451 SPP1

10.1016/j.ejvs.2014.10.018, 

10.1016/j.jtcvs.2012.04.008, 

21894406, 

10.1053/hupa.2001.27107, 

10.1093/ndt/gfp137, 

10.1177/1708538112472282 6 Immuno ascending intima;media

58,25.4, 

71.5, 68, 

62.1 B CABG;unknown

augmented in aneurysm, 

dissection and calcified 

aorta, (trustworthy‐

21894406? diminished in 

aneurysm, dissection and 

coronary artery disease)

Palladin Q8WX93 PALLD 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Pappalysin‐1 Q13219 PAPPA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

PDZ and LIM domain protein 1 O00151 PDLIM1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

PDZ and LIM domain protein 3 Q53GG5 PDLIM3 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

PDZ and LIM domain protein 4 P50479 PDLIM4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

PDZ and LIM domain protein 5 Q96HC4 PDLIM5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

PDZ and LIM domain protein 7 Q9NR12 PDLIM7 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Pentraxin‐related protein PTX3 P26022 PTX3 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

aneurysm: augmented in 

media and diminished in 

adventitia

Peptidyl‐prolyl cis‐trans isomerase A P62937 PPIA 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Peptidyl‐prolyl cis‐trans isomerase B P23284 PPIB 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Perilipin‐4 Q96Q06 PLIN4 10.1074/mcp.M110.001693 1 Mass Spec ascending valve replacement

Periostin Q15063 POSTN 10.1002/prca.201200064, 10.1074/m 3 Immuno;Mass Spascending 37.5 B valve replacement

Peroxiredoxin‐1 Q06830 PRDX1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Peroxiredoxin‐2 P32119 PRDX2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Peroxiredoxin‐5, mitochondrial P30044 PRDX5 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Peroxiredoxin‐6 P30041 PRDX6 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Persephin O60542  PSPNPSPN 10.1093/cvr/cvu196 Immuno ascending media 51 B

augmented in aneurysm, 

not sure if control aorta has 

it because suppl info is not 

available online

Phosphatase and actin regulator 1 Q9C0D0 PHACTR1

10.1016/j.atherosclerosis.2016.04.0

25 Immuno intima

marked expression of 

PHACTR1 in immune cells in 

atherosclerosis

Phosphate carrier protein, mitochondria Q00325 SLC25A3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Phosphatidylethanolamine‐binding prote P30086 PEBP1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Phosphoglucomutase‐1 P36871 PGM1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Phosphoglucomutase‐like protein 5 Q15124 PGM5 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Phosphoglycerate kinase 1 P00558 PGK1 10.1074/mcp.M111.008128, 10.1016 4 Mass Spec ascending 37.7,58 B,M valve replacement

decreased in aneurysm and 

increased in dissection

Phosphoglycerate mutase 1 P18669 PGAM1 10.1074/mcp.M111.008128, 10.1016 4 Mass Spec abdominal, ascending 37.7,53.91B valve replacement

Phospholipase A2, membrane 

associated P14555 PLA2G2A 10.1074/mcp.M111.008128, 10.1016 3 Immuno;Mass Spascending intima;media 37.5 B valve replacement

augmented in 

atherosclerosis

Pigment epithelium‐derived factor P36955 SERPINF1 10.1093/cvr/cvu196, 10.1002/prca.2 4 Immuno;Mass Spascending adventitia;media 51, 37.5 B valve replacement

augmented in abdominal 

aneurysm

Pituitary‐specific positive transcription 

factor 1 P28069 POU1F1 10.1093/ndt/gfp137 Immuno intima;media 68 B augmented in calcified aorta

Placenta growth factor P49763 PGF 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

aneurysm, not sure if 

control aorta has it because 

suppl info is not available 

online

Plasma protease C1 inhibitor P05155 SERPING1 10.1074/mcp.M111.008128, 10.1111 3 Immuno;Mass Spvalve, ascending 37.5,60 B,M valve replacement

increased in aortic valve 

pathology

Plasminogen P00747 PLG 10.1074/mcp.M111.008128, 10.1093 4 Immuno;Mass Spascending media 37.5,51 B valve replacement augmented in aneurysm

Plasminogen activator inhibitor 1 P05121 SERPINE1

10.1159/000339304, 

10.1093/cvr/cvu196, 

10.1161/ATVBAHA.113.301327, 

19190555 4 Immuno ascending, abdomi adventitia;media 47, 51, 54, B

augmented in aneurysm, 

decreased in abdominal 

aneurysm

Plastin‐2 P13796 LCP1 10.1002/prca.201200064, 10.1074/mcp.M110Mass Spec ascending valve replacement

Plastin‐3 P13797 PLS3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Platelet basic protein P02775 PPBP 10.1002/prca.201200064 Mass Spec



Platelet endothelial cell adhesion 

molecule P16284 PECAM1

10.1159/000439169, 

10.1093/cvr/cvr080, 

10.1161/CIRCRESAHA.110.235390, 

10.1161/ATVBAHA.115.305529, 

10.1016/j.jvs.2009.03.055, 

10.1016/j.atherosclerosis.2011.06.0

08 6 Immuno

abdominal, 

infrarenal intima;media

66.1, 

69.1,64, 

46.6 B,M autopsy CV healthy

associated to adipose‐

derived stem cells 

appearance in abdominal 

aneurysm, increased in 

aneurysm and 

atheromatous aortae

Platelet factor 4 P02776 PF4 10.1002/prca.201200064, 10.1093/c 2 Immuno;Mass Spascending adventitia;media 51 B decreased in aneurysm

Platelet glycoprotein Ib beta chain P13224 GP1BB 10.1002/prca.201200064 Mass Spec

Platelet‐derived growth factor subunit A P04085 PDGFA 10.1093/cvr/cvu196 Immuno ascending media 51 B decreased in aneurysm

Pleckstrin P08567 PLEK 10.1002/prca.201200064 Mass Spec

Plectin Q15149 PLEC 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Podocan Q7Z5L7 PODN 10.1074/mcp.M110.001693, 10.1074 2 Immuno;Mass Spascending intima 37.5 B valve replacement

Podoplanin Q86YL7 PDPN

10.1016/j.thromres.2012.01.003, 

10.1371/journal.pone.0089983, 

10.1371/journal.pone.0089830 3 Immuno abdominal adventitia;media 47, 66.5 M, B

augmented in 

atherosclerosis, appears in 

media in aneurysm

Poly(rC)‐binding protein 2 Q15366 PCBP2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Polyadenylate‐binding protein 1 P11940 PABPC1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Polycystin‐1 P98161 PKD1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Polycystin‐2 Q13563 PKD2 11134244 Immuno media

Polymerase I and transcript release facto Q6NZI2 PTRF 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Potassium/sodium hyperpolarization‐act Q9UL51 HCN2 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Prelamin‐A/C P02545 LMNA 10.1074/mcp.M111.008128, 10.1016 5 Immuno;Mass Spascending 37.5,73, 58B, M valve replacement

diminished in aneurysm and 

in dissection

Prenylated Rab acceptor protein 1 Q9UI14 RABAC1 10.1002/prca.201200064 Mass Spec

Probable cysteine‐‐tRNA ligase, mitochon Q9HA77 CARS2 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Procollagen C‐endopeptidase enhancer 1 Q15113 PCOLCE 10.1074/mcp.M110.001693, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Pro‐epidermal growth factor P01133 EGF 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

Profilin‐1 P07737 PFN1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Profilin‐2 P35080 PFN2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Progesterone receptor P06401 PGR 10.1507/endocrj.52.245 Immuno abdominal media 53.7 B

Programmed cell death 6‐interacting pro Q8WUM4 PDCD6IP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Prokineticin‐1 P58294 PROK1 10.1093/cvr/cvu196 Immuno ascending media 51 B

augmented in aneurysm, 

not sure if control aorta has 

it because suppl info is not 

available online

Prolargin P51888 PRELP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Proliferating cell nuclear antigen P12004 PCNA 10.1067/mlc.2003.23 Immuno ascending 64

Proliferation‐associated protein 2G4 Q9UQ80 PA2G4 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Prolow‐density lipoprotein receptor‐

related protein 1 Q07954 LRP1 10.1074/mcp.M111.008128, 10.1016 4

Immuno;Mass 

Spec

abdominal, 

ascending adventitia;media

37.5,45, 

52.92 B valve replacement

decreased in abdominal 

aneurysm

Properdin P27918 CFP 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Prosaposin P07602 PSAP 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Prostacyclin synthase Q16647 PTGIS 10.1002/prca.201200064 Mass Spec

Prostaglandin E synthase O14684 PTGES 10.1194/jlr.M042481 Immuno abdominal adventitia 56.3 B augmented in aneurysm

Prostaglandin E2 receptor EP4 subtype P35408 PTGER4 10.1194/jlr.M042481, 10.1016/j.ajpa 2 Immuno abdominal 45 M autopsy CV healthy

Prostaglandin G/H synthase 1 P23219 PTGS1 10.1016/j.bbalip.2006.09.015 Immuno intima 51 F

Prostaglandin G/H synthase 2 P35354 PTGS2

10.1194/jlr.M042481, 

10.1016/j.atherosclerosis.2006.08.0

62 2 Immuno abdominal adventitia;media 56.3 B

augmented in abdominal 

aneurysm, 10731924 says 

COX2 is at minimal 

thickened intima of controls 

and many in atherosclerosis

Proteasome activator complex subunit 1 Q06323 PSME1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit alpha type‐1 P25786 PSMA1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit alpha type‐2 P25787 PSMA2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit alpha type‐3 P25788 PSMA3 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Proteasome subunit alpha type‐6 P60900 PSMA6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit alpha type‐7 O14818 PSMA7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit alpha type‐7‐like Q8TAA3 PSMA8 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit beta type‐5 P28074 PSMB5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit beta type‐6 P28072 PSMB6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Proteasome subunit beta type‐8 P28062 PSMB8 10.1038/srep15730 Immuno 65.5 M

Protein AMBP P02760 AMBP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein deglycase DJ‐1 Q99497 PARK7 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

asc dilation

Protein disulfide‐isomerase P07237 P4HB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein disulfide‐isomerase A3 P30101 PDIA3 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein disulfide‐isomerase A4 P13667 PDIA4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein disulfide‐isomerase A6 Q15084 PDIA6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein FAM83F Q8NEG4 FAM83F 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein kinase C delta‐binding protein Q969G5 PRKCDBP 10.1002/prca.201200064, 10.1074/mcp.M110Mass Spec ascending valve replacement

Protein Niban Q9BZQ8 FAM129A 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein NOV homolog P48745 NOV 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein phosphatase 1 regulatory subuni O14974 PPP1R12A 10.1002/prca.201200064 Mass Spec

Protein phosphatase 1 regulatory subuni O60237 PPP1R12B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein phosphatase 1 regulatory subuni Q96A00 PPP1R14A 10.1002/prca.201200064 Mass Spec

Protein phosphatase 1 regulatory subuni Q15435 PPP1R7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein S100‐A10 P60903 S100A10 10.1002/prca.201200064 Mass Spec

Protein S100‐A11 P31949 S100A11 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein S100‐A4 P26447 S100A4 10.1074/mcp.M111.008128, 10.1371 4 Immuno;Mass Spthoracic, ascendingmedia 37.5,44.6 B

other;valve 

replacement

augmented in thoracic 

aneurysm

Protein S100‐A6 P06703 S100A6 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Protein S100‐A8 P05109 S100A8

10.1002/prca.201200064, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 3 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Protein S100‐A9 P06702 S100A9

10.1002/prca.201200064, 

10.1074/mcp.M110.001693 2 Mass Spec ascending valve replacement

10.1074/mcp.M111.008128 

says there's no Protein S100‐

A9 in control ascending 

aorta

Protein SET Q01105 SET 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Protein unc‐13 homolog B O14795 UNC13B 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Protein virilizer homolog Q69YN4 VIRMA 10.1074/mcp.M112.021873 Mass Spec ascending valve replacement

Protein‐glutamine gamma‐

glutamyltransferase 2 P21980 TGM2 10.1074/mcp.M112.021873, 10.1074 7 Immuno;Mass Sp

abdominal, 

thoracic desc, 

ascending intima;media 37.5,68, 41B

other;valve 

replacement

augmented in aging, 

abdminal and ascending 

aneurysm and in CDK 

calcified aorta media

Protein‐L‐isoaspartate(D‐aspartate) O‐m P22061 PCMT1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Prothrombin P00734 F2 10.1002/prca.201200064 Mass Spec

Protocadherin Fat 4 Q6V0I7 FAT4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Purine nucleoside phosphorylase P00491 PNP 10.1002/prca.201200064 Mass Spec

Puromycin‐sensitive aminopeptidase P55786 NPEPPS 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Putative elongation factor 1‐alpha‐like 3 Q5VTE0 EEF1A1P5 10.1002/prca.201200064 Mass Spec

Putative hydroxypyruvate isomerase Q5T013 HYI 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Pyruvate kinase PKM P14618 PKM 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Quinone oxidoreductase Q08257 CRYZ 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Rab GDP dissociation inhibitor alpha P31150 GDI1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Rab GDP dissociation inhibitor beta P50395 GDI2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

RAC‐alpha serine/threonine‐protein kina P31749 AKT1 10.1161/CIRCRESAHA.112.300735 Immuno descending thoracic 61.3 B aneurysm, dissection

RAC‐beta serine/threonine‐protein kinas P31751 AKT2 10.1161/CIRCRESAHA.112.300735 Immuno descending thoracic 61.3 B aneurysm, dissection

Radixin P35241 RDX 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ras GTPase‐activating‐like protein IQGAP P46940 IQGAP1 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Ras GTPase‐activating‐like protein IQGAP Q13576 IQGAP2 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement



Ras suppressor protein 1 Q15404 RSU1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Ras‐related C3 botulinum toxin substrate P63000 RAC1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ras‐related protein Rab‐10 P61026 RAB10 10.1002/prca.201200064 Mass Spec

Ras‐related protein Rab‐11A P62491 RAB11A 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Ras‐related protein Rab‐7a P51149 RAB7A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ras‐related protein Rap‐1A P62834 RAP1A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ras‐related protein Rap‐1b P61224 RAP1B 10.1002/prca.201200064 Mass Spec

Ras‐related protein R‐Ras P10301 RRAS 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Receptor‐interacting serine/threonine‐p Q13546 RIPK1 10.1161/CIRCRESAHA.116.304899 Immuno abdominal media

Receptor‐interacting serine/threonine‐p Q9Y572 RIPK3 10.1161/CIRCRESAHA.116.304899 Immuno abdominal media augmented in aneurysm

Receptor‐type tyrosine‐protein phosphat Q13332 PTPRS 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Renin receptor O75787 ATP6AP2

10.1016/j.atherosclerosis.2009.01.0

03 1 Immuno 50 B autopsy CV healthy

augmented in 

atherosclerosis

Resistin Q9HD89 RETN

10.1152/ajpheart.00431.2009, 

10.1074/mcp.M110.001693 2 Immuno;Mass Spascending media valve replacement

augmented in 

atherosclerosis

Reticulon‐4 Q9NQC3 RTN4

10.1161/ATVBAHA.107.140913, 

10.1002/prca.201200064 2 Immuno;Mass Spascending

deceased in atherosclerotic 

arteries

Retinal dehydrogenase 1 P00352 ALDH1A1 10.1074/mcp.M111.008128, 10.1016 3 Mass Spec

abdominal, 

ascending 37.5,53.91B valve replacement

decreased in abdominal 

aneurysm

Retinitis pigmentosa 1‐like 1 protein Q8IWN7 RP1L1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Retinoic acid receptor responder 

protein 2 Q99969 RARRES2

20145358, 10.1186/1471‐2261‐14‐

56 2 Immuno abdominal

media;periaortic 

adipose tissue

augmented in 

atherosclerosis, 

hypertension and aging, 

presence in periaortic fat

Rho GDP‐dissociation inhibitor 1 P52565 ARHGDIA 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Rho GDP‐dissociation inhibitor 2 P52566 ARHGDIB 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Rho GTPase‐activating protein 1 Q07960 ARHGAP1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Rho‐related GTP‐binding protein RhoC P08134 RHOC 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Ribonuclease inhibitor P13489 RNH1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

RNA cytidine acetyltransferase Q9H0A0 NAT10 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

RNA‐binding motif protein, X chromosom P38159 RBMX 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Runt‐related transcription factor 2 Q13950 RUNX2 10.1093/ndt/gfp137 Immuno intima;media 68 B

augmented in calcified 

aorta, 10.1038/sj.ki.5002353 

says that there's no CBFA1 

in control aorta

S‐adenosylmethionine synthase isoform  Q00266 MAT1A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Scavenger receptor cysteine‐rich type 1 p Q86VB7 CD163

10.14670/HH‐11‐691, 

10.1016/j.ijcard.2015.08.053 2 Immuno

ascending, 

abdominal intima 61.6 B

augmented in aneurysm or 

not

Sclerostin Q9BQB4 SOST

10.1074/mcp.M111.008128, 

10.1074/mcp.M110.001693 2 Immuno;Mass Spascending intima 37.5 B valve replacement

not detected in abdominal 

aneurysm

Secernin‐1 Q12765 SCRN1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Secreted frizzled‐related protein 1 Q8N474 SFRP1

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 2 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Secreted frizzled‐related protein 3 Q92765 FRZB 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Selenium‐binding protein 1 Q13228 SELENBP1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Sepiapterin reductase P35270 SPR 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Septin‐11 Q9NVA2 SEPT11 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Septin‐2 Q15019 SEPT2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Septin‐7 Q16181 SEPT7 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Septin‐9 Q9UHD8 SEPT9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serine protease HTRA1 Q92743 HTRA1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Serine/arginine‐rich splicing factor 1 Q07955 SRSF1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serine/threonine‐protein kinase ATR Q13535 ATR 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serine/threonine‐protein phosphatase 2 P30153 PPP2R1A 10.1002/prca.201200064 Mass Spec

Serine/threonine‐protein phosphatase 2 Q15257 PPP2R4 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serine/threonine‐protein phosphatase 5 P53041 PPP5C 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serotransferrin P02787 TF 10.1074/mcp.M112.021873, 10.1074 5 Immuno;Mass Spascending, abdominal 37.5,64.9 B,M valve replacement

Serpin A12 Q8IW75 SERPINA12 20145358 1 Immuno abdominal

periaortic 

adipose tissue autopsy CV healthy

augmented in 

atherosclerosis

Serpin B6 P35237 SERPINB6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serpin H1 P50454 SERPINH1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Serum albumin P02768 ALB 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

Serum amyloid P‐component P02743 APCS

10.1074/mcp.M112.021873, 

10.1161/CIRCULATIONAHA.108.843

516, 10.1074/mcp.M110.001693, 

10.1002/prca.201200064, 

10.1074/mcp.M111.008128 5 Mass Spec ascending 60, 37.5 B valve replacement

augmented in abdominal 

aneurysm and in BAV 

dilation, or decreased in 

Marfan aneurysm

S‐formylglutathione hydrolase P10768 ESD 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

SH3 and PX domain‐containing protein 2 A1X283 SH3PXD2B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

SH3 domain‐binding glutamic acid‐rich‐li O75368 SH3BGRL 10.1074/mcp.M111.008128, 10.1002 2 Mass Spec 37.5 B valve replacement

SH3 domain‐binding glutamic acid‐rich‐li Q9H299 SH3BGRL3 10.1002/prca.201200064, 10.1074/m 2 Mass Spec ascending

Signal transducer and activator of transc P42224 STAT1 10.1016/j.jvs.2009.11.075 Immuno abdominal augmented in aneurysm

Signal transducer and activator of transc P40763 STAT3 10.1016/j.yjmcc.2015.08.014 Immuno

activated in abdominal 

aneurysm

Smoothelin P53814 SMTN 10.1074/mcp.M111.008128, 10.1161 4 Immuno;Mass Spascending intima;media 37.5,39.7 B valve replacement

augmented in Marfan 

aneurysm

Somatomedin‐B and thrombospondin ty Q8IVN8 SBSPON 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Sorbin and SH3 domain‐containing prote Q9BX66 SORBS1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Sorbin and SH3 domain‐containing prote O94875 SORBS2 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Sortilin Q99523 SORT1 10.1371/journal.pone.0084969 Immuno intima 67

augmented in 

fibroatheromatous plaque

Sorting nexin‐18 Q96RF0 SNX18 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Sorting nexin‐3 O60493 SNX3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

