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Abstract

The haloarchaeal-type tyrosyl tRNA synthetase (tyrRS) have previously been proposed to be a 

molecular synapomorphy of the opisthokonts. To re-evaluate this we have performed a taxon-wide 

genomic survey of tyrRS in eukaryotes and prokaryotes. Our phylogenetic trees group eukaryotes 

with archaea, with all opisthokonts sharing the haloarchaeal-type tyrRS. However, this type of 

tyrRS is not exclusive to opisthokonts, since it also encoded by two amoebozoans. Whether this is 

a consequence of lateral gene transfer or lineage sorting remains unsolved, but in any case 

haloarchaeal-type tyrRS is not a synapomorphy of opisthokonts. This demonstrates that molecular 

markers should be re-evaluated once a better taxon sampling becomes available.
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Introduction

The Opisthokonta is an evolutionary eukaryotic super-clade composed of metazoans, fungi, 

and their unicellular and colonial relatives, i.e., the choanoflagellates, the filastereans, the 

ichthyosporeans, the nucleariids, the aggregating amoeba Fonticula alba, and the difficult to 

place Corallochytrium (Adl et al. 2005; Cavalier-Smith and Chao 2003; Steenkamp and 

Baldauf 2004; see Paps and Ruiz-Trillo 2010 for a recent review). The monophyly of the 

opisthokonts is supported by single gene, multiple gene and phylogenomic datasets (Brown 

et al. 2009; Lang et al. 2002; Medina et al. 2003; Ruiz-Trillo et al. 2004; Ruiz-Trillo et al. 

2006; Ruiz-Trillo et al. 2008; Shalchian-Tabrizi et al. 2008; Steenkamp et al. 2006; Parfrey 

et al. 2010; Torruella et al. 2011) and by morphological characters including posteriorly 

directed flagella in flagellated forms, and flat mitochondrial cristae (Cavalier-Smith and 
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Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ejop.2011.10.003.
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Chao 2003). Molecular synapomorphies for the group have also been proposed including a 

12 amino acid insertion in the elongation 1 alpha (EF1-α) gene (Baldauf and Palmer 1993), 

and a tyrosyl tRNA synthetase (tyrRS) gene that is most closely related to halophylic 

archaea and represents a possible ancient lateral gene transfer to the earliest opisthokonts 

(Huang et al. 2005).

With the advent of high throughput sequencing methods, dozens of eukaryotes have had all 

or a large part of their genomes sequenced. As new data become available it is worthwhile to 

reevaluate previously proposed molecular synapomorphies of the opisthokonts and see if 

they hold up under the weight of new data. The 12 amino acid insertion in the EF1-α gene 

has recently been re-evaluated and it continues to be exclusive to opisthokonts, and not 

present in any of the analyzed amoebozoan, apusozoan or bikont genomes (Sebé-Pedrós et 

al. 2010). In contrast, the tyrRS has so far only been re-analyzed using a very limited taxon 

sampling and some rather incomplete sequences (Huang and Gogarten 2009). To fill this 

gap, we have here reanalyzed the evolution of tyrRS with the broader possible taxon 

sampling.

Material and Methods

A large dataset of the tyrRS amino acid sequence was collected including 97 eukaryotes, 80 

Archaea, and 197 Eubacteria, using a combination of BLASTp and tBLASTn and with 

different sequences and tyrRS types used as query. Two datasets were used for phylogenetic 

analyses, one with all 374 taxa from all three domains of life, and another with just the 

Archaea and eukaryotes. Only sequences that were at least 500 amino acids long were taken 

into account. Alignments were refined by eye using the program Geneious Pro for alignment 

editing. Conserved sections of the alignments were selected using Gblocks (Castresana 

2000). After using Gblocks in the 374 taxon dataset, 182 conserved amino acid positions 

were recovered, while 187 conserved positions were recovered from the smaller Archaea 

and eukaryote dataset. An extra alignment including partial, putative tyrRS sequences of the 

choanoflagellate Monosiga ovata and the amoebozoan Hartmannella vermiformis was also 

done. Final alignments can be downloaded from the webpage www.multicellgenome.com or 

upon request. Phylogenetic trees were built using RaxML (Stamatakis 2006) for maximum 

likelihood and, for the smallest dataset, MrBayes (Ronquist and Huelsenbeck 2003) for 

Bayesian methods. In the RaxML and MrBayes runs we used the WAG substitution matrix 

with the gamma model of rate substitutions, and proportion of invariable sites estimated 

(WAG + Γ + I). In the RaxML runs 1000 bootstraps were estimated with the rapid 

bootstrapping option (Stamatakis et al. 2008).

Results and Discussion

To reevaluate tyrRS as a molecular marker we assembled the tyrRS amino acid sequences of 

a large number of Eubacteria, Archaea, and all of the eukaryotes of which we had 

knowledge. This added numerous eukaryotic lineages to the dataset of Huang et al. (2005) 

and Huang and Gogarten (2009), including ichthyosporeans, filastereans, and 

choanoflagellates in the opisthokonts, as well as cilliates, jakobids, stramenopiles, 

apusozoans, several more apicomplexans, kinetoplastids, many more plants and green algae, 
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and several more Plasmodium species. We created trees from a large dataset that included 

all Eubacteria, Archaea, and eukaryotes (Fig. S1, Supplementary Material), and from a 

smaller dataset that included just Archaea and eukaryotes (Fig. 1).

