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Abstract

Purpose of review—Myofibrillar myopathies (MFMs) are a heterogeneous group of skeletal 

and cardiac muscle diseases. In this review, we highlight recent discoveries of new genes and 

disease mechanisms involved in this group of disorders.

Recent findings—The advent of next-generation sequencing technology, laser microdissection 

and mass spectrometry-based proteomics has facilitated the discovery of new MFM causative 

genes and pathomechanisms. New mutations have also been discovered in ‘older’ genes, helping 

to find a classification niche for MFM-linked disorders showing variant phenotypes. Cell 

transfection experiments using primary cultured myoblasts and newer animal models provide 

insights into the pathogenesis of MFMs.

Summary—An increasing number of genes are involved in the causation of variant subtypes of 

MFM. The application of modern technologies in combination with classical histopathological and 

ultrastructural studies is helping to establish the molecular diagnosis and reach a better 

understanding of the pathogenic mechanisms of each MFM subtype, thus putting an emphasis on 

the development of specific means for prevention and therapy of these incapacitating and 

frequently fatal diseases.
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INTRODUCTION

Myofibrillar myopathies (MFMs) are a genetically heterogeneous group of skeletal and 

cardiac muscle disorders characterized by focal dissolution of myofibrils and aggregation of 

degraded myofibrillar products into inclusions containing desmin and a number of other 

proteins [1]. A major morphological feature unifying these genetically diverse disorders is 

that myofibrillar degeneration starts at or close to the Z-disc of the sarcomere [1,2]. 

Regarding its major pathogenic mechanisms, MFM is also part of a group recently 

designated as protein aggregate myopathies (PAM) [3,4]. The use of new technologies, 

including next-generation sequencing, laser microdissection and mass spectrometry-based 

proteomics followed by gene sequencing, has recently helped to identify disease causative 

genes in a fraction of patients and will hopefully enlarge the spectrum of MFM causative 

genes in the very near future. This should increase the reliability of diagnostic procedures 

and aid develoment of therapeutic options for each MFM subtype. A number of detailed 

reviews focusing on MFMs have been published over the past 2–5 years [2,5–7]. This review 

summarizes the latest relevant advances in the field.

NOVEL MYOFIBRILLAR MYOPATHY SUBTYPES

Most recently, genetic causes of two disorders have been identified: reducing body 

myopathy (RBM) and hereditary myopathy with early respiratory failure (HMERF), both 

considered to be new members of MFM.

Reducing body myopathy

RBM, originally described by Brooke and Neville [8], is a rare congenital disorder defined 

by the presence of intracytoplasmic inclusions that reduce nitroblue tetrazolium (NBT) and 

thus stain strongly with menadione-NBT. In 2008, a very elegant work using laser 

microdissection followed by proteomic analysis resulted in the identification of FHL1 as the 

most abundant protein within the reducing bodies [9]. Subsequently, mutations in FHL1 on 

chromosome Xq27.2 were discovered in affected children [9]. RBM manifests with a range 

of phenotypes extending from early onset fatal conditions to milder disorders manifesting in 

childhood or adulthood [9–13]. Besides RBM, mutations in FHL1 have been identified in 

patients with several other X-linked disorders including X-linked myopathy with postural 

muscle atrophy and muscle hypertrophy [14], scapuloperoneal myopathy [15], rigid spine 

syndrome [16], Emery–Dreifuss muscular dystrophy [17], hypertrophic cardiomyopathy 

[18] and some other overlapping conditions. Reducing bodies have been detected in severe 

childhood-onset and juvenile-onset cases of RBM caused by mutations in the second LIM 

domain of FHL1 [12,13], but lately they were also identified in late-onset cases with 

mutations in the C-terminal domain [19■]. Besides FHL1, which constitutes the most 

abundant protein found in reducing bodies, immunohistochemical analyses have led to the 

identification of several other proteins within or surrounding the reducing bodies, including 

desmin and myotilin [9–12,19■,20–22], allowing classification of this entity as a PAM. 