SPARC P09486 SPARC 10.1161/hq1201.100229 Immuno abdominal adventitia;media

prominent expression in 

foam cells in the lipid core 

of atheroma

SPARC‐like protein 1 Q14515 SPARCL1 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

SPARC‐related modular calcium‐binding  Q9H3U7 SMOC2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Spectrin alpha chain, non‐erythrocytic 1 Q13813 SPTAN1

10.1161/CIRCULATIONAHA.108.843

516, 10.1074/mcp.M111.008128, 

10.1074/mcp.M110.001693 3 Immuno;Mass Spascending, abdominal 60,37.5 B valve replacement

increased fragmentation in 

MF and BAV asc aneurysm

Spectrin beta chain, non‐erythrocytic 1 Q01082 SPTBN1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Splicing factor, proline‐ and glutamine‐ric P23246 SFPQ 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Spondin‐1 Q9HCB6 SPON1 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

not detected in abdominal 

aneurysm

Src substrate cortactin Q14247 CTTN 10.1002/prca.201200064 Mass Spec

Staphylococcal nuclease domain‐contain Q7KZF4 SND1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending valve replacement

Steryl‐sulfatase P08842 STS 10.1016/S0002‐9440(10)63492‐X Immuno abdominal media 57.7 B

varies depending on 

atherosclerotic stage

Stress‐70 protein, mitochondrial P38646 HSPA9 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Stress‐induced‐phosphoprotein 1 P31948 STIP1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Stromal cell‐derived factor 1 P48061 CXCL12 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

Stromelysin‐1 P08254 MMP3 10.14670/HH‐11‐691, 10.1161/01.RE 4 Immuno ascending media 61.6, 51, 5 B augmented in aneurysm

Succinate dehydrogenase [ubiquinone] f P31040 SDHA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Succinate dehydrogenase [ubiquinone] ir P21912 SDHB 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Superoxide dismutase [Cu‐Zn] P00441 SOD1 10.1074/mcp.M111.008128, 10.1016 5 Immuno;Mass Spascending intima;media 37.5,47.4,6M,B

autopsy CV 

healthy;valve 

replacement decreased in dissection



Superoxide dismutase [Mn], 

mitochondrial P04179 SOD2 10.1074/mcp.M111.008128, 10.1093 3 Immuno;Mass Spascending intima;media 37.5,68 B valve replacement augmented in calcified aorta

Supervillin O95425 SVIL 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Synaptic vesicle membrane protein VAT‐ Q99536 VAT1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Synaptopodin Q8N3V7 SYNPO 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Synaptopodin‐2 Q9UMS6 SYNPO2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Synemin O15061 SYNM 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Talin‐1 Q9Y490 TLN1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Target of Nesh‐SH3 Q7Z7G0 ABI3BP 10.1074/mcp.M110.001693, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

T‐complex protein 1 subunit gamma P49368 CCT3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

T‐complex protein 1 subunit theta P50990 CCT8 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Tenascin P24821 TNC

10.1111/j.1440‐1827.2011.02699.x, 

10.1074/mcp.M110.001693, 

10.1074/mcp.M111.008128 3 Immuno;Mass Sp

abdominal, 

ascending media 37.5 B

autopsy CV 

healthy;valve 

replacement

increased in abdominal 

aneurysm, 16377578 says 

there's no tenascin in 

normal aortae

Tenascin‐X P22105 TNXB 10.1161/CIRCULATIONAHA.104.5138 3 Immuno;Mass Spascending adventitia;intima;m37.5 B valve replacement decreased in aneurysm

Tensin‐1 Q9HBL0 TNS1 10.1002/prca.201200064, 10.1074/m 2 Mass Spec ascending 37.5 B valve replacement

Testin Q9UGI8 TES 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Tetranectin P05452 CLEC3B 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

TGF‐beta receptor type‐1 P36897 TGFBR1 10.1024/0301‐1526/a000133 Immuno

attenuated in Marfan 

syndrome

Thioredoxin P10599 TXN 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Thioredoxin domain‐containing protein 5 Q8NBS9 TXNDC5 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Thioredoxin reductase 1, cytoplasmic Q16881 TXNRD1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Thioredoxin‐like protein 1 O43396 TXNL1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Thrombomodulin P07204 THBD 10.1161/ATVBAHA.115.305529 Immuno intima

in abdominal aneurysm 

switches to tunica media

Thrombopoietin P40225 THPO 10.1016/j.jvs.2006.11.020 Immuno abdominal 55 B

Thrombospondin‐1 P07996 THBS1 10.1002/prca.201200064, 10.1093/c 4 Immuno;Mass Spascending adventitia;media 51, 37.5 B valve replacement augmented in aneurysm

Thrombospondin‐2 P35442 THBS2

10.1093/cvr/cvu196, 

10.1002/prca.201200064 2 Immuno;Mass Spascending media

augmented in aneurysm, 

10.1074/mcp.M111.008128 

says there's no 

thrombospondin‐2 in 

control ascending aorta

Thymidine phosphorylase P19971 TYMP 10.1093/cvr/cvu196 Immuno ascending media 51 B

augmented in aneurysm, 

not sure if control aorta has 

it because suppl info is not 

available online

Thymosin beta‐4 P62328 TMSB4X 10.1016/j.jprot.2015.06.005 1 Immuno ascending intima;media 76 B autopsy CV healthy

overexpression in 

atherosclerosis

Tissue factor P13726 F3 10.1093/cvr/cvu196 Immuno ascending adventitia;media 51 B

aneurysm, not sure if 

control aorta has it because 

suppl info is not available 

online

Tissue factor pathway inhibitor 2 P48307 TFPI2 10.1161/hq0102.101842 Immuno intima

augmented in 

atherosclerotic tissue

Tissue‐type plasminogen activator P00750 PLAT 10.1097/01.LAB.0000073127.46392.9D Immuno ascending 51.1

Titin Q8WZ42 TTN 10.1074/mcp.M111.008128, 10.1002 2 Mass Spec ascending 37.5 B valve replacement

Toll‐like receptor 3 O15455 TLR3 10.1016/j.atherosclerosis.2015.06.014 Immuno infrarenal media

augmented in abdominal 

aneurysm

Toll‐like receptor 4 O00206 TLR4 10.1016/j.atherosclerosis.2015.06.01 3 Immuno infrarenal media

augmented in abdominal 

aneurysm

Transaldolase P37837 TALDO1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Transcription activator BRG1 P51532 SMARCA4 10.1093/ejcts/ezu215 Immuno media

augmented in thoracic 

aneurysm

Transcription factor SOX‐9 P48436 SOX9 10.1093/cvr/cvw082 Immuno abdominal media

decreased in abdominal 

aneurysm, 

10.1038/sj.ki.5002353 says 

there's no sox9 in control 

and it is present in calcified 

aorta

Transcription initiation factor TFIID subu Q7Z7C8 TAF8 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Transcriptional repressor p66‐beta Q8WXI9 GATAD2B 10.1074/mcp.M111.008128 Mass Spec ascending 37.5 B valve replacement

Transferrin receptor protein 1 P02786 TFRC 10.1161/ATVBAHA.115.305586, 10.1 2 Immuno ascending, abdomi media 74, 64.9 B,M valve replacement increased in aneurysm

Transforming growth factor beta‐1 P01137 TGFB1 10.1093/cvr/cvu196, 10.1093/ndt/gf 5 Immuno ascending, thoracicintima;media 51, 68 B

augmented in CDK patients, 

in aneurysm and in 

cytoplasm of Marfan 

syndrome

Transforming growth factor beta‐1‐

induced transcript 1 protein O43294 TGFB1I1 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Transforming growth factor beta‐2 P61812 TGFB2 10.1002/path.2516 Immuno ascending

Transforming growth factor beta‐3 P10600 TGFB3 10.1002/path.2516 Immuno ascending

Transforming growth factor‐beta‐

induced protein ig‐h3 Q15582 TGFBI 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

augmented in abdominal 

aneurysm

Transgelin Q01995 TAGLN

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1161/CIRCULATIONAHA.108.843

516, 

10.1161/ATVBAHA.114.304412, 

10.1016/j.jtcvs.2009.07.075, 

10.1002/prca.201200064, 

10.1074/mcp.M110.001693 7 Immuno;Mass Spascending media 37.5,60 B

CABG;valve 

replacement

decreased in unknown 

aneurysm. Increased in BAV 

asc dilation. Not affected in 

Marfan aneurysm or 

decreased

Transgelin‐2 P37802 TAGLN2 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

asc dilation

Transitional endoplasmic reticulum ATPa P55072 VCP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Transketolase P29401 TKT 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Transmembrane protein 43 Q9BTV4 TMEM43 10.1002/prca.201200064 Mass Spec

Transthyretin P02766 TTR 10.1074/mcp.M112.021873, 10.1074 4 Immuno;Mass Spascending intima 37.5 B valve replacement

decreased in BAV asc 

dilation

Trifunctional enzyme subunit alpha, mito P40939 HADHA 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Trifunctional enzyme subunit beta, mitoc P55084 HADHB 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Triosephosphate isomerase P60174 TPI1 10.1074/mcp.M111.008128, 10.1016 4 Immuno;Mass Spabdominal, ascending 37.5,53.91B valve replacement

decreased in abdominal 

aneurysm

Tropomyosin alpha‐1 chain P09493 TPM1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Tropomyosin alpha‐4 chain P67936 TPM4 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Tropomyosin beta chain P07951 TPM2 10.1074/mcp.M112.021873, 10.1074 5 Mass Spec abdominal, ascending 37.5,53.91B valve replacement

augmented in TAV and BAV 

asc dilation

Trypsin‐3 P35030 PRSS3 10.1002/prca.201200064 Mass Spec

Tryptase alpha/beta‐1 Q15661 TPSAB1 10.1161/CIRCRESAHA.111.243758, 1 4 Immuno;Mass Spdescending thoraci adventitia 41.9, 44, 3 B valve replacement

augmented in abdominal 

aneurysm and advanced 

atherosclerosis

Tubulin alpha‐1A chain Q71U36 TUBA1A 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Tubulin alpha‐1B chain P68363 TUBA1B 10.1002/prca.201200064, 10.1074/m 2 Mass Spec ascending valve replacement

Tubulin alpha‐1C chain Q9BQE3 TUBA1C 10.1002/prca.201200064 Mass Spec

Tubulin alpha‐4A chain P68366 TUBA4A 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Tubulin beta chain P07437 TUBB 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement

increased in TAV and BAV 

dilation

Tubulin beta‐1 chain Q9H4B7 TUBB1 10.1002/prca.201200064 Mass Spec

Tubulin beta‐2A chain Q13885 TUBB2A 10.1074/mcp.M111.008128, 10.1002 2 Mass Spec 37.5 B valve replacement

Tubulin beta‐4A chain P04350 TUBB4A 10.1002/prca.201200064 Mass Spec

Tubulin beta‐4B chain P68371 TUBB4B 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Tubulin beta‐6 chain Q9BUF5 TUBB6 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Tubulointerstitial nephritis antigen‐like Q9GZM7 TINAGL1 10.1074/mcp.M112.021873, 10.1074 4 Mass Spec ascending 37.5 B valve replacement



Tumor necrosis factor P01375 TNF 10.1016/j.jvs.2012.09.062, 10.1161/C 5 Immuno abdominal, infra‐reintima;media 68, 59.5 B other;unknown

augmented in calcified aorta 

and abdominal aneurysm

Tumor necrosis factor ligand superfamily P50591 TNFSF10 10.1016/j.bbrc.2007.03.209 Immuno

Tumor necrosis factor ligand superfamily O14788 TNFSF11 10.1097/HJH.0b013e3282f4b3d0, 10 3 Immuno ascending, abdomi intima;media 59, 68 M, B

Tumor necrosis factor receptor superfam O00220 TNFRSF10A 10.1016/j.bbrc.2007.03.209 Immuno

Tumor necrosis factor receptor 

superfamily member 11A Q9Y6Q6 TNFRSF11A 10.1093/ndt/gfp137 Immuno intima;media 68 B augmented in calcified aorta

Tumor necrosis factor receptor 

superfamily member 11B O00300 TNFRSF11B

10.1161/CIRCULATIONAHA.104.464

727, 19351609, 

10.1016/j.bbrc.2007.03.209, 

10.1093/ndt/gfp137, 

10.1161/hq1201.100229 5 Immuno thoracic, abdominaintima;media 68 B

augmented in 

atherosclerosis, 

decreased/augmented in 

abdominal aneurysm

Type‐1 angiotensin II receptor P30556 AGTR1

10.1161/HYPERTENSIONAHA.107.0

89409, 

10.1161/01.CIR.0000035655.45453.

D2, 

10.1016/j.atherosclerosis.2009.01.0

03 3 Immuno ascending 20, 50 M, B autopsy CV healthy

augmented in abdominal 

aneurysm,  in 

atherosclerosis and with 

aging

Type‐2 angiotensin II receptor P50052 AGTR2

10.1016/j.atherosclerosis.2009.01.0

03 1 Immuno 50 B autopsy CV healthy

augmented in abdominal 

aneurysm and 

atherosclerosis

Ubiquitin carboxyl‐terminal hydrolase iso P09936 UCHL1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Ubiquitin‐40S ribosomal protein S27a P62979 RPS27A 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ubiquitin‐conjugating enzyme E2 N P61088 UBE2N 10.1002/prca.201200064 Mass Spec

Ubiquitin‐conjugating enzyme E2 variant Q15819 UBE2V2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Ubiquitin‐like modifier‐activating enzyme P22314 UBA1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

UMP‐CMP kinase P30085 CMPK1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Unconventional myosin‐Ic O00159 MYO1C 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Unconventional myosin‐Id O94832 MYO1D 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement

Unconventional myosin‐XVIIIb Q8IUG5 MYO18B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Urotensin‐2 O95399 UTS2

10.1016/j.atherosclerosis.2004.03.0

23 Immuno intima

augmented in aneurysm and 

in atherosclerosis

UTP‐‐glucose‐1‐phosphate uridylyltransf Q16851 UGP2 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

UV excision repair protein RAD23 homol P54727 RAD23B 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Vascular endothelial growth factor A P15692 VEGFA

10.3349/ymj.2000.41.1.68, 

10.1093/cvr/cvr080, 

10.1093/cvr/cvu196 3 Immuno ascending intima;media 28, 64, 51 B

augmented or diminished in 

abdominal aneurysm and 

atherosclerosis

Vasodilator‐stimulated phosphoprotein P50552 VASP 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Versican core protein P13611 VCAN 10.1002/prca.201200064, 10.1074/m 3 Mass Spec ascending 37.5 B valve replacement

decreased in abdominal 

aneurysm

Vimentin P08670 VIM

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128, 

10.1016/j.jvs.2011.10.033, 

10.1016/j.ejcts.2009.07.025, 

10.1002/prca.201200064, 

10.1093/cvr/cvt205, 

10.1074/mcp.M110.001693 7 Immuno;Mass Sp

abdominal, 

ascending media

53.91, 59, 

58, 53.91 B, M valve replacement

not affected in abdominal 

aneurysm, thoracic 

aneurysm, decreased in 

aneurysm and increased in 

dissection

Vinculin P18206 VCL 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

Vinexin O60504 SORBS3 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Vitamin D‐binding protein P02774 GC 10.1074/mcp.M111.008128, 10.1161 4 Mass Spec ascending 37.5,60 B valve replacement

decreased in Marfan 

aneurysm

Vitronectin P04004 VTN 10.1510/icvts.2010.238139, 10.1074 4 Immuno;Mass Spascending adventitia 37.5 B valve replacement

10.1074/mcp.M111.008128 

says there's no vitronectin in 

control ascending aorta

Voltage‐dependent anion‐selective chan P21796 VDAC1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Voltage‐dependent anion‐selective chan P45880 VDAC2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

von Willebrand factor P04275 VWF 10.1194/jlr.M042481, 10.1002/prca. 4 Immuno;Mass Spabdominal, ascend adventitia;intima;m56.3, 51 B augmented in aneurysm

von Willebrand factor A domain‐containi Q6PCB0 VWA1 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

WD repeat‐containing protein 1 O75083 WDR1 10.1074/mcp.M111.008128, 10.1002 3 Mass Spec ascending 37.5 B valve replacement

WNT1‐inducible‐signaling pathway prote O76076 WISP2 10.1074/mcp.M110.001693 Mass Spec ascending valve replacement

Xaa‐Pro dipeptidase P12955 PEPD 10.1186/1471‐2350‐12‐14 Immuno adventitia;media 73 M

Zinc‐alpha‐2‐glycoprotein P25311 AZGP1 10.1074/mcp.M111.008128, 10.1074 2 Mass Spec ascending 37.5 B valve replacement

Zyxin Q15942 ZYX 10.1074/mcp.M111.008128, 10.1074 3 Mass Spec ascending 37.5 B valve replacement
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Proteome list 



 



AORTIC ANEURYSM PROTEOME

Protein Name UniProt# Gene Name DOI or PMID #DOI
Experimental 

Evidence
Aorta location Wall Location Age Sex Aneurysm cause Relation to control

14‐3‐3 protein beta/alpha P31946 YWHAB 10.1074/mcp.M112.021873 Mass Spec ascending BAV, unknown

unknown aneurysm higher 

than in control

14‐3‐3 protein epsilon P62258 YWHAE 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

14‐3‐3 protein gamma P61981 YWHAG 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

14‐3‐3 protein theta P27348 YWHAQ 10.1074/mcp.M112.021873 Mass Spec ascending BAV, unknown

unknown aneurysm higher 

than in control

14‐3‐3 protein zeta/delta P63104 YWHAZ 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown higher than in control

2,4‐dienoyl‐CoA reductase, mitochondria Q16698 DECR1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

not in healthy aorta 

proteome

40S ribosomal protein S16 P62249 RPS16 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

40S ribosomal protein S19 P39019 RPS19 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

40S ribosomal protein S25 P62851 RPS25 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

40S ribosomal protein S3 P23396 RPS3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

40S ribosomal protein SA P08865 RPSA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60 kDa heat shock protein, mitochondria P10809 HSPD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S acidic ribosomal protein P0 P05388 RPLP0 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L11 P62913 RPL11 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L12 P30050 RPL12 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L18 Q07020 RPL18 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L23 P62829 RPL23 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L30 P62888 RPL30 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

60S ribosomal protein L7a P62424 RPL7A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

not in healthy aorta 

proteome

72 kDa type IV collagenase P08253 MMP2

10.1159/000339304, 

10.1016/j.jvs.2010.01.057, 

10.1016/j.angio.2014.12.001, 

10.1371/journal.pone.0070057, 

10.1111/eci.12618, 

10.1016/j.atherosclerosis.2013.10.0

35,10.1016/j.jtcvs.2009.07.075, 

10.1016/j.jvs.2012.09.062 , 

10.1016/S0002‐9440(10)64447‐1 10 Immuno

ascending, 

abdominal,thoraci

c

adventitia;inflam

ation 

regions;intima;m

edia;thrombus;w

all lysate

64,73,74,

67,71,63,

66.9 B,M sporadic, unknown higher than in control

78 kDa glucose‐regulated protein P11021 HSPA5 10.1139/Y09‐085, 10.1074/mcp.M11 2 Immuno;Mass Specabdominal >65,70 M,B

Acid ceramidase Q13510 ASAH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

not in healthy aorta 

proteome

Actin, alpha cardiac muscle 1 P68032 ACTC1 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M lower than in control

Actin, alpha skeletal muscle P68133 ACTA1

10.1016/j.ejcts.2009.07.025, 

10.1067/mva.2002.121124 2 Immuno;Mass Spec

ascending,abdomi

nal 56,67.2 B,M

abdominal lower than in 

control, ascending higher

Actin, aortic smooth muscle P62736 ACTA2

10.1161/ATVBAHA.114.304412, 

10.1093/cvr/cvt205, 

10.1093/cvr/cvu196, 

10.1161/ATVBAHA.115.305529, 

10.1111/j.1440‐1827.2011.02699.x, 

10.1042/CS20080235, 

10.1016/j.atherosclerosis.2011.06.0

08, 

10.1016/j.clinbiochem.2009.10.015, 

10.1074/mcp.M111.008128 10 Immuno;Mass Spec

ascending,abdomi

nal media

73,41,63,

54,60,70,

48.3,>65 B,M

Marfan, BAV, 

unknown, non‐

Marfan non‐BAV

same or lower than in 

control

Actin, cytoplasmic 1 P60709 ACTB 10.1016/j.jvs.2011.10.033, 10.1067/m 5 Immuno;Mass Specabdominal 69,67.2,73B,M not Marfan same as in control