The tyrRS trees that included taxa from all three domains (Fig. S1, Supplementary Material) 

had a monophyletic eubacterial clade with very long branches clustering within the Archaea 

clade. The eukaryotes were split into two well supported groups (Bootstrap Value (BV) = 

100%), both of them branching within archaeal clades. We thus made trees with just the 

Archaea and eukaryotes to get a better estimate of relationships in this clade (Fig. 1). The 

resultant tree had again the eukaryotes broken up into two monophyletic clades. One clade 

includes all opisthokonts and has a tyrRS gene most closely related to the haloarchaeal 

group with BV = 100% and Bayesian posterior probability (PP) = 1.0. A second clade 

containing most other eukaryotes has a tyrRS gene more closely related to a clade 

containing crenarchaeotes, euryarchaeotes, and nanoarchaeotes with BV = 100% and PP = 

1.0. Interestingly, as in Huang and Gogarten (2009) the eukaryotic + haloarchaea clade also 

includes some amoebozoans, specifically Acanthamoeba castellanii and Mastigamoeba 

balamuthi invalidating the haloarchaeal form of tyrRS as a synapomorphy of the 

opisthokonts. The non-opisthokont eukaryotic clade, includes, however, all the remaining 

Amoebozoa sampled, i.e., Entamoeba dispar, Entamoeba histolytica, Dictyostelium 

discoideum, and Dictyostelium purpureum. It also includes the apusozoan Thecamonas 

trahens, the putative sister-group to the opisthokonts (Torruella et al. 2011). It is worth 

mentioning that Huang and Gogarten (2009) included expressed sequence tag data from the 

amoeobozoan Hartmannella vermiformis and the choanoflagellate Monosiga ovata in their 

analysis, but we did not include them in our final analysis due to their short sequence (see 

section ‘Material and Methods’) and the inability to check for contamination artifacts. 

However, a tree containing both those partial sequences is shown in Fig. S2, in which H. 

vermiformis also groups with the haloarchaeal type (as Acanthamoeba and Mastigamoeba). 

M. ovata sequence appears, as in Huang and Gogarten (2009), with the non-opisthokonts, 

within a clade of Viridiplantae (see Fig. S2). With the current data and given that the 

sequence is partial, we can not discard, however, a contamination artifact. Moreover, there is 

no tyrRS sequence from other choanoflagellates, even the current genome assembly of the 

choanoflagellate Salpingoeca rosetta does not contain any tyrRS.

The presence of the haloarchaeal type of tyrRS gene in Acanthamoeba and Mastigamoeba 

(and maybe Hartmannella) but not in Entamoeba, Dictyostelium and Thecamonas may be 

due to one of several hypotheses: (1) this form of the tyrRS gene is ancestral to 

Acanthamoeba, Mastigamoeba, and opisthokonts, (2) lateral gene transfer (LGT) events, or 

(3) incomplete lineage sorting due to hidden paralogy. The first hypothesis, that the 

haloarchaeal tyrRS type is ancestral to Acanthamoeba, Mastigamoeba, and opisthokonts, 

will imply the opisthokonts are more closely related to Acanthamoeba and Mastigamoeba 

than to Entamoeba and Dictyostelium, and even Thecamonas, and it will imply 

amoebozoans are not monophyletic. This goes against new phylogenetic (Cavalier-Smith 

and Chao 2010) as well as phylogenomic (Torruella et al. 2011) data that strongly show the 

apusozoans, rather than the amoebozoans, as the sister group to opisthokonts. It also goes 

against phylogenomic data that show that Mastigamoeba is most closely related to 
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Entamoeba (and Dictyostelium) than to Acanthamoeba (see panel B in Fig. 1) (Minge et al. 

2009; Parfrey et al. 2010). Having a clear root of the eukaryotes and a better sampling of 

taxa in Amoebozoa may help clarify this issue. Our data cannot confidently discern between 

LGT or hidden paralogy. The opisthokonts appear monophyletic in the tyrRS tree, although 

with low statistical values, while Acanthamoeba and Mastigamoeba both appear as 

paraphyletic, branching earlier than the opisthokonts (Fig. 1). Although we cannot rule out 

LGT, a possible explanation is that the ancestral eukaryote had the two types of tyrRS and 

that the haloarchaeal-type copy was lost in most eukaryotic lineages, except for 

opisthokonts, Acanthamoeba and Mastigamoeba (and maybe, Hartmannella). Additional 

data from Amoebozoa, choanoflagellates and other eukaryotic lineages are needed to get a 

clear picture of tyrRS evolutionary history. In any case our data represent a cautionary tale 

about proposed molecular synapomorphies when the taxon sampling is scarce. Suggested 

rare genomic changes or molecular markers should from time to time be reevaluated when 

new genomic information is gathered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Maximum likelihood tree of the tyrRS gene of the dataset containing archaea and eukaryotes 

only. Colors of the branches represent groups to which the taxa belong (purple = archaea, 

red = opisthokonts, and blue = non-opisthokont eukaryotes). The percentage of maximum 

likelihood bootstrap values and Bayesian posterior probabilities (BV/PP) are to left of each 

node above or below the branch or indicated with an arrow if there is not enough space. 

Support values of 100%/1.0 are represented with a black oval. Values less then 50%/0.5 are 

represented with a “–” or not reported. Several nodes are represented in cartoon form to save 
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space. In panel B, a schematic tree of the putative phylogenetic relationships between the 

different amoebozoan taxa used in this study is shown based on Minge et al. (2009) and 

Parfrey et al. (2010).
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