Moreover, early Z-line abnormalities, Z-line streaming and reducing body material arising 

from the level of the Z-line and spreading under the sarcolemma and within the myofibrils to 

form reducing bodies [10,11,19■,20,21], as revealed by electron microscopy (EM) analysis, 
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are other features that make the relationship to MFM certain, although the histochemical, 

immunohistochemical and ultrastructural characteristics are profoundly different from the 

other MFM subtypes.

Hereditary myopathy with early respiratory failure

HMERF is an autosomal dominant disease characterized by proximal and distal muscle 

weakness associated with respiratory insufficiency and involvement of neck flexors early in 

the disease course [23]. A p.R32450W mutation in the kinase domain of titin was identified 

in Swedish families, originally described by Edström [24]. A novel p.C30071R TTN 
mutation was recently detected by next-generation sequencing as the cause of HMERF in 

several new North European families [25■■,26■■]. Subsequently, a number of additional 

TTN mutations, all of them in the A-band TTN domain, were identified in HMERF families 

of divergent geographical origins [27■–30■]. The age at onset ranges from 13 to 71 years 

[25■■,26■■,29■]; initial symptoms are variable, but ultimately nearly all patients develop 

significant distal and proximal weakness. Respiratory function is affected early and 

undergoes a gradual deterioration over time [25■■,26■■,27■–30■].

The morphological phenotype is in most cases consistent with MFM. Histopathological 

analysis highlights cytoplasmic bodies as the most relevant finding. EM studies revealed 

extensive myofibrillar changes with Z-disc streaming and myofibrillar disruption (Figs 1 and 

2). Accumulation of various proteins including desmin, myotilin, and filamin C in the 

abnormal fibers was also reported [25■■,26■■,27■–30■]. These histopathological and 

ultrastructural features justify that HMERF associated with mutation in the A-band of titin is 

classified as MFM-titinopathy. However, the presence of cytoplasmic bodies as the 

morphological hallmark in HMERF distinguishies HMERF from other MFM subtypes.

Proteomic analysis in MFM

Proteomic analysis has become a valuable method in MFM research. It enables highly 

sensitive detection and quantitation of proteins even in very small samples [19■,31■–33■]. 

Laser microdissection selectively collects aggregates from abnormal muscle fibers and 

control samples from normal appearing fibers of the same biopsy (Fig. 3). Mass 

spectrometry-based quantitative proteomic analysis of these paired samples allows 

identification of proteins that are overrepresented in aggregates. This approach has provided 

new insights into the composition of pathological protein aggregates in several MFM 

subtypes [19■,31■–33■], and has revealed significant differences between the MFM 

subtypes regarding the accumulation ratio and the abundance of proteins in aggregates (Fig. 

3), to the extent that the subtype-specific proteomic profiles can be successfully used for 

differential diagnosis [32■,33■].

The finding that the disease-causing proteins show stronger accumulation in filaminopathy, 

desminopathy and RBM [19■,31■–33■] suggests that proteins overrepresented in 

aggregates of patients with so far unsolved MFM-related conditions are the potential 

disease-causing candidates. Next-generation sequencing can in this situation be used to 

search for mutations in genes encoding these proteins.
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PROGRESS IN STUDIES OF THE PREVIOUSLY IDENTIFIED MYOFIBRILLAR 

MYOPATHIES

Mutations in sarcomeric and Z-disc-supporting cytoskeletal proteins, desmin (DES), αB-

crystallin (CRYAB), myotilin (MYOT), Z band alternatively spliced PDZ-containing protein 

(ZASP), filamin C (FLNC) and Bcl-2-associated athanogene-3 (BAG3) have previously 

been identified in patients with MFM (Table 1).

Desminopathy

MFM resulting from mutations in desmin (DES) is the most common and best studied 

subtype of MFM [34–36,37■■]. Thus far, 67 disease-causing DES mutations have been 

reported [37■■]. Clinical manifestations of desminopathy are heterogeneous. Skeletal 

myopathy is often associated with cardiac involvement: this has recently been the subject of 

extended studies [38,39■] stressing the need for close cardiac monitoring in desminopathy 

patients. Desmin mutations have recently been found in a subset of patients suffering from 

arrhythmogenic right ventricular cardiomyopathy [40]. Also, exome sequencing identified a 

DES mutation in affected members of a Swedish family with MFM and arrhythmogenic 

right ventricular cardiomyopathy [41■], previously reported by Melberg et al. [42].