Actin, gamma‐enteric smooth muscle P63267 ACTG2 10.1016/j.jvs.2008.08.097, 10.1016/j 2 Mass Spec abdominal,ascending 73.5,48.3 B BAV, unknown not in healthy proteome

Actin‐related protein 2 P61160 ACTR2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Actin‐related protein 2/3 complex subun O15143 ARPC1B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Actin‐related protein 2/3 complex subun P59998 ARPC4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Actin‐related protein 3 P61158 ACTR3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Adenylate kinase isoenzyme 1 P00568 AK1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Adenylosuccinate lyase P30566 ADSL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Adenylyl cyclase‐associated protein 1 Q01518 CAP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Adhesion G‐protein coupled receptor G4 Q8IZF6 ADGRG4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Adipocyte enhancer‐binding protein 1 Q8IUX7 AEBP1 10.1074/mcp.M111.008128 Immuno;Mass Specabdominal

inflamation 

regions;media >65 M higher than in control

Aggrecan core protein P16112 ACAN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Agrin O00468 AGRN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Alcohol dehydrogenase [NADP(+)] P14550 AKR1A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Alcohol dehydrogenase 1B P00325 ADH1B 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M lower than in control

Aldehyde dehydrogenase, 

mitochondrial P05091 ALDH2 10.1016/j.jvs.2011.10.033 1 Mass Spec abdominal 69 B

not Marfan, not 

inflammatory 

disease lower than in control

Alpha‐1‐acid glycoprotein 1 P02763 ORM1 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M

Alpha‐1‐acid glycoprotein 2 P19652 ORM2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Alpha‐1‐antichymotrypsin P01011 SERPINA3 10.3892/ijmm.2012.994, 10.1074/mc 2 Immuno;Mass Specabdominal adventitia;intima >65 M lower than in control

Alpha‐1‐antitrypsin P01009 SERPINA1

10.3892/ijmm.2012.985, 

10.1016/j.atherosclerosis.2011.05.0

02, 10.1016/j.ejcts.2009.07.025, 

10.1007/s00595‐012‐0480‐6, 

10.1074/mcp.M111.008128 5 Immuno;Mass Spec

ascending, 

abdominal

thrombus;wall 

lysate

70,56,68,

>65 B,M

abdominal aneurysm higher 

than in control, ascending 

lower than or same as in 

control

Alpha‐1B‐glycoprotein P04217 A1BG 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Alpha‐2‐antiplasmin P08697 SERPINF2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Alpha‐2‐HS‐glycoprotein P02765 AHSG 10.3892/ijmm.2012.985, 10.1074/mc 2 Immuno;Mass Specabdominal,thoracic >65 M

Alpha‐2‐macroglobulin P01023 A2M 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Alpha‐actinin‐1 P12814 ACTN1

10.3892/ijmm.2012.985, 

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128 3 Mass Spec

ascending, 

thoracic,abdomin

al >65 M BAV, unknown

higher than in control, 

higher or lower than control 

when it is BAV aneurysm

Alpha‐actinin‐4 O43707 ACTN4 10.1074/mcp.M112.021873, 10.1016 3 Mass Spec ascending, abdominal 48.3,>65 B,M BAV, unknown higher than in control

Alpha‐crystallin B chain P02511 CRYAB 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Alpha‐enolase P06733 ENO1 10.3892/ijmm.2012.985, 10.1016/j.jv 7 Mass Spec

ascending, 

thoracic,abdomin

al

69,56,68,

48.3,>65 B,M

not Marfan,BAV, 

unkown

lower or higher than in 

control or the same

Angiogenin P03950 ANG 10.1016/j.jvs.2006.11.020, 10.3892/i 2 Immuno;Mass Specthoracic,abdominal 74 M

unknown,atheroscle

rosis same as in control

Angiopoietin‐1 Q15389 ANGPT1 10.1093/cvr/cvu196 1 Immuno ascending adventitia;media 54 B

Marfan,BAV,degener

ative higher than in control

Angiopoietin‐2 O15123 ANGPT2 10.1093/cvr/cvu196 1 Immuno ascending adventitia;media 54 B

Marfan,BAV,degener

ative higher than in control

Angiopoietin‐related protein 2 Q9UKU9 ANGPTL2 10.1161/ATVBAHA.112.247866 Immuno abdominal

inflamation 

regions 74 B

Angiotensinogen P01019 AGT 10.1016/j.atherosclerosis.2009.01.003 Immuno abdominal 70.5 M higher than in control

Ankyrin repeat domain‐containing prote Q9UPS8 ANKRD26 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Annexin A1 P04083 ANXA1 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV, unknown

Annexin A2 P07355 ANXA2 10.1016/j.jvs.2011.10.033, 10.1007/s 3 Mass Spec abdominal 69,68,>65 B,M not Marfan same as in control or lower

Annexin A4 P09525 ANXA4 10.1510/icvts.2010.238139, 10.1074 3 Mass Spec ascending, abdominal 70,>65 B,M BAV,unknown

Annexin A5 P08758 ANXA5 10.1016/j.jvs.2011.10.033, 10.1074/m 4 Mass Spec ascending, abdominal 69,68,>65 B,M

not Marfan, 

BAV,unknown lower than in control

Annexin A6 P08133 ANXA6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Antithrombin‐III P01008 SERPINC1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

AP‐2 complex subunit alpha‐1 O95782 AP2A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M



Apolipoprotein A‐I P02647 APOA1 10.3892/ijmm.2012.985, 10.1510/icv 5 Mass Spec

ascending, 

abdominal

70,48.3,3

8,>65 B,M

Marfan, BAV, 

unknown

higher or lower than in 

control

Apolipoprotein A‐II P02652 APOA2 10.3892/ijmm.2012.985 1 Mass Spec abdominal not in healthy proteome

Apolipoprotein A‐IV P06727 APOA4 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M same as in control

Apolipoprotein B‐100 P04114 APOB 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M higher than in control

Apolipoprotein C‐III P02656 APOC3 10.3892/ijmm.2012.985 1 Mass Spec abdominal,thoracic not in healthy proteome

Apolipoprotein D P05090 APOD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M higher than in control

Apolipoprotein E P02649 APOE 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M higher than in control

Apolipoprotein L1 O14791 APOL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Apolipoprotein(a) P08519 LPA 10.3892/ijmm.2012.985 1 Mass Spec abdominal not in healthy proteome

Apoptosis regulator BAX Q07812 BAX 10.1139/Y09‐085 1 Immuno abdominal 70 B not in healthy proteome

Apoptosis regulator Bcl‐2 P10415 BCL2 10.1139/Y09‐085 1 Immuno abdominal 70 B not in healthy proteome

Arachidonate 5‐lipoxygenase P09917 ALOX5 10.1007/s00109‐008‐0413‐4 1 Immuno abdominal media not in healthy proteome

Armadillo repeat‐containing X‐linked pro Q9P291 ARMCX1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Asporin Q9BXN1 ASPN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Ataxin‐7‐like protein 1 Q9ULK2 ATXN7L1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

ATP synthase subunit alpha, mitochondr P25705 ATP5A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

ATP synthase subunit beta, mitochondria P06576 ATP5B 10.1016/j.jvs.2011.10.033, 10.1074/m 2 Mass Spec abdominal 69,>65 B,M not Marfan same as in control

ATP synthase subunit gamma, mitochond P36542 ATP5C1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Band 3 anion transport protein P02730 SLC4A1 10.3892/ijmm.2012.985 1 Mass Spec abdominal

Basement membrane‐specific heparan su P98160 HSPG2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Basigin P35613 BSG 10.2353/ajpath.2009.080845, 10.101 3 Immuno ascending,abdominintima;media 71,67,60 B,M

non‐Marfan non‐

BAV, unknown higher than in control

B‐cell receptor CD22 P20273 CD22 10.1186/1471‐2350‐12‐14 1 Immuno abdominal adventitia 73 M not in healthy proteome

Bcl‐2 homologous antagonist/killer Q16611 BAK1 10.1139/Y09‐085 1 Immuno abdominal 70 B not in healthy proteome

Beta‐2‐glycoprotein 1 P02749 APOH 10.3892/ijmm.2012.985, 10.1510/icv 3 Mass Spec abdominal 70,>65 B,M

Biglycan P21810 BGN 10.3892/ijmm.2012.985, 10.1002/pa 3 Immuno;Mass Specascending, abdomi media >65 M

Marfan,BAV,degener

ative same as in control

Biliverdin reductase A P53004 BLVRA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

B‐lymphocyte antigen CD20 P11836 MS4A1 10.1371/journal.pone.0053882, 10.1 9 Immuno abdominal adventitia 69,73,66,7B,M

unknown, 

degenerative not in healthy proteome

Brain acid soluble protein 1 P80723 BASP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

BTB/POZ domain‐containing protein KCT Q96CX2 KCTD12 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

C4b‐binding protein alpha chain P04003 C4BPA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cadherin‐1 P12830 CDH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Cadherin‐13 P55290 CDH13 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Caldesmon Q05682 CALD1 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Calmodulin P62158 CALM1 10.1016/j.clinbiochem.2009.10.015, 10.1074/ Mass Spec ascending, abdominal 48.3,>65 B,M BAV, unknown

Calpain‐1 catalytic subunit P07384 CAPN1 10.14670/HH‐11‐691 1 Immuno ascending media 64 B not Marfan higher than in control

Calpain‐2 catalytic subunit P17655 CAPN2

10.14670/HH‐11‐691, 

10.1161/CIRCULATIONAHA.108.843

516 2 Immuno ascending media 64,38,57 B

not Marfan, 

Marfan,BAV same as in control

Calpastatin P20810 CAST 10.14670/HH‐11‐691 1 Immuno ascending media 64 B not Marfan higher than in control

Calponin‐1 P51911 CNN1 10.3892/ijmm.2012.985, 10.1161/AT 5 Immuno;Mass Specascending, abdominal

41,48.3,3

8,>65 B,M

Marfan,BAV,unknow

n higher than in control

Calponin‐3 Q15417 CNN3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Calreticulin P27797 CALR 10.1510/icvts.2010.238139, 10.1016 3 Mass Spec ascending, abdominal 70,48.3,>6B,M BAV,unknown same as in control

Carbonic anhydrase 1 P00915 CA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Carbonic anhydrase 2 P00918 CA2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Carbonic anhydrase 9 Q16790 CA9 10.3109/14017431.2016.1158416 Immuno ascending 64 B not in healthy proteome

Carbonyl reductase [NADPH] 1 P16152 CBR1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Carboxypeptidase B2 Q96IY4 CPB2 10.3892/ijmm.2012.985 1 Mass Spec abdominal not in healthy proteome

Carcinoembryonic antigen‐related cell ad P13688 CEACAM1 10.1016/j.atherosclerosis.2011.05.00 1 Immuno abdominal thrombus 70 B not in healthy proteome

Carcinoembryonic antigen‐related cell ad P31997 CEACAM8 10.1093/cvr/cvp048 1 Immuno abdominal

adventitia;throm

bus 70 M degenerative not in healthy proteome

Cartilage acidic protein 1 Q9NQ79 CRTAC1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cartilage oligomeric matrix protein P49747 COMP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Caspase‐3 P42574 CASP3

10.1139/Y09‐085, 

10.1002/path.4534, 

10.1016/j.jtcvs.2009.07.075 3 Immuno

ascending,abdomi

nal 70 B

not connective 

disorders, unknown higher than in control

Catalase P04040 CAT 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Catenin alpha‐1 P35221 CTNNA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cathelicidin antimicrobial peptide P49913 CAMP 10.1161/ATVBAHA.116.307786 1 Immuno abdominal not in healthy proteome

Cathepsin B P07858 CTSB 10.1016/j.jvs.2007.08.015, 10.1074/m 2 Immuno;Mass Specabdominal 73,>65 B,M

Cathepsin D P07339 CTSD

10.3892/ijmm.2012.985, 

10.1016/j.atherosclerosis.2009.01.0

03, 10.1074/mcp.M111.008128 3 Immuno;Mass Specabdominal

adventitia;inflam

ation regions 70.5,>65 M same as in control

Cathepsin G P08311 CTSG 10.1016/j.atherosclerosis.2009.01.00 2 Immuno;Mass Specabdominal adventitia;media 70.5,>65 M higher than in control

Cathepsin K P43235 CTSK 10.1371/journal.pone.0053882, 10.1 4 Immuno abdominal 69,74,72.5B higher than in control

Cathepsin L1 P07711 CTSL 10.1016/j.jvs.2010.01.057, 10.2353/a 4 Immuno abdominal 74,72.5,73B higher than in control

Cathepsin S P25774 CTSS 10.1371/journal.pone.0053882, 10.1 5 Immuno;Mass Specabdominal 69,74,72.5B,M higher than in control

C‐C motif chemokine 15 Q16663 CCL15 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

C‐C motif chemokine 17 Q92583 CCL17 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

C‐C motif chemokine 2 P13500 CCL2

10.1371/journal.pone.0053882, 

10.1159/000362997, 

10.1016/j.jvs.2006.11.020, 

10.1161/CIRCULATIONAHA.108.806

505, 10.1007/s00109‐008‐0413‐4, 

10.1042/CS20070352, 

10.1093/cvr/cvu196 7 Immuno

ascending, 

abdominal

69,69,74,

73,72,54 B,M

unknown,atheroscle

rosis, 

Marfan,BAV,degener

ative higher than in control

C‐C motif chemokine 22 O00626 CCL22 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

C‐C motif chemokine 3 P10147 CCL3 10.1371/journal.pone.0053882 1 Immuno abdominal 69 B

C‐C motif chemokine 4 P13236 CCL4 10.1371/journal.pone.0053882, 10.1 3 Immuno abdominal 69,73,72 B not in healthy proteome

C‐C motif chemokine 5 P13501 CCL5 10.1159/000362997, 10.1016/j.jvs.20 3 Immuno abdominal

adventitia;throm

bus 69,74,70 M,B

degenerative,athero

sclerosis higher than in control

C‐C motif chemokine 7 P80098 CCL7 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

C‐C motif chemokine 8 P80075 CCL8 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

CCAAT/enhancer‐binding protein alpha P49715 CEBPA 10.1161/CIRCULATIONAHA.108.8065 3 Immuno abdominal 73,74,72 B,M not in healthy proteome

CCAAT/enhancer‐binding protein beta P17676 CEBPB 10.1161/CIRCULATIONAHA.108.8065 3 Immuno abdominal 73,74,72 B,M not in healthy proteome

CCAAT/enhancer‐binding protein delta P49716 CEBPD 10.1161/CIRCULATIONAHA.108.8065 3 Immuno abdominal 73,74,72 B,M not in healthy proteome

CD5 antigen‐like O43866 CD5L 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Ceruloplasmin P00450 CP 10.3892/ijmm.2012.985, 10.1074/mc 2 Immuno;Mass Specabdominal >65 M higher than in control

Chloride intracellular channel protein 1 O00299 CLIC1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Chloride intracellular channel protein 4 Q9Y696 CLIC4 10.1074/mcp.M112.021873 Mass Spec ascending BAV, unknown

Chymase P23946 CMA1 10.1161/CIRCULATIONAHA.109.8496 3 Immuno;Mass Specabdominal adventitia;media

79,70.5,>

65 B,M higher than in control

Clathrin heavy chain 1 Q00610 CLTC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Clusterin P10909 CLU 10.1139/Y09‐085, 10.3892/ijmm.201 3 Immuno;Mass Specabdominal >65,70 M,B higher than in control

Coagulation factor IX P00740 F9 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M

Coagulation factor XIII B chain P05160 F13B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cofilin‐1 P23528 CFL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Coiled‐coil domain‐containing protein 80 Q76M96 CCDC80 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cold‐inducible RNA‐binding protein Q14011 CIRBP 10.1016/j.surg.2016.01.007 1 Immuno abdominal media 62 B higher than in control

Collagen alpha‐1(I) chain P02452 COL1A1 10.3892/ijmm.2012.985, 10.1016/j.e 5 Immuno;Mass Specascending,thoracic,media >65,41,70 M,B unknown, Marfan

same as or lower than in 

control

Collagen alpha‐1(III) chain P02461 COL3A1 10.3892/ijmm.2012.985, 10.1016/j.e 5 Immuno;Mass Spec

ascending,abdomi

nal >65,63,70 M,B

not Marfan, not 

BAV, unknown

lower or higher than in 

control

Collagen alpha‐1(IV) chain P02462 COL4A1 16377578, 10.1074/mcp.M111.0081 2 Immuno;Mass Specabdominal,ascending >65,56 M,B unknown,BAV same as in control

Collagen alpha‐1(VI) chain P12109 COL6A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Collagen alpha‐1(VII) chain Q02388 COL7A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Collagen alpha‐1(VIII) chain P27658 COL8A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Collagen alpha‐1(XI) chain P12107 COL11A1 10.1016/j.athoracsur.2009.04.030 Immuno ascending higher than in control

Collagen alpha‐1(XII) chain Q99715 COL12A1 10.1074/mcp.M111.008128 Immuno;Mass Specabdominal >65 M higher than in control



Collagen alpha‐1(XIV) chain Q05707 COL14A1 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M lower than in control

Collagen alpha‐1(XV) chain P39059 COL15A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Collagen alpha‐1(XVIII) chain P39060 COL18A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Collagen alpha‐1(XXI) chain Q96P44 COL21A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Collagen alpha‐2(I) chain P08123 COL1A2 10.3892/ijmm.2012.985, 10.1016/j.e 6 Immuno;Mass Specabdominal, thoraci media >65,72.5,7B, M unknown, Marfan

higher or lower than in 

control

Collagen alpha‐2(IV) chain P08572 COL4A2 10.1155/2014/760694, 10.1074/mcp 2 Immuno;Mass Specascending,abdominal >65 M

Marfan&related, 

unknown same as in control

Collagen alpha‐2(V) chain P05997 COL5A2 10.1016/j.athoracsur.2009.04.030, 1 2 Immuno;Mass Specascending,abdominal >65 M higher than in control

Collagen alpha‐2(VI) chain P12110 COL6A2 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M same as in control or higher

Collagen alpha‐2(VIII) chain P25067 COL8A2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Collagen alpha‐2(XI) chain P13942 COL11A2 10.1016/j.clinbiochem.2009.10.015,  2 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown not in healthy proteome

Collagen alpha‐3(VI) chain P12111 COL6A3 10.1510/icvts.2010.238139, 10.1074 2 Mass Spec abdominal 70,>65 M higher than in control

Collagen alpha‐4(IV) chain P53420 COL4A4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Collagenase 3 P45452 MMP13

10.1159/000228900, 

10.1016/j.atherosclerosis.2011.05.0

02, 10.1007/s10016‐004‐0050‐5, 

10.2353/ajpath.2009.080845, 

10.2353/ajpath.2007.060522 4 Immuno abdominal

inflamation 

regions;intima;m

edia;thrombus

71,70,71,

72.5 B,M

Complement C1q subcomponent subunit P02746 C1QB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement C1q subcomponent subunit P02747 C1QC 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Complement C1q tumor necrosis factor‐r Q9BXJ1 C1QTNF1 10.1093/eurheartj/ehv649 1 Immuno thoracic

Complement C1r subcomponent P00736 C1R 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement C1s subcomponent P09871 C1S 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement C2 P06681 C2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Complement C3 P01024 C3 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Complement C4‐A P0C0L4 C4A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement C5 P01031 C5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement component C6 P13671 C6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement component C7 P10643 C7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Complement component C8 alpha chain P07357 C8A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Complement component C8 beta chain P07358 C8B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement component C8 gamma cha P07360 C8G 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement component C9 P02748 C9 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M

