
J
C
A
P
1
1
(
2
0
1
2
)
0
2
9

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Perturbation theory approach for the
power spectrum: from dark matter in
real space to massive haloes in
redshift space
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Abstract. We investigate the accuracy of Eulerian perturbation theory for describing the
matter and galaxy power spectra in real and redshift space in light of future observational
probes for precision cosmology. Comparing the analytical results with a large suite of N-
body simulations (160 independent boxes of 13.8 (Gpc/h)3 volume each, which are publicly
available), we find that re-summing terms in the standard perturbative approach predicts the
real-space matter power spectrum with an accuracy of . 2% for k ≤ 0.20h/Mpc at redshifts
z . 1.5. This is obtained following the widespread technique of writing the resummed
propagator in terms of 1-loop contributions. We show that the accuracy of this scheme
increases by considering higher-order terms in the resummed propagator. By combining
resummed perturbation theories with several models for the mappings from real to redshift
space discussed in the literature, the multipoles of the dark-matter power spectrum can be
described with sub-percent deviations from N-body results for k ≤ 0.15h/Mpc at z . 1. As
a consequence, the logarithmic growth rate, f , can be recovered with sub-percent accuracy
on these scales. Extending the models to massive dark-matter haloes in redshift space,
our results describe the monopole term from N-body data within 2% accuracy for scales
k ≤ 0.15h/Mpc at z . 0.5; here f can be recovered within < 5% when the halo bias is
known. We conclude that these techniques are suitable to extract cosmological information
from future galaxy surveys.
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1 Introduction

Galaxy clustering is a key observational probe to study the large-scale structure of the Uni-
verse. The shape of the galaxy power spectrum, bispectrum and higher-order moments,
contain information about the matter content of the Universe, about gravity and also about
possible non-Gaussian initial conditions. In galaxy surveys, the galaxy distribution is dis-
torted along the line of sight due to peculiar velocities that cause Doppler shifts, namely
redshift space distortions (RSD). As these distortions depend on the growth of structure,
they offer a complementary technique (to studies of the cosmic expansion history) to mea-
sure the matter content or to test gravity e.g., [1–3]. On very large scales and at higher
redshifts, the RSD can be described by linear theory. However, on smaller scales and at later
epochs, non-linearities start to play an important role and must be taken into account to
accurately estimate the cosmological parameters from observational data.

Current surveys like BOSS1 [4], and future missions like EUCLID2 [5] will soon provide
unprecedented datasets about the distribution of galaxies on large scales. In order to ex-
tract useful information from data of this quality we need more accurate theoretical models

1Baryon Oscillation Spectroscopic Survey http://www.sdss3.org/surveys/boss.php.
2http://sci.esa.int/euclid/.
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of structure formation. Standard perturbation theory (SPT) is the straightforward way of
proceeding and has been the workhorse in the field for decades. However, its practical ap-
plications to statistics of the density field provide limited accuracy in both real and redshift
space. A number of studies have investigated the fidelity of different theoretical models to
describe the redshift space distortions and the possibility of extracting cosmological infor-
mation from them [6–21]. This work explores the potential of describing the redshift-space
distortions combining different mappings between real and redshift space with resummed
perturbation theories. This is the basis to model the redshift-space distorted power spec-
trum of dark matter and dark-matter haloes. We then focus on the systematic errors that
these models produce when they recover the logarithmic growth rate. For future surveys
with forecasted statistical error on this quantity at the % level, the accuracy of the analytic
description of clustering must be such that residual systematic errors due to modeling is well
below this level. A fast, analytic description of clustering, calibrated on N-body simulations
is an approach fully complementary to one based entirely on N-body simulations e.g., [22, 23].

In particular, we start by describing the real-space power spectrum using 1- and 2-loop
standard perturbation theory and the so-called renormalized (or resummed) perturbation
theory [24, 25]. We combine these models with different methods to obtain the redshift-
space power spectrum: i) the Kaiser model [26], ii) the Scoccimarro model [27] and iii) the
Taruya et al. model [28] (TNS model, from now on). For dark matter, we additionally account
for the Finger-of-God (FoG) effect produced by virial motions on small scales by introducing
a phenomenological damping term. This term is not needed in the case of haloes, as we only
consider isolated haloes which are not part of a larger host halo. We compare these different
methods with the results of a large suite of N-body simulations, focusing on the multipole
expansion of the redshift-space power spectrum. Our suite of N-body simulations sums up to
a volume of 2212 (Gpc/h)3, which is much larger than the volume surveyed by any current
or planned experiment, ensuring that statistical errors in the simulations are negligible.