The first recessive desmin-null mutation was reported in two siblings manifesting with a 

progressive myopathy, muscle fatigue, swallowing difficulties and respiratory restriction. 

Affected muscles showed myopathic abnormalities and cytochrome c oxidase (COX)-

deficient fibers but no MFM pathology. Desmin expression was completely absent on 

immunostaining and western blot [43■■]. Laser microdissection of skeletal muscle and 

mass spectrometry-based proteomics allowed identification of a DES mutation in another 

family affected by skeletal and cardiac myopathy with conduction defects [44■]. The 

disease in this family was previously mistakenly linked to a 6q23 locus and designated as 

limb–girdle muscular dystrophy (LGMD) 1D/1E.

Transfection experiments, animal models and in-vitro assembly studies have been carried 

out to investigate the pathogenesis of desminopathy (reviewed in [37■■]). Abnormal 

desmin filament elasticity has been postulated as a contributory mechanism of disease 

progression. A recent study performed in primary cultured myoblasts obtained from a 

patient revealed abnormal mechanical properties of affected muscle cells, which acquire 

increased stiffness and higher vulnerability to mechanical stretch [45■].

A useful disease model has been generated by inoculating adeno-associated virus vectors 

carrying mutant desmin cDNA into the anterior tibialis muscle of a mouse. The results 

demonstrate mutation-dependent effects on muscle regeneration, distribution of fiber size 

and generation of muscle force [46■]. This technology may help to assess the level of 

pathogenicity of various desmin mutations.

αB-crystallinopathy

αB-crystallinopathy represents an infrequent subtype of MFM. A heterozygous CRYAB 
p.R120G mutation was identified in a large French family presenting with proximal upper 
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limb and distal lower limb weakness, involvement of the velopharyngeal muscles, 

respiratory failure, cardiopathy and lens opacities. Granulofilamentous material, the 

characteristic ultrastructural feature of desmin deposits, has for the first time been described 

in this family [47,48]. Analysis of a second kindred manifesting identical symptoms [49■] 

caused by a novel D109H CRYAB mutation confirmed that αB-crystallinopathy is a 

multisystem disorder. A few further cases have been reported presenting in adulthood with 

muscle weakness and respiratory failure, or weakness and peripheral neuropathy but no 

cardiac involvement or lens opacities [50,51].

A knock-in mouse model for the CRYAB p.R120G mutation has been developed [52]; 

analysis of the affected tissues show the loss of αB-crystallin solubility and accumulation of 

protein aggregates in the lens and skeletal muscle, thus recapitulating many features of the 

human disease.

Recessive mutations in CRYAB have been identified as the cause of fatal infantile 

hypertonic muscular dystrophy described two decades ago in Canadian natives [53,54]. 

Affected children presented shortly after birth with severe weakness and hypertonia, 

predominantly in axial muscles, and progressive respiratory insufficiency leading to early 

death. Muscle biopsies showed typical features of MFM, although αB-crystallin was not 

detected in the inclusions by using monoclonal antibody that recognizes the entire protein 

[53,54].

Myotilinopathy

MFM resulting from MYOT mutations is a late-onset disorder presenting with distal 

weakness of lower limbs or limb–girdle weakness followed by distal muscle involvement 

[55–57]. Peripheral neuropathy, respiratory failure and cardiomyopathy are rare associated 

findings [56,57]. To date, 50 MFM patients from 40 unrelated families with MYOT 
mutations have been identified. All mutations except for one are located in exon 2 of the 

MYOT gene [56–58].

Recent studies in transfected COS7 cells and myotubes have demonstrated reduced myotilin 

degradation by the proteasome system and accumulation of mutant myotilin in the 

transfected cells, which perfectly explains the disease mechanisms in human myotilinopathy 

[59]. New observations support previous results from studies of human MFM muscle 

biopsies that suggested a major role for impaired protein degradation in the pathogenesis of 

MFM [60,61■].