Complement factor B P00751 CFB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement factor D P00746 CFD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Complement factor H P08603 CFH 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement factor H‐related protein 1 Q03591 CFHR1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Complement factor H‐related protein 2 P36980 CFHR2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

not in healthy aorta 

proteome

Complement factor H‐related protein 5 Q9BXR6 CFHR5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Complement factor I P05156 CFI 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Connective tissue growth factor P29279 CTGF 10.1177/1708538112472282, 10.101 3 Immuno ascending media 63,64 B

unkwnown, non‐

syndromic TAAD, 

not BAV higher than in control

Core histone macro‐H2A.1 O75367 H2AFY 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cortactin‐binding protein 2 Q8WZ74 CTTNBP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

C‐reactive protein P02741 CRP 10.1159/000362997 1 Immuno abdominal 69 B higher than in control

C‐type lectin domain family 11 member A Q9Y240 CLEC11A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

C‐type lectin domain family 4 member C Q8WTT0 CLEC4C 10.1161/ATVBAHA.116.307786 1 Immuno abdominal not in healthy proteome

C‐X‐C motif chemokine 10 P02778 CXCL10 10.1371/journal.pone.0053882 1 Immuno abdominal 69 B not in healthy proteome

C‐X‐C motif chemokine 5 P42830 CXCL5 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Cyclic AMP‐dependent transcription fact P18848 ATF4 10.1002/path.4534 1 Immuno thoracic

not connective 

disorders not in healthy proteome

Cystatin‐A P01040 CSTA 10.1016/j.jvs.2007.08.015 Immuno abdominal 73 B not in healthy proteome

Cystatin‐B P04080 CSTB 10.1016/j.jvs.2007.08.015, 10.1074/m 2 Immuno;Mass Specabdominal 73,>65 B,M

Cystatin‐C P01034 CST3 10.1016/j.jvs.2008.09.055, 10.2353/a 4 Immuno abdominal 75,72.5,71B lower than in control

Cysteine and glycine‐rich protein 1 P21291 CSRP1 10.3892/ijmm.2012.985, 10.1007/s0 2 Mass Spec abdominal,thoracic 68,>65 B,M lower than in control

Cysteine and glycine‐rich protein 2 Q16527 CSRP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Cysteine‐rich protein 2 P52943 CRIP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Cytochrome P450 1A1 P04798 CYP1A1 10.1055/s‐0034‐1367735 1 Immuno media 61 B

not BAV, not 

connective tissue 

disorder higher than in control

Cytochrome P450 2C19 P33261 CYP2C19 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Cytosol aminopeptidase P28838 LAP3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Decorin P07585 DCN 10.3892/ijmm.2012.985, 10.1002/pa 3 Immuno;Mass Specascending, abdomi

adventitia;intima;

media >65 M

Marfan,BAV,degener

ative

higher than in control or the 

same

Dedicator of cytokinesis protein 9 Q9BZ29 DOCK9 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Delta‐aminolevulinic acid dehydratase P13716 ALAD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Dermatopontin Q07507 DPT 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M same as in control

Desmin P17661 DES 10.1159/000339304 1 Immuno abdominal 73 B lower than in control

Desmoplakin P15924 DSP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Destrin P60981 DSTN 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M lower than in control

Dihydropyrimidinase‐related protein 2 Q16555 DPYSL2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Dihydropyrimidinase‐related protein 3 Q14195 DPYSL3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Disintegrin and metalloproteinase doma P78536 ADAM17 10.1042/CS20030189, 10.1016/j.athe 2 Immuno abdominal 72,70 B not in healthy proteome

DNA damage‐inducible transcript 3 

protein P35638 DDIT3 10.1002/path.4534 1 Immuno thoracic

not connective 

disorders not in healthy proteome

Dual specificity mitogen‐activated 

protein kinase kinase 1 Q02750 MAP2K1 10.1016/j.jamcollsurg.2012.06.414 1 Immuno abdominal

more phosphorilated in 

abdominal aneurysm than 

control

Dual specificity mitogen‐activated 

protein kinase kinase 2 P36507 MAP2K2 10.1016/j.jamcollsurg.2012.06.414 1 Immuno abdominal

more phosphorilated in 

abdominal aneurysm than 

control

Dynein heavy chain 2, axonemal Q9P225 DNAH2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

E3 ubiquitin‐protein ligase HUWE1 Q7Z6Z7 HUWE1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

E3 ubiquitin‐protein ligase PDZRN3 Q9UPQ7 PDZRN3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

E3 ubiquitin‐protein ligase UBR4 Q5T4S7 UBR4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Ecto‐NOX disulfide‐thiol exchanger 2 Q16206 ENOX2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

EF‐hand domain‐containing protein D2 Q96C19 EFHD2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

EGF‐containing fibulin‐like extracellular m Q12805 EFEMP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M Same as control

EGF‐like repeat and discoidin I‐like doma O43854 EDIL3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

EH domain‐containing protein 2 Q9NZN4 EHD2 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Elastin P15502 ELN

10.1016/j.ejvs.2015.03.021, 

10.1016/j.jvs.2012.09.062 2 Immuno abdominal media 70,66.9 B,M

ruptured aneurysm has less 

elastin than control

Elongation factor 1‐alpha 1 P68104 EEF1A1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Elongation factor 1‐gamma P26641 EEF1G 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Elongation factor 2 P13639 EEF2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

EMILIN‐1 Q9Y6C2 EMILIN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Endoglin P17813 ENG 10.1093/cvr/cvu196 1 Immuno ascending adventitia 54 B

Marfan,BAV,degener

ative lower than in control

Endoplasmin P14625 HSP90B1 10.1074/mcp.M112.021873, 10.1007 3 Mass Spec ascending, abdominal 68,>65 B,M BAV, unknown higher than in control

Eosinophil cationic protein P12724 RNASE3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Ephrin type‐A receptor 5 P54756 EPHA5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Epidermal growth factor Q6QBS2 EGF 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

ETS domain‐containing protein Elk‐1 P19419 ELK1 10.1093/cvr/cvt205 1 Immuno ascending 63 B not in healthy proteome

Extracellular superoxide dismutase [Cu‐Z P08294 SOD3 10.1074/mcp.M111.008128 Immuno;Mass Specabdominal >65 M lower than in control

F‐actin‐capping protein subunit alpha‐1 P52907 CAPZA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

F‐actin‐capping protein subunit beta P47756 CAPZB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

F‐box/LRR‐repeat protein 19 Q6PCT2 FBXL19 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Ferritin heavy chain P02794 FTH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ferritin light chain P02792 FTL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ferritin, mitochondrial Q8N4E7 FTMT 10.1159/000362997 1 Immuno abdominal 69 B higher than in control



Fibrillin‐1 P35555 FBN1 10.1074/mcp.M111.008128 1 Mass Spec abdominal >65 M higher than in control

Fibrinogen alpha chain P02671 FGA 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Fibrinogen beta chain P02675 FGB 10.3892/ijmm.2012.985, 10.1510/icv 4 Mass Spec abdominal,thoracic 70,>65 B,M

Fibrinogen gamma chain P02679 FGG 10.3892/ijmm.2012.985, 10.1074/mc 4 Mass Spec

ascending,thoraci

c,abdominal 68,>65 B,M BAV,unknown

unknown aneurysm higher 

than in control

Fibroblast growth factor 1 P05230 FGF1 10.1093/cvr/cvu196 1 Immuno ascending media 54 B

Marfan,BAV,degener

ative higher than in control

Fibrocystin P08F94 PKHD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Fibromodulin Q06828 FMOD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Fibronectin P02751 FN1 10.1016/j.ijcard.2011.08.079, 10.101 3 Immuno;Mass Specabdominal,ascendi media >65 M higher than in control

Fibulin‐1 P23142 FBLN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Fibulin‐5 Q9UBX5 FBLN5 10.3892/ijmm.2012.985, 10.1093/cv 3 Immuno;Mass Specabdominal,thoracic 70,>65 M lower than in control

Ficolin‐3 O75636 FCN3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Filamin‐A P21333 FLNA 10.3892/ijmm.2012.985, 10.1161/CI 3 Immuno;Mass Specascending, abdominal 38,>65 B,M Marfan higher than in control

Filamin‐B O75369 FLNB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Filamin‐binding LIM protein 1 Q8WUP2 FBLIM1 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown BAV higher than in control

Filamin‐C Q14315 FLNC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Four and a half LIM domains protein 1 Q13642 FHL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Four and a half LIM domains protein 2 Q14192 FHL2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Fructose‐bisphosphate aldolase A P04075 ALDOA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Fructose‐bisphosphate aldolase C P09972 ALDOC 10.1161/CIRCULATIONAHA.108.843516 Mass Spec ascending 38 B Marfan lower than in control

Galectin‐1 P09382 LGALS1 10.1074/mcp.M112.021873, 10.1016 3 Mass Spec

ascending, 

abdominal 48.3,>65 B,M BAV,unknown same as in control or higher

Galectin‐3 P17931 LGALS3 10.1016/j.atherosclerosis.2011.06.00 2 Immuno;Mass Specabdominal 70,>65 B,M

Galectin‐3‐binding protein Q08380 LGALS3BP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

GATOR complex protein NPRL2 Q8WTW4 NPRL2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Gelsolin P06396 GSN 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown higher than in control

Glia‐derived nexin P07093 SERPINE2 10.1161/ATVBAHA.113.301327, 10.1 2 Immuno;Mass Specascending, abdomi media 55, >65 B, M

Marfan, BAV, 

degenerative higher than in control

Glucose‐6‐phosphate isomerase P06744 GPI 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Glutamate dehydrogenase 1, mitochond P00367 GLUD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Glutathione peroxidase 1 P07203 GPX1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Glutathione peroxidase 3 P22352 GPX3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Glutathione S‐transferase omega‐1 P78417 GSTO1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Glutathione S‐transferase P P09211 GSTP1

10.3892/ijmm.2012.985, 10.1055/s‐

0034‐1367735 2 Immuno;Mass Specthoracic media 61 B

not BAV, not 

connective tissue 

disorder higher than in control

Glyceraldehyde‐3‐phosphate dehydroge P04406 GAPDH 10.1093/cvr/cvt205, 10.1016/j.jvs.20 7 Immuno;Mass Spec

ascending, 

abdominal

63,69,70,

68,>65 B,M

not Marfan,BAV, 

unknown

lower or higher than in 

control or the same

Glycogenin‐1 P46976 GYG1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Granulins P28799 GRN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Granulocyte colony‐stimulating factor P09919 CSF3 10.1371/journal.pone.0053882, 10.1 4 Immuno abdominal 69,74,73,7B,M

unknown,atheroscle

rosis not in healthy proteome

Granulocyte‐macrophage colony‐stimula P04141 CSF2 10.1016/j.jvs.2006.11.020, 10.1161/C 3 Immuno abdominal 74,73,72 B,M

unknown,atheroscle

rosis not in healthy proteome

Granzyme A P12544 GZMA 10.1161/CIRCULATIONAHA.108.8065 1 Immuno abdominal 73 B not in healthy proteome

Group 10 secretory phospholipase A2 O15496 PLA2G10 10.1016/j.atherosclerosis.2010.08.05 1 Immuno abdominal

Growth/differentiation factor 15 Q99988 GDF15 10.1159/000362997 1 Immuno abdominal 69 B higher than in control

Growth‐regulated alpha protein P09341 CXCL1 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Guanine nucleotide‐binding protein G(I)/ P62873 GNB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Guanine nucleotide‐binding protein G(I)/ P62879 GNB2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Guanine nucleotide‐binding protein G(o) P09471 GNAO1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Haptoglobin P00738 HP 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M

Haptoglobin‐related protein P00739 HPR 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Heat shock 70 kDa protein 1A P0DMV8 HSPA1A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heat shock cognate 71 kDa protein P11142 HSPA8 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heat shock protein beta‐1 P04792 HSPB1 10.3892/ijmm.2012.985, 10.1074/mc 4 Mass Spec ascending, abdominal 48.3,>65 B,M BAV, unknown

Heat shock protein beta‐6 O14558 HSPB6 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Heat shock protein HSP 90‐alpha P07900 HSP90AA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heat shock protein HSP 90‐beta P08238 HSP90AB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Hematopoietic progenitor cell antigen CD P28906 CD34 10.1159/000439169 Immuno abdominal adventitia 70.2 B

Heme oxygenase 1 P09601 HMOX1 10.1016/j.ijcard.2015.08.053 1 Immuno abdominal adventitia not in healthy proteome

Hemoglobin subunit alpha P69905 HBA1 , HBA2 10.1074/mcp.M112.021873, 10.1161 3 Mass Spec ascending,abdominal 38,>65 B,M Marfan,unknown lower than in control

Hemoglobin subunit beta P68871 HBB 10.3892/ijmm.2012.985, 10.1074/mc 5 Mass Spec ascending, thoracic,abdominal 48.3,38,>6B,M

Marfan,BAV,unknow

n lower than in control

Hemoglobin subunit delta P02042 HBD 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec abdominal >65 M BAV,unknown lower than in control

Hemopexin P02790 HPX 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heparin cofactor 2 P05546 SERPIND1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Hepatocyte growth factor P14210 HGF

10.1016/j.atherosclerosis.2011.02.0

25, 10.1093/cvr/cvu196 2 Immuno

ascending,abdomi

nal

adventitia;intima;

media;thrombus 54 B

Marfan,BAV,degener

ative lower than in control

Heterogeneous nuclear ribonucleoprotei Q14103 HNRNPD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heterogeneous nuclear ribonucleoprotei P31943 HNRNPH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Heterogeneous nuclear ribonucleoprotei P52272 HNRNPM 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heterogeneous nuclear ribonucleoprotei O43390 HNRNPR 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heterogeneous nuclear ribonucleoprotei P22626 HNRNPA2B1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Heterogeneous nuclear ribonucleoprotei P07910 HNRNPC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

High mobility group protein HMG‐I/HMG P17096 HMGA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Histidine‐rich glycoprotein P04196 HRG 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H1.2 P16403 HIST1H1C 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H1.4 P10412 HIST1H1E 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H1.5 P16401 HIST1H1B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H1x Q92522 H1FX 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Histone H2A type 1‐D P20671 HIST1H2AD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Histone H2B type 1‐B P33778 HIST1H2BB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H2B type 1‐C/E/F/G/I P62807 HIST1H2BC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Histone H4 P62805 HIST1H4A 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

HLA class II histocompatibility antigen, D P01903 HLA‐DRA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

HLA class II histocompatibility antigen, D P04229 HLA‐DRB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Hsc70‐interacting protein P50502 ST13 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Hyaluronan and proteoglycan link protei P10915 HAPLN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Hypoxia‐inducible factor 1‐alpha Q16665 HIF1A 10.1371/journal.pone.0089830, 10.1 2 Immuno abdominal

inflamation 

regions;intima;m

edia 69 B

IgGFc‐binding protein Q9Y6R7 FCGBP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin heavy constant alpha 1 P01876 IGHA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin heavy constant alpha 2 P01877 IGHA2 10.1007/s00595‐012‐0480‐6 Mass Spec abdominal 68 B

higher than in control 

(atherosclerotic)

Immunoglobulin heavy constant delta P01880 IGHD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin heavy constant gamma  P01857 IGHG1 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M higher than in control

Immunoglobulin heavy constant gamma  P01859 IGHG2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin heavy constant gamma  P01860 IGHG3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin heavy constant gamma  P01861 IGHG4

10.1016/j.jvs.2010.06.072, 

10.1074/mcp.M111.008128 2 Immuno;Mass Spec

abdominal,thoraci

c adventitia >65 M

unknown,degenerati

ve,atherosclerosis not in healthy proteome

Immunoglobulin heavy constant mu P01871 IGHM 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin heavy variable 3‐13 P01766 IGHV3‐13 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin heavy variable 3‐23 P01764 IGHV3‐23 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin heavy variable 3‐33 P01772 IGHV3‐33 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin heavy variable 3‐7 P01780 IGHV3‐7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin J chain P01591 JCHAIN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa constant P01834 IGKC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin kappa variable 1‐17 P01599 IGKV1‐17 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa variable 1‐5 P01602 IGKV1‐5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome



Immunoglobulin kappa variable 1D‐33 P01593 IGKV1D‐33 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa variable 2‐30 P06310 IGKV2‐30 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa variable 2D‐40 P01614 IGKV2D‐40 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa variable 3‐20 P01619 IGKV3‐20 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin kappa variable 4‐1 P06312 IGKV4‐1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin lambda constant 1 P0CG04 IGLC1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Immunoglobulin lambda variable 1‐47 P01700 IGLV1‐47 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Immunoglobulin lambda variable 3‐21 P80748 IGLV3‐21 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Inactive carboxypeptidase‐like protein X2 Q8N436 CPXM2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Induced myeloid leukemia cell differentia Q07820 MCL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Insulin‐like growth factor I P05019 IGF1 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Insulin‐like growth factor‐binding protein P08833 IGFBP1

10.1159/000362997, 

10.1093/cvr/cvu196 2 Immuno ascending media 54,69 B

unknown,Marfan,BA

V,degenerative higher than in control

Insulin‐like growth factor‐binding protein P18065 IGFBP2 10.1093/cvr/cvu196 1 Immuno ascending adventitia 54 B

Marfan,BAV,degener

ative lower than in control

Insulin‐like growth factor‐binding protein Q16270 IGFBP7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Insulin‐like growth factor‐binding protein P35858 IGFALS 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Integrin beta‐1 P05556 ITGB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Integrin beta‐2 P05107 ITGB2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Integrin beta‐3 P05106 ITGB3 10.1016/j.atherosclerosis.2011.05.00 1 Immuno abdominal thrombus 70 B

Inter‐alpha‐trypsin inhibitor heavy chain  P19827 ITIH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Inter‐alpha‐trypsin inhibitor heavy chain  P19823 ITIH2 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Inter‐alpha‐trypsin inhibitor heavy chain  Q14624 ITIH4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Inter‐alpha‐trypsin inhibitor heavy chain  Q86UX2 ITIH5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Intercellular adhesion molecule 1 P05362 ICAM1 10.1371/journal.pone.0053882, 10.1 2 Immuno abdominal 69,69 B higher than in control

Interferon gamma P01579 IFNG 10.1371/journal.pone.0053882, 10.1 6 Immuno abdominal 69,74,66,7B,M

unknown,atheroscle

rosis

Interleukin enhancer‐binding factor 2 Q12905 ILF2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Interleukin‐1 alpha P01583 IL1A 10.1371/journal.pone.0053882, 10.1 2 Immuno abdominal 69,74 M atherosclerotic not in healthy proteome

Interleukin‐1 beta P01584 IL1B 10.1371/journal.pone.0053882, 10.1 7 Immuno abdominal

69,74,73,

66,71,72 B,M

unknown,atheroscle

rosis higher than in control

Interleukin‐10 P22301 IL10 10.1016/j.jvs.2006.11.020, 10.1016/j 3 Immuno abdominal 74,66,71 B,M

unknown,atheroscle

rosis not in healthy proteome

Interleukin‐12 subunit alpha P29459 IL12A 10.1016/j.jvs.2011.06.113 1 Immuno abdominal 66 B not in healthy proteome

Interleukin‐13 P35225 IL13 10.1371/journal.pone.0053882, 10.1 3 Immuno abdominal 69,73,72 B not in healthy proteome

Interleukin‐15 P40933 IL15 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Interleukin‐17A Q16552 IL17A 10.1042/CS20070352 1 Immuno abdominal 72 B

Interleukin‐2 P60568 IL2 10.1016/j.jvs.2006.11.020, 10.1161/C 5 Immuno abdominal

74,73,66,

71,72 B,M

unknown,atheroscle

rosis

Interleukin‐3 P08700 IL3 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Interleukin‐4 P05112 IL4 10.1016/j.jvs.2011.06.113, 10.1016/j 3 Immuno abdominal 66,71,72 B not in healthy proteome

Interleukin‐5 P05113 IL5 10.1016/j.jvs.2006.11.020, 10.1016/j 3 Immuno abdominal 74,66,71 B,M

unknown,atheroscle

rosis not in healthy proteome

Interleukin‐6 P05231 IL6 10.1371/journal.pone.0053882, 10.1 8 Immuno abdominal 69,69,74,7B,M higher than in control

Interleukin‐7 P13232 IL7 10.1161/CIRCULATIONAHA.108.8065 2 Immuno abdominal 73,72 B not in healthy proteome

Interleukin‐8 P10145 CXCL8

10.1016/j.jvs.2006.11.020, 

10.1161/CIRCULATIONAHA.108.806

505, 10.1016/j.jvs.2011.06.113, 

10.1093/cvr/cvp048, 

10.1159/000339304, 

10.1016/j.jvs.2010.01.057, 

10.1016/j.jvs.2014.08.088, 

10.1042/CS20070352, 

10.1093/cvr/cvu196, 

10.1007/s10353‐007‐0339‐z 10 Immuno

ascending,abdomi

nal

adventitia;throm

bus

74,73,66,

70,73,74,

71,54,72.