This paper is organized as follows. In section 2 we present the basic theory of redshift-
space distortions. In particular, in section 2.1 we review standard perturbation theory and
renormalized perturbation theory, extending the latter to higher-order propagators than pre-
viously considered. In section 2.2 we present different RSD models while Finger-of-God
effects are discussed in section 2.3. In section 3 we provide details of the N-body simulations
and describe the halo catalogues used in this paper. In section 4 we compare the results of
our models for the real-space power spectrum and compare them with N-body simulations for
the dark-matter case. We also consider the RSD models mentioned above, focusing on their
capacity to recover the logarithmic growth rate f , both for dark matter and massive haloes.
Finally in section 5, we discuss and summarize the obtained results. Appendices A and B
contain details about standard and resummed perturbation theory providing a justification
of the formulae presented in section 2.1. Note that our discussion of resummed theories does
not assume a field-theory background and is supposed to be accessible to all readers.

2 Theory

The matter-matter real-space power spectrum Pδδ(k), the Fourier transform of the two-point
correlation function, is the simplest statistic of interest one can extract from the dark matter
overdensity field in Fourier space, δ(k),

〈δ(k)δ(k′)〉 ≡ (2π)3δD(k + k′)Pδδ(k) , (2.1)

– 2 –
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where δD denotes the Dirac delta function and 〈. . . 〉 the ensemble average. Under the as-
sumption of an isotropic Universe, the power spectrum in real space does not depend on the
direction of the k-vector. Since we only have one observable Universe, under the hypothesis
of ergodicity the average 〈. . . 〉 can be taken over all different directions for each k-vector.

The mapping between the radial coordinate in real space and the radial coordinate in
redshift space is given by the Hubble flow and the Doppler effect due to the peculiar velocities,
v. Since only the radial distance is computed from the measured redshift, the two angular
coordinates remain the same in both real and redshift space. In this paper, we adopt the
distant observer approximation, i.e., we assume that all line-of-sights are virtually parallel
to each other. If we identify this direction with the third axis of our coordinate system, the
mapping from real-space coordinates x to redshift-space coordinates s reads

s = x +
v3(x)

H(a)a
x̂3, (2.2)

where H(a) is the Hubble parameter at the scale factor a and x̂3 denotes the unit vector of
the third axis. Using the scaled velocity field u ≡ −v/[H(a)af(a)] where f is the logarithmic
derivative of the linear growth factor with respect to the scale factor, f ≡ d lnD(a)/d ln a,
we can write this mapping as

s = x− fu3(x)x̂3. (2.3)

The 2-point correlation function in redshift space is then defined by

ξs2(r) = 〈δ(s + r)δ(s)〉 (2.4)

and its Fourier transform,

P sδδ(k, µ) =

∫
d3r ξs2(r) exp(−ik · r), (2.5)

is the power spectrum in redshift space. Here, µ ≡ k̂ · k̂3 is the cosine of the angle between
the vector k and the line-of-sight. The redshift space power spectrum, can also be computed
from eq. (2.2). In this mapping the mass must be conserved, which implies [1 + δ(s)(s)]d3s =
[1 + δ(r)]d3r. Thus the transformation from δ(r) to δ(s)(s) at linear order in δ and v reads,

δ(s)(s) = δ(x)− ∇3v3(x)

H(a)a
, (2.6)

where ∇3 is short for ∂
∂x3

. The two-point correlation function in Fourier space,

〈δ(s)(k)δ(s)(k′)〉 is then [28],

P sδδ(k, µ) =

∫
d3r

(2π)3
eik·r〈e−ikµf∆u3

[
δ(x) + f∇3u3(x)][δ(x′) + f∇3u3(x′)

