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Abstract

Polymorphic variants of the dopamine D4 receptor have been consistently associated with 

attention-deficit hyperactivity disorder (ADHD). However the functional significance of the risk 

polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here we show that 

whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional 

heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele 
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(D4.7) does not. D2 receptor activation in the D2S-D4 receptor heteromer potentiates D4 receptor-

mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells 

expressing D4.7 or in the striatum of knock-in mutant mice carrying the 7 repeats of the human 

D4.7 in the third intracellular loop of the D4 receptor. In the striatum D4 receptors are localized in 

cortico-striatal glutamatergic terminals, where they selectively modulate glutamatergic 

neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative 

characteristics than the D2S-D4 receptor heteromer-mediated MAPK signaling and D2S receptor 

activation potentiates D4 receptor-mediated inibition of striatal glutamate release. It is therefore 

postulated that dysfunctional D2S-D4.7 heteromers may impair presynaptic dopaminergic control 

of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with 

ADHD.
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Introduction

Dopamine D4 receptors are expressed in the prefrontal cortex (PFC), in GABAergic 

interneurons and in glutamatergic pyramidal neurons, including their striatal projections.1–3 

D4 receptors have been implicated in ADHD.1,4,5 In fact, the PFC and associated fronto-

striatal circuits are critical for executive function and are involved in ADHD.5 The gene 

encoding the human D4 receptor contains a large number of polymorphisms in its coding 

sequence.4 The most extensive polymorphism is found in exon 3, a region that codes for the 

third intracellular loop (3IL) of the receptor. This polymorphism consists of a variable 

number of tandem repeats (VNTR) in which a 48-bp sequence exists as 2- to 11-fold 

repeats.7 The three most common variants contain two, four and seven repeats (D4.2, D4.4 

and D4.7, respectively). D4.4 constitutes the most frequent variant, with a global frequency of 

64%, followed by D4.7 (21%) and D4.2 (8%).8 Importantly, a high prevalence of the D4.7 

variant has been demonstrated in children diagnosed with ADHD.5 Though stimulation of 

the D4,7 variant has been reported to be less potent at inhibiting cAMP than D4.2 or D4.4,9 

the functional significance of these variants are poorly understood.

Receptor heteromers are becoming the focus of extensive research in the field of G-protein-

coupled receptors.10 A receptor heteromer is currently defined as a macromolecular complex 

composed of at least two (functional) receptor units with biochemical properties that are 

demonstrably different from those of its individual components.10 In some cases, receptor 

heteromers provide a framework in which to understand the role of receptors with no clear 

functional significance, and example being the D3 receptor, which forms heteromers with 

the D1 receptor and modifies its function.11 A recent study showed that in mammalian 

transfected cells the long isoform of the D2 receptor (D2L) heteromerizes with the three main 

D4 receptor variants, D4.2, D4.4. and D4.7.12 Interestingly, results from the same study 

suggested that D4.7 was less effective in forming heteromers with D2L receptors.12 In view 

of the reported evidence of predominant co-localization of D4 receptors with the short 

isoform of the D2 receptor (D2S) in cortico-striatal glutamatergic terminals,2,3,13 we first 
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investigated if any of the three main human variants of the D4 receptor could interact both 

physically and functionally with D2S. By using the Bioluminescence Resonance Energy 

Transfer (BRET) technique, here we show evidence for the formation of heteromers 

between D2S and D4.2 and D4.4 variants of the D4 receptor. In contrast, the D4.7 variant 

failed to form heteromers with the D2S receptor. In transfected cells we found a biochemical 

property of the D2S-D4 receptor heteromer, which consists of the ability of D2S receptor 

activation to potentiate D4 receptor-mediated MAPK signaling. A similar result was 

observed in striata from wild-type mice, a species that expresses D4 receptors with a short 

3IL comparable to human D4.2. In contrast, potentiation of D4 receptor-mediated MAPK 

signaling was not observed in transfected cells expressing D4.7 or in striata taken from 

knock-in mice carrying a humanized 7 repeat intracellular loop identical to that found in 

human D4.7. Finally, analyzing neurotransmitter release in striatal slices and with in vivo 

microdialysis in rats, evidence was obtained for a key role of D2-D4 receptor interaction in 

the modulation of striatal glutamatergic neurotransmission.

Materials and methods

Fusion Proteins and Expression Vectors

The synthetic cDNAs for the human D4.2, D4.4 and, D4.7 receptor gene (kindly provided by 

T.P. Sakmar, Rockefeller University, USA) were amplified using sense oligonucleotide 

primer (5´- TCAACGGGACTTTCCAAAATGT-3´) and antisense primer (5´ 

CTCCGAGATCAACTTCTGCTCGCTTCGGTTACCC-3´) resulting in a cDNA fragment 

of 200 bp. A second product was generated using the sense oligonucleotide primer (5´- 

AAGTTGATCTCGGAGGAAGATACAGCAGATGCAG-3´) and antisense primer (5´- 

GCGAATTCGCAGCAAGCACGTAGAGCCTTACG-3´) resulting in a cDNA fragment of 

1500 bp. Equimolar quantities of both fragments were used to produce a third product 

corresponding to the myc-D4.2, myc-D4.4 or myc-D4.7 tagged gene using the sense primer (5

´- GTGCTCGAGCACCATGGGTAACCGAAGCACAG-3´) and antisense primer without 

its stop codon (5´- GCGAATTCTCAGCAGCAAGCACGTAGAGCCTTACG-3´) 

harbouring unique XhoI and EcoRI restriction sites, respectively. The fragments were then 

subcloned in-frame into XhoI/EcoRI sites of the pcDNA3.1 vector (Invitrogen). Next, the 

human cDNAs for the adenosine A1 receptor and dopamine D4.2, D4.4, D4.7 and D2S 

receptors, cloned in pcDNA3.1 were amplified without their stop codons using sense and 

antisense primers harboring unique XhoI and EcoRI sites to clone A1, D4.2, D4.4 and D4.7 

receptors in the RLuc and the YFP corresponding vectors, and HindIII and BamHI to clone 

