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Abstract

The interplay of active and repressive histone modifications is assumed to play a key role in the 

regulation of gene expression. In contrast to this generally accepted view, we show that 

transcription of genes temporally regulated during fly and worm development occurs in the 

absence of canonically active histone modifications. Conversely, strong chromatin marking is 

related to transcriptional and post-transcriptional stability, an association that we also observe in 

mammals. Our results support a model in which chromatin marking is associated to stable 

production of RNA, while unmarked chromatin would permit rapid gene activation and de-

activation during development. In this case, regulation by transcription factors would play a 

comparatively more important regulatory role.

Post-translational modifications of histones define an evolutionarily conserved “code” that 

governs differential gene expression1. Trimethylation of histone H3 at lysine 4 (H3K4me3) 

and at lysine 36 (H3K36me3), for instance, correlate with active transcription, whereas 

H3K9me3 and H3K27me3 are usually linked to transcriptional repression2, 3. The 
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combinatorial behavior of histone modifications along regulatory regions—reflecting and/or 

influencing the specific arrangement of transcription factors—modulates the expression 

levels of genes, conferring them with a unique temporal and spatial transcriptional program. 

Computational models have been developed that can predict gene expression from histone 

modifications with great accuracy4, 5.

A number of recent reports, however, indicate that expression of certain genes may occur in 

absence of histone modifications canonically associated to active genes. The modENCODE 

project reported that some expressed genes lacked H3K4me36. Hödl and Basler found that 

cells that lack H3K4 methylation, respond to developmental signaling pathways by 

activating target gene expression in Drosophila wing imaginal discs7. Chen et al. observed 

that pre-midblastula transition (pre-MBT) genes have particularly low levels of H3K4me38. 

More recently, Zhang et al. reported that genes within yeast heterochromatic regions can be 

transcribed in absence of active histone marks9. Here, we show that active transcription in 

the absence of chromatin marking is actually a general feature of genes that are strongly 

regulated during development. We analyzed data produced by modENCODE in whole 

animals and tissues in fly and worm, characterized the fly transcriptome by RNASeq and the 

epigenome by ChIPSeq in two spatially well-defined and relatively homogeneous 

developmental fly tissues, and carried out targeted experimental validations in isolated cells. 

All these analyses strongly suggest that expression of genes regulated during fly 

development can occur in the absence of marks typically associated with active genes, and, 

indeed, this expression does not seem to be affected by perturbations of the histone 

methyltransferase system. Conversely, we found that chromatin marking is associated not 

only to transcriptional levels, but also to transcriptional and post-transcriptional stability—an 

association that appears to be conserved through metazoan evolution.

Results

Expression without histone modifications during development

To investigate the dynamics of chromatin marking in genes regulated during development, 

we analyzed data produced within the Drosophila melanogaster modENCODE project6, 10. 

We specifically analyzed RNASeq and ChIPSeq data for H3K4me3, H3K9ac, H3K4me1, 

H3K27ac, H3K27me3 and H3K9me3 on whole animals (Supplementary Fig. 1a). To 

measure transcriptional stability, we computed the coefficient of variation of gene expression 

over 12 developmental time points (Methods and Supplementary Fig. 1b)—lower values 

corresponding to higher transcriptional stability. The distribution of the coefficient of 

variation uncovers a large class of genes that show constant expression during development, 

and two other minor classes containing genes whose expression is highly variable—often 

restricted to a limited number of stages (Supplementary Fig. 1c, d). We arbitrarily selected 

the 1,000 genes with the highest coefficient of variation, and defined them as 

developmentally regulated, because of their variable pattern of expression along time. 

Conversely, we selected the 1,000 genes with the lowest coefficient of variation, and defined 

them as developmentally stable. For each gene, we determined the time point at which its 

expression is the highest. At this time point, we did not observe strong differences between 

the expression of stable and regulated genes (Fig. 1a). At the same time point we measured 
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the levels of histone modifications for each gene (Methods). We found that at the point of 

highest expression, stable genes are strongly marked by histone modifications typically 

associated to active transcription, H3K4me3 and H3K9ac, and also to enhancers: H3K4me1 

and H3K27ac. Unexpectedly, however, regulated genes show very low levels of these 

modifications, comparable to those of silent genes (Fig. 1b, Supplementary Fig. 2). In Figure 

1c we compare the pattern of H3K4me3 along fly development in CG8636, a gene stably 

expressed during development, and in CG16733, a gene specifically expressed in pupa. 

CG8636 shows a strong H3K4me3 peak downstream from the transcription start site 

whereas CG16733 lacks any marking, even at the pupa stage, where it is expressed at higher 

levels than CG8636. (See also Supplementary Fig 3.) This contrasting pattern of histone 

marking is not only apparent when comparing genes with extreme behavior, but it is a 

distinct feature of the partition of the entire set of fly genes in two major classes according to 

transcriptional stability (Supplementary Fig. 4). For the histone modifications typically 

associated to inactive genes, H3K27me3 and H3K9me3, we observed that regulated genes 

showed levels higher than those of stable ones, and similar to those of silent genes (Methods, 

Fig. 1d). The levels of these marks, however, are generally low compared to the levels of 

active marks, even for genes silent during development—a large proportion of which lack 

any evidence of them (Supplementary Fig. 5a, b), as it has already been previously 

reported11. We found only a weak relationship between the level of repressive marks and 

gene expression (Supplementary Fig. 5c, d).

Given that developmental chromatin maps produced in the modENCODE project are on 

whole organisms, it could be argued that apparent lack of chromatin marking is the 

consequence of the expression of regulated genes being spatially confined to specific organs, 

tissues or subtissular domains. While, indeed, regulated genes show in general a spatially 

restricted pattern of expression, chromatin marking can actually be detected in stable genes 

that exhibit also a restricted expression pattern comparable to that in regulated genes 

(Supplementary Fig. 3). To further investigate the potential effect of restricted expression in 

the ability to detect chromatin marking, we used tissue-specific RNASeq data from 

modENCODE12. Third instar larva (L3) is the time point with the largest number of tissues 

available: carcass, central nervous system, digestive system, fat body, imaginal discs and 

salivary glands. Using L3 tissue-specific RNASeq data, we identified seven regulated genes 

expressed in all six available tissues at L3 (“Regulated broadly-expressed” Fig. 2a, left 

panel). Conversely, we identified 130 stable genes specifically expressed in only one of the 

aforementioned tissues in L3 (“Stable tissue-specific”, Fig. 2a, right panel). Regulated 

broadly-expressed genes have much higher expression levels than stable tissue-specific 

genes when measured in the whole body (almost four-fold, Fig. 2b), as well as, in general, 

when measured on individual tissues (Supplementary Fig. 6). They have also higher 

expression levels than stable genes overall. However, the levels of H3K4me3, H3K9ac, 

H3K4me1, and H3K27ac in regulated broadly-expressed genes are significantly lower than 

in stable genes, even than in stable tissue-specific genes, and comparable to those in silent 

genes (Fig. 2c). We confirmed both gene expression and levels of H3K4me3 and H3K9ac by 

qPCR (Fig. 2b) and ChIP-qPCR (Fig. 2d), respectively.