]
〉, (2.7)

where r = x−x′ and ∆uz = uz(x)−uz(x′). Note that we have written u instead of v to make
the dependence on f explicit. In eq. (2.7) the enhancement and damping effect of the redshift
space distortions on the power spectrum are manifest. The enhancement due to RSD, also
known as Kaiser effect, is produced by the the +f∇3u3 terms in eq. (2.2), that increase the
overdensity δ(x). These terms, represent the coherent distortions by the peculiar velocities
along the line-of-sight direction, and are controlled by the growth factor parameter f . On
the other hand, the damping effect comes from the exponential factor in eq. (2.7). This term
is mainly due to the small scale velocity dispersion around the most clustered regions, and
produces the suppression of power at small scales in the power spectrum.

– 3 –
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2.1 Perturbation theory in real space

In order to describe the non-linear matter power spectrum in redshift space we first need a
theory that is able to provide an accurate description of the power spectrum in real space.
There are several models that attempt to do this task: the halo model (see [29] for a review),
HALOFIT [30], cosmological standard perturbation theory [31–40], and other perturbation
theories approaches based on Lagrangian perturbation theory [41–45], time renormaliza-
tion [46, 47], Eulerian renormalized (or resummed) perturbation theories [24, 25, 48–52] and
closure theory [53] (see [54] for comparison of some of these theories).

In this paper we focus on two approaches: standard perturbation and resummed per-
turbation theory, both in Eulerian space.

Standard perturbation theory (SPT hereafter) consists of expanding the statistics of
interest as a sum of infinite terms, where every term correspond to a n-loop correction. For
the power spectrum the SPT prediction is written as (see appendix A for the explicit formulae
of SPT terms),

P SPT(k) = P (0)(k) + P (1)(k) + P (2)(k) + . . . . (2.8)

The 0-loop term correction is just the linear power spectrum, P (0)(k) = P lin(k). The 1-loop
term is expressed as a sum of 2 different subterms,

P (1)(k) = 2P13(k) + P22(k), (2.9)

where the subscripts i and j refer to the perturbative order of the terms δ(k) used in eq. (2.1)
to compute the power spectrum Pij(k). In this case, both P13 and P22 requires a 2-dimensional
integration (after exploiting rotational invariance). The 2-loop term is the sum of three
different subterms,

P (2)(k) = 2P15(k) + 2P24(k) + P33(k). (2.10)

In this case, all these three terms, require a 5-dimensional integration (after exploiting rota-
tional invariance). One can keep going to higher-order terms. However, the 3-loop correction
term requires the computation of 8-dimensional integrals and the 4-loop correction term 11-
dimensional integration. For practical and computational reasons, one does not usually go
beyond the 2-loop correction terms. Thus, one has to truncate eq. (2.8) series at some loop
order. Truncating it at P (1) and at P (2) term is what is respectively called in this paper,
1L-SPT and 2L-SPT.

Renormalized perturbation theory (RPT hereafter) attempts to reorganize the pertur-
bative series expansion of SPT and resum some of the terms into a function that can be
factorized out of the series. This function is usually called the resummed propagator and we
refer to it as N . In order to make the resummation possible, all the kernels of the P (`) terms
have to be expressed as a product of kernels that correspond to full-mode-coupling terms and
full-propagator terms (see appendix B for details). The full-mode-coupling kernels are those
kernels contained in Pnn(k) terms that contain a coupling of the form, k − q1 − . . . − qn−1

(see eq. (B.5)). The full-propagator kernels are those contained in P (`) terms of the form P1n

with no-mode coupling term (see eq. (A.4) and (A.6) as examples). The resulting expression
of resumming terms in this way is (see appendix B and refs. [24, 25] for a full derivation),

PRPT−Ni(k, z)=
[
P lin(k, z)+P22(k, z)+P 2L

33 (k, z)+ . . .+P (n−1)L
nn (k, z)+ . . .