D2S in the RLuc and the YFP corresponding vectors. The mouse cDNAs for the D4 and D2S 

receptors, cloned in pCMV-SPORT6 (ATCC, Manassas, USA) and pReceiver-M16 vectors 

respectively (GeneCopoeia, Rockville, USA), were amplified without their stop codons 

using sense and antisense primers harboring unique XhoI and EcoRV sites to clone D4 

receptor in the RLuc corresponding vector, and XhoI and KpnI to clone D2S receptor in the 

RLuc and the YFP corresponding vectors. The amplified fragments were subcloned to be in-

frame into restriction sites of the multiple cloning sites of EYFP-N3 vector (enhanced 

yellow variant of YFP; Clontech, Heidelberg, Germany) or the mammalian humanized 

pRluc-N1 vectors (Perkin-Elmer, Waltham, MA, USA) to give the plasmids that express the 

receptors fused to either Rluc or YFP on the C-terminal end of the receptor (D4.2-RLuc, 
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D4.4-RLuc, D4.7-Rluc, D2S-RLuc and A1-RLuc or D2S-YFP, D4.7-YFP, and D1-YFP, 

respectively). All constructs were verified by nucleotide sequencing and the fusion proteins 

are functional and expressed at the membrane level (see Results).

Cell Culture and transient transfection

Human embryonic kidney (HEK)-293T cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) (Gibco Paisley, Scotland, UK) supplemented with 2 mM L-glutamine, 

100 U/ml penicillin/streptomycin, and 5% (v/v) heat inactivated Foetal Bovine Serum (FBS) 

(all supplements were from Invitrogen, Paisley, Scotland, UK). CHO cell lines were 

maintained in α-MEM medium without nucleosides, containing 10% fetal calf serum, 50 

µg/ml penicillin, 50 µg/ml streptomycin and 2 mM L-glutamine (300 µg/mL). Cells were 

maintained at 37°C in an atmosphere of 5% CO2, and were passaged when they were 80–

90% confluent, twice a week. HEK-293T or CHO cells growing in 6-well dishes or in 25 

cm2 flasks were transiently transfected with the corresponding fusion protein cDNA by the 

PEI (PolyEthylenImine, Sigma, Steinheim, Germany) method as previously described.14

Immunostaining

For immunocytochemistry, HEK-293T cells were grown on glass coverslips and transiently 

transfected with 1 µg of cDNA corresponding to human D4.2-RLuc, D4.4-RLuc or D4.7-

RLuc and 0.5 µg of cDNA corresponding to human D2S-YFP or 0.8 µg of cDNA 

corresponding to mouse D4-RLuc and 0.5 µg of cDNA corresponding to mouse D2S-YFP. 

After 48h of transfection cells were fixed in 4% paraformaldehyde for 15 min and washed 

with phosphate-buffered saline contraining 20 mM glycine to quench the aldehyde groups. 

After permeabilization with phosphate-buffered saline containing 0.05% Triton X-100 for 

15 min, cells were treated with phosphate-buffered saline containing 1% bovine serum 

albumin. After 1 h at room temperature, cells were labeled with the primary rabbit 

monoclonal anti-human D4 receptor (1/10.000, Abcam, Cambridge, UK) or with the primary 

goat polyclonal anti-D4 receptor (1/500, Santa Cruz Biotechnology) for 1 h, washed and 

stained with the secondary antibody Cy3 anti-rabbit (1/200, Jackson ImmunoResearch, 

Baltimore, PA) or with the secondary antibody Cy3 anti-goat (1/200, Jackson 

ImmunoResearch, Baltimore, PA). The D2S-YFP construct was detected by its fluorescence 

properties. Samples were rinsed and observed in an Olympus confocal microscope.

BRET assay

HEK-293T cells were co-transfected with a constant amount of cDNA encoding for the 

receptor fused to Rluc and with increasingly amounts of cDNA encoding to the receptor 

fused to YFP to measure BRET as previously described (23). Both fluorescence and 

luminescence for each sample were measured before every experiment to confirm similar 

donor expressions (approximately 100,000 bioluminescence units) while monitoring the 

increase in acceptor expression (2000 to 20,000 fluorescence units). The relative amounts of 

BRET acceptor are expressed as the ratio between the net fluorescence of the acceptor and 

the luciferase activity of the donor being the net fluorescence the fluorescence of the 

acceptor minus the fluorescence detected in cells only expressing the donor. The BRET ratio 

is defined as [(emission at 510–590)/(emission at 440–500)] - Cf, where Cf corresponds to 

(emission at 510–590)/(emission at 440–500) for the D4-RLuc or D2S-Rluc constructs 
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expressed alone in the same experimental conditions. Curves were fitted by using a non-

linear regression equation, assuming a single phase with GraphPad Prism software (San 

Diego, CA, USA).

Generation of knockin mutant mice carrying human expansions in the 3IL of the D4 

receptor

A targeting vector was designed such that coding sequences of the 3IL of mouse Drd4 were 

replaced by human ortholog sequences corresponding to the most frequent 7-VNTR human 

variant allele (see Figure 4). The vector included a selectable PGK-neo cassette, flanked by 

two loxP sites, placed just downstream of Drd4 polyadenylation site and an HSV-thymidine 

kinase cassette placed at one of the extremes of the targeting vector to select for the absence 

of random integrations. A long and short arm of Drd4 homology were inserted flanking the 

swapped sequence and the selectable marker, respectively. The linearized vector was used to 

electroporate hybrid 129svev/C57BL/6 ES cells (inGenious Targeting Laboratory Inc., 

USA) and homologous recombinant clones were selected in the presence of G418 and 

gancyclovir. Two selected clones carrying the human 7-VNTR were used to microinject 

C57BL/6J blastocysts and one high percentage chimeric male mouse was used to produce 

heterozygote Drd4+/7repeat.neo mice. The neo cassette was excissed from the recombinant 

allele by crossing mutant mice with transgenic mice expressing Cre recombinase from an 

EIIa promoter (Jackson Laboratories, USA; Cat. No. 003724). The resulting heterozygote 

Drd4+/7repeat (D4.7 knockin) mice were successively bred to C57BL/6J mice to obtain a 

congenic heterozygote strain (n=10) that was used to establish a breeding colony. 