All these results strongly suggest that activation of genes regulated during development 

occurs mostly in the absence of histone modifications canonically linked to active genes. 
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Our results also point to strong chromatin marking association not only with transcriptional 

levels, but also with transcriptional stability. We calculated the coefficient of correlation (cc) 

across all genes between the coefficient of variation of gene expression across 

developmental time points as computed above, and the level of histone modifications at the 

developmental time point of highest expression. We used partial correlations to control for a 

potential confounding effect of gene expression levels (see Methods). For all active histone 

modifications, the partial correlations are negative and significant (as low as cc = −0.68 for 

H3K4me3, Fig. 3a, b, Supplementary Fig. 7), strongly supporting association between 

transcriptional stability and active chromatin marking.

To investigate whether lack of chromatin marking in regulated genes and the association 

between chromatin marking and transcriptional stability are conserved in other metazoans, 

we first analyzed RNASeq-based gene expression on seven time points through C. elegans 
development13 and ChIP-chip data on two histone modifications available for these time 

points in modENCODE: H3K4me3 and H3K36me3. While both, the resolution and the 

reliability of the chromatin data obtained through ChIP-chip are lower in worm than in the 

fly ChIPSeq, we observed the same trend: the expression level at the time point of maximum 

expression is very similar in regulated and stable genes (Fig. 3c), while regulated genes 

show lower levels of H3K4me3 and H3K36me3, more similar to those of silent genes (Fig. 

3d). As in flies, there is a significant association between transcriptional stability and active 

histone marking (Fig. 3b).

Unfortunately, genome-wide transcriptomic and epigenetic developmental maps of the 

resolution of those from modENCODE are not yet available for mammalian (or vertebrate) 

systems. Nevertheless, using transcriptomic and epigenomic data across multiple tissues and 

cell lines in human and mouse, we did find that active chromatin marking is associated to 

transcription stability also in mammalian systems. We used RNASeq and ChIPSeq data for 

H3K4me3, H3K36me3 and H3K4me1 for 56 human adult and fetal tissues, primary cells 

and cultured cell lines from the Roadmap Epigenomics Mapping Consortium14. We found 

strong negative correlation between the coefficient of variation of gene expression across 

these samples, and histone levels (Fig. 3b). The gene set with highest variation of expression 

across human tissues is likely to show some enrichment in regulated genes. Thus, we 

selected the 1,000 genes with the highest coefficient of variation as variably expressed 

genes, and the 1,000 genes with the lowest as constantly expressed. In the cell type in which 

the expression of each gene is highest, variable genes show higher expression than constant 

genes (Figure 3e). Yet, the levels of active histone modifications in these cell types are much 

lower in variable than in constant genes (Fig. 3f, Supplementary Fig. 8a). Very similar 

results are obtained in mouse when using ENCODE data15 (Fig. 3b, g, h and Supplementary 

Fig. 8b).

Expression without histone modifications in imaginal discs

Data generated by the modENCODE projects monitor complex systems encapsulating great 

cellular heterogeneity. To investigate the dynamics of chromatin marking during 

development in a more homogeneous cellular environment, we characterized the 

transcriptome by RNASeq (Supplementary Fig. 9a, b and Supplementary Table 1) and the 
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epigenome by ChIPSeq in two D. melanogaster third instar larval tissues: Wing and Eye-

antenna imaginal discs (WID and EID, respectively). We specifically monitored H3 and the 

active marks H3K4me3, H3K9ac, H3K4me1, and H3K27ac, plus the transcription 

elongation mark H3K36me3 (Supplementary Fig. 9c). Both, WID and EID, are epithelial 

tissues in early differentiation stages, and differentially expressed genes are likely to be 

under temporal developmental control. While WID and EID epigenomes and transcriptomes 

are very similar (Supplementary Fig. 9d-e), differentially expressed genes do exhibit 

functions strongly consistent with the known biology of these tissues (Supplementary Tables 

2, 3 and Supplementary Fig. 9f).

We then investigated the marking of regulated and stable genes in WID and EID. To focus 

on genes under stronger regulation, we identified 55 developmentally regulated genes 

expressed in EID, but not in WID, and 10 regulated genes expressed in WID, but not in EID. 

We also identified a set of 284 stable genes highly expressed both in EID and WID, as well 

as a set of 30 genes silent in both (Supplementary Tables 4-7 and Methods).

We next compared marking of stable, silent, and regulated WID- and EID-specific genes 

(from now on simply, WID- and EID-specific). Consistent with previous observations16, 17, 

the WID- and EID-profiles of stable genes are very similar, as are those of silent genes (Fig. 

4a). Stable and silent genes are both characterized by higher stable nucleosome occupancy 

than nearby intergenic regions, but the genic nucleosome (H3) enrichment is larger for stably 

expressed than for silent genes. Stable genes are also strongly marked by H3K4me3, 

H3K9ac, H3K36me3, and also, as observed in modENCODE, by H3K4me1 and H3K27ac. 

Silent genes mostly lack these histone modifications. Regulated tissue-specific genes 

exhibit, however, a contrasting behavior. As expected, WID-specific genes lack active 

modifications in EID (Fig. 4b), and, conversely, EID-specific genes are not marked in WID 

(Fig. 4c). Unexpectedly, but consistently with the behavior that we observed in 

modENCODE data, WID-specific genes are not marked in WID either, nor EID-specific 

genes in EID. Absence of active histone marking cannot be attributed to the lack of 

nucleosomes because H3 is observed in these genes (Fig. 4b, c). It is unlikely that it 

originates either from higher nucleosome turnover in regulated genes since, at least in 

Drosophila S2 cells18, nuclear turnover is similar for stable and regulated genes 