]
Ni(k)2, (2.11)

where the term P
(n−1)L
nn is the part of the Pnn term that describes a full-mode coupling (see

eq. (B.5)). In spite of the resummation, eq. (2.11) contains an infinite series as eq. (2.8) and

– 4 –
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has to be truncated after a certain number of loops. However, some of the infinite terms
of eq. (2.8) have now been reorganized into the Ni function. We will refer as 1L-RPT-Ni
and 2L-RPT-Ni the truncation of eq. (2.11) at 1- and 2-loop, respectively. Finally, the
form of the function Ni depends on the way we approximate the kernels in the resummation
process. In the case the kernels are approximated according to the Zel’dovich approximation
(see eq. (B.1)), they are expressed as a product of 0-loop propagators and the resulting
function N0 is,

N0(k) ≡ exp

[
−1

2
k2σ2

v

]
, (2.12)

with,

σ2
v ≡

4π

3

∫
dq

(2π)3
P lin(q). (2.13)

When the kernels are approximated as a product of 1-loop propagator kernels (see
eq. (B.17)–(B.19)) the resulting N1 function is,

N1(k) ≡ exp
[
P13(k)/P lin(k)

]
. (2.14)

This is the expression presented in [56] (see eq. (B.31) for the correspondence). Expressing
the kernels as a product of 2-loop propagators, (see eq. (B.32)–(B.37)) yields the function N2,

N2(k) ≡ cosh

[√
2P15(k)

P lin(k)

]
+
P13(k)

P lin(k)

√
P lin(k)

2P15(k)
sinh

[√
2P15(k)

P lin(k)

]
. (2.15)

Note that the angular part of the propagator terms, P13, P15, P17,3 . . . is analytically in-
tegrable for any shape of the power spectrum. Thus, the 2-dimensional integration of P13

can be reduced to a 1-dimensional integration (see eq. (B.31)). In the same way, the 5- and
8-dimensional integrations of the terms P15 and P17, are reducible to 2- and 3-dimensional in-
tegration. However this is a hard task due to the symmetrized kernels, which are constructed
as a sum of 5! = 120 and 7! = 5040 terms respectively (see eq. (A.14)). Because of that, we
stop at 2-loop. In this paper, the N -function is computed considering P15 as a 5-dimensional
integral. If more accuracy is needed, the 3-loop resummed propagator written in eq. (B.43)
can be used. These extensions in the resummed propagator could be easily incorporated in
the current public codes for the RPT [50, 54, 56].

2.2 Perturbation theory in redshift space

In order to describe the non-linear matter power spectrum in redshift space (eq. (2.5)) we
need a model that, given the non-linear power spectrum in real space, is able to “map it”
to the power spectrum in redshift space. There are several models that attempt to do this
task. While in principle the same perturbation theory approach used for the dark matter
could be employed to model also the velocity and the density velocity coupling yielding
therefore a real-to-redshift space mapping, it has become clear in the literature that the
redshift space clustering and in particular the redshift space power spectrum is not well
described perturbatively. In fact, highly non-linear scales are superimposed to linear scales
by the real-to-redshift space mapping, as realized in the seminal papers by [26, 59]. Some
of this effect is even visually apparent in the galaxy distribution as the so-called “Fingers of

3P17 is required for the 3-loop expansion of the resummed propagator, N3 (see eq. (B.43)).

– 5 –
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God” effect. In this paper we consider physically motivated, but phenomenological models,
we study the Kaiser model [26], the Scoccimarro model [27] and the TNS model [28]. All
these models propose a functional form of P s(k) that depends on real-space statistics.

The simplest model, is the Kaiser model proposed by Nick Kaiser 25 years ago [26],

P s(k, µ) = (b(k) + f2µ)2Pδδ(k), (2.16)

where b(k) is a possibly scale-dependent biasing function, which relates the observable tracers
to the underlying dark matter distribution. This expression is obtained when eq. (2.7) is
treated linearly. Because of that, in principle Pδδ should refer to the matter-matter linear
power spectrum. However, the prescription P lin

δδ → P nl
δδ has been demonstrated to work

better. With this recipe, the Kaiser model is usually known as ‘non-linear Kaiser’. In this
paper we refer to eq. (2.16) with a non-linear Pδδ simply as Kaiser model.