6 B,M

unknown,atheroscle

rotic,Marfan,BAV,de

generative higher than in control

Interstitial collagenase P03956 MMP1

10.1159/000228900, 10.14670/HH‐

11‐691,10.1053/hupa.2001.27107, 

10.1016/j.atherosclerosis.2011.05.0

02, 10.1067/mva.2002.121124 5 Immuno

abdominal,thoraci

c,ascending

inflamation 

regions;intima;m

edia;thrombus;w

all lysate

71,64,70,

67.2 B,M

unknown, not 

Marfan higher than in control

Kallistatin P29622 SERPINA4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type I cytoskeletal 10 P13645 KRT10 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type I cytoskeletal 14 P02533 KRT14 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type I cytoskeletal 16 P08779 KRT16 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type I cytoskeletal 17 Q04695 KRT17 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Keratin, type I cytoskeletal 9 P35527 KRT9 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type II cuticular Hb4 Q9NSB2 KRT84 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Keratin, type II cytoskeletal 1 P04264 KRT1 10.1007/s00595‐012‐0480‐6, 10.107 2 Mass Spec abdominal 68,>65 B,M lower than in control

Keratin, type II cytoskeletal 2 epidermal P35908 KRT2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type II cytoskeletal 5 P13647 KRT5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type II cytoskeletal 6C P48668 KRT6C 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Keratin, type II cytoskeletal 72 Q14CN4 KRT72 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Keratin, type II cytoskeletal 79 Q5XKE5 KRT79 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Keratinocyte proline‐rich protein Q5T749 KPRP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Kininogen‐1 P01042 KNG1 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M not in healthy proteome

Kit ligand P21583 KITLG

10.1016/j.jvs.2006.11.020, 

10.1161/CIRCRESAHA.108.173682 2 Immuno abdominal 74,75 B,M

unknown,atheroscle

rotic higher than control

Lactadherin Q08431 MFGE8 10.3892/ijmm.2012.985, 10.1038/lab 3 Immuno;Mass Specthoracic, abdominamedia >65,64 M,B

unknown, non‐

Marfan same as in control

Lactotransferrin P02788 LTF 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Lamina‐associated polypeptide 2, isoform P42166 TMPO 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Lamin‐B1 P20700 LMNB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lamin‐B2 Q03252 LMNB2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Laminin subunit alpha‐2 P24043 LAMA2 16377578 1 Immuno ascending 56 B BAV

Laminin subunit alpha‐4 Q16363 LAMA4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Laminin subunit alpha‐5 O15230 LAMA5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Laminin subunit beta‐1 P07942 LAMB1 16377578, 10.1074/mcp.M111.0081 2 Immuno;Mass Specabdominal,ascending >65,56 M,B unknown, BAV

Laminin subunit beta‐2 P55268 LAMB2 16377578, 10.1074/mcp.M111.0081 2 Immuno;Mass Specabdominal,ascending >65,56 M,B unknown, BAV same as in control

Laminin subunit gamma‐1 P11047 LAMC1

10.1155/2014/760694, 

10.1074/mcp.M111.008128 2 Immuno;Mass Spec

ascending, 

abdominal >65 M

Marfan&related, 

unknown

same as in control, Marfan 

higher than in control

La‐related protein 1B Q659C4 LARP1B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Latent‐transforming growth factor beta‐ Q14766 LTBP1 10.1002/path.2516, 10.1074/mcp.M 2 Immuno;Mass Specascending, abdomi media >65 M same as in control

Latent‐transforming growth factor beta‐ Q14767 LTBP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

same as in control or higher 

than control

Latexin Q9BS40 LXN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Leptin P41159 LEP

10.1016/j.jvs.2006.11.020, 

10.1161/ATVBAHA.112.300543 2 Immuno abdominal media 74 M

unknown,atheroscle

rosis

Leptin receptor P48357 LEPR 10.1161/ATVBAHA.112.300543 1 Immuno abdominal media

Leucine‐rich alpha‐2‐glycoprotein P02750 LRG1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Leukocyte elastase inhibitor P30740 SERPINB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

LIM and cysteine‐rich domains protein 1 Q9NZU5 LMCD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

LIM and SH3 domain protein 1 Q14847 LASP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Lipocalin‐1 P31025 LCN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lipoma‐preferred partner Q93052 LPP 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Lipopolysaccharide‐binding protein P18428 LBP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

L‐lactate dehydrogenase A chain P00338 LDHA

10.1074/mcp.M112.021873, 

10.1074/mcp.M111.008128 2 Immuno;Mass Spec

ascending, 

abdominal intima;media >65 M BAV,unknown

unknown aneurysm higher 

than in control

L‐lactate dehydrogenase B chain P07195 LDHB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Low affinity immunoglobulin gamma Fc r P31994 FCGR2B 10.1159/000362997 1 Immuno abdominal 69 B higher than in control

Lumican P51884 LUM 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M Same as control

Lymphocyte‐specific protein 1 P33241 LSP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome



Lymphotoxin‐alpha P01374 LTA 10.1016/j.jvs.2006.11.020, 10.1016/j 2 Immuno abdominal 74,66 B,M

unknown,atheroscle

rosis higher than in control

Lysine‐specific demethylase 3B Q7LBC6 KDM3B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lysine‐specific demethylase 5A P29375 KDM5A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lysosomal protective protein P10619 CTSA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lysosome‐associated membrane glycopr P11279 LAMP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Lysozyme C P61626 LYZ 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M

Lysyl oxidase homolog 1 Q08397 LOXL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Macrophage colony‐stimulating factor 1 P09603 CSF1 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic higher than in control

Macrophage metalloelastase P39900 MMP12 10.1067/mva.2002.121124, 10.1074/ 2 Immuno;Mass Specabdominal

inflamation 

regions;media 67.2,>65 B,M not in healthy proteome

Macrophage migration inhibitory factor P14174 MIF 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Macrophage receptor MARCO Q9UEW3 MARCO 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Macrophage‐capping protein P40121 CAPG 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Macrosialin P34810 CD68 10.1016/j.ijcard.2015.08.053, 10.101 10 Immuno abdominal

inflamation 

regions;intima;m

edia 74,63,60,7B,M sporadic higher than in control

Major vault protein Q14764 MVP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Malate dehydrogenase, cytoplasmic P40925 MDH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Malate dehydrogenase, mitochondrial P40926 MDH2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Matrilin‐2 O00339 MATN2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Matrilysin P09237 MMP7 10.1159/000228900, 10.1093/cvr/cv 2 Immuno ascending,abdomin

inflamation 

regions 54,71 B

unknown,Marfan,BA

V,degenerative

Matrix Gla protein P08493 MGP 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M same as in control

Matrix metalloproteinase‐14 P50281 MMP14 10.1067/mva.2002.121124 Immuno abdominal 67.2 B

higher than in control and 

less inactive than control

Matrix metalloproteinase‐19 Q99542 MMP19 10.1093/cvr/cvu196 1 Immuno ascending 54 B

Marfan,BAV,degener

ative higher than in control

Matrix metalloproteinase‐9 P14780 MMP9 10.1016/j.atherosclerosis.2013.10.03 12 Immuno ascending, abdomi

adventitia;inflam

ation 

regions;intima;m

edia;thrombus;w

all lysate 64,74,63,5B

sporadic,Marfan,BA

V,degenerative,not 

Marfan

same or higher than in 

control

Matrix‐remodeling‐associated protein 5 Q9NR99 MXRA5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Membrane primary amine oxidase Q16853 AOC3 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Metal transporter CNNM4 Q6P4Q7 CNNM4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Metalloproteinase inhibitor 1 P01033 TIMP1 10.1016/j.atherosclerosis.2010.04.03 10 Immuno;Mass Specascending,abdomin

media;thrombus;

wall lysate 65,71,64,6B,M

unknown, not 

Marfan, 

Marfan,BAV,degener

ative

higher than in control or not 

or lower

Metalloproteinase inhibitor 2 P16035 TIMP2 10.1016/j.jctvs.2006.07.036, 10.1016 6 Immuno abdominal,ascendi

media;thrombus;

wall lysate 66,65,71,6B,M

unknown,not 

Marfan

higher than in control or 

lower

Metalloproteinase inhibitor 3 P35625 TIMP3 10.1016/j.humpath.2006.03.017, 10. 3 Immuno;Mass Specascending,abdominal 65,71,67.2B,M

unknown,not 

Marfan higher than in control

Metalloproteinase inhibitor 4 Q99727 TIMP4 10.1093/cvr/cvu196 1 Immuno ascending adventitia;media 54 B

Marfan,BAV,degener

ative lower than in control

Methyl‐CpG‐binding protein 2 P51608 MECP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Microfibril‐associated glycoprotein 4 P55083 MFAP4 10.3892/ijmm.2012.985, 10.1016/j.jv 4 Mass Spec ascending, thoracic,abdominal 69,38, >65B,M

not Marfan, 

Marfan,BAV,unknow

n

lower or higher than in 

control

Microfibrillar‐associated protein 5 Q13361 MFAP5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Mimecan P20774 OGN 10.3892/ijmm.2012.985, 10.1074/mc 3 Mass Spec ascending, abdominal >65 M BAV,unknown lower than in control

Mitogen‐activated protein kinase 1 P28482 MAPK1 10.1016/j.jamcollsurg.2012.06.414, 1 4 Immuno;Mass Specabdominal 67,71,>65 B,M

more phosphorylated in 

ruptured AAA than non‐

ruptured and control

Mitogen‐activated protein kinase 3 P27361 MAPK3 10.1016/j.ejvs.2013.02.015, 10.1111 2 Immuno abdominal 67,71 B

more phosphorylated in 

ruptured AAA than non‐

ruptured and control

Moesin P26038 MSN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Monocyte differentiation antigen CD14 P08571 CD14 10.1016/j.ijcard.2015.08.053 1 Immuno abdominal not in healthy proteome

Mothers against decapentaplegic homolo Q15796 SMAD2 10.1016/j.ijcard.2011.08.079, 10.116 4 Immuno ascending intima;media 41,55 B

Marfan, BAV, 

degenerative, non‐

syndromic TAAD

higher phosphorylation than 

in control

Multimerin‐1 Q13201 MMRN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Myeloblastin P24158 PRTN3 10.1093/cvr/cvp048 1 Immuno abdominal

adventitia;throm

bus 70 M degenerative

Myeloperoxidase P05164 MPO 10.1371/journal.pone.0053882, 10.1 6 Immuno;Mass Specabdominal >65,69,63,B,M higher than in control

Myocardin Q8IZQ8 MYOCD 10.1093/cvr/cvt205 1 Immuno ascending 63 B same as in control

Myosin light polypeptide 6 P60660 MYL6 10.1074/mcp.M112.021873, 10.1016 3 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown higher than in control

Myosin regulatory light chain 12B O14950 MYL12B 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown BAV higher than control

Myosin regulatory light polypeptide 9 P24844 MYL9 10.3892/ijmm.2012.985, 10.1074/mc 4 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown BAV higher than in control

Myosin‐10 P35580 MYH10 10.3892/ijmm.2012.985, 10.1002/pa 4 Immuno;Mass Specascending,thoracic,media 38,>65 B,M

unknown,Marfan,BA

V,degenerative higher than in control

Myosin‐11 P35749 MYH11 10.3892/ijmm.2012.985, 10.1111/j.1 5 Immuno;Mass Specascending,thoracic,media 54,>65 B,M

Marfan,BAV,degener

ative

Myosin‐9 P35579 MYH9 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

N‐acetylmuramoyl‐L‐alanine amidase Q96PD5 PGLYRP2 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M not in healthy proteome

NACHT, LRR and PYD domains‐containing Q96P20 NLRP3 10.1016/j.atherosclerosis.2013.10.03 1 Immuno abdominal

adventitia;intima;

media 63 B sporadic not in healthy proteome

Neuroblast differentiation‐associated pro Q09666 AHNAK 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Neurofilament light polypeptide P07196 NEFL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Neutrophil collagenase P22894 MMP8 10.1159/000228900, 10.1159/00036 8 Immuno ascending,abdomin

inflamation 

regions 71,69,73,7B,M higher than in control

Neutrophil defensin 1 P59665 DEFA1 , DEFA1B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M higher than in control

Neutrophil elastase P08246 ELANE 10.1016/j.atherosclerosis.2011.05.00 2 Immuno abdominal thrombus 70 B

Neutrophil gelatinase‐associated lipocali P80188 LCN2 10.1093/cvr/cvp048 1 Immuno abdominal

adventitia;throm

bus 70 M degenerative not in healthy proteome

Nidogen‐1 P14543 NID1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Nidogen‐2 Q14112 NID2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Nitric oxide synthase, endothelial P29474 NOS3 10.1155/2014/760694 1 Immuno 30,46 B

Marfan & Marfan 

related lower than in control

Nitric oxide synthase, inducible P35228 NOS2 10.1371/journal.pone.0053882, 10.1 4 Immuno abdominal

inflamation 

regions;intima;m

edia 69,69,30,4B

Marfan & Marfan 

related, unknown higher than in control

Nuclear pore complex protein Nup133 Q8WUM0 NUP133 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Nuclease‐sensitive element‐binding prot P67809 YBX1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Nucleolin P19338 NCL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Nucleoside diphosphate kinase B P22392 NME2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Olfactomedin‐like protein 1 Q6UWY5 OLFML1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Oncostatin‐M P13725 OSM 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic higher than in control

Oral‐facial‐digital syndrome 1 protein O75665 OFD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Osteopontin P10451 SPP1 10.1177/1708538112472282, 10.101 5 Immuno ascending,abdominmedia 63,66,63,6M,B

unknown, not 

Marfan, not BAV higher than in control

Palladin Q8WX93 PALLD 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Pantothenate kinase 1 Q8TE04 PANK1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

PDZ and LIM domain protein 1 O00151 PDLIM1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

PDZ and LIM domain protein 3 Q53GG5 PDLIM3 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown

PDZ and LIM domain protein 4 P50479 PDLIM4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

PDZ and LIM domain protein 7 Q9NR12 PDLIM7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Pecanex‐like protein 1 Q96RV3 PCNX1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Pentraxin‐related protein PTX3 P26022 PTX3 10.1093/cvr/cvu196 1 Immuno ascending media 54 B

Marfan,BAV,degener

ative higher than in control

Peptidyl‐prolyl cis‐trans isomerase A P62937 PPIA 10.1016/j.ejvs.2013.02.015, 10.1074 2 Immuno;Mass Specabdominal 67,>65 B,M



Peptidyl‐prolyl cis‐trans isomerase B P23284 PPIB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Perforin‐1 P14222 PRF1 10.1161/CIRCULATIONAHA.108.8065 2 Immuno abdominal 72,73 B not in healthy proteome

Periostin Q15063 POSTN 10.3892/ijmm.2012.985, 10.1074/mc 2 Immuno;Mass Specabdominal,thoracic >65 M Same as in control

Peripherin P41219 PRPH 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Peroxidasin homolog Q92626 PXDN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Peroxiredoxin‐1 Q06830 PRDX1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Peroxiredoxin‐2 P32119 PRDX2 10.1016/j.jvs.2008.08.097, 10.1016/j 3 Immuno;Mass Specascending, abdominal 73.5,48.3,>B,M BAV,unknown

Peroxiredoxin‐4 Q13162 PRDX4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Peroxiredoxin‐6 P30041 PRDX6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Peroxisome proliferator‐activated recept P37231 PPARG 10.1159/000439169 Immuno abdominal adventitia 70.2 B not in healthy proteome

Persephin O60542 PSPN 10.1093/cvr/cvu196 1 Immuno ascending media 54 B

Marfan,BAV,degener

ative higher than in control

Phosphatidylethanolamine‐binding prote P30086 PEBP1 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Phosphatidylinositol‐glycan biosynthesis  Q07326 PIGF 10.1093/cvr/cvu196 1 Immuno ascending 54 B

Marfan,BAV,degener

ative

Phosphoglucomutase‐like protein 5 Q15124 PGM5 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Phosphoglycerate kinase 1 P00558 PGK1 10.1016/j.ejcts.2009.07.025, 10.1074 2 Mass Spec ascending,abdominal 56,>65 M lower than in control

Phosphoglycerate mutase 1 P18669 PGAM1 10.1016/j.jvs.2011.10.033, 10.1074/m 2 Mass Spec abdominal 69,>65 B,M not Marfan same as in control

Phospholipase A2, membrane associated P14555 PLA2G2A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Phospholipase D3 Q8IV08 PLD3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Piezo‐type mechanosensitive ion channe Q92508 PIEZO1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Pigment epithelium‐derived factor P36955 SERPINF1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M higher than in control

Plasma kallikrein P03952 KLKB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Plasma protease C1 inhibitor P05155 SERPING1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Plasminogen P00747 PLG 10.1093/cvr/cvu196,10.1016/S0002‐ 3 Immuno;Mass Specascending,abdomin

adventitia;media;

thrombus 54,>65 B,M

Marfan,BAV,degener

ative higher than in control

Plasminogen activator inhibitor 1 P05121 SERPINE1 10.1016/j.atherosclerosis.2011.05.00 3 Immuno ascending,abdomin

thrombus;wall 

lysate 70,55,73 B

unknown,Marfan, 

BAV, degenerative lower than in control

Plastin‐2 P13796 LCP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Plastin‐3 P13797 PLS3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Platelet endothelial cell adhesion molecu P16284 PECAM1 10.1159/000228900, 10.1371/journa 5 Immuno abdominal adventitia;media 71,69,70,7B higher than in control

Platelet factor 4 P02776 PF4 10.1093/cvr/cvp048, 10.1093/cvr/cv 3 Immuno;Mass Specascending,abdomin

adventitia;media;

thrombus 70,54,>65 B,M

Marfan,BAV,degener

ative lower than in control

Platelet‐activating factor acetylhydrolase Q13093 PLA2G7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Platelet‐derived growth factor receptor b P09619 PDGFRB 10.1007/s00109‐008‐0413‐4 1 Immuno abdominal not in healthy proteome

Platelet‐derived growth factor subunit A P04085 PDGFA 10.1093/cvr/cvu196 1 Immuno ascending media 54 B

Marfan,BAV,degener

ative lower than in control

Platelet‐derived growth factor subunit B P01127 PDGFB 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic not in healthy proteome

Plectin Q15149 PLEC 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Podocan Q7Z5L7 PODN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Podoplanin Q86YL7 PDPN 10.1371/journal.pone.0089830 1 Immuno abdominal adventitia;intima 69 B

Poly(rC)‐binding protein 2 Q15366 PCBP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Polymerase I and transcript release facto Q6NZI2 PTRF 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Prelamin‐A/C P02545 LMNA 10.1016/j.ejcts.2009.07.025, 10.1074 2 Mass Spec abdominal 56,>65 M lower than in control

Pre‐mRNA‐processing factor 17 O60508 CDC40 10.1007/s00595‐012‐0480‐6 Mass Spec abdominal 68 B

higher than in control 

(atherosclerotic)

Probable cysteine‐‐tRNA ligase, mitochon Q9HA77 CARS2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Probable G‐protein coupled receptor 150 Q8NGU9 GPR150 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Probable JmjC domain‐containing histon Q15652 JMJD1C 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Probable phospholipid‐transporting ATPa O94823 ATP10B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Pro‐cathepsin H P09668 CTSH 10.1016/j.jvs.2007.08.015 Immuno abdominal 73 B not in healthy proteome

Procollagen C‐endopeptidase enhancer 1 Q15113 PCOLCE 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Profilin‐1 P07737 PFN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Profilin‐2 P35080 PFN2 10.1016/j.clinbiochem.2009.10.015 Mass Spec ascending 48.3 B BAV, unknown