(Supplementary Fig. 10). Lack of histone marking is not due, either, to the relative low 

expression level of WID- or EID-specific genes, since even when these genes have high 

levels of expression, comparable to those of constitutively expressed genes, there is no 

marking by active modifications. This is illustrated in Figure 5 (see Supplementary Fig. 11 

for more examples). The WID-specific gene CG4382 and the EID-specific gene CG14516 
have similar levels of expression than the stable gene noc. This gene, however, is strongly 

marked by histone modifications in both WID and EID, while CG4382 and CG14516 are 

marked in neither. Lack of chromatin marking cannot be attributed to the restricted 

expression of tissue-specific genes, since the expression of noc is also restricted to specific 

regions both in WID and EID19, 20. H3 levels of tissue-specific and stable genes are 

comparable and only depend weakly on the expression status of genes (Fig. 5).
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Active transcription without histone modifications

While WID and EID are relatively homogeneous tissues, they already show cellular sub-

specialization at third instar larvae. For instance, the WID-specific gene POU domain 
protein 2 (pdm2), like nubbin (nub)21, with strong temporal and spatial regulation during 

development, is only expressed in the wing primordium (wing pouch) at third instar larva 

(Fig. 6a). To unequivocally demonstrate lack of chromatin marking in developmentally 

regulated genes, we took advantage of the nub-GAL4 construct to drive expression of GFP 

only in the wing pouch, where pdm2 is expressed. Thus, we collected all cells expressing 

pdm2 and investigated chromatin marking for this gene only in the cells in which it is 

expressed. More specifically, dissection and dissociation of wing discs followed by cell-

sorting analyses allowed the isolation of two populations of cells: the wing pouch (nub 
domain, GFP positive) and the rest of the wing (GFP negative) (Fig. 6a and Methods). By 

using qPCR we found that the expression of pdm2, restricted to sorted GFP positive cells, is 

even higher than the expression of crm, a gene expressed at the same level throughout the 

WID (Fig. 6b). ChIP assays followed by qPCR on sorted cells showed that the levels of 

H3K4me3, and H3K36me3 in pdm2 are significantly lower than in crm, and comparable to 

those in CG10013, a gene silent in the whole WID (Fig. 6c). High RNA levels of pdm2 in 

the wing pouch (Fig. 6b) do not necessarily demonstrate active transcription, since 

transcription could have occurred at an earlier time point. To assess active gene expression 

we directly measured newly transcribed RNA (nascent RNA) in sorted cells. As shown in 

Figure 6d, pdm2 active transcription in GFP positive cells is as high as transcription of the 

control gene crm.

To investigate marking by repressive histone modifications in expressed genes (Fig 1d), we 

monitored the levels of H3K27me3 in pdm2, a gene exhibiting this modification at L3 when 

measured in the whole organism. We performed individual ChIP-qPCR in sorted cells and 

found that pdm2 is indeed marked by H3K27me3 in WID, but only outside the wing pouch. 

No marking was observed in the wing pouch, where pdm2 is expressed (Fig. 6e). This 

suggests that the repressive modifications detected in whole organisms in regulated genes 

(Fig. 1d) could originate from organs or tissues in which these genes are not expressed.

Lack of active marking suggests that genes regulated throughout development may not 

respond to histone modification systems. Therefore, we specifically investigated the 

response of regulated genes to the lack of ASH2 (Absent, small or homeotic disc 2), a key 

co-factor for H3K4 methylation22. First we characterized ASH2 occupancy along fly genes 

using ChIPSeq data obtained in WID17 and found a very strong depletion of ASH2 binding 

to the promoters of regulated genes compared to those of stable genes (Fig. 7a). Second, we 

used the ash2I1 mutant allele to interfere with H3K4me3. Since this allele is lethal in late 

third-instar larvae/early pupae23, we performed clonal analyses in WID and EID. We 

specifically analyzed two stable genes: engrailed (en), expressed in the posterior 

compartment of the WID, and Cyclin A (CycA), ubiquitously expressed in the WID, as well 

as two regulated genes: pdm2, expressed in the wing pouch, and bride of sevenless (boss), 

expressed in the differentiated photoreceptor R8 cell of the EID. We confirmed lack of 

H3K4me3 in ash2I1mutant clones (Fig. 7b), and observed a clear reduction in the levels of 

En and CycA, while the expression of Boss and pdm2 was not affected (Fig. 7c-p).
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Genome organization of regulated genes

It has been suggested that developmental control genes are under a characteristic regulatory 

program24. They tend to harbor increased number of transcription factor binding sites25 and 

are characterized by “peaked” (or narrow) promoters, compared to housekeeping genes 

which are associated to more “dispersed” (or broad) promoters26-29. Using the promoter 

classification of Ni et al.30, we found that stable genes are strongly enriched in broad (and 

weak) promoters compared to regulated genes (444 vs. 12). In contrast, the proportion of 

peaked promoters is similar in stable and regulated genes (42 vs. 38). Overall, however, our 

set of regulated genes exhibits most of the characteristics that have been reported for 

developmental and/or peaked promoter genes in Drosophila and other species (see Lenhard 

et al.31 for a review). Thus, promoters of regulated genes show stronger conservation29-31, 

particularly in predicted transcription factor binding motifs (Supplementary Fig. 12). They 

are depleted in DNA Replication related Element (DRE) sequences, which are associated to 

disperse initiation of transcription8 (15% of regulated compared to 39% of stable genes), and 

enriched in TATA Binding Protein (TBP) boxes, characteristic of tighter gene 

regulation32, 33 (49% vs 15%). In contrast, promoters of stable genes overlap modENCODE 

High Occupancy Target (HOT) regions, associated to open chromatin and ubiquitous 

expression34, 35, more often than promoters of regulated genes (67% vs. 8%). We also found 

that the overall pattern of transcription factor binding clearly separates regulated from stable 

genes, as revealed by Principal Component Analysis (PCA) based on ChIP-chip data for 20 

transcription factors in fly embryos (Fig. 8a). Finally, analyses of published data36-40 of 

knockdowns or overexpression of several transcription factors have frequently larger impact 

on the expression of regulated than of stable genes (Supplementary Table 8).

Regulated genes also exhibit a characteristic genome organization. We mapped our sets of 

stable and regulated genes to a number of genome segmentations, representing epigenomic 

domains, recently obtained in Drosophila cell lines (Kc16741, BG3 and S242) and 

developmental time points (late embryo, LE, and L343). We systematically found that 

regulated genes tend to occur in chromatin states that are depleted in histone modifications 

(Figure 8b-d), even when considering only regulated genes expressed in the developmental 

time point at which the segmentation has been obtained (Figure 8b). Epigenomic domains in 

turn, spatially organize into well-defined physical domains within the nucleus44. Silent 

chromatin regions, in particular, fold into modular chromosomal entities, which we found 

enriched in regulated genes (Fig. 8e). The nuclear lamina plays a key role in this physical 

organization, through the interaction with large continuous chromosomal domains. These 

Lamina Associated Domains (LADs) are generally depleted of chromatin marks45, and we 

consistently found that regulated genes are strongly enriched in LADs (52% compared to 

5% of stable genes in 412 LADs from Kc167 cells46).