Homozygous D4.7 knockin mice and their wild-type littermates were used for the 

experiments. Knockin animals were characterized as indicated in Figure 4.

Mouse striatal slices preparation

Mice were housed five per cage in a temperature (21 ± 1°C) and humidity-controlled (55 ± 

10%) room with a 12:12 hours light/dark cycle (light between 08:00 and 20:00 hours) with 

food and water ad libitum. All animal procedures were conducted according to standard 

ethical guidelines (National Institutes of Health Animal care guidelines and European 

Communities Council Directive 86/609/EEC) and approved by the Local Ethical and 

Animal Care Committees. Transgenic mice and litter-mattes were decapitated with a 

guillotine and the brains were rapidly removed and placed in ice-cold oxygenated (O2/

CO2:95%/5%) Krebs-HCO3− buffer (124 mM NaCl, 4 mM KCl, 1.25 mM NaH2PO4, 1.5 

mM MgCl2, 1.5 mM CaCl2, 10 mM glucose and 26 mM NaHCO3, pH 7.4). The brains were 

sliced at 4°C in a brain matrix (Zivic Instruments, Pittsburgh, PA, USA) into 0.5 mm 

coronal slices. Slices were kept at 4°C in Krebs-HCO3
− buffer during the dissection of the 

striatum. Each slice was transferred into an incubation tube containing 1 ml of ice-cold 

Krebs-HCO3
− buffer. The temperature was raised to 23°C and after 30 min, the media was 

replaced by 2 ml Krebs-HCO3
− buffer (23°C).

ERK phosphorylation assay

Striatal slices from transgenic mice and litter-mattes were incubated under constant 

oxygenation (O2/CO2:95%/5%) at 30°C for 4–5 h in an Eppendorf Thermomixer (5 Prime, 
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Inc., Boulder, CO, USA) with Krebs-HCO3
− buffer. The media was replaced by 200 µl of 

fresh Krebs-HCO3
− buffer and incubated for 30 min before the addition of ligands. 

Transfected CHO cells were cultured in serum-free medium for 16 h before the addition of 

the indicated concentration of ligands for the indicated time. Both, cells and slices were 

lysed in ice-cold lysis buffer (50 mM Tris- HCl pH 7.4, 50 mM NaF, 150 mM NaCl, 45 mM 

β-glycerophosphate, 1% Triton X-100, 20 µM phenylarsine oxide, 0.4 mM NaVO4 and 

protease inhibitor cocktail). Cellular debris was removed by centrifugation at 13,000 g for 5 

min at 4°C and protein was quantified by the bicinchoninic acid method using bovine serum 

albumin dilutions as standard. To determine the level of ERK1/2 phosphorylation, 

equivalent amounts of protein (10 µg) were separated by electrophoresis on a denaturing 

10% SDS-polyacrylamide gel and transferred onto PVDF-FL membranes. Odyssey blocking 

buffer (LICOR Biosciences, Lincoln, Nebraska, USA) was then added and membranes were 

blocked for 90 min. Membranes were then probed with a mixture of a mouse anti-phospho-

ERK 1/2 antibody (1:2500, Sigma, Steinheim, Germany) and rabbit anti-ERK 1/2 antibody 

(1:40000, Sigma) for 2–3 h. Bands were visualized by the addition of a mixture of IRDye 

800 (anti-mouse) antibody (1:10000, Sigma) and IRDye 680 (anti-rabbit) antibody (1:10000, 

Sigma) for 1 h and scanned by the Odyssey infrared scanner (LICOR Biosciences, Lincoln, 

Nebraska, USA). Bands densities were quantified using the scanner software and exported 

to Excel (Microsoft, Redmond, WA, USA). The level of phosphorylated ERK1/2 isoforms 

was normalized for differences in loading using the total ERK protein band intensities.

In vivo microdialysis in rat striatum

Male Sprague-Dawley rats (Charles River Laboratory, Wilmington, MA, USA), weighing 

300–350 g were used. Concentric microdialysis probes with 2-mm long dialysis membranes 

were prepared as described previously.15 Animals were anesthetized with Equithesin (NIDA 

Pharmacy, Baltimore, MD, USA) and microdialysis probes were implanted in the ventral 

striatum (core of the nucleus accumbens); coordinates with respect to bregma: A 1.7, L +1.2 

and V -7.6 mm. The experiments were performed on freely moving rats 24 h after the probe 

implantation. A Ringer solution (in mmol/l) of 147 NaCl, 4 KCl, and 2.2 CaCl2 was pumped 

through the dialysis probe at a constant rate of 1 µl/min. After a washout period of 90 min, 

samples were collected at 20-min intervals and split into two fractions of 10 µL, to 

separately measure glutamate and dopamine contents. Each animal was used to study the 

effect of one treatment by local administration (perfusion by reverse dialysis) of the D4 

receptor agonist RO-10-5824 or the D4 receptor antagonist L-745,870. At the end of the 

experiment, rats were killed with an overdose of Equithesin and methylene blue was 

perfused through the probe. The brain was removed and placed in a 10% formaldehyde 

solution, and coronal sections were cut to verify the probe location. Dopamine content was 

measured by reverse high-performance liquid chromatography (HPLC) coupled to an 

electrochemical detector, as described in detail previously.15 Glutamate content was 

measured by HPLC coupled to a flourimetric detector, as described before.16 The limit of 

detection (which represents three times baseline noise levels) for dopamine and glutamate 

was 0.5 and 50 nM, respectively. Dopamine and glutamate values were transformed as 

percentage of the mean of the three values before the stimulation and transformed values 

were statistically analyzed with one-way repeated measures ANOVA followed by Newman-
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Keuls tests, to compare glutamate and dopamine values of the samples obtained after drug 

perfusion with those obtained just before drug perfusion.