Prokineticin‐1 P58294 PROK1 10.1093/cvr/cvu196 1 Immuno ascending media 54 B

Marfan,BAV,degener

ative higher than in control

Prolargin P51888 PRELP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Proliferation marker protein Ki‐67 P46013 MKI67 10.1371/journal.pone.0089830, 10.1 3 Immuno;Mass Specabdominal >65,69 M,B not in healthy proteome

Proliferation‐associated protein 2G4 Q9UQ80 PA2G4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Prolow‐density lipoprotein receptor‐rela Q07954 LRP1 10.1016/j.ejvs.2013.08.006, 10.1016 3 Immuno;Mass Specabdominal adventitia;media 74,58,>65 B,M

not connective 

diseases lower than in control

Properdin P27918 CFP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Prostaglandin E synthase O14684 PTGES 10.1194/jlr.M042481 1 Immuno abdominal

Prostaglandin E2 receptor EP4 subtype P35408 PTGER4 10.1194/jlr.M042481 1 Immuno abdominal

Prostaglandin G/H synthase 2 P35354 PTGS2 10.1194/jlr.M042481 1 Immuno abdominal adventitia;media

Proteasome activator complex subunit 1 Q06323 PSME1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Proteasome subunit alpha type‐1 P25786 PSMA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Proteasome subunit alpha type‐6 P60900 PSMA6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Proteasome subunit alpha type‐7‐like Q8TAA3 PSMA8 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Proteasome subunit beta type‐6 P28072 PSMB6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein AHNAK2 Q8IVF2 AHNAK2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Protein AMBP P02760 AMBP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein disulfide‐isomerase P07237 P4HB 10.1016/j.clinbiochem.2009.10.015,  2 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown

Protein disulfide‐isomerase A3 P30101 PDIA3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein disulfide‐isomerase A4 P13667 PDIA4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein disulfide‐isomerase A6 Q15084 PDIA6 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein DJ‐1 Q99497 PARK7 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown higher than in control

Protein kinase C delta‐binding protein Q969G5 PRKCDBP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Protein kinase C‐binding protein 1 Q9ULU4 ZMYND8 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Protein NPAT Q14207 NPAT 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Protein S100‐A12 P80511 S100A12 10.1161/CIRCRESAHA.109.209486 1 Immuno ascending media 34 M familial TAAD

not in healthy proteome, 

not in control tissue

Protein S100‐A4 P26447 S100A4 10.1371/journal.pone.0070057 1 Immuno thoracic

adventitia;intima;

media 43 B higher than in control

Protein S100‐A6 P06703 S100A6 10.3892/ijmm.2012.985 1 Mass Spec thoracic

Protein S100‐A8 P05109 S100A8 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M higher than in control

Protein S100‐A9 P06702 S100A9 10.1159/000339304, 10.1111/j.1600 4 Immuno;Mass Specabdominal adventitia;media >65,73,69 B,M

Protein transport protein Sec23A Q15436 SEC23A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Protein‐glutamine gamma‐glutamyltrans P21980 TGM2 10.3892/ijmm.2012.985,10.1074/mc 5 Immuno;Mass Specascending, abdomi intima;media 68,66.9, >6B,M

higher than in control or 

lower

Protein‐lysine 6‐oxidase P28300 LOX 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Prothrombin P00734 F2 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal,thoracic >65 M

Protocadherin Fat 3 Q8TDW7 FAT3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Purine nucleoside phosphorylase P00491 PNP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Pyruvate kinase PKM P14618 PKM 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Rab GDP dissociation inhibitor beta P50395 GDI2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ras GTPase‐activating‐like protein IQGAP P46940 IQGAP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ras‐related C3 botulinum toxin substrate P63000 RAC1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ras‐related protein Rab‐11A P62491 RAB11A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ras‐related protein Rab‐35 Q15286 RAB35 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Ras‐related protein Rab‐7a P51149 RAB7A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ras‐related protein Rap‐1A P62834 RAP1A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Receptor‐interacting serine/threonine‐p Q13546 RIPK1 10.1161/CIRCRESAHA.116.304899 1 Immuno abdominal media

Receptor‐interacting serine/threonine‐p Q9Y572 RIPK3 10.1161/CIRCRESAHA.116.304899 1 Immuno abdominal media higher than in control

Receptor‐type tyrosine‐protein phosphat P08575 PTPRC 10.1194/jlr.M042481 1 Immuno abdominal media not in healthy proteome

Renin receptor O75787 ATP6AP2 10.1016/j.atherosclerosis.2009.01.003 Immuno abdominal 70.5 M same as in control

Resistin Q9HD89 RETN 10.1177/1538574410380935 1 Immuno abdominal media 69 B

Retinal dehydrogenase 1 P00352 ALDH1A1 10.1016/j.jvs.2011.10.033 1 Mass Spec abdominal 69 B

not Marfan, not 

inflammatory 

disease same as in control



Retinol‐binding protein 4 P02753 RBP4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Rho GDP‐dissociation inhibitor 1 P52565 ARHGDIA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ribonuclease inhibitor P13489 RNH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ribosome‐binding protein 1 Q9P2E9 RRBP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

RNA‐binding protein 6 P78332 RBM6 10.1016/j.clinbiochem.2009.10.015 Mass Spec ascending 48.3 B BAV, unknown not in healthy proteome

Scavenger receptor cysteine‐rich type 1 p Q86VB7 CD163 10.1371/journal.pone.0053882, 10.1 4 Immuno abdominal,ascedni

adventitia;media;

thrombus 69,70,64 B

not 

Marfan,unknown same as in control

Secreted frizzled‐related protein 3 Q92765 FRZB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Secreted phosphoprotein 24 Q13103 SPP2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Selenium‐binding protein 1 Q13228 SELENBP1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Septin‐7 Q16181 SEPT7 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Serine protease HTRA1 Q92743 HTRA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Serine/arginine repetitive matrix protein Q9UQ35 SRRM2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Serine/arginine‐rich splicing factor 1 Q07955 SRSF1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Serine/threonine‐protein kinase ATR Q13535 ATR 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Serine/threonine‐protein kinase SIK3 Q9Y2K2 SIK3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Serine/threonine‐protein phosphatase 6 Q8NB46 ANKRD52 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Serotransferrin P02787 TF 10.1074/mcp.M112.021873, 10.1007 3 Immuno;Mass Specascending, abdominal 68,48.3,>6B,M BAV,unknown

higher than in control or the 

same

Serpin H1 P50454 SERPINH1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Serum albumin P02768 ALB 10.1016/j.jvs.2008.08.097, 10.1510/i 5 Mass Spec ascending, abdominal 73.5,70,68B,M higher than in control or not

Serum amyloid A‐4 protein P35542 SAA4 10.3892/ijmm.2012.985 1 Mass Spec abdominal not in healthy proteome

Serum amyloid P‐component P02743 APCS 10.3892/ijmm.2012.985, 10.1074/mc 4 Mass Spec ascending, thoracic, abdominal 38,>65 B,M

Marfan,BAV, 

unknown

higher or lower than in 

control, higher than control 

when it is BAV dilation

Serum paraoxonase/arylesterase 1 P27169 PON1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

SH3 domain‐binding glutamic acid‐rich‐li O75368 SH3BGRL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Signal transducer and activator of transc P40763 STAT3 10.1161/CIRCULATIONAHA.108.8065 2 Immuno abdominal 73,72 B

Smoothelin P53814 SMTN 10.1161/ATVBAHA.114.304412, 10.1 2 Immuno ascending media 41,63 B Marfan higher than in control

Sorbin and SH3 domain‐containing prote Q9BX66 SORBS1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Sorbin and SH3 domain‐containing prote O94875 SORBS2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Spatacsin Q96JI7 SPG11 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Spectrin alpha chain, erythrocytic 1 P02549 SPTA1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Spectrin alpha chain, non‐erythrocytic 1 Q13813 SPTAN1 10.1161/CIRCULATIONAHA.108.8435 2 Immuno;Mass Specascending, abdominal 38,57,>65 B,M Marfan, BAV

increased fragmentation 

than in control

Spectrin beta chain, non‐erythrocytic 1 Q01082 SPTBN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Stabilin‐1 Q9NY15 STAB1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Staphylococcal nuclease domain‐contain Q7KZF4 SND1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Stress‐70 protein, mitochondrial P38646 HSPA9 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Stromal cell‐derived factor 1 P48061 CXCL12 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

Stromelysin‐1 P08254 MMP3 10.1159/000228900, 10.14670/HH‐1 3 Immuno ascending,abdomin

inflamation 

regions;intima;m

edia 71,64,54,7B

not 

Marfan,Marfan,BAV,

degenerative higher than in control

Superoxide dismutase [Cu‐Zn] P00441 SOD1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Superoxide dismutase [Mn], mitochondr P04179 SOD2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Synaptic vesicle membrane protein VAT‐ Q99536 VAT1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Syndecan‐1 P18827 SDC1 10.1371/journal.pone.0053882, 10.1 5 Immuno abdominal adventitia 69,73,74,7B,M not in healthy proteome

Talin‐1 Q9Y490 TLN1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Target of Nesh‐SH3 Q7Z7G0 ABI3BP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

T‐cell surface glycoprotein CD3 epsilon c P07766 CD3E 10.1093/cvr/cvp048, 10.1016/j.ather 3 Immuno abdominal

adventitia;intima;

media 63,70 B,M

sporadic, 

degenerative,unkno

wn not in healthy proteome

T‐cell surface glycoprotein CD4 P01730 CD4 10.1371/journal.pone.0053882, 10.1 3 Immuno abdominal 69,74,73 M,B not in healthy proteome

T‐cell surface glycoprotein CD8 alpha cha P01732 CD8A 10.1161/CIRCULATIONAHA.108.8065 2 Immuno abdominal 74,73 M,B not in healthy proteome

T‐complex protein 1 subunit gamma P49368 CCT3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Tenascin P24821 TNC 16377578, 10.1111/j.1440‐1827.201 3 Immuno;Mass Specabdominal,ascending >65,56 M,B unknown, BAV higher than in control

Tenascin‐N Q9UQP3 TNN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Tenascin‐X P22105 TNXB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as control

Tetranectin P05452 CLEC3B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M same as in control

Thioredoxin P10599 TXN 10.1016/j.atherosclerosis.2010.05.031 Immuno abdominal thrombus

Thioredoxin domain‐containing protein 5 Q8NBS9 TXNDC5 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Thioredoxin‐dependent peroxide reducta P30048 PRDX3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Thrombomodulin P07204 THBD 10.1161/ATVBAHA.115.305529 Immuno abdominal media

in control thrombomodulin 

is at tunica intima

Thrombopoietin P40225 THPO 10.1016/j.jvs.2006.11.020 1 Immuno abdominal 74 M atherosclerotic same as in control

Thrombospondin‐1 P07996 THBS1 10.3892/ijmm.2012.985, 10.1093/cv 3 Immuno;Mass Specascending,abdominadventitia;media 54,>65 B,M

Marfan,BAV,degener

ative higher than in control

Thrombospondin‐2 P35442 THBS2 10.1093/cvr/cvu196, 10.1074/mcp.M111.008 Immuno;Mass Specascending,abdominmedia 54,>65 B,M

Marfan,BAV,degener

ative higher than in control

Thymidine phosphorylase P19971 TYMP 10.1093/cvr/cvu196, 10.1074/mcp.M 2 Immuno;Mass Specascending,abdominmedia 54,>65 B,M

Marfan,BAV,degener

ative higher than in control

Tissue‐type plasminogen activator P00750 PLAT 10.2310/6670.2006.00008, 10.1159/ 2 Immuno abdominal 73,72 B

Titin Q8WZ42 TTN 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Toll‐like receptor 3 O15455 TLR3 10.1016/j.atherosclerosis.2015.06.01 1 Immuno abdominal higher than in control

Toll‐like receptor 4 O00206 TLR4 10.1016/j.atherosclerosis.2015.06.01 1 Immuno abdominal higher than in control

Trafficking kinesin‐binding protein 2 O60296 TRAK2 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Transaldolase P37837 TALDO1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Transcription factor AP‐1 P05412 JUN 10.1161/CIRCULATIONAHA.108.8065 3 Immuno abdominal 73,74,72 B,M not in healthy proteome

Transcription factor p65 Q04206 RELA 10.1161/CIRCULATIONAHA.108.8065 3 Immuno abdominal 73,74,72 B,M not in healthy proteome

Transcription factor SOX‐9 P48436 SOX9 10.1093/cvr/cvw082 Immuno abdominal 70 M lower than in control

Transcription initiation factor TFIID subu Q7Z7C8 TAF8 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Transforming growth factor beta‐1 P01137 TGFB1 10.1016/j.jvs.2006.11.020, 10.1093/c 3 Immuno ascending,abdominadventitia;media 74,54,55 M

atherosclerosis,Marf

an,BAV,degererative higher than in control

Transforming growth factor beta‐1‐induc O43294 TGFB1I1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M lower than in control

Transforming growth factor beta‐2 P61812 TGFB2 10.1002/path.2516 Immuno ascending media

Marfan,BAV,degerer

ative same as in control

Transforming growth factor beta‐3 P10600 TGFB3 10.1002/path.2516 Immuno ascending adventitia

Marfan,BAV,degerer

ative same as in control

Transforming growth factor‐beta‐induce Q15582 TGFBI 10.1510/icvts.2010.238139, 10.1074 2 Mass Spec abdominal 70,>65 B,M higher than in control

Transgelin Q01995 TAGLN 10.3892/ijmm.2012.985,10.1161/ATV 8 Immuno;Mass Specascending, thoracicmedia 41,68,48.3B,M

Marfan,BAV,unknow

n

higher or lower than control 

or the same. BAV higher 

than control.

Transgelin‐2 P37802 TAGLN2 10.1074/mcp.M112.021873, 10.1016 2 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown higher than in control

Transitional endoplasmic reticulum ATPa P55072 VCP 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Transketolase P29401 TKT 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Transthyretin P02766 TTR 10.1074/mcp.M112.021873, 10.1016 3 Immuno;Mass Specascending, abdomi intima 48.3,>65 B,M BAV,unknown

BAV dilation lower than in 

control

Trifunctional enzyme subunit alpha, mito P40939 HADHA 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Trifunctional enzyme subunit beta, mitoc P55084 HADHB 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Triosephosphate isomerase P60174 TPI1 10.1016/j.jvs.2011.10.033, 10.1074/m 2 Immuno;Mass Specabdominal 69,>65 B,M not Marfan lower than in control

Tropomyosin alpha‐1 chain P09493 TPM1 10.1016/j.clinbiochem.2009.10.015,  2 Mass Spec ascending, abdominal 48.3,>65 B,M BAV,unknown

Tropomyosin alpha‐3 chain P06753 TPM3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Tropomyosin alpha‐4 chain P67936 TPM4 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Tropomyosin beta chain P07951 TPM2

10.3892/ijmm.2012.985, 

10.1016/j.jvs.2011.10.033, 

10.1074/mcp.M112.021873, 

10.1016/j.clinbiochem.2009.10.015, 

10.1074/mcp.M111.008128 5 Mass Spec

ascending, 

thoracic,abdomin

al

69,48.3,>

65 B,M

not 

Marfan,BAV,unknow

n

higher than in control or the 

same

Tryptase alpha/beta‐1 Q15661 TPSAB1 10.1371/journal.pone.0053882, 10.1 6 Immuno;Mass Specabdominal

thrombus;wall 

lysate 69,70,79,7B,M

same as or higher than in 

control

Tubulin alpha‐1A chain Q71U36 TUBA1A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M



Tubulin beta chain P07437 TUBB 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M BAV,unknown higher than in control

Tubulin beta‐2A chain Q13885 TUBB2A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Tubulin beta‐3 chain Q13509 TUBB3 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Tubulin beta‐4B chain P68371 TUBB4B 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Tubulointerstitial nephritis antigen‐like Q9GZM7 TINAGL1 10.1074/mcp.M112.021873, 10.1074 2 Mass Spec ascending, abdominal >65 M

Tumor necrosis factor P01375 TNF 10.1016/j.jvs.2006.11.020, 10.1161/C 10 Immuno abdominal 69,74,73,6B,M

unknown,atheroscle

rosis higher than in control

Tumor necrosis factor ligand superfamily P50591 TNFSF10 10.1016/j.bbrc.2007.03.209 1 Immuno abdominal 76 B

Tumor necrosis factor receptor superfam O00220 TNFRSF10A 10.1016/j.bbrc.2007.03.209 1 Immuno abdominal 76 B

Tumor necrosis factor receptor superfam O00300 TNFRSF11B 10.1161/CIRCULATIONAHA.104.4647 3 Immuno abdominal adventitia 70,76,69 B, M lower than in control

Type‐1 angiotensin II receptor P30556 AGTR1 10.1016/j.atherosclerosis.2009.01.003 Immuno abdominal

adventitia;inflam

ation regions 70.5 M higher than in control

Type‐2 angiotensin II receptor P50052 AGTR2 10.1016/j.atherosclerosis.2009.01.003 Immuno abdominal adventitia 70.5 M higher than in control

Ubiquitin carboxyl‐terminal hydrolase iso P09936 UCHL1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Ubiquitin‐40S ribosomal protein S27a P62979 RPS27A 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M

Urokinase‐type plasminogen activator P00749 PLAU 10.2310/6670.2006.00008 1 Immuno abdominal 72 B not in healthy proteome

Vascular cell adhesion protein 1 P19320 VCAM1 10.1159/000339304 1 Immuno abdominal 73 B not in healthy proteome

Vascular endothelial growth factor A P15692 VEGFA

10.1016/j.jvs.2006.11.020, 

10.1371/journal.pone.0089830, 

10.1159/000339304, 

10.1093/cvr/cvu196 4 Immuno

ascending,abdomi

nal adventitia;media 74,69,73,5B

unknown,Marfan,BA

V,degenerative,athe

rosclerosis

same or lower than in 

control

Vascular endothelial growth factor C P49767 VEGFC 10.1371/journal.pone.0089830 1 Immuno abdominal 69 B not in healthy proteome

Vascular endothelial growth factor recep P17948 FLT1 10.1371/journal.pone.0089830 1 Immuno abdominal 69 B not in healthy proteome

Vascular endothelial growth factor recep P35968 KDR 10.1371/journal.pone.0089830 1 Immuno abdominal 69 B not in healthy proteome

Vascular endothelial growth factor recep P35916 FLT4 10.1371/journal.pone.0089830 1 Immuno abdominal 69 B not in healthy proteome

Versican core protein P13611 VCAN 10.3892/ijmm.2012.985, 10.1074/mc 2 Mass Spec abdominal >65 M lower than in control

Very long‐chain specific acyl‐CoA dehydr P49748 ACADVL 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Vesicle transport protein SEC20 Q12981 BNIP1 10.1139/Y09‐085 1 Immuno abdominal 70 B not in healthy proteome

Vimentin P08670 VIM

10.3892/ijmm.2012.985, 

10.1159/000339304,10.1093/cvr/cv

t205, 10.1016/j.jvs.2011.10.033, 

10.1016/j.ejcts.2009.07.025, 

10.1074/mcp.M112.021873, 

10.1007/s00595‐012‐0480‐6, 

10.1016/j.clinbiochem.2009.10.015, 

10.1074/mcp.M111.008128 9 Immuno;Mass Spec

ascending, 

thoracic,abdomin

al intima;media

73,63,69,

56,68,48.