The pathogenic effects of MYOT mutations in vivo were also studied by using 

electroporation to express mutant myotilin in mouse skeletal muscles; abnormal insoluble 

protein aggregates were similar to those observed in patients with myotilinopathy [62■].

ZASPopathy

The clinical and pathological phenotype in patients carrying ZASP mutations is similar to 

the one described in myotilinopathy. First clinical symptoms usually occur in the sixth 

decade, the disease progression is very slow and patients remain ambulatory until very late 
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age. Peripheral neuropathy and cardiac involvement are associated features in a minority of 

cases [63,64].

Recently, the p.D117N ZASP variant previously found to be associated with dilated 

cardiomyopathy was reported in a mother and child with symptoms of skeletal myopathy 

[65]. Three muscle biopsies performed in the mother showed neurogenic features but no 

MFM pathology, making it uncertain if the p.D117N ZASP variant was the cause of 

myopathy in this family.

A new p.V566M ZASP mutation was identified in a single case of sporadic inclusion body 

myositis (sIBM) diagnosed according to the existing diagnostic criteria [66]. This is not 

surprising because some of the pathological features of sIBM overlap with those 

encountered in MFM, although large protein aggregates and major sarcomere 

disorganization are not usually seen in sIBM.

MFM-filaminopathy

MFM-filaminopathy is characterized by adult-onset predominantly proximal weakness with 

involvement of respiratory muscles and cardiac abnormalities [61■,67,68■]. The 

p.W2710X mutation located in the dimerization domain of filamin C was recently identified 

as a mutational hotspot [61■]. Late-onset cerebellar ataxia has been reported in one sporadic 

patient with FLNC p.T241M mutation, but a causal relationship with filaminopathy is 

unclear [69]. Established cell culture models show significant protein aggregation and are 

applicable for testing therapeutic approaches [61■]. Two reported fish models [70,71] relate 

rather to distal myopathy caused by haploinsufficiency than MFM-filaminopathy.

BAG3-myopathy

Mutations in BAG3 cause a rare subtype of MFM; only 12 patients, all carrying the same 

p.P209L recurrent de-novo mutation transmitted from a mosaic parent, have been reported to 

date [72–75]. Unlike other subtypes of MFM, BAG3-myopathy manifests during the first 

decade of life with rapidly progressive limb and axial muscle weakness, contractures, 

hypertrophic cardiomyopathy and respiratory insufficiency. A characteristic feature of the 

disease is the association with peripheral neuropathy that may in some patients be the initial 

clinical manifestation [75]. Nerve biopsies reveal a loss of myelinated fibers and the 

presence of giant axons with thin myelin sheets as characteristic features [73,75]. Muscle 

biopsies are consistent with MFM, sometimes associated with signs of chronic denervation.

DIAGNOSIS

The diagnosis of MFM is based on muscle biopsy findings that demonstrate characteristic 

aggregates containing desmin and other proteins as revealed by immunohistochemistry [1,2] 

(Fig. 1). By EM, the initial abnormalities are often localized at or close to the Z-lines (Fig. 

2). This is followed by disruption of sarcomeres that become replaced by degraded material 

which accumulates in various patterns [2,5,76,77]. In spite of myopathological similarities, 

individual MFM subtypes have distinct clinical morphological and muscle imaging features 

[76–78]. A summary of MFM gene-dependent phenotypic features is provided in Table 1. 

Genetic testing is essential for establishing an accurate diagnosis of MFM, providing 
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appropriate genetic counseling, and timely prevention of cardiac arrhythmia and heart 

failure.

CONCLUSION

The latest discoveries in the field of MFM have led to the identification of new genes and 

disease mechanisms involved in the causation of this group of disorders. Further molecular 

studies of MFMs in combination with classical myopathological approaches will potentially 

result in improvements in diagnosis and the development of subtype-specific prevention and 

therapy.
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KEY POINTS

• Mutations in eight genes are now known to cause MFMs, skeletal and 

cardiac muscle disorders characterized by focal dissolution of 

myofibrils and aggregation of degraded myofibrillar products into 

proteinacious aggregates.