Neurotransmitter release in rat striatal slices

Rat brain slices were obtained from male Wistar rats weighing 180–220 g. After rapid 

sacrifice of the rat, the brain was immersed in oxygenated ice-cold artificial cerebrospinal 

fluid (ACSF) solution, and coronal brain slices (300 µm thick) were obtained with a 

vibratome. The striatum (caudate-putamen and nucleus accumbens) was microdissected 

under a stereoscopic microscope and the slices were incubated for 30 min at 37°C in ACSF 

(in mM: NaCl 118.25, KCl 1.75, MgSO4 1, KH2PO4 1.25, NaHCO3 25, CaCl2 2, and D-

glucose 10.), gassed continuously with O2/CO2 (95:5, v/v). For GABA release, the slices 

were then incubated for 30 min with 8 nM [3H]GABA in 2 ml solution containing 10 µM 

aminooxyacetic acid (to inhibit GABA transaminase, thus preventing degradation of the 

labeled GABA). At the end of this period, excess radiolabeled compound was removed by 

washing twice with ACSF containing, in addition to aminooxyacetic acid and 10 µM 

nipecotic acid (to prevent the reuptake of the released [3H]GABA). Both compounds were 

present in the perfusion solution for the rest of the experiment. For dopamine release, the 

slices were labeled with 77 nM [3H]dopamine in Krebs–Henseleit solution containing 10 

µM pargyline, 0.57 mM ascorbic acid and 0.03 mM EDTA, which were present in the 

solutions for the rest of the experiment. For glutamate release, the tissues were incubated for 

30 min with 100 nM [3H]glutamate in 2 ml of artificial CSF containing 200 µM 

aminooxyacetic acid (to inhibit glutamate decarboxylase and prevent the conversion of 

glutamate to GABA) and 200 µM dihydrokainic acid (to prevent the uptake of 

[3H]glutamate by astrocytes). Dihydrokainic acid was present in the medium only during the 

incubation period. At the end of this period, the excess radiolabeled compound was removed 

by washing twice with artificial CSF. Methods for measuring [3H]neurotransmitter release 

and data analysis used in the present work were the same as those described previously.17,18 

The slices were apportioned randomly between the chambers (usually three slices per 

chamber) of a superfusion system (volume of each chamber 80 µl; 20 chambers in parallel) 

and perfused with the artificial CSF at a flow rate of 0.5 ml/min for 1 h. Basal release of 

[3H]neurotransmitter was measured by collecting 4 fractions of the superfusate (total volume 

2 ml) before depolarizing the slices with a solution in which the [K+] was raised to 25 mM. 

The composition of the high K+ solution was (in mM): NaCl 101.25, KCl 23.75, MgSO4 1, 

KH2PO4 1.25, NaHCO3 25, CaCl2 2 and D-glucose 10. Six more fractions were collected in 

the high K+ medium. All drugs were added to the medium at fraction 2, before changing the 

superfusion to the high K+ medium, to explore effects on basal release. To determine the 

total amount of tritium remaining in the tissue, the slices were collected, treated with 1 ml of 

1 M HCl and allowed to stand for 1 h before adding the scintillator. The 

[3H]neurotransmitter release was expressed initially as a fraction of the total amount of 

tritium remaining in the tissue. The effect of drugs on the basal release of 

[3H]neurotransmitter was assessed by comparing the fractional release in fraction 2 

(immediately before exposure of the tissue to the drug) and fraction four (immediately prior 

to exposure to 25 mM of K+), using Student’s paired t test. Changes in depolarization-

induced [3H]GABA release by drugs and treatments, were assessed by comparing the area 

under the appropriate release curves between the first and last fractions collected after the 
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change to high K+. The significance of drug effects was assessed by one-way ANOVA and 

Tukey-Kramer test, using Prism Graph Pad Software 4.0, (Graph Pad Software, San Diego 

CA, USA). To obtain an unbiased estimate of IC50 values, concentration-response data were 

fitted by non-linear regression using the same software.

Statistical Analysis

Statistical analyses were performed with Prism Graph Pad Software 4.0, (Graph Pad 

Software, San Diego CA, USA). See above and figure legends for details.

Results

D2S and D4 receptors form heteromers in transfected cells

BRET experiments were performed where one of the receptor is fused to the bioluminescent 

protein Renilla Luciferase (RLuc) and the other receptor is fused to a yellow fluorescent 

protein (YFP). The fusion proteins were functional (Supplementary Figure 1) and expressed 

at the membrane level (Figure 1c). Clear BRET saturation curves were obtained in cells 

expressing D4.2-RLuc or D4.4-RLuc receptors and increasing amounts of D2S-YFP (Figure 

1a), but not in cells expressing D4.2-RLuc or D4.4-RLuc receptors and increasing amounts of 

D1-YFP (Figure 1a), indicating that the D4.2 and the D4.4 form heteromers with D2S but not 

with D1 receptors. Interestingly, in cells expressing the D4.7-Rluc variant and D1-YFP or 

D2S-YFP (Figure 1a) low linear BRET was detected, which was qualitatively similar to the 

results obtained with the negative control, with adenosine A1-RLuc and D2S-YFP receptors 

(Figure 1a). This result was not due to the particular BRET donor and acceptor chosen, as 

low and linear BRET were obtained when we swapped the fused proteins, i.e., in cells co-

expressing D2S-Rluc and D4.7-YFP (Figure 1a). These results strongly suggest that the 

human D4.7 polymorphic variant does not form heteromers with the human D2S receptor or 

if heteromers are formed, the fusion proteins are not properly oriented or are not within 

proximity to allow energy transfer (less than 10 nm). One way to test if the receptors are 

indeed forming heteromers in such a way that impedes energy transfer is to titrate one 

receptor in the presence of the heteromer and look for changes in the BRET signal. In BRET 

displacement experiments, D4.2, but not D4.7 receptors were able to compete with D4.4-Rluc 

and alter heteromer formation with D2S-YFP (Figure 1b), meaning that D4.2 and D4.4, but 

not D4.7 receptors use the same molecular determinants to establish intermolecular 

interactions with D2S receptor and strongly suggesting that D4.7 receptors are unable to form 

heteromers with D2S.