The Scoccimarro model proposes that the redshift-space power spectrum is given by [27],

P s(k, µ) =
[
b(k)2Pδδ(k) + 2b(k)µ2fPδθ(k) + f2µ4Pθθ(k)

]
, (2.17)

where Pδθ and Pθθ are the velocity-matter and velocity-velocity power spectra in real space,
respectively, and are defined by

〈δ(k)θ(k′)〉 ≡ (2π)3δD(k + k′)Pδθ(k) , (2.18)

〈θ(k)θ(k′)〉 ≡ (2π)3δD(k + k′)Pθθ(k) , (2.19)

where θ(k) ≡ [−ik · v(k)]/[af(a)H(a)]. Note that eq. (2.17) tends to 2.16 when Pδθ and Pθθ
tend to Pδδ. This is the case for the linear regime in SPT.

The TNS model [28] takes into account the cross interaction due to linear and non-linear
processes. This produces two extra terms to eq. (2.17),

P s(k, µ) =
[
b(k)2Pδδ(k) + 2b(k)µ2fPδθ(k) + f2µ4Pθθ(k) +A(k, µ, b) +B(k, µ, b)

]
. (2.20)

where the A and B terms, arise from the interaction between the enhancement terms and
the damping terms in eq. (2.7). Also [57] have provided a complementary explanation and
a possible generalization of the A and B terms. However, in this paper we use the basic
formalism presented by [28],

A(k, µ, b) = (kµf)

∫
d3q

(2π)3

qz
q2
{Bσ(q,k− q,−k)−Bσ(q,k,−k− q)} , (2.21)

B(k, µ, b) = (kµf)2

∫
d3q

(2π)3
F (q)F (k− q), (2.22)

where,

F (q) ≡ qz
q2

{
b(q)Pδθ(q) + f

q2
z

q2
Pθθ(q)

}
, (2.23)

and

(2π)3δD(k123)Bσ(k1,k2,k3)≡
〈
θ(k1)

{
b(k2)δ(k2)+f

k2
2z

k2
2

θ(k2)

}{
b(k3)δ(k3)+f

k2
3z

k2
3

θ(k3)

}〉
,

(2.24)
with k123 ≡ k1 +k2 +k3. Since the functions A and B require an integration over the whole
range of momenta q, we cannot use RPT predictions to compute them. Furthermore, A

– 6 –
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requires the crossed bispectra between δ and θ, whose computation at 1- and 2-loop requires
more effort than in the power spectrum case. Since we expect A and B to be small compared
to Pδδ, Pδθ and Pθθ [28], in this paper we compute A and B assuming the leading terms for
the power spectrum and bispectrum inside the integrals of eq. (2.21) and (2.22). For the
rest of the power spectrum terms of eq. (2.16), (2.17) and (2.20) we use the perturbative
approaches described in section 2.1.

None of these models is able to account for non-linear effects such as Fingers of God.
These effects have to be included ad hoc through a function that damps the power spectrum
in redshift space at small scales.

2.3 Fingers of God

The effects of small-scale velocities are not completely included in the models presented
in section 2.2. Both the Kaiser and Scoccimarro model ignore them as we have already
commented. Only the TNS model takes them into account, but only as a cross term with
large-scale squashing. Thus, the effect of these small-scales velocities has to be inserted as a
multiplicative damping function into the models described in section 2.2 [58–60],

P s(k, µ; z)→ P s(k, µ; z)D2
FoG(k, µ; z). (2.25)

The most used prescriptions for that, are the Gaussian and the Lorentzian functions that
both depend on a redshift-dependent parameter, σ(z) ≡ σ0D(z),

DLor
FoG(k, µ, z;σ0) =

1

1 + 0.5[kµσ0D(z)f(z)]2
Lorentzian, (2.26)

DGau
FoG(k, µ, z;σ0) = exp

{
−0.5[kµσ0D(z)f(z)]2

}
Gaussian. (2.27)

where σ0 ≡ σ(z = 0). Theoretically, it has been suggested [27] that σ(z) can be computed
analytically as,

σ2(z) =
4π

3

∫
dq

(2π)3
Pθθ(q, z). (2.28)

Such a parameter is physically motivated as it tries to enclose the effect of the velocity dis-
persion of dark matter particles. Similar modeling was discussed e.g. in [61] and in [27],
although the two have different interpretations. In any case, the fit and theoretical numerical
value for σ need not to coincide with the actual value of the velocity dispersion. The theo-
retical value is computed in the linear approximation and the fit value is obtained using a
Gaussian approximation while the actual velocity dispersion is highly non-gaussian even on
large scales. More discussion on this in [27]. In most of the cases, this modeling has shown
a very poor agreement with N-body simulation results. Therefore, in this paper we always
treat σ0 as a free parameter to be fit from N-body simulations.