Histone modifications and alternative splicing

Beyond its role in primary RNA production, chromatin structure has also been implicated in 

subsequent steps of RNA processing. In particular, a number of studies have uncovered a 

relationship between nucleosome occupancy and exon-intron structure47, 48 and between 

specific histone modifications and alternative splicing49-51. We found in fly WID and EID 

that highly included exons are characterized by higher H3 occupancy when compared to 
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lowly included ones, as previously reported in mammals48 (Methods, Supplementary Tables 

9, 10 and Supplementary Fig. 13a, b), and that the correlation between H3 occupancy and 

exon inclusion peaks very close to the acceptor site (Supplementary Fig. 13c, d).

We speculated, thus, that strong chromatin marking might not be only associated to more 

stable RNA production, but also to a tighter regulation of alternative splicing. To measure 

alternative splicing complexity, we computed the Shannon’s entropy on the relative 

abundance of a gene’s alternative splicing isoforms (Methods). The splicing entropy grows 

with the number of isoforms and with the evenness of their relative abundances. Higher 

entropic values can be interpreted as tight regulation of alternative splicing, while lower 

values would correspond to more stochastic production of alternative isoforms. As 

hypothesized, splicing entropy, measured at the time point of maximum gene expression, is 

lower for strongly marked stable genes than for unmarked developmentally regulated genes 

(Fig. 8f). Further supporting tighter regulation of splicing, we also found that the major 

isoform captures a larger fraction of the total transcriptional output in stable than in 

regulated genes (Fig. 8g).

Discussion

Cell type specific transcriptional regulation is crucial to maintain cell identity throughout the 

lifetime of organisms, yet it must be flexible enough to allow for responses to endogenous 

and exogenous stimuli. This regulation is mediated by specific molecular factors (e.g. cell 

type specific transcription factors, and chromatin modifications), as well as by the 

topological organization of the genome. In particular, modifications occurring on DNA and 

on histones regulate gene expression by establishing and maintaining specific chromatin 

states52, 53. The association of certain modifications with transcriptional activation or 

repression has become widely accepted. Nevertheless, expression of genes in the absence of 

chromatin marks has also been reported6-9. Here we found that transcription in the absence 

of most canonically active chromatin marks is actually a characteristic feature of genes that 

are regulated during fly and worm development. These are not necessarily equivalent to 

developmental control genes, many of which are known to be marked11, 52.

Analyses of tissue-specific gene expression data, as well as our targeted validation 

experiments, support that our observations do not arise from the expression of 

developmentally regulated genes being low or confined to small cell populations, from 

limited detection sensitivity, and/or from persistence in the cell of RNA molecules 

transcribed at some earlier standpoint. Thus, while factors not accounted for cannot be 

completely ruled out, our observations appear to reflect a true biological property of genes 

regulated throughout development—maybe a consequence of these genes being partially 

unresponsive to histone modifications systems.

We also found that strongly marked chromatin state is associated to more tightly controlled 

transcriptional and post-transcriptional regulation, in particular to splicing. This is consistent 

with earlier observations54 of simultaneous enrichment in the expression of chromatin 

modifying enzymes and splicing factors in cell-enriched testis, and with the higher levels of 
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H3K36me3 found by de Almeida et al.49 in mammalian constitutive exons compared to 

alternative exons.

Overall, our results lead us to hypothesize that the relative contribution of transcription 

factors and histone modifications to regulation of gene expression differentiates the 

transcriptional programs of stable and regulated genes. In stable genes that are constitutively 

expressed, strong chromatin marking leads to transcriptional stability and tightly controlled 

RNA production. In these genes, regulation by transcription factors would play a 

comparatively smaller role. In contrast, genes regulated during development that need to be 

rapidly activated and de-activated are characterized by an unmarked chromatin state. In these 

other genes, transcription factors binding to chromatin would play the predominant 

regulatory role. These distinct regulatory programs would be reflected in the topological 

organization of the chromatin fiber within the nucleus, with regulated genes located in silent 

chromosomal modular domains that physically interact with the nuclear lamina55.

While we found evidence for this model of transcriptional regulation specifically in the fly, 

preliminary results suggest that it may be generalizable to other metazoans. Although 

detailed transcriptional, epigenetic, and topological maps of genomes are being produced in 

an increasing number of cell lines and tissues, developmental maps are still sparse in 

mammalian species. Exhaustive monitoring through a much larger variety of conditions, 

differentiation states and developmental stages is required to fully understand the layer of 

epigenetic regulation that mediates between genome sequence and RNA production.

Online Methods

Drosophila strains

The strains used were: Canton S as a wild type and nub-GAL4/+; UAS-GFP/+. Flies were 

kept on standard media at 25°C.

Tissue disaggregation and cell sorting

Wing imaginal discs (WID) from nub-GAL4/+; UAS-GFP/+ flies were dissected in PBS and 

incubated for 1h in a 10x trypsin solution (Sigma T4174) at room temperature in a rotating 

wheel. Cells were vigorously pipetted and kept on ice in Schneider’s insect medium. To 

discard dead cells, DAPI was added to the sample at 1 μg/mL final concentration. Cells were 

sorted in a FACSAria (BD) with the 85 μm nozzle. We were able to recover around 2.5·106 

GFP negative and 2·106 GFP positive cells from 400 WIDs. An independent sorting 

experiment was done per each replicate, both for ChIPs and gene expression analyses.

RNA extraction, retrotranscription and Real-Time PCR

As starting material, 120 WID and 250 eye-antenna imaginal discs (EID) were used for 

RNASeq. For pdm2 gene expression analysis, WIDs from 400 nub-GAL4/+; UAS-GFP/+ 

flies were disaggregated. RNA from sorted cells was extracted with ZR-RNA MicroPrep Kit 

from Zymo Research. For L3-specific genes expression, 5 third instar larvae were frozen and 

RNA was extracted with Quick-RNA MiniPrep Kit, from Zymo Research. 

Retrotranscriptions and qPCRs were performed as described previously17. For quantification 
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of RNA amounts, standard curves of each pair of primers were performed and the efficiency 

of amplification was calculated. The Cts obtained from the qPCR were corrected according 

to the amplification efficiency of the primers. Primers used for Real-Time PCR are listed in 

Supplementary Table 11.