D2S-D4 receptor heteromer signals through MAPK

To investigate the function of the D2S-D4 receptor heteromer, MAPK signaling (ERK1/2 

phosphorylation) was determined. RO-10-5824 and quinelorane, selective D4 and D2/3 

receptor agonists respectively,19,20 selectively stimulated MAPK in cells transfected with D4 

or D2S receptors, respectively (Supplementary Figure 2). Dose-response experiments with 

RO-10-5824 showed no significant differences between cells transfected with D4.2, D4.4 or 

D4.7 receptors (Supplementary Figure 2). However, in co-transfected cells, stimulation of 

D2S receptors potentiated D4 receptor-mediated MAPK activation, but not the other way 

around. Importantly, this functional interaction only occurred in cells transfected with D2S 
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and D4.2 or D4.4, but not in cells expressing D4.7 receptors (Figure 2). Since disruption of 

D2S-D4 receptor heteromers (by substituting D4.2 or D4.4 with the D4.7 variant) is associated 

with the loss of the D2S-D4 receptor interaction at the MAPK level, this interaction 

constitutes a specific biochemical property of the D2S-D4 receptor heteromer and can be 

used as a biochemical fingerprint to detect the heteromer in native tissues.10

D2S-D4 receptor heteromers in the mouse brain

D4 receptors are preferentially expressed in limbic areas and the PFC, where they can be 

found in interneurons and also projecting neurons.1 In cortico-striatal neurons D4 receptors 

have also been localized at their nerve terminals,2,3 where they can co-localize with D2S 

receptors.13 We therefore investigated the existence of D2S-D4 receptor heteromers in the 

striatum. Biophysical techniques cannot be easily applied in native tissues, but indirect 

methods can be used, such as the identification of a biochemical property of the heteromer 

(biochemical fingerprint).10 In this case, the biochemical fingerprint would be the 

potentiation by D2S receptor activation of D4 receptor-mediated MAPK activation, which 

should not occur with the human D4.7 variant. Prior to these experiments with mouse brain, 

we demonstrated by BRET saturation experiments in transfected cells that the mouse D2S 

receptor forms heteromers with the mouse D4 receptor (which has an amino acid sequence 

in the 3IL similar to that from the human D4.2). Mouse fusion proteins were expressed in the 

plasma membrane of transfected cells (Figure 3a) and shown to be functional 

(Supplementary Figure 3). Like the human receptors, mouse D2S receptors were found to 

form heteromers with mouse D4 receptors and also with human D4.4 receptors, but not with 

human D4.7 receptors (Figure 3b). Furthermore, it was also shown that, in co-transfected 

cells, stimulation of the mouse D2S receptor potentiates the effect of the mouse D4, but not 

the human D4.7, on MAPK signaling (Figures 3c,d). This result was not reciprocal 

(Supplementary Figure 4) and mirrors the results obtained with human D4 and D2S receptors 

(Figure 2). We next analyzed the effects of D2 and D4 receptor agonists on MAPK signaling 

on striatal slices taken from knock-in mice carrying the 7 repeats of the human D4.7 in 

replacement of the mouse region and from wild-type littermates (Figure 4). Neither 

quinelorane nor RO-10-5824 induced a significant ERK1/2 phosphorylation in striatal slices 

of wild-type mice when administered alone, but co-administration of both agonists produced 

a significant dose-dependent effect with an increase of up to four fold (Figure 3e). This 

synergistic interaction between D2 and D4 receptors, which constitutes the biochemical 

fingerprint of the D2S-D4 receptor heteromer, was completely absent in the D4.7 mutant 

mouse (Figure 3e), confirming both the existence of D2S-D4 receptor heteromers and the 

absence of functional interactions between D2 and D4.7 receptors in the brain.

D2-D4 receptor interactions modulate striatal glutamate release

To investigate the functional significance of D4 receptor activation we determined D4 

receptor-mediated modulation of striatal glutamate release by in vivo microdialysis in freely 

moving rats. The local perfusion of the D4 receptor agonist RO-10-5824 in the ventral 

striatum (in the nucleus accumbens) produced a dose-dependent decrease in the striatal 

extracellular concentration of glutamate and a concomitant increase in the extracellular 

concentration of dopamine (Figure 5a and 5b), which were counteracted by co-perfusion 

with the selective D4 receptor antagonist L-745,870 (which was inactive when perfused 
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alone) (Figure 5a, 5b and 5c). These results suggest that inhibitory D4 receptors are located 

in glutamatergic terminals, whose activation decreases basal striatal glutamate release. The 

increase in dopamine concentration can best be explained by a decreased activation of 

striatal GABAergic efferent neurons that tonically inhibit dopaminergic mesencephalic 

neurons. This interpretation could be confirmed in experiments with striatal slices, where 

dopamine should not be modified due to the interruption of the striatal-mesencephalic loop. 

In fact, in slices of dorsal or ventral rat striatum, the D4 receptor agonist RO-10-5824 

decreased K+-induced glutamate release, an effect that was counteracted by the selective D4 

receptor antagonist L-745,870, but did not change dopamine or GABA release (Figure 6), 

indicating that striatal D4 receptors selectively and locally modulate glutamate release. This 

role of D4 receptors in the striatum can also explain previous results obtained with D4 

receptor KO mice, which show an increase and decrease in the striatal extracellular 

concentration of glutamate and dopamine, respectively.21,22

As mentioned before, there is evidence for co-localization of both D2 and D4 receptors in 

cortico-striatal glutamatergic terminals2,3,13 and previous studies have demonstrated that 

presynaptic D2-like receptors play an inhibitory role in the modulation of striatal glutamate 

release.13,23 However, since those studies did not use selective compounds, they could not 

distinguish between effects due to D2 or D4 receptor stimulation. Therefore, in this study we 

tested the effect of quinelorane alone and in combination with RO-10-5824 on glutamate 

release in rat striatal slices. To eliminate endogenous dopamine, rats were treated with 

reserpine, and the experiments performed in the presence of the D1-like receptor antagonist 

SCH-23390. Quinelorane significantly decreased K+-induced glutamate release whereas the 

co-application of quinelorane with RO-10-5824 showed a more significant effect (Figure 

7a). Dopamine strongly decreased K+-induced glutamate release, an effect partially 

counteracted by the D2 receptor antagonist L-741,626 or by the D4 receptor antagonist 

L-745,870, but completely counteracted by the simultaneous application of both antagonists 

(Figure 7b). In agreement with the reported higher in vitro affinity of D4 versus D2 receptor 

for dopamine,24 the IC50 of dopamine-mediated inhibition of K+-induced glutamate release 

was significantly higher in the presence of the D4 receptor antagonist (D2-mediated effect) 

than in the presence of the D2 receptor antagonist (D4-mediated effect) (Figure 7b). Finally, 

and more importantly, the D2 receptor agonist quinelorane synergistically potentiated the 

inhibitory effect of the D4 receptor agonist RO-10-5824 on K+-induced glutamate release 

(significant decrease in IC50 value) (Figure 7c), but not the other way around (Figure 7d). 