3,>65 B,M

not 

Marfan,BAV,unknow

n

lower than in control or the 

same

Vinculin P18206 VCL 10.1161/CIRCULATIONAHA.108.8435 2 Mass Spec ascending, abdominal 38,>65 B,M Marfan higher than in control

Vitamin D‐binding protein P02774 GC 10.1510/icvts.2010.238139, 10.1161 3 Mass Spec ascending, abdominal 70,38,>65 B,M Marfan,unknown lower than control

Vitamin K‐dependent protein S P07225 PROS1 10.1074/mcp.M111.008128 Mass Spec abdominal >65 M not in healthy proteome

Vitronectin P04004 VTN 10.3892/ijmm.2012.985, 10.1016/j.jv 4 Immuno;Mass Specabdominal,thoracic

adventitia;throm

bus 73.5,75, >6B,M higher than in control

von Willebrand factor P04275 VWF

10.1159/000228900, 

10.1016/j.atherosclerosis.2011.02.0

25, 10.1194/jlr.M042481, 

10.1093/cvr/cvu196 4 Immuno abdominal,ascendi intima;media 69,39,55,7B

unknown,Marfan,BA

V,degenerative

Marfan and degenerative 

are higher than control

Xaa‐Pro dipeptidase P12955 PEPD 10.1186/1471‐2350‐12‐14 1 Immuno abdominal adventitia;media 73 M

X‐ray repair cross‐complementing protei P12956 XRCC6 10.1074/mcp.M111.008128 1 Mass Spec abdominal >65 M not in healthy proteome

Zinc‐alpha‐2‐glycoprotein P25311 AZGP1 10.1074/mcp.M111.008128 1 Mass Spec abdominal >65 M
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High-Resolution Morphological 
Approach to Analyse Elastic 
Laminae Injuries of the Ascending 
Aorta in a Murine Model of Marfan 
Syndrome
Júlia López-Guimet1, Jordi Andilla2, Pablo Loza-Alvarez2 & Gustavo Egea1,3,4

In Marfan syndrome, the tunica media is disrupted, which leads to the formation of ascending aortic 
aneurysms. Marfan aortic samples are histologically characterized by the fragmentation of elastic 
laminae. However, conventional histological techniques using transverse sections provide limited 
information about the precise location, progression and 3D extension of the microstructural changes 
that occur in each lamina. We implemented a method using multiphoton excitation fluorescence 
microscopy and computational image processing, which provides high-resolution en-face images 
of segmented individual laminae from unstained whole aortic samples. We showed that internal 
elastic laminae and successive 2nd laminae are injured to a different extent in murine Marfan aortae; 
in particular, the density and size of fenestrae changed. Moreover, microstructural injuries were 
concentrated in the aortic proximal and convex anatomical regions. Other parameters such as the 
waviness and thickness of each lamina remained unaltered. In conclusion, the method reported here is 
a useful, unique tool for en-face laminae microstructure assessment that can obtain quantitative three-
dimensional information about vascular tissue. The application of this method to murine Marfan aortae 
clearly shows that the microstructural damage in elastic laminae is not equal throughout the thickness 
of the tunica media and in the different anatomical regions of the ascending aorta.

In mammals, the heart periodically ejects blood to the aorta, which is the main elastic artery in the body. The 
specific histological composition of the aorta allows an elastic response to blood ejection, which consists in the 
circumferential stretching of its wall and the subsequent recoil. The aortic wall is divided into three layers1: (i) the 
innermost layer named the tunica intima, composed of a monolayer of endothelial cells and subendothelial con-
nective tissue that covers the luminal surface of the vessel; (ii) the tunica media, the thickest layer, is composed of 
elastic fibres arranged as fenestrated sheets (called elastic lamellae or laminae) alternating with circumferentially 
oriented layers of smooth muscle cells; and (iii) the tunica adventitia, the outermost layer, is composed of loose 
fibroelastic connective tissue enriched in collagen fibres and fibroblasts. Media elastic lamellae are concentrically 
arranged, with smooth muscle cells, collagen, proteoglycans and other extracellular matrix components filling 
the interlamellar space2, 3. The main function of these lamellae is to provide the elasticity needed for the aorta to 
stretch and recoil. The lamellae are wavy when the aorta is non-pressurized, and straight when subjected to in vivo 
blood pressure4. The most luminal lamina, named the internal elastic lamina (IEL), serves as a frontier between 
intimal endothelium and the tunica media. Transversely sectioned, conventional histological preparations of the 
aortic wall show elastic lamellae arranged in almost equidistant parallel layers, whose number depends on the 
animal species, and vessel calibre5, and is 7 to 8 on average for adult mice6. In addition, the surface of lamellae 
contains fenestrae, which are small holes of 1–10 µm in diameter7. Their size and density depend on the analysed 
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vessel, animal species and age8–10. Their role is not yet well-established, but it is thought that they facilitate the 
flow of nutrients and the connection between cells located in different interlamellar spaces, and contribute to the 
developmental modelling of the IEL11.

It is of fundamental importance to preserve the integrity of all the aortic wall components in order to maintain 
effective vessel function12. In some pathologic conditions, the aortic structure is severely altered, which com-
promises its vital role in blood conduction. An example of this aberrant structure occurs in Marfan syndrome 
(MFS)13. MFS is an autosomal dominant heritable disorder that affects the cardiovascular, skeletal, ocular, pul-
monary and nervous systems. MFS is caused by mutations in the fibrillin-1 gene (Fbn1)14, which encodes for 
fibrilin-1 protein, a basic component of the medial elastic lamellae. These mutations can directly affect the assem-
bly of the matrix of the aortic media, leading to life-threatening aortic aneurysms15. Conventional histological 
studies show that Marfan aortic samples are characterized by fragmentation and disorganization of elastic fibres, 
accumulation of amorphous matrix components, fibrotic collagen production, and loss of cells12, 13. Moreover, 
the elastin content in human Marfan aorta is almost 50 per cent lower12, 16, and scanning electron microscopy 
demonstrates a significant loss of interlamellar fibres that link neighbouring laminae17. To study Marfan disease 
process, mice have been genetically engineered to replicate the clinical spectrum of the human disease. One of 
the most representative models is the Fbn1C1039G/+ murine model, in which a cysteine is substituted with a glycine 
at amino acid 1039 in an EGF domain of the protein18, mimicking the most frequent type of mutation in human 
MFS patients. This Marfan murine model shows the formation of ascending aortic aneurysm, with the accom-
panying fragmentation of elastic fibres, overactivation of TGF-β signalling, disarray of smooth muscle cells, and 
disorganization of the collagen network18, 19.

The usual approach to examine the aforementioned aortic histological alterations is by conventional his-
tological methods using fixed, dehydrated, paraffin-embedded, sectioned and stained samples. In recent dec-
ades, this approach has provided important knowledge about aneurysm initiation and progression in MFS and 
other aortopathies20–22. Nevertheless, the knowledge obtained using this methodology is inherently based on a 
two-dimensional perspective of the tissue, which is highly limiting to determine the location, progression and 
extension of the tunica media injuries when a three-dimensional (3D) microstructural analysis is required. For 
instance, it is not feasible to study fenestrae by classical histological methods due to their small size and distri-
bution along the surface of lamellae. Therefore, for further insights, more sophisticated microscopy techniques 
have been developed and progressively applied to the cardiovascular system, including the aorta23, 24. In par-
ticular, multiphoton microscopy is well-suited for arterial wall imaging, since it permits visualization of almost 
the entire wall, without the need for exogenous fluorophores, or even sample fixation and embedding25. In the 
arterial case, multiphoton microscopy takes advantage of two nonlinear optical phenomena: two-photon excita-
tion fluorescence (TPEF) or autofluorescence, and second harmonic generation (SHG)26. Based on endogenous 
tissue sources of nonlinear signals, the TPEF signal arises from the elastin content in elastic lamellae and the 
SHG signal originates from collagen fibres located at the adventitia and interlamellar spaces. Taking into account 
that these two matrix components make up most of the arterial tissue structure, multiphoton microscopy can 
disclose almost all the framework of an unstained aortic wall25. In addition, vascular samples can be imaged 
without tissue sectioning, using specific microscopy setups27. To date, some laboratories have used this technique 
to image aortic samples in a conventional transverse perspective (XZ or YZ axes)25, 28, as in standard histological 
preparations. A few other groups have applied multiphoton microscopy to image the tissue in an en-face view, 
and subsequently generated a three-dimensional rendering of it29, 30. The en-face histological perspective consists 
of visualizing the surface of the vessel (XY axes) along the depth of its wall. An illustrative example of en-face 
visualization is that obtained by endoscopic imaging. This unique view is very useful for the analysis of lamellae 
fenestrae, since they are localized on the laminae surface. Taking into account that conventional histological 
preparations of arterial tissue are sectioned in the transverse plane, fenestrae have historically been visualized by 
scanning electron microscopy8. However, this technique can only display the natural surface of the tissue, and 
hence studies have mainly focused on the IEL7, 8. Furthermore, the recent application of TPEF microscopy on 
rat artery samples has allowed the visualization and analysis of IEL fenestrae only10, 31, and has also been used in 
combination with exogenous fluorophores32. En-face TPEF microscopy has been used in Marfan mice to observe 
elastic lamellae fenestrae changes and thus report an elastolytic process, but with low-resolution imaging and very 
limited quantitative analysis33, 34. To our knowledge, no further data is available on lamellae 3D microstructure 
features in health or disease.

In this context, our aim was to provide further insights into the characterization of elastic lamellae micro-
structure, including fenestrae features, using the ascending aorta of MFS Fbn1C1039G/+ mice as a histopathological 
model of tunica media alterations that typically occur in aortic aneurysms. To achieve this aim, we applied a 
recently implemented microscopy and computational method that we developed, which provides the en-face 
TPEF image of segmented individual lamellae from unstained whole aortic samples. The approach takes advan-
tage of high resolution en-face multiphoton microscopy to characterize lamellae structural alterations in detail 
without sectioning the tissue. In addition, our study adds to the literature a semi-automatic image processing 
protocol that can isolate individual lamellae, which can be used to analyse microstructure in complex arterial wall 
samples. These two advantages allow the comparison of lamellae features within different anatomical regions of 
the vessel and within different lamellae from the same XY location. In particular, the application of our meth-
odology to MFS murine aortae showed relevant lamellae fenestrae differences between IEL and 2nd laminae, and 
between the proximal-concavity and the rest of the anatomical regions in the ascending aorta.

Results
New multiphoton en-face imaging and analysis of unstained aorta.  To obtain high-quality en-face 
images of intact mice aortae that allow a detailed assessment of lamellae microstructural alterations, we estab-
lished a new method involving tissue preparation, image acquisition, processing, and analysis. To begin with, the 
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entire aorta was dissected from the animal and immediately fixed in formol. Then, the vessel was cut in half lon-
gitudinally and mounted with the tunica intima facing onto the cover slide. This sample mounting arrangement 
allowed en-face imaging of the vessel surface as it would be seen by in vivo endoscopy. In addition, mounting 
the sample in this way was the most suitable approach to let microscopic light get through the vessel wall from 
the inner intima to the outermost adventitia layer, thus avoiding the expected premature light absorption by the 
presence of abundant adventitial collagen. Next, the ascending portion of aortic samples was imaged using a cus-
tom-made multimodal microscope35, which permitted simultaneous visualization of the elastic lamellae by elas-
tin TPEF and collagen fibres by SHG. Thus, we could image the medial elastic lamellae (green) and the adventitial 
collagen plus the medial collagen fibres (red) (Fig. 1A–D). Acquisitions consisted of an en-face z-stack of confocal 
images, beginning at the tunica intima and running until the elastin signal became too low for the subsequent 
segmentation. Loss of signal was due to ordinary light absorption and scattering, and it was evident at ~60 μm 
inside the tissue (see the transverse views of 80 μm depth in Fig. 1C and D). Since acquisitions were taken en-face 
(XY axes) (Fig. 1A) and running into the tissue (Z axis), image stacks allowed visualization and understanding of 
the tissue in three dimensions (XYZ axis), and provided a vision of the entire volumetric structure of the aortic 
tunica media (Fig. 1B). Consequently, the transverse image of the aortic tissue can be obtained by visualizing the 
3D image volume from the XZ or YZ perspectives (Fig. 1C and D), which was comparable with conventional 
histological preparations visualized by bright field microscopy (Fig. 1E and F).

The series of consecutive transverse images of elastin signal often showed the progression of lamella branch-
ing, small breaks, crosslinking between neighbouring lamellae and/or abrupt ending of lamellae (Supplementary 
Figure 1). These findings showed that aortic elastic lamellae are arranged in a 3D cage-like network1, 2, with 
irregularities that disrupt the apparent parallel arrangement seen in conventional histological preparations. 
Moreover, this view did not allow detailed lamellae microstructure visualization, and therefore segmentation 
of individual lamellae out of the acquired TPEF stack was then necessary. Consequently, to work with clean 
individual elastic lamella images, we developed a semi-automatic segmentation protocol in ImageJ software36 
that processed the original elastin stack (Fig. 2). Briefly, each en-face image stack (XY) was virtually resliced to 

Figure 1.  Aortic tissue visualizations using multiphoton microscopy. (A) En-face perspective of the IEL of the 
ascending aorta from a WT mouse using multiphoton microscopy. TPEF signal of elastin in green and SHG 
signal of collagen in red. (B) Three-dimensional rendering of a portion of the tunica media from the ascending 
aorta of a WT mouse. (C and D) Representative multiphoton images of the tunica media in transverse views of 
WT (C) and Marfan (D) mice. (E and F) Conventional histological visualization of elastic fibres using Verhoeff-
van Gieson staining in WT (E) and Marfan (F) aortic tissue. Scale bar, 10 μm.
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build its corresponding transverse image stack (YZ) (Fig. 2A and B), and then binary auto-thresholding was used 
to discriminate the elastin signal from the background (Fig. 2C). The chosen elastic lamella was then manually 
selected, and a new mask image stack was created with only this selection (Fig. 2D). The complete lamella mask 
stack was resliced back to the en-face view, and finally, it was applied to the original one (Fig. 2B) to generate the 
image stack of the selected individual elastic lamella (Fig. 2E). The en-face lamella stack provided 3D information 
on an isolated lamella, which could be represented as a 3D rendering (Fig. 2I) or a maximal projection image 
(Fig. 2F). Either of these representations revealed topological and structural data, but we chose the latter to per-
form a straightforward quantitative analysis. Thus, the surface of lamellae in two dimensions was displayed in its 
maximal projection image, so that its microstructure could be studied. Each fenestra (i.e. dark holes) found in the 
maximal projection of individual lamella was selected and marked in a fenestrae map (Fig. 2G). From this map, 
we carried out a morphological analysis to assess the density and size of fenestrae.

Our methodology could also be used to assess lamellae thickness, without any further procedure, by applying 
the BoneJ plugin for ImageJ37. This program quantifies lamella thickness and generates a visual colour representa-
tion from blue (lowest thickness) to white (highest thickness) (Fig. 2H).

Another lamellar feature that could be evaluated from the image acquisitions was the waviness of each lamella. 
To this aim, we developed a new approach based on measuring the height of the lamella in each pixel position of 
the image stack (Fig. 2J). This procedure, however, required a single Z axis height value per X-Y position. To this 
aim, we created a new protocol combining ImageJ and MATLAB software, which refined each segmented lamella 
image stack and its subsequent skeleton. Once the lamina skeleton had been obtained (Fig. 2J), we could evaluate 
its waviness in terms of height variation in the Z axis. Height values were organized into histograms and waviness 
maps represented by colours ranging from yellow (the lowest) to dark blue (the highest) (Fig. 2K).

En-face microstructural analysis of wild-type and Marfan aortic elastic lamellae.  Next, we 
applied the aforementioned methodology to examine in detail the elastic lamellae in the ascending aortic tissue 
in wild-type (WT, n = 4) and Marfan mice (MF; Fbn1C1039G/+ model, n = 6). Four en-face z-stack acquisitions 
were randomly taken from each aorta sample, and fenestrae data were obtained from the maximal projection of 
each of the segmented lamellae. For each image stack, we segmented and analysed the IEL and the elastic lamina 
located just underneath it (2nd lamina) to obtain the mean fenestrae density and the distribution of fenestrae sizes 
for each lamella maximal projection. We also measured lamellae thickness and waviness for each image stack. The 
transverse view of the aortic wall obtained by TPEF (Fig. 1C and D) closely matched what is seen in conventional 
histological preparations using Verhoeff-van Gieson staining (Fig. 1E and F). Marfan tissue visualized by both 
techniques showed lamellae disruptions and disarrangement (Fig. 1D and F) compared to WT tissue (Fig. 1C 
and E).

The en-face view showed that the IEL in WT animals had a flat, continuous aspect with unevenly distrib-
uted small fenestrae, which are visualized as small black holes (Fig. 3A). The IEL in Marfan mice showed more 

Figure 2.  Image processing protocol to obtain en-face segmented elastic laminae and subsequent quantitative 
analysis. (A) Representative image of an acquired original en-face TPEF stack. Elastin TPEF and background 
cell autofluorescence signals are visualized in grey scale. (B) Representative image of the resliced original stack 
to transverse view. (C) Representative image of the binary mask stack that was subsequently obtained. Elastin 
signal and some background spots are automatically marked in white, the rest of the tissue is marked in black. 
(D) Representative image of segmented individual lamina mask stack. In this case, only the IEL mask was 
selected. (E) Representative image of the resulting en-face IEL stack. (F) En-face maximal projection comprised 
of all images within the IEL stack. (G) Binary mask of all fenestrae seen at the maximal projection (F). (H) 
Representative image of thickness display stack. Highest thickness is marked by white colour. (I) 3D rendering 
of the lamella obtained from the IEL stack. (J) Representative image of lamella skeleton image stack. (K) Height 
map showing global lamella waviness. Yellow denotes low and dark blue high heights. Scale bar, 20 µm.
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prominent fenestrae and occasional large ruptures (Fig. 3B). It could be postulated that these lamellar ruptures 
might be merely caused by sample handling during the surgery. To elucidate this, we measured the length of 
the rupture’s hole at different points in the XY maximal projection. Our aim was to mimic the quantitation of 
the length for elastic laminae breaks when aortae are examined transversally in classic histological preparations 
(Fig. 1F). Thus, to resemble conventional histological sectioning, we used a standard grid that marked all the 
horizontal and vertical lines where length measurements should be performed for all ruptures. This way, the 
maximal projection rupture length was on average 20.71 µm at IEL and 30.73 µm at the 2nd lamellae. Altogether, 
the length of Marfan ruptures was 26.52 µm (±19.29 µm). For comparative reasons, we quantified the length of 
elastic laminae breaks from 24 conventional histological preparations of Marfan aortae (Fig. 1F), giving a mean 
length of 20.95 µm (±19.47 µm). Note that the values obtained from en-face and transversal histology are very 
similar and therefore, the ruptures in Marfan en-face images of IEL and 2nd lamellae (Fig. 3B, third column panels 
from the left) correspond to the classical elastic laminae breaks observed by conventional histological methods 
and not primarily caused by sample handling.

Despite having an identical genetic background, Marfan mice showed variable lamina aspect patterns. 
However, the differences with WT mice were clearly evident. In particular, fenestrae density was 2.5 fold higher 
in Marfan IEL than in WT IEL (Fig. 4A; median values: 2.14 fenestrae/mm2 in WT vs. 5.53 fenestrae/mm2 in 
MF). Marfan mice also had significantly larger fenestrae than WT mice (Fig. 4B; 2.07 µm2 in WT vs. 2.25 µm2 in 
MF). Consequently, the total area of elastic lamina occupied by fenestrae in the field of view was clearly larger in 
Marfan mice.

The 2nd elastic laminae were segmented and analysed in the same way as the IEL. We observed that the struc-
tural differences between WT and Marfan 2nd laminae were even more evident than in the IEL (Fig. 3). The results 
of quantitative analysis of the 2nd laminae were very similar to those obtained in the IEL when we compared WT 
and Marfan mice. Fenestrae density and size were significantly greater in the 2nd lamellae of Marfan mice than in 
WT mice (Fig. 4; density: 1.29 fenestrae/mm2 WT vs. 4.34 fenestrae/mm2 in MF; size: 2.43 µm2 WT vs. 3.06 µm2 
in MF). No differences in fenestrae density were observed between the IEL and 2nd lamellae in WT and Marfan 
mice (Fig. 4A). However, there was a significant increase in the size of fenestrae between IEL and the 2nd lamellae 

Figure 3.  Representative en-face images of wild-type and Marfan elastic laminae. Maximal projections of 
segmented IEL and 2nd lamina of WT (A) and Marfan (B) aortae. IEL and 2nd laminae images of each column 
belong to the same image stack acquisition. In addition, each column corresponds to a different animal. 
Fenestrae are seen as black holes of variable size. Big polygonal black holes are considered ruptures, and are 
excluded from fenestrae quantification. Scale bar, 10 μm.
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in WT and Marfan aortae (Fig. 4B), which was more pronounced in Marfan aortae (WT: 2.07 µm2 in IEL vs. 
2.43 µm2 in 2nd lamina; MF: 2.25 µm2 in IEL vs. 3.06 µm2 in 2nd lamina).