Genetic mosaics

Clones mutant for ash2I1 were obtained by mitotic recombination using the FLP/FRT 
technique57. yw;FRT82Bash2I1/TM6C flies were crossed with ywhsflp;FRT82BGFP/TM6B 
and wing and eye imaginal discs from third instar Tubby+ larvae were dissected. Heat shock 

was carried out for 45 minutes at 37°C [52 ± 4 hours after egg laying (AEL)] to induce clone 

generation.

In situ hybridizations and immunohistochemistry

In situ hybridizations and immunostaining were carried out according to standard protocols. 

The cDNA for pdm2 was PCR amplified using primers listed below and cloned into a pBSK

+/− vector at EcoRI restriction site. Riboprobe was synthesized using T7 polymerase and 

digoxigenin labeled ribonucleotides (Roche). Alkaline phosphatase conjugated with anti-

digoxigenin (Roche) and NBT and BCIP (Roche) were used to develop in situ hybridization. 

Peroxidase conjugated anti-digoxigenin and Tyramide signal amplification (TSA, Life 

Technologies) was used for fluorescent in situ hybridization (FISH). WIDs and EIDs were 

analyzed with a DMLB microscope and SPE confocal microscope (Leica). Primary 

antibodies used were: rabbit anti-H3K4me3 (1:1,000, Abcam/ab8580), mouse anti-En (1:25, 

DSHB/4D4) and mouse anti-CycA (1:100, DSHB/A12), mouse anti-BOSS (1:1,000)58 and 

rabbit anti-GFP (1:1,000, Santa Cruz Biotechnology/sc-8334). Fluorescently labeled 

secondary antibodies were from Life Technologies and Jackson Immunochemicals. Discs 

were mounted in SlowFade (Life Technologies) supplemented with 1 μM TO-PRO-3 (Life 

Technologies) to label nuclei. For all in situs and immunostainings around 10 imaginal discs 

were analyzed. All experiments were performed twice.

Chromatin immunoprecipitation

Third instar larva WID or EID isolated from Canton S flies were fixed, pooled in 700 μL and 

processed as described17. Around 300 imaginal discs were used in these experiments. 

Trypsin treated cells from GFP transgenic flies were fixed after sorting for 10 minutes at 

room temperature and sonicated in a Diagenode Bioruptor for 15 minutes at high power in 

lysis buffer (1% SDS, 10 mM Tris HCl ph 8.0 and 2mM EDTA). Immunoprecipitations were 

performed in RIPA buffer. For L3 ChIPs and Imaginal Discs ChIPSeq experiments we used 

1 μg of the corresponding antibody. For ChIPs in sorted cells we used 0.45 μg of anti-

H3K4me3, 0.3 μg of anti-H3K36me3, 0.33 μg of anti-H3K27ac and 1 μg of anti-

H3K27me3. For L3 time-specific ChIPs, 5 Canton S wall-wandering third instar larvae were 

disrupted, fixed and sonicated as indicated above. . Immunocomplexes were recovered with 

Invitrogen ProteinA magnetic beads for 2h. The beads were washed three times in RIPA or 

IP buffer, once in LiCl buffer and twice in TE17. Primers used for Real-Time PCR are listed 

in Supplementary Table 11. The antibodies used for ChIP were: H3 (Abcam/ab1791); 

H3K4me3 (Abcam/ab8580) (Millipore-Upstate/07-473), H3K9ac (Abcam/ab4441), 
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H3K36me3 (Abcam/ab9050), H3K4me1 (Diagenode/CS-037-100), H3K27ac (Abcam/

ab4729) and H3K27me3 (Upstate-Millipore/07-449).

Nascent RNA

For Nascent RNA assays, 400 WIDs nub-GAL4/+; UAS-GFP/+ were dissected and 

disaggregated as described above. Click-IT® Nascent RNA Capture Kit from Molecular 

Probes (C10635) was used according to the manufacturer’s instructions. Briefly, 

disaggregated cells were incubated with 0.5 mM 5-ethynil uridine (EU) in Schneider’s 

Insect Medium for 1 h at room temperature. Total RNA was extracted and biotinylated with 

0.25 mM biotin-azide for 30 minutes at room temperature. Biotinylated RNA was 

precipitated overnight at −80°C and purified with Streptavidin conjugated beads for 30 

minutes at room temperature. Nascent RNA was eluted in 0.1 % SDS 5 minutes at 99°C and 

retrotranscription was carried out as described above. Four biological replicates were 

performed. Primers used for Real-Time PCR are listed in Supplementary Table 11.

Solexa/Illumina sequencing

Solexa/Illumina sequencing was carried out at the Ultrasequencing Unit of the Centre for 

Genomic Regulation (CRG, Barcelona, Spain). All protocols for Solexa/Illumina ChIPSeq 

and for RNASeq analysis were carried out following the manufacturer’s protocol. For 

ChIPSeq, 10 ng of each sample were used and fragments between 300 and 350 bp were size 

selected before sequencing. For RNASeq, 5 μg of total RNA were used to sequence.

Drosophila melanogaster genome and annotation

We used the FlyBase12 annotation release 5.12 for the genome version dm3.

RNASeq and ChIPSeq read mapping

Reads of 36 and 40 bp obtained from single-end RNASeq and ChIPSeq sequencing from 

WID and EID-cells were aligned using GEM59 allowing up to two mismatches to the D. 
melanogaster genome (version dm3) and, for RNA, to all possible junctions of 5′-3′-ordered 

exon pairs occurring within the same annotated gene. ChIPSeq and RNASeq raw data and 

profiles of read counts were deposited in the NCBI-GEO repository under the accession 

number GSE56551.

Gene and transcript expression analysis

Reads mapping uniquely to the genome were used to quantify genes and transcripts 

separately in each tissue using the FluxCapacitor60. Expression levels are given in Reads Per 

Kilobase per Million mapped reads (RPKM). Linear regression analysis between log 

transformed WID and EID RPKMs gave a highly significant slope and intercept. Thus, we 

identified 628 genes at least one unit above the linear regression line (differentially 

expressed genes in EID) and 184 genes at least one unit below (differentially expressed 

genes in WID). To build our collection of regulated tissue-specific genes from each 

differentially expressed gene set, we required coefficient of variation >= 1.2 and at least 1.5 

RPKMs in one tissue and less than 0.1 RPKM in the other one (55 EID-specific genes and 

10 WID-specific genes, respectively, resulted from this criterion). Finally, those genes with 
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coefficient of variation < 1.2 that are expressed in both tissues (> 2.3 RPKMs) with a 

difference in expression of less than 20% were selected as stable expressed in the two tissues 

(284 genes) and the genes whose expression in both tissues is 0 RPKMs were considered to 

be silent (30 genes).