3 Simulations

The simulations used in this paper model the structure formation on very large scales within a
flat ΛCDM cosmology consistent with current observational data. The adopted cosmological
parameters are: ΩΛ = 0.73, Ωm = 0.27 h = 0.7, Ωbh

2 = 0.023, ns = 0.95 and σ8(z = 0) ≈ 0.8.
Our suite of simulations consists of 160 independent runs with 7683 particles in a box of length
2.4h−1Gpc. Hence, each box has a volume of V1box = 13.8 (Gpc/h)3 and in total, we simulate
about 2, 200 (Gpc/h)3.

– 7 –
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The initial conditions were generated at the starting redshift z = 19 by displacing the
particles according to the second-order Lagrangian PT from their initial grid points. The
initial power spectrum of the density fluctuations was computed with CAMB [62]. The
simulations were performed with the GADGET-2 code [63] taking only the gravitational
interaction into account.

In this paper, we consider snapshots at z = 0, 0.5, 1, 1.5. In order to obtain the dark-
matter field from particles we discretize each box using 5123 grid cells. Thus the size of
the Cartesian mesh is 4.68 h−1Mpc. We assign mass to the cells using the cloud-in-cell
prescription. Using a much higher resolution simulation, we checked that the power spectrum
derived from the simulation data is accurate at the 1% level up to k < 0.2hMpc−1.

To identify the dark-matter haloes, we used the Amiga Halo Finder [64, 65], which
defines a halo by the bound dark-matter particles inside a spherical overdensity equal to
the so-called virial overdensity. We only consider haloes which are at least resolved by 40
particle. This leads to a minimum halo mass of 1014M�/h.

The errors associated to the statistical quantities measured from the simulations are
obtained from the dispersion among the 160 runs: we report the error on the mean of the
independent runs. We make the dark matter and halo power spectra publicly available
and also provide the multipoles measured from the simulations used in this paper for
possible comparisons.4

4 Results

In this section we compare and test the theoretical formalism presented in section 2 (for both
real and redshift space) with the N-body simulation data. We start with perturbation theory
in real space, and we follow the theoretical predictions of different models for redshift-space
power spectrum: Kaiser (eq. (2.16)), Scoccimarro (eq. (2.17)) and TNS model (eq. (2.20)).
In particular, we consider here 1- and 2-loop SPT, and 2-loop RPT with N1 and N2. We
focus on the multipole prediction of these models but also on the accuracy on recovering
the logarithmic growth rate f . We explore this for both dark matter and for massive dark
matter haloes.

4.1 Performance of the perturbation theory approach: comparison to N-body
simulations

In this subsection we test the formalism presented in section 2.1, both SPT and RPT, and
we compare them with the outcome of the N-body simulations.

In figures 1–2 (left panels) we compare the power spectra obtained with different flavors
of perturbation theory against the N-body simulation results at z = 0, 0.5, 1.0, and 1.5. Each
power spectrum has been normalized to the linear non-wiggle power spectrum to reduce the
dynamical range. In the left top subpanels the power spectrum of the N-body simulations
is shown as black circles linked with a black dot-dashed line, the linear theory prediction
is shown as a dotted black line, SPT in blue lines, RPT-N0 model in red lines, RPT-N1

model in green lines and RPT-N2 model in orange lines; where the infinite series of eq. (2.8)
and (2.11) are truncated at 1-loop (solid lines) and 2-loop (dashed lines). In the bottom
left subpanel the ratio of these models with N-body simulation data is shown with the same
color and line notation. In that case, circle symbols correspond to linear prediction, square
symbols to 1-loop truncation and triangle symbols to 2-loop truncation.