Next, we performed a systematic analysis of the density and size of fenestrae in different anatomical locations 
of the ascending aorta. The locations were defined as proximal, central and distal in the longitudinal plane, and 
as concavity and convexity in the circumferential plane (Fig. 5A–C). A qualitative examination of images of the 
aforementioned regions revealed that laminae obtained in the convexity and proximal zones apparently had more 
microstructural damage (Fig. 5D and E). Indeed, statistically significant differences were observed between WT 
and Marfan mice in the IEL and in the 2nd elastic lamina, mainly in the proximal and convex regions. In particu-
lar, the median density of fenestrae in proximally located IEL (Fig. 6A) and 2nd laminae (Fig. 6B) were 7.5 and 6 
times higher respectively in Marfan than in WT mice (IEL: 1.02 fenestrae/mm2 WT vs. 7.60 fenestrae/mm2 in 
MF; 2nd lamella: 1.14 fenestrae/mm2 in WT vs. 6.74 fenestrae/mm2 in MF). Moreover, Marfan fenestrae were sig-
nificantly larger at proximal and distal IEL (Fig. 6C), and at proximal and central 2nd laminae (Fig. 6D).

The circumferential partition of data (Fig. 7) showed that fenestrae density in WT IEL located at the concavity 
(cv) was significantly higher than that at the convexity (cx) of the aorta (Fig. 7A; 1.78 fenestrae/mm2 in cx vs. 5.81 
fenestrae/mm2 in cv). However, this was not the case for WT 2nd laminae (Fig. 7B; 1.27 fenestrae/mm2 in cx, and 
2.46 fenestrae/mm2 in cv). In contrast, Marfan IEL fenestrae density ranges at concavity and convexity (2.8–9.1 
fenestrae/mm2) were highly similar to that at WT concavity (2.7–9 fenestrae/mm2), and greater than at WT 
convexity (1–2.5 fenestrae/mm2) (Fig. 7A). At the 2nd laminae, Marfan fenestrae density was similar to that at the 
Marfan IEL (compare MFcx with MFcv in Fig. 7A and B), and higher than 2nd laminae WT density in both cir-
cumferential regions (Fig. 7B), but was only significant at the convex region. We observed a significant difference 
in the size of fenestrae between Marfan and WT convexities both at the IEL and the 2nd laminae (Fig. 7C and D, 
respectively; IEL: 1.98 µm2 in WT vs. 2.25 µm2 in MF; 2nd laminae: 2.52 µm2 in WT vs. 3.06 µm2 in MF). In sum-
mary, structural injuries in the Marfan ascending aortae were regionalized, and were preferentially accumulated 
in the convexity region of the circumferential plane, and mainly in the proximal region of the longitudinal plane.

Finally, we also examined potential differences between WT and Marfan mice regarding lamellae thick-
ness and waviness. Lamellae thickness showed that in WT and Marfan, IEL and 2nd lamellae were on average 
2.7–3.0 µm, without significant differences between them (Supplementary Figure 2A). In addition, the measure-
ment of waviness showed that WT and Marfan lamellae had the same spectrum of height values (Supplementary 
Figure 2B).

Discussion
In this article, we report the implementation of a new multiphoton microscopy image processing method for 
elastic lamellae microstructure examination, based on obtaining series of en-face images from unstained aortic 
tissue. We used healthy and MFS murine aortae as tissue models and determined the anatomical distribution 
of fenestrae alterations that occur in elastic laminae. In the last decade, a lot of data have been generated about 
histological damage in the aortic wall in MFS, using routine histological techniques following the conventional 
sequence of paraformaldehyde/formol fixation, paraffin embedding, sectioning and histological (immune) 
staining. Technological improvements in microscopy and importantly in image processing have provided a new 
panorama to the histopathology field2. Accordingly, here we applied en-face multiphoton microscopy and a seg-
mentation protocol to assess lamellae morphology. The advantages of our new approach are: (i) it can produce 
high-resolution en-face confocal stacks that enable detailed visualization of histological structures; (ii) it can 
obtain quantitative information belonging to the three dimensions XYZ, which increases our understanding of 
3D histological arrangements; and (iii) the entire aortic vessel can be viewed, for straightforward monitoring of 
different anatomical regions.

Figure 4.  Quantitative analysis of density and size of fenestrae seen in IEL and 2nd elastic laminae from en-
face maximal projection images. Fenestrae density (A) and size (B) seen in WT (orange) and Marfan (MF, 
blue) IEL and 2nd lamellae. Statistical significance between groups is indicated by asterisks, and defined in the 
Materials and Methods section. Interquartile boxplots with minimum and maximum whiskers. Forty maximal 
projections were analysed and a total of 6,400 fenestrae were quantified.

http://2A
http://2B


www.nature.com/scientificreports/

7Scientific Reports | 7: 1505  | DOI:10.1038/s41598-017-01620-8

Although TPEF confocal microscopy has been used to obtain the elastin signal of vessels in other studies25, 
our report is the first to our knowledge in which a semi-automatic image processing protocol is systematically 
implemented to segment individual lamellae and quantitatively analyse histological microstructural changes. 
Furthermore, this unique analysis was performed on en-face images of ascending aorta tunica media of a murine 
model of MFS, in which elastic fibre ruptures are known to be associated with the formation and progression of 
aortic aneurysm18. Related previous studies in MFS reported “disruptions” in en-face images from pressurized 
adult MF mice descending aortae, but without any quantitative analysis33; and also reported a ≈40 μm “hole” 
diameter measurement based on non-segmented lamellae of diseased tissues only (from another MFS murine 
model)34. In addition, the measurement of elastic laminae features of transversely viewed parts of Marfan mice 
aortae obtained by multiphoton microscopy was reported as an alternative to conventional histological meth-
ods38. Here, we complement these studies and highlight the relevance of en-face multiphoton microscopy and 
image processing for generating quantitative 3D microstructural data on individual elastic lamellae. We report 
new histopathological alterations in the aortic media in the murine Fbn1C1039G/+ model of MFS: lamellae in the 
ascending aorta show larger and more fenestrae than WT tissue. The density of fenestrae in Marfan elastic lam-
inae is at least double that found in WT. These fenestrae alterations probably represent lamellar micro-damage, 
which could be directly related to the characteristic elastic lamellae fragmentation and disarrangement happening 
in Marfan aortae38.

Interestingly, our results show that alterations in the density and size of fenestrae did not occur uniformly in 
the entire Marfan ascending aortic media, but were mostly restricted to the proximal and convex regions. This 
is in accordance with results reported by ref. 39 in the ascending aorta of angiotensin II-infused ApoE−/− mice. 
Using conventional histological techniques, they reported that the largest aortic wall dissections occurred in 
the outer convex quadrant, which corresponds to the central part of the aortic convexity. We speculate that the 

Figure 5.  Anatomical regionalization of ascending aorta used in this study. (A and B) Schematic drawings 
of defined ascending aorta anatomical regions used in our study in longitudinal (A) and circumferential (B) 
planes. (C) Bright field image map of the longitudinally open aorta (as shown in the inset schematic drawing) 
and the corresponding regions. (D and E) Representative maximal projections acquired in the proximal-convex 
region of WT (D) and Marfan (E) aortae. Scale 500 μm in (C) and10 μm in (D,E).
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regionalized structural changes reported here could be due to a preferential impact of the blood flow on the 
convex and proximal ascending aortic regions. It is known that deviant blood flow can be caused by aortic valve 
dysfunction40. In particular, the convexity of ascending aorta is the preferential blood flow impact zone found in 
bicuspid aortic valve disease41, which is accompanied by differential lamellae fragmentation and matrix protein 
expression patterns in comparison to the concavity42. In the case of MFS patients, aortic root dilatation usually 
entails aortic valve dysfunction43, which in turn causes aortic blood flow disturbance43, 44 leading to mild or mod-
erate aortic regurgitation44, 45. Therefore, it is reasonable to hypothesize that MFS disturbed flow could be mainly 
impacting on this particular anatomical zone, just as happens in bicuspid aortic valve pathology. This premise 
should be confirmed by further detailed hemodynamic studies on Marfan patients and murine models, which to 
our knowledge are not currently available.

A recent paper39 reported a transmural gradient of lamellar injury, in which elastic laminae break number 
varies significantly amongst lamellae. In particular, central lamellae including the 2nd showed more breaks than 
peripheral ones. The results of our comparisons of fenestrae density and size between the IEL and the 2nd lamina 
also suggest a histological injury gradient, where the damage is more severe in the 2nd lamina than in the IEL. 
Again, we can only speculate about the significance of this difference. It could be related to intrinsic robustness 
of the IEL, whose structure and organization might be better adapted to support the mechanical impact of blood 
flow than the rest of laminae. In this respect, aortic transmural mechanical behaviour has been studied in relation 
to transmural structural properties46, 47. Results show that the porcine thoracic descending aorta wall is divided 
into transverse outer and inner tunica media halves, which differ in their mechanical and molecular composition. 
In addition, the alignment of bovine elastic and collagen fibres due to mechanical load varies in lamellae localized 
close to the endothelium and in the subsequent lamellae48. We are aware that this variance cannot be directly 
extrapolated to mice, due to differences in the animal model used and the aortic portion examined in terms of 
wall thickness and lamellae number. Nonetheless, it cannot be discarded that similar structural variance between 
lamellae occurs in mice as well. Our results suggest that this variance might take place between IEL and successive 
lamellae. In the case of Marfan mice aortae, we hypothesise that the weakness of the tunica media16, 49 plus the 

Figure 6.  Quantitative analysis of fenestrae in IEL and 2nd laminae in the longitudinal plane of the ascending 
aorta. The density of fenestrae in the IEL (A) and 2nd lamina (B), and their respective individual fenestrae size 
(C and D) measured at different longitudinal plane locations (proximal, central and distal) of WT (orange) 
and Marfan (MF, blue) ascending aortae. Statistical significance between groups is indicated by asterisks. 
Interquartile boxplots with minimum and maximum whiskers. Forty maximal projections were analysed and a 
total of 6,400 fenestrae were quantified.
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intrinsically different primary structure of each lamina could explain the here reported dissimilar injury pattern 
occurring between the 2nd laminae and the IEL.

Regarding the other lamellar parameters assessed by our methodology, it was previously shown by SEM that 
medial elastic laminae of adult rat aorta were 2–3 µm thick and had an irregular profile50. Moreover, an average 
of 2.74 µm was reported in mouse51. Therefore, our lamella thickness values (2.7–3.0 µm) are in accordance with 
those measured in mouse51 and rat aortae50, 52.

There are few data about lamellae undulation assessment either in health or disease. Wolinsky and Glagov4 
established the waviness index, which consisted in obtaining the ratio of the lamellar length to the straight line 
distance between two reference points. Other developed undulation assessment techniques quantified the fold-
ing53 and fiber angular undulation28 of lamellae. Globally, these three methods are all based on individual trans-
versal sections, and hence they provide 2D data. Conversely, our waviness quantification approach takes into 
account area values as in earth topography studies, and therefore it is much more informative about the 3D 
structure of the tissue. With this method, we showed no differences in lamellar waviness between WT and Marfan 
aortic tissue.

In conclusion, here we describe the method that we have developed, apply it to wild-type and Marfan murine 
aortae, and quantify morphological differences in terms of lamellae fenestrae, thickness and waviness features. 
Our results take advantage of multiphoton microscopy to achieve en-face images of unstained aortic tissue, which 
in turn provide us with novel information on lamellae 3D histopathological damage. The application of this meth-
odology to Marfan mice aneurysm-prone tissue suggested the density of fenestrae as a potential aortic microscale 
damage marker, whose alterations are mainly accumulated in the proximal and convex regions of the ascending 
aorta. Finally, our method opens the door to study in detail 3D vessel morphology and injuries in other condi-
tions, diseases, and animal models. The future application of our imaging and processing method as a basis for 
the vascular endoscopy examination of MSF patients or related diseases might provide an early evaluation tool for 
aortic histological damage prior to the irreversible appearance of the aneurysm.

Figure 7.  Quantitative analysis of fenestrae in IEL and 2nd laminae in the circumferential plane of the ascending 
aorta. The density of fenestrae at the IEL (A) and 2nd lamina (B), and their respective individual fenestrae size (C 
and D) measured at different circumferential plane locations (convexity/cx and concavity/cv) of WT (orange) 
and Marfan (MF, blue) ascending aortae. Statistical significance between groups is indicated by asterisks. 
Interquartile boxplots with minimum and maximum whiskers. Forty maximal projections were analysed and a 
total of 6,400 fenestrae were quantified.
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Methods
Experimental animals and sample preparation.  Nine-month-old Fbn1C1039/+ mice and age-matched 
wild-type littermates were used in this study (n = 4 for WT and n = 6 for Marfan mice). Animal care and exper-
imental procedures were approved by the University of Barcelona’s independent Committee for Animal Welfare, 
according to the University of Barcelona’s guidelines and the European Parliament Directive. The mice were on 
a C57B/6 genetic background and maintained as a heterozygous breeding colony in our animal room facility. 
Animals were sacrificed by isoflurane inhalation and the aorta was surgically harvested from the aortic root until 
its suprarenal portion, and immediately rinsed in PBS and fixed in formol 10% overnight. Thereafter, aortae 
were cut longitudinally (see inset in Fig. 5C). The open aorta was placed on a glass slide covered with mowiol, 
and some small transverse cuts were performed to keep the tissue flat. Each aorta was mounted with the tunica 
intima facing the coverslide. For this study, only the ascending aorta was used for imaging. A detailed map image 
of the entire sample was obtained by mosaic stitching of 308 bright field images of 0.8 × 0.5 mm field of view (see 
Fig. 5C). Bright field images were acquired using a 10 × 0.5 NA objective (Nikon) and Qimaging fast camera, with 
0.46 μm pixel size.

Multiphoton microscope setup and image acquisition.  The microscope setup consisted of a 
custom-made non-linear optics setting, based on a fully motorized Ti eclipse Nikon microscope. Multiphoton 
excitation was obtained using a Coherent mira900 titanium sapphire laser. The laser produced pulses of ~150 
fs with a repartition rate of 76 MHz, and the power used at the back aperture of the objective was 40 mW. To 
perform aorta imaging, the laser wavelength was set to 810 nm, producing at 405 nm a generation of second 
harmonic and efficient TPEF signals. The filters were the following: Semrock FF720-SDi01-25 × 36 for TPEF/
SHG generation; Semrock FF01750/SP-25 for TPEF detection; Semrock FF735-Di01-25 × 36 for SHG detection; 
and Semrock FF01-406/15-25 for forward SHG detection. Samples were visualized using a 40 × 1.3 NA oil objec-
tive (Nikon) and the collection of the forward second harmonic signal was performed by means of a 1.4 NA oil 
immersion condenser. Image stacks of both signals (TPEF/elastin and SHG/collagen) were taken simultaneously 
by custom-made acquisition software coded in Labview. Image stacks were carried out at z-step 0.5 μm from the 
intima until 60 μm deep into the tissue. Acquisitions were taken at a pixel size of 0.29 μm, field of view 512 × 512 
px and averaged 5 times. Four image stacks at different anatomical locations were acquired for each aorta sample 
and the exact location was assessed using the bright field image map of each sample.

Image processing.  Quantitative data was obtained by an image processing protocol (as indicated in Fig. 2) 
scripted in ImageJ macro language, available on demand. The elastin signal image stack was resliced to its YZ 
perspective, and automatically binary thresholded using the Niblack algorithm at radius 10 to generate an elastin 
binary mask. The resulting mask stack was separated into groups of 15 consecutive images (34 groups), and each 
group was manually processed to select the chosen elastic lamella and isolate it from the other lamellae. This seg-
mented lamella mask stack was re-resliced to recover the XY perspective, and small errors of segmentation and 
thresholding were corrected by applying a binary erode routine of 50 iterations at range 5. Manual rectification 
of segmentation inaccuracies was executed when needed. The corrected lamella mask was applied to the original 
elastin image stack to obtain the isolated segmented lamella, and its maximal projection was created. Illumination 
intensity variations were adjusted. Sauvola local threshold at radius 5 was applied to the adjusted maximal pro-
jection image to create a fenestrae binary mask. Manual check and correction were performed to obtain a verified 
fenestrae dataset. From the fenestrae binary mask, individual area (μm2) and density (fenestrae number/mm2) of 
fenestrae greater than 1 μm2 were measured for each lamella using the “analyse particles” algorithm. The number 
of elastic lamellae ruptures and their area were excluded from the analysis. The image processing protocol yielded 
maximal projections of 16 wild-type IEL, 16 wild-type 2nd lamellae, 24 Marfan IEL and 24 Marfan 2nd lamellae. A 
total of 6,400 fenestrae at all maximal projections were quantified.

BoneJ plugin in ImageJ was used to automatically quantify lamella thickness from the segmented lamella 
stacks. For an accurate measurement, image stack voxel size was rescaled by 0.6 at the X and Y axis, so that voxels 
had isotropic dimensions (0.5 × 0.5 × 0.5 µm). Then the BoneJ specific measurement of thickness was applied 
onto each segmented lamella stack mask. Data was the mean thickness ±SD of the whole stack, and the pro-
gramme provided a coloured representation of local thicknesses in each stack slice.

To quantify lamella waviness in ImageJ, the YZ segmented lamella mask stack was manually checked for any 
error in the continuity of the lamella. Next, 9 automated series of binary erode and dilate were applied to the 
lamella mask in order to smooth the mask surface without losing its path. The YZ mask stack was then converted 
into its skeleton (by the “Skeletonize” ImageJ algorithm), depicted as a black background and white single-pixeled 
line tracing the core path of the lamella and branches, in each one of the stack slices. The next step was to pro-
cess the skeleton stack to erase all undesired branching. We developed a complex automated algorithm run on 
MATLAB (The MathWorks Inc., Natick, MA) that tracked each one of the white pixels in the skeleton and classi-
fied them into skeleton segments belonging to the lamellar core path or to a branch path. Once the classification 
had been done in each stack slice, the algorithm joined only the core path skeleton segments to finally generate 
the clean lamella skeleton stack. However, due to simplification of the 3D lamella shape into a split 2D skeleton, 
the lamellar smooth continuity was somehow spoiled. Therefore, in ImageJ, 9 series of erode and dilate were used 
automatically, first in the XY perspective and then in the resulting YZ view. Finally, a complete clean accurate 
skeleton stack was obtained from each segmented lamella stack. Out of these, we applied another developed 
MATLAB algorithm to generate height data. The algorithm tracked each white pixel in the YZ skeleton to get 
its height value in the Z axis, and relativized each value to the minimum height value of the whole skeleton. To 
eliminate noise or tiny details affecting the wave pattern, the XY image (made of the relativized height values) 
was rescaled by 0.15. Likewise, a possible general inclination of the lamella was also corrected from the relativized 
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rescaled height image by subtracting its own 20px Gaussian blurred image. At the end, these final height values 
were displayed as a height map where yellow denotes low heights and dark blue represents high ones.

Conventional histology.  Formol-fixed mice aortae were dehydrated and embedded in paraffin. Five µm 
transverse sections were stained with Verhoeff-Van Gieson staining for visualization of elastic fibres. The length 
of elastic laminae breaks was measured manually from 24 images, using ImageJ. The mean break length and 
standard deviation were calculated.

En-face lamellar rupture length corresponded to the rupture distance crossed by a vertical or horizontal line. 
To standardize, a 10 × 10 µm grid was superimposed on all the TPEF maximal projection images that showed 
lamellar ruptures (8 out of the 48 total Marfan images). Each rupture yielded multiple length values. The mean 
length of ruptures was calculated by averaging the multiple lengths obtained from all the ruptured images. The 
standard deviation was also calculated in order to show data dispersion. Ruptured images were relatively infre-
quent, distributed among half of the Marfan aortic samples, and their anatomical location was aleatory.

Statistical method.  Data were analysed using GraphPad Prism 6, and plotted as median and interquartile 
boxplots with minimum and maximum whiskers. As the datasets presented diverse distribution shapes, statistical 
analysis was carried out using the Kolmogorov-Smirnov nonparametric test. The value of P ≤ 0.05 was considered 
statistically significant. The degree of significance was assigned as follows: *for P ≤ 0.05, **for P ≤ 0.01, ***for 
P ≤ 0.001, and ****for P ≤ 0.0001.

Data Availability.  The datasets and protocols generated during the current study are available from the cor-
responding author upon request.
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