ChIPSeq analyses

ChIPSeq reads for H3, H3K4me3, H3K9ac, H3K36me3, H3K4me1 and H3K27ac were 

extended to the full average fragment length in the corresponding experiment. For each 

position in the genome the number of extended ChIPSeq reads overlapping this position was 

recorded. Each sample was normalized by the total number of sequenced reads and the 

average fragment length. The genome-wide correlation between WID and EID samples was 

computed using the UCSC Table browser on windows of 1,000 nucleotides56. To compute 

the correlation between ChIPSeq samples and RNASeq expression data, we assigned to each 

gene the highest peak of the corresponding ChIP signal within the gene body and correlated 

this value to the expression of the gene. To produce the graphical distribution of reads for 

each sample around a particular site (Transcription Start Sites, TSS, polyAdenylation Sites, 

pAS and splice Acceptor Sites, AS), we calculated the weighted number of reads on each 

position from −500 bp to +500bp of each TSS, pA and AS, according to FlyBase. To 

graphically represent an idealized gene, we normalized the location of the reads within the 

gene using a window of 100 units, and calculated the mean at each point. We extended this 

representation 500 bps upstream and downstream of the gene. To compare WID and EID 

samples, we calculated the weighted number of reads on each position in the normalized 

ChIPSeq profiles.

ENCODE and Roadmap Epigenomic analyses

Stable and developmentally regulated genes in D. melanogaster—To define the 

transcriptional stability of genes, we calculated the coefficient of variation of gene 

expression, as reported by the modENCODE consortium10, for each protein-coding gene 

that has detectable expression in 12 selected developmental time points (Supplementary Fig. 

1a). From the full ranking of 13,635 genes, we defined the bottom 1,000 genes with lowest 

variation of expression during development as stable, and the top 1,000 genes with highest 

variation as developmentally regulated genes. In addition, at each time point we selected the 

same number of silent genes than regulated genes expressed at that time point, for a total of 

1,000 silent genes. For these genes, we measured the strength of the highest peak (measured 

as the log of the number of reads reported by modENCODE) within the gene body at the 

time point in which its expression is maximum for H3K4me3, H3K9ac, H3K4me1, 

H3K27ac, and the average signal within the gene body for H3K27me3 and H3K9me3 

modENCODE ChIPSeq profiles (NCBI GEO accession: GSE16013). Due to data issues 

with ChIPSeq for three samples: H3K9ac (Adult male) and H3K9me3 (L3 and Adult male), 

we used ChIP-chip data in these cases instead. The Wilcoxon test (two-sided) was used to 

evaluate the statistical significance of the difference between ChIP values for stable, 

regulated and silent genes on each sample. To build the subsets of low, medium and high 

regulated genes, we ranked the top 1,000 regulated genes by their expression (in the time 

point of maximum expression) and we classified them into three groups of the same number 

of genes. Partial correlations between the coefficient of variation and the histone marking of 
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genes, with the effect of the expression of such genes removed, were calculated with the 

ggm R package.

L3-specific genes analysis

To compare the expression and histone modification marking levels in regulated broadly 

expressed and stable tissue-specific genes we used anatomy RNASeq data from 

modENCODE consortium available in Flybase12. We used the gene sets previously defined 

for modENCODE analysis to create new subgroups of genes:

• Stable: the 1,000 genes with the lowest coefficient of variation of gene 

expression across modENCODE time points

• Silent: genes identified as silent in L3 stage (RPKM = 0)

• Regulated broadly-expressed at L3: developmentally regulated genes that 

are detected in L3 whole body data, and that are furthermore expressed 

with at least 1 RPKM in each of the 6 tissues with L3 tissue-RNASeq 

available

• Stable tissue-specific at L3: from the set of extended stably expressed 

genes (P1 in Supplementary Fig 4) we selected the genes that, using L3 

tissue-RNASeq, are detected as expressed with at least 10 RPKM in 1 of 

the tissues and not higher than 1 in all the other remaining tissues. We 

identified 26 carcass-specific genes, 8 central nervous system-specific 

genes, 36 digestive-specific genes, 21 fat body-specific genes, 36 imaginal 

disc-specific genes and 4 salivary glands-specific genes.

The expression and histone modification levels were calculated using L3 data from 

modENCODE following the methodology of the previous analysis.

Stable and developmentally regulated genes in C. elegans

We estimated H3K4me3 and H3K36me3 levels in 7 developmental stages (Early Embryo, 

Late Embryo, Larvae L1, L2, L3, L4 and Young Adult) from array signal files in Gerstein et 

al35. To define developmentally stable and regulated genes, we also used the same procedure 

as in fly. To obtain gene and transcript quantifications, we mapped the RNASeq reads from 

modENCODE C. elegans35 to the Wbcel215.68 version of the genome using GEM59, and 

used the FluxCapacitor60 to produce the quantifications. Partial correlations between the 

coefficient of variation and the histone marking of genes, with the effect of the expression of 

such genes removed, were calculated with the ggm R package.

Human and mouse analyses

To define the transcriptional stability of human genes, we calculated the coefficient of 

variation of gene expression, as reported by the Roadmap Epigenomics Consortium, for each 

protein-coding gene that has detectable expression in the set of 56 consolidated 

epigenomes14. From the full ranking of 18,064 genes, we defined as constant genes the 

bottom 1,000 genes with lowest variation of expression across the 56 tissues and cell lines, 

and the top 1,000 genes with highest variation as variable genes. In addition, at each 
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epigenome we selected the same number of silent genes than variable genes expressed at 

that tissue, for a total of 1,000 silent genes. For these genes, we measured the strength of the 

highest peak (measured as the log of the number of reads reported by the Roadmap 

Epigenomics consortium) within the gene body at the tissue in which its expression is 

maximum for H3K4me3, H3K36me3 and H3K4me1. The Wilcoxon test (two-sided) was 

used to evaluate the statistical significance of the difference between ChIP values for 

constant, variable and silent genes on each sample. Partial correlations between the 

coefficient of variation and the histone marking of genes, with the effect of the expression of 

such genes removed, were calculated with the ggm R package.

The same protocol was applied in the analysis of the mouse ENCODE15 RNASeq and 

ChIPSeq (H3K4me3, H3K9ac, H3K36me3, H3K4me1 and H3K27ac) data in ten adult 

tissues for which RNASeq data and ChIPSeq data all modifications are available: 

Cerebellum, Cortex, Heart, Kidney, Liver, Placenta, Small intestine, Spleen, Testis and 

Thymus.