These results therefore show the same kind of D2-D4 receptor interaction demonstrated by 

D2S-D4 receptor heteromers in transfected cells with MAPK signaling. Our combined in 

vitro and in vivo data strongly suggest that D2S-D4 receptor heteromers are likely to play a 

key role in dopamine-mediated modulation of striatal glutamate release

Discussion

The present study shows that dopamine D2S and D4.2 or D4.4 receptors, but not the ADHD-

associated human D4.7 variant, form functional heteromers in transfected cells and in the 

rodent brain. Co-stimulation of D2S and D4 receptors in the D2S-D4 receptor heteromer has a 

synergistic effect on MAPK signaling, which could be demonstrated in transfected cells and 

in the mouse striatum, but not in cells expressing D4.7 or in the striatum of a mutant mouse 
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carrying the 7 repeats of the human D4.7 in the 3IL of the D4 receptor. These results provide 

a significant functional difference of one of the human receptor variants, D4.7, compared to 

the D4.2 and D4.4 variants, which can have important implications for the understanding of 

the pathogenesis of ADHD. Importantly, we also demonstrated, for the first time, that D2S-

D4 receptor interactions modulate striatal glutamate release suggesting that the D2S-D4 

receptor heteromer allows dopamine to fine-tune glutamate neurotransmission.

The molecular mechanism involved in preventing heteromer formation between D2S and 

D4.7 receptors is not yet known. Indeed, the control of heteromer formation between GPCRs 

is still a large question in the field. Since the D4.7 receptor variant has the longest 3IL and is 

the only polymorphic form not forming heteromers with the D2S receptor, steric hindrance 

of the 3IL of D4.7 receptor is a probable mechanism responsible for this lack of 

heteromerization, but other mechanisms cannot be ruled out. Using two-hybrid 

methodologies as well as proteomic studies, interactions between dopamine receptors and a 

cohort of dopamine receptor interacting proteins (DRIPs) have been demonstrated, forming 

signaling complexes or signalplexes.25,26 Some of these DRIPs show selectivity for some 

dopamine receptor subtypes. For example, filamin or protein 4.1N interact with D2 and D3 

receptors but not with D1, D5 or D4 receptors,27,28 the PDZ domain-containing protein, 

GIPC (GAIP interacting protein, C terminus) interacts with D2 and D3 receptor but not with 

the D4 receptor subtype29 and paralemmin interacts exclusively with D3, but not with D2 or 

D4 receptors.30 All of these interactions modulate receptor targeting, trafficking and 

signaling. Proline-rich sequences of the D4 receptor, mainly located in the polymorphic 

region of the 3IL, constitute putative SH3 binding domains which can potentially interact 

with adapter proteins like Grb2 and Nck, which do not have any known catalytic activity but 

are capable of recruiting multiprotein complexes to the receptor.24 It can be hypothetized 

that differences in DRIPs recruitment by D4.7 and the other D4 polymorphic forms can 

influence the D4.7 ability to form heteromers, but future studies will be required.

Previous experiments indicated that locally in the striatum dopamine inhibits glutamate 

release by activating D2 receptors (predominantly D2S) localized in glutamatergic 

terminals.13,23 Other studies also indicate that striatal postsynaptic D2 receptors 

(predominantly D2L) indirectly modulate glutamate release by retrograde endocannabinoids 

signaling.31 The present results indicate that D4 receptors also play a key role in the 

modulation of striatal glutamate release, likely through its ability to form heteromers with 

presynaptic D2S receptors. In the striatal D2S-D4 receptor heteromer, low concentrations of 

dopamine should bind to the D4 receptor, which has more affinity for dopamine than the D2S 

receptor,24 causing a certain degree of inhibition of glutamate release. However, at higher 

concentrations, dopamine should also bind to the D2S receptor and under these conditions 

the synergistic interaction in the D2S-D4 receptor heteromer will produce an even stronger 

inhibition of glutamate release. Therefore, the D2S-D4 receptor heteromer seems to act as a 

concentration-dependent device that establishes two different degrees of presynaptic 

dopaminergic control over striatal glutamatergic neurotransmission. Since the strong 

modulation observed with higher concentrations of dopamine depends on D2S-D4 receptor 

heteromerization, the existence of a D4.7 variant implies a weaker control of glutamatergic 

neurotransmission, which could be a main mechanism involved in the pathogenesis of 

ADHD. This could also explain at least part of the so far not understood successful effect of 
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psychostimulants in ADHD, which amplify dopaminergic signaling and these medications 

appear to be more effective in ADHD patients with the D4.4 than with the D4.7 variants.32,33 

We have to take into account that the existence of a D4.7 variant does not imply ADHD is 

the result of this variant, but rather that it is one factor that contributes to its development. In 

fact, the D4.7 variant might constitute a successful evolutionary trait under the appropriate 

environmental exposure.7,34 The present study provides a new element of interest in the 

field of receptor heteromes, which now become new targets to be studied when dealing with 

functional differences associated with polymorphisms of G-protein-coupled receptor genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human D2S and D4 receptors form heteromers in transfected cells
a) BRET saturation curves were obtained from experiments with cells co-expressing, top to 

bottom, D2S-YFP and D4.2-RLuc (red), D4.4-RLuc (green) or D4.7-Rluc (blue), D2S-RLuc 

and D4.7-YFP (purple), A1-RLuc and D2S-YFP (black) or D4.4-RLuc and D1-YFP (gray). 