• The discovery of the latest two genes, FHL1 and TTN, the 

identification of new mutations in the previously identified MFM genes 

and the elucidation of disease mechanisms were achieved by the use of 

novel technologies: next-generation sequencing, laser microdissection 

and mass spectrometry-based proteomics.

• Molecular studies of large groups of patients with MFMs helped to 

outline new MFM phenotypes such as arrhythmogenic right ventricular 

cardiomyopathy and find a classification niche for other diseases 

having features of MFMs.

• Progress in molecular studies of MFMs in combination with classical 

morphological and ultrastructural approaches leads to improvements in 

diagnostics and opens up the prospects for the development of subtype-

specific prevention and therapy.

Olivé et al. Page 12

Curr Opin Neurol. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Light microscopy analysis of muscle biopsy samples from myofibrillar myopathy patients 

with DES, MYOT, or TTN mutations. The most characteristic lesions in patients carrying 

mutations in DES (a–c) are the thin discrete patches of amorphous material forming diffuse 

networks in the cytoplasm (a). These inclusions are devoid of oxidative enzyme activity 

causing a ‘rubbed-out’ appearance (b), and display increased desmin immunoreactivity (c). 

Characteristic features of myotilinopathy (d–f) are polymorphous inclusions, spheroid 

bodies, and vacuoles. Some abnormal areas lack and some others show increased oxidative 

enzyme activity (e). Focal or diffuse myotilin-immunoreactive aggregates are seen in (f). In 

a patient with TTN-A-band MFM (g–i), abnormal fibers show collections of cytoplasmic 

bodies (g), or more diffuse and polymorphous inclusions (h) that display strong filamin C 

immunoreactivity (i).
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FIGURE 2. 
Characteristic ultrastructural findings in desminopathy (a–c), myotilinopathy (d–f), and 

TTN-A-band-myofibrillar myopathy (MFM) (g–i). In desminopathy, granulofilamentous 

material originating at the Z-disc level accumulates between the myofibrils (a). Large areas 

of the muscle fibers are occupied by a mixture of granulofilamentous material and electron 

dense filamentous inclusions (b). The granulofilamentous material is composed of electron-

dense fine filaments and granular profiles (c). The typical features of myotilinopathy include 

dissolved myofibrils with disrupted Z-lines (d), abnormal fiber regions replaced by 

filamentous bundles of Z-disc origin, Z-like bodies and thin filaments (e), Z-disc extension, 

and collections of tubulofilaments and autophagic vacuoles (f). Muscle biopsy from a patient 

with TTN-A-band MFM shows semidense filamentous material arising perpendicularly to 

the Z-lines and extending to the entire sarcomere length (g); the same semidense material 

gives rise to globular inclusions that appear interspersed between preserved sarcomeres (h). 

A higher magnification shows that the inclusions originate at the Z-line level (i).
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FIGURE 3. 
Combined laser microdissection and mass spectrometry-based proteomic approach to 

deciphering the composition of aggregates in myofibrillar myopathy (MFM). (a) Laser 

microdissection of aggregate and control samples in skeletal muscle sections from MFM 

patients. Immunofluorescence staining using antibodies directed against myotilin localizes 

in areas of protein aggregation in abnormal fibers (upper section). Aggregates in abnormal 

fibers and control areas can be marked (middle section) and selectively collected by laser 

microdissection (lower section). (b) Analysis of filaminopathy samples by a label-free 

quantitative mass spectrometry approach [32■] revealed a significant over-representation of 

various proteins including desmin, filamin C and their binding partners (arrows). (c) 

Comparison of published data from proteomic analysis in desminopathy and filaminopathy 

[32■,33■]. The graph shows a selection of proteins (desmin, filamin C and their binding 

partners) accumulated in aggregates. Values based on the number of identified peptides 

assigned to the selected proteins were calculated as percentage of total peptides from 

proteins over-represented in aggregates with a ratio > 1.8 compared with control samples. 

Differences in abundance of proteins and accumulation ratios (not shown) allows definition 

of subtype-specific proteomic profiles.
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