Nucleosome turnover

Using the provided Nascent RNA signal tracks in S2 cells18 with no treatment we calculated 

the average signal in the gene body of the previously defined stable, regulated and silent 

gene sets. Stable and regulated genes with signal over 1 were kept (986 stable and 56 

regulated) and silent genes with signal equal 0 were also kept (258 genes). In these 

remaining genes we calculated the nucleosome turnover rate as the average CATCH-IT 

signal, within the gene body, in S2 cells with no treatment18. The Wilcoxon test (two-sided) 

was used to evaluate the statistical significance of the signal among the gene sets.

Promoter analyses

To measure the conservation of the promoters of regulated and stable genes across 12 

Drosophilids, we computed the average of the UCSC PhastCons multiz15way track56 along 

the promoter sequences of each gene set (promoter length: 200 bp). To characterize the 

promoters of regulated and stable genes, we used the MatScan program61 with the full 

collection of 827 predictive matrices available in Jaspar and Transfac62, 63. From each initial 

pool of predictions, we removed those binding sites within genome regions in the UCSC 

genome browser that presented on average a probability lower than 0.95 to be conserved 

across the 12 flies PhastCons multiz15way alignments64. The Wilcoxon test (one-sided) was 

used to evaluate the statistical significance of the difference for stable and developmentally 

regulated gene sets on each comparison (PhastCons scores and number of conserved sites). 

For the identification of focused/dispersed initiation sites8, 33, we searched for putative 

binding sites of TBP and DRE in the promoter sequence of the top 1,000 stable and the top 

1,000 regulated genes (promoter length: 100 bp). We selected TBP as a marker of focused 

initiation and DRE as a representative of dispersed initiation. The weight matrix for TBP is 

from Jaspar62 and for DRE is from Fly Factor Survey65.

Principal Components Analysis (PCA) was performed based on the ChIPSeq levels of 20 

Transcription Factors in Embryos at 0–12h in the promoter regions of genes with expression 

above 10 as measured by tilling arrays at this time point6.
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Genome segmentations

To match the states of a particular map of genome segmentation and our sets of stable and 

regulated genes, we counted how many genes of these two groups overlap with the segments 

of each state. To annotate our collection of genes, we used the modENCODE ChromHMM66 

maps of BG3 and S2 cell lines42, the hiHMM maps of Late Embryo and L343 and the 

chromatin types identified by Filion and colleagues41. To annotate the topological 

information of stable and regulated genes, we conducted a 4similar analysis on the HiC 

genome domains previously identified on Late Embryo44 and the Lamina Associated 

Domains reported in Kc cells46.

Trancription factor perturbation analysis

To study the effects of transcription factors in stable and regulated genes we analyzed 

publicly available data on knock-down or overexpression of various Drosophila transcription 

factors36-40. First we checked how many stable and regulated genes were expressed in the 

tissue/cell type used in each study before the perturbation of the transcription factor, using 

published expression data on brain L336, Kc cells67, S2 cells67 and our L3 eye imaginal disc. 

Genes with RPKM > 1 were considered expressed. Then, we intersected the stable and 

regulated expressed genes with the genes identified as differentially expressed in each study.

Splicing entropy

For each gene, we computed the Shannon’s entropy (or diversity index) based on the relative 

frequencies of the gene’s annotated isoforms in a given cell line. Let g be a gene with n 
annotated isoforms with relative frequencies p1, …,pn, in a given condition, the entropy of g, 
H(g), is computed as

H(g) growths with the number of annotated isoforms and with the evenness of their 

frequencies. H(g) is zero when there is only one expressed isoform (which would correspond 

to tight regulation of isoform expression), and it is maximum when all isoforms are equally 

expressed (which would correspond to lack of splicing regulation and stochastic production 

of alternative splicing isoforms). Based on transcript quantifications produced by the 

modENCODE project for the fly, and computed by us for the worm (see Methods), we 

calculated the splicing entropy of each gene at the developmental time point in which its 

expression is at its maximum. The boxplots in Figure 8f display the distribution of H(g), 
separately for genes with different number of isoforms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of histone modification levels in stable, regulated and silent genes during 
fly development
a, Expression of stable, regulated, and silent genes during fly development at the time point 

of maximum expression for each gene. Gene expression was computed as FPKMs by the 

modENCODE consortium. The bottom and top of the boxes are the first and third quartiles, 

and the line within, the median. The whiskers denote the interval within 1.5 times the Inter 

Quartile Range (IQR) from the median. Outliers are plotted as dots. b, Normalized levels of 

H3K4me3, H3K9ac, H3K4me1 and H3K27ac at the time point of maximum expression 
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during D. melanogaster development. These values represent the maximum height of the 

ChIPSeq peak within the gene body. P-values were computed using the Wilcoxon text (two-

sided). c, Profiles of H3K4me3 during the 12 fly developmental time points in CG8636, a 

gene stably expressed during fly development, and CG16733, a pupa-specific gene. The 

expression (measured as FPKMs) along these points for the two genes is given on the left. d, 

Levels of H3K27me3 and H3K9me3 at the time point of maximum expression, computed as 

the average height of the ChIPSeq signal within the gene body, in stable, regulated and silent 

genes.
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Figure 2. Gene expression and histone modifications in regulated broadly-expressed and stable 
tissue-specific genes at third instar larvae
a, Diagrams of developmentally regulated genes broadly-expressed across multiple tissues at 

third instar-larvae L3 (left panel), and stable genes expressed in only one tissue at L3 (right 

panel). b, Gene expression levels at L3 measured by whole organism RNASeq (left panel). 

The number of genes in each category is given under the boxplots. The bottom and top of 

the boxes are the first and third quartiles, and the line within, the median. The whiskers 

denote the interval within 1.5 times the IQR from the median. Outliers are plotted as dots. 
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Validation by qPCR of the expression at L3 of regulated broadly-expressed genes compared 

to a stable gene (Bmcp) and a silent gene (CG5367) (right panel). Error bars represent the 

Standard Error of the Mean (SEM) from three independent replicates. c, Levels of 

H3K4me3, H3K9ac, H3K4me1 and H3K27ac on whole L3 individuals. The seven regulated 

genes broadly-expressed at L3 are depicted as red dots within the boxplots. P-values were 

computed using the Wilcoxon test (two-sided). d, Validation by individual ChIPs and qPCR 

of H3K4me3 and H3K9ac in regulated genes broadly-expressed at L3. H3K4me3 and 

H3K9ac ChIPs are represented as enrichment of the marks over the silent gene (CG5367). 