Co-transfections were performed with a constant amount of cDNA corresponding to the 

receptor-RLuc construct (2 µg of cDNA for D4-RLuc or 1 µg of cDNA for A1-RLuc) and 

increasing amounts of cDNA corresponding to the receptor-YFP construct (0.2–6 µg of 

cDNA for D2S-YFP or 1–4 µg of cDNA for D1-YFP). Both fluorescence and luminescence 

of each sample were measured prior to every experiment to confirm equal expression of 

Rluc (about 100,000 luminescence units) while monitoring the increase of YFP expression 

(2000 to 20,000 fluorescence units). BRET data are expressed as means ± S.D. of four to 

nine different experiments grouped as a function of the amount of BRET acceptor. (b) 

BRET displacement experiments were performed in cells expressing constant amounts of 

D4.4-RLuc (2 µg cDNA transfected) and D2S-YFP (2µg cDNA tranfected) and increasing 

amounts (1–5 µg of cDNA transfected) of D4.7 (blue) or D4.2 (green). Both fluorescence and 

luminescence of each sample were measured prior to every experiment to confirm no 

changes in the expression of D4.4-RLuc and D2S-YFP. BRET data are expressed as means ± 

S.D. of five different experiments grouped as a function of the amount of BRET acceptor. 

Significant differences with respect to the samples without D4.2 or D4.7 were calculated by 
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one-way ANOVA and Bonferroni’s test. (**P < 0.01 and ***P < 0.001). In (a) and (b) the 

relative amounts of BRET acceptor are expressed as the ratio between the fluorescence of 

the acceptor minus the fluorescence detected in cells only expressing the donor, and the 

luciferase activity of the donor. In the top, schematic representations of BRET (a) or BRET 

displacement (b) are shown. (c) Confocal microscopy images of cells transfected with 1 µg 

of cDNA corresponding to, left to right, D4.2-RLuc, D4.4-RLuc or D4.7-RLuc and 0.5 µg 

cDNA corresponding to D2S-YFP. Proteins were identified by fluorescence or by 

immunocytochemistry. D4-RLuc receptors are shown in red, D2S-YFP is shown in green and 

co-localization is shown in yellow. Scale bar: 5 µm.
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Figure 2. Crosstalk between human D4 and D2S receptors in ERK 1/2 phosphorylation
Cells were transiently co-transfected with 2.5 µg of cDNA corresponding to D2S and 2.5 µg 

of cDNA corresponding to D4.2 (a and d), D4.4 (b and e) or D4.7 (c and f). In a, b and c, 

cells were treated for 10 min with increasing concentrations of RO 10-5824 in the presence 

(○) or in the absence (●) of quinelorane (50 nM). In d, e and f, cells were treated for 10 min 

with increasing concentrations of quinelorane in the presence (○) or in the absence (●) of 

RO 10-5824 (50 nM). The immunoreactive bands, corresponding to ERK 1/2 

phosphorylation, of three to six experiments were quantified and expressed as arbitrary 
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units. For each curve EC50 values were calculated as mean ± S.E.M. and statistical 

differences between curves obtained in the presence or in the absence of quinelorane (a, b 
and c) or RO 10-5824 (d, e and f) were determined by Student’s t test. EC50 with and 

without quinelorane: (a) 9 ± 1 and 26 ± 1nM (p<0.01), (b) 7 ± 1 and 23 ± 1nM (p<0.01), (c) 
18 ± 1 and 22 ± 1 nM (N.S.). EC50 with and without RO 10-5824: (d) 22 ± 1 and 20 ± 1 nM 

(N.S.), (e) 20 ± 1 and 17 ± 1 nM (N.S.), (f) 18 ± 1 and 13 ± 1nM (N.S.). N.S.: non-statistical 

differences
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Figure 3. D2s-D4 receptor heteromers in the mouse brain
(a) Confocal microscopy images of cells transfected with 1 µg of cDNA corresponding to, 

left to right, mouse D4-RLuc, human D4.4-RLuc and human D4.7-RLuc and 0.5 µg of cDNA 

corresponding to D2S-YFP. Proteins were identified by fluorescence or by 

immunocytochemistry. D4-RLuc receptors are shown in red, D2S-YFP is shown in green and 

co-localization is shown in yellow. Scale bar: 5 µm. (b) Mouse D2S receptor 

heteromerization with mouse and human D4 receptors. BRET saturation curves were 

obtained from cells co-expressing mouse D4-Rluc (green), human D4.4-RLuc (red), human 

D4.7-RLuc (blue) or human A1-RLuc (gray) and mouse D2S-YFP receptors. Co-transfections 

were performed with a constant amount of cDNA corresponding to the receptor-RLuc 

construct (2 µg of cDNA for mouse D4-RLuc, 2.5 µg of cDNA for human D4-RLuc or 1 µg 

of cDNA for A1-RLuc) and increasing amounts of cDNA corresponding to the receptor-YFP 

construct (0.2–6 µg cDNA). Both fluorescence and luminescence of each sample were 

measured prior to every experiment to confirm equal expression of Rluc (about 100,000 

luminescence units) while monitoring the increase of YFP expression (2000 to 20,000 

fluorescence units). The relative amounts of BRET acceptor are expressed as the ratio 

between the fluorescence of the acceptor minus the fluorescence detected in cells only 

expressing the donor, and the luciferase activity of the donor. BRET data are expressed as 

means ± S.D. of three to six different experiments grouped as a function of the amount of 

BRET acceptor. (c) and (d) Crosstalk between mouse D2S receptors and mouse or human D4 
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receptors in ERK 1/2 phosphorylation. Cells transiently co-expressing mouse D2S receptors 

and mouse D4 receptors (c) or human D4.7 receptors (d) were treated for 10 minutes with 

increasing RO 10-5824 concentrations in the presence (○) or in the absence (●) of 

quinelorane (50 nM) prior to the ERK 1/2 phosphorylation determination. The 

immunoreactive bands of three experiments (mean ± SEM; n = 3) were quantified and 

expressed as arbitrary units. EC50 values with or without quinelorane were: (c) 7 ± 0.1 and 

15 ± 0.1 nM (Student’s t test: p<0.01) or (d) 18 ± 0.1 and 15 ± 0.1 nM (Student’s t test: NS). 