Error bars represent the SEM from three independent replicates.
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Figure 3. Association between histone modifications and transcription stability in metazoans
a, Scatterplot of H3K4me3 levels at the time point of highest expression during fly 

development and transcriptional stability measured as the coefficient of variation of gene 

expression across time points. The correlation is computed as the partial correlation given 

gene expression. b, Partial correlations between active marks and transcription stability (the 

coefficient of variation). Correlations are computed controlling for gene expression. All 

correlations are statistically significant (p-value < 2.2e–16). P-values were computed using 

Student’s t-test (two-sided). c, Expression of stable, regulated and silent genes during worm 
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development at the time point of maximum expression. The bottom and top of the boxes are 

the first and third quartiles, and the line within, the median. The whiskers denote the interval 

within 1.5 times the IQR from the median. Outliers are plotted as dots. d, Levels of 

H3K4me3 and H3K36me3 at the time point of maximum expression during worm 

development. e, Expression of genes with constant and variable expression at the tissue/cell 

line of highest expression across multiple samples from the Roadmap Epigenomics Mapping 

Consortium. f, Levels of H3K4me3 at the tissue of maximum expression. g, Expression of 

genes with constant and variable expression at the tissue of highest expression across ten 

mouse tissues from the mouse ENCODE project. h, Levels of H3K4me3 at the tissue of 

maximum expression. These levels correspond to the maximum height of the ChIPSeq peak 

within the gene body. P-values were computed using Wilcoxon text (two-sided).
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Figure 4. Profiles of H3 and histone modifications in Wing (WID) and Eye-antenna (EID) 
imaginal discs
a, Profiles on stable and silent genes in WID and in EID. b, Profiles on regulated WID-

specific genes in WID and EID. c, Profiles on regulated EID-specific genes in WID and 

EID.
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Figure 5. Profiles of RNA expression, H3 and histone modifications in Wing (WID) and Eye-
antenna (EID) imaginal discs
Noc is a gene stably expressed in WID and EID; CG4382 a WID-specific and CG14516, an 

EID-specific gene. Levels of gene expression (as RPKMs) are depicted at the bottom of the 

panels. Screenshots have been obtained through the UCSC Genome Browser56.
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Figure 6. Active transcription of pdm2 without chromatin modifications
a, Expression of pdm2 in WID (left panel) and EID (middle panel) labeled with a pdm2-

specific probe. The gene is only expressed in the wing pouch of the WID, highlighted in 

green. The scale bars represent 100 μm. b, Expression of pdm2 in sorted cells analyzed by 

qPCR. Gene expression is normalized by the control gene crm. Error bars represent the SEM 

from three biological replicates. c, ChIP analysis of H3K4me3, H3K36me3 and of negative 

controls without antibody on sorted cells. ChIPs are represented as enrichment of the marks 

over a silent gene non-marked with H3K4me3 and H3K36me3 (CG10013). Crm is used as 
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positive control for these modifications. Error bars represent the SEM from at least three 

biological replicates. P-values were computed using the Student’s t-test (two-sided). d, 

Newly transcribed RNA of GFP-sorted cells. Nascent RNA is normalized by the control 

gene crm. Error bars represent the SEM of four biological replicates. e, ChIP analysis of 

H3K27me3 and of negative controls without antibody on sorted cells. H3K27me3 ChIPs are 

represented as enrichment of the mark over a constitutively expressed gene non-marked with 

H3K27me3 (RpL32). Abd-B is used as positive control for this modification. Error bars 

represent the SEM from at least three biological replicates.
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Figure 7. Reduction of H3K4me3 does not affect expression of regulated genes
a, Distribution of ASH2 binding in stable (red), regulated (blue) and silent genes (grey). b, 

H3K4me3 is strongly decreased in ash2I1 mutant clones in WID. c, En immunostaining in 

WID (merged). The scale bar represents 20 μm. d, The levels of the stable gene En are 

reduced in mutant clones. e, GFP negative cells indicate ash2I1 mutant cells in c and d. f, 
CycA immunostaining in WID (merged). The scale bar represents 20 μm. g, CycA is 

decreased in ash2I1 mutant clones. h, GFP negative cells indicate ash2I1 mutant cells in f and 

g. i, pdm2 fluorescence in situ hybridization in ash2I1 mutant clones in WID (merged). The 
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scale bar represents 20 μm. j, No changes in pdm2 expression are observed in ash2I1 mutant 

clones. k, GFP negative cells indicate ash2I1 mutant cells in i and j. l, Boss immunostaining 

in EID. The scale bar represents 20 μm. m, Optical cross-section (white line in l) showing 

Boss in all R8 photoreceptor cells (merged). n, No changes in Boss expression are observed 

in ash2I1 mutant clones. o, GFP negative cells indicate ash2I1 mutant cells in m and n. p, 

Diagram summarizing the result in m–o. Green cells express the wild-type ash2 allele and 

black cells correspond to homozygous ash2I1 mutant cells. Boss (magenta cap) localizes in 

the apical side of R8.
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Figure 8. Promoter architecture and genome organization in stable and developmentally 
regulated genes
a, Principal Component Analysis (PCA) of genes expressed in the Drosophila embryo 

between 0 and 12h, based on ChIP-chip binding profiles of twenty transcription factors. b, 
Fraction of stable and regulated genes in different states from chromatin segmentations in 

Late Embryo (LE) and L343. Right, proportion of regulated genes when considering only 

genes expressed in LE or L3. c, The same as in b, for segmentations in BG3 and S2 cell 

lines42. d, The same as in b, for the segmentation in Kc16741. BLACK chromatin 

corresponds to repressive chromatin. YELLOW and RED chromatin is typical of 
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transcriptionally active regions. GREEN and BLUE chromatin correspond to repressive 

chromatin. e, Proportion of stable and regulated genes mapping to spatial chromatin 

domains, considering the 1,169 domains inferred by HiC in fly embryos44. f, Distribution of 

Shannon’s entropy of splicing in stable and regulated genes. Shannon’s entropy is computed 

at the developmental time point in which gene expression is the maximum. The number of 

genes of each category appears below the X-axis. The bottom and top of the boxes are the 

first and third quartiles, and the line within, the median. The whiskers denote the interval 

within 1.5 times the IQR from the median. Outliers are plotted as dots. g, Distribution of the 

relative usage of the major isoform. The Y-axis is the fraction of the total transcriptional 

output of the gene that is captured by the most abundant isoform.
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