(e) Striatal slices from wild-type (WT) or D4.7 mutant mice were treated for 10 min with the 

indicated concentrations of RO 10-5824 (orange) or quinelorane (green) or with RO 

10-5824 plus quinelorane (blue) and ERK 1/2 phosphorylation was determined. For each 

treatment, the immunoreactive bands from 4 to 6 slices from a total 10 WT and 10 D4.7 

mutant animals were quantified and values represent the mean ± S.E.M. of the percentage of 

phosphorylation relative to basal levels found in untreated slices (100 %). No significant 

differences were obtained between the basal levels of the WT and the D4.7 mutant mice. 

Significant treatment and genotype effects were shown by a bifactorial ANOVA followed 

by post-hoc Bonferroni’s tests (** and ***: p<0.01 and p<0.001, respectively, as compared 

to the lowest concentration of RO 10-5824)
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Figure 4. Targeted insertion of human VNTRs carrying 7 repeats into the mouse Drd4 exon 3 by 
homologous recombination in ES cells
(a) Structure of the Drd4 locus, targeting vector and targeted allele. (b) Southern blot 

analysis detected double homologous recombination events at the 5' and 3' ends using 

external probes after digestion with BamHI or EcoRI. (c) The presence of inserted human 

VNTR was verified by PCR using mouse primers flanking the expansion.
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Figure 5. In vivo D4 receptor-mediated modulation of basal extracellular levels of glutamate in 
the rat ventral striatum
Effects of the local perfusion with the D4 receptor agonist RO 10-5824 and the D4 receptor 

antagonist L-745,870 on the basal extracellular concentrations of glutamate (GLU) and 

dopamine (DA) in the ventral striatum (core of the nucleus accumbens). Horizontal bars 

show the periods of drug perfusion (concentrations are indicated in M). Data represent 

means ± S.E.M. of the percentage of the mean of the three basal values before the first drug 

perfusion (n = 6–8/group): * and **: p<0.05 and 0.01, respectively, compared to the values 

previous in time “0” (repeated measures ANOVA followed by Newman-Keuls tests).
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Figure 6. D4 receptor-mediated modulation of [3H]glutamate, but not [3H]dopamine or 
[3H]GABA release from slices of dorsal and ventral striatum
Slices from the dorsal striatum (caudate-putamen; a, c and e) or the ventral striatum (nucleus 

accumbens; b, d and f) of reserpine-treated rats were treated with the D4 receptor agonist 

RO 10-5824 (100 nM) or with the D4 receptor antagonist L745,870 (10 nM) alone or in 

combination and the time course of K+ stimulated [3H]glutamate (a and b), [3H]dopamine (c 
and d) or [3H]GABA (e and f) release was determined. The RO 10-5824-induced effect 

(open circles) was prevented by the antagonist L 745,870 (dark squares) which itself had no 
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effect (open squares). Values are mean ± S.E.M. of samples from 3 different animals 

performed in 4 replicates. Drug effect was assessed by comparing the relative area under the 

curve for each condition. **: p<0.01 with respect to the control (ANOVA followed by 

Tukey-Kramer multiple comparison post hoc test).
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Figure 7. D2 and D4 receptor interactions in the modulation of striatal [3H]glutamate release
Striatal slices (dorsal striatum) from reserpine-treated rats were incubated with SCH 23390 

(100 nM) to block D1 receptor activation. In (a), slices were treated for 32 min (fraction 2 to 

fraction 10) with medium (control), with the D4 receptor agonist RO 10-5824 (100 nM), 

with the D2/3 receptor agonist quinelorane (100 nM) or with both and K+ stimulated 

[3H]glutamate release was determined. Values are mean ± S.E.M. of samples from 3 

different animals performed in 4 replicates. Drug effects were assessed by comparing the 

relative area under the curve for each condition. **p<0.01 and ***p<0.001 with respect to 
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the control and ## p<0.01 with respect to slices treated with RO 10-5824 or quinelorane 

alone (ANOVA followed by Tukey-Kramer multiple comparison post hoc test). In (b), 

slices were treated for 32 min with increasing dopamine concentrations in absence (dark 

circles) or in the presence of the D4 receptor antagonist L-45,870 (10 nM, dark squares), the 

D2 receptor antagonist L 741,626 (10 nM, open circles) or both (open squares) and K+ 

stimulated [3H]glutamate release was determined. Values are mean ± S.E.M. of samples 

from 3 different animals performed in 4 replicates. Drug effects were assessed by comparing 

the relative area under the curve for each condition. The IC50 values were: 25.25 nM (C.I.: 

9.63–66.20 nM) for dopamine alone, 5.75 nM (2.12–15 nM) for dopamine in the presence of 

L-741,626 and 357.27 nM (C.I.: 73.40–1739 nM) for dopamine in the presence of L 

745,870. In (c) slices were treated for 32 min with increasing concentrations of RO 10-5824 

in the absence (black circles) or in the presence (open circles) of quinelorane (10 nM) and 

K+ stimulated [3H]glutamate release was determined. In (d) slices were treated for 32 min 

with increasing concentrations of quinelorane in the absence (black circles) or in the 

presence (open circles) of RO 10-5824 (10 nM) and K+ stimulated [3H]glutamate release 

was determined. In (c) and (d), values are mean ± S.E.M. of samples from 3 different 

animals performed in 4 replicates. The IC50 values were: (c) 15 nM (35.15-6.55 nM) for RO 

10-5824 alone and 0.05 nM (1.21-0.02 nM) for RO 10-5824 in the presence of quinelorane 

(Student’s t test: p<0.01) and (d) 2.55 nM (7.31-0.89 nM) for quinelorane alone and 1.48 

nM (4.5-0.45 nM) for quinelorane in the presence of RO 10-5824 (Student’s t test; NS).
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