4http://icc.ub.edu/∼hector/Hector Gil Marin/Public.html.
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Figure 1. Left top subpanel : power spectrum at z = 0 normalized to the linear non-wiggle power
spectrum to reduce the dynamic range. N-body data in black circles and dot-dashed line. Different
theoretical models are also shown: linear prediction (black dotted lines), SPT model (blue lines),
RPT-N0 model (red lines), RPT-N1 model (green lines) and RPT-N2 model (orange lines); for 1-loop
truncation (solid lines) and 2-loop truncation (dashed lines). Left bottom subpanel : ratio between the
power spectrum of N-body simulation and different PT models with the same color notation. Right
top subpanel : N0(k)2 (red solid line), N1(k)2 (green dashed line) and N2(k)2 (orange dotted line)
at z = 0. Right bottom subpanel : σ2

v (red solid line), −2P13(k)/[k2P lin(k)] (green dashed line) and
−2 ln[N2(k)]/k2 (orange dotted line) in units of (Mpc/h)2.

We see that SPT with 1-loop truncation over-predicts the N-body power spectrum at all
redshifts, and can only make an accurate prediction of the power spectrum (≤ 1% deviation)
at very large scales: k ≤ 0.05h/Mpc for z = 0 and k ≤ 0.10h/Mpc for z = 1. Going to
2-loop correction improves considerably the behavior of SPT, but one has to deal with the
terms P33, P24 and P15 that require a 5-dimensional integration. In this case, 2-loop SPT
makes a very good prediction of the N-body power spectrum at z = 0 up to relatively small
scales (k ≤ 0.20h/Mpc), but at z = 0.5 starts over-predicting it, and at z = 1 and z = 1.5
the over-prediction is a few percent at intermediate scales (k & 0.1h/Mpc).

The RPT-N0 model for both 1- and 2-loop truncation behaves accurately only at very
large scales where it shows . 1% deviation respect to N-body simulations both at all redshifts,
but breaks down at relatively large scales: k ' 0.03h/Mpc for 1-loop at z = 0 and k '
0.07h/Mpc for 2-loop at z = 0.

The RPT-N1 model presents at large scales a very good agreement with the N-body
simulation results with the advantage that the breakdown happens at smaller scales: k '
0.1h/Mpc for 1-loop and k ' 0.15 for 2-loop at z = 0; at k ' 0.15h/Mpc for 1-loop and at
k ' 0.25 for 2-loop at z = 1. However, the for 2-loop truncation over-predicts the N-body
power spectrum with a systematic ∼ 2% deviation at intermediate scales at all redshifts.
This is due to the limitation in the resummed propagator N1, which is expressed as 1-loop
expansion terms (in terms of P13).

Finally, the RPT-N2 model presents a modest improvement over previous models on
large scales at z = 0, but breaks down already at k ' 0.07h/Mpc and k ' 0.10h/Mpc for
1-loop and 2-loop, respectively. However at z > 0, this model presents a better behavior,
with < 2% accuracy, breaking down at k ' 0.20h/Mpc at z = 1 and fixing the systematic
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Figure 2. Same notation that in figure 1 but for z = 0.5 (top panels), z = 1.0 (middle panels) and
z = 1.5 (bottom panels).
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∼ 2% over-prediction observed for the RPT-N1 model. The accuracy of this model at z ≥ 0.5
is then better than the 2-loop RPT-N1 and 2-loop SPT.

In general, we see that the model that best describes the N-body data at z ≤ 1.5 is the
RPT-N2 model at 2-loop truncation. The 2L-RPT-N1 model shows also good results but
presents a ∼ 2%-systematic over-prediction at intermediate scales. However at z = 0, RPT-
N1 is able to reach smaller scales than RPT-N2, which breaks down at relatively large scales.
Indeed, 2L-RPT-N2 works better than 2L-RPT-N1 and 2L-SPT at z ≥ 0.5 but not at z = 0.

In figures 1–2 (right panels) the behavior of the damping functions of RPT-Ni models
is shown for the same redshift range. In particular, in the right top subpanel we show
the scale dependence of the damping functions of eq. (2.11): N0(k)2 = exp(−k2σ2

v) (red
solid line), N1(k)2 = exp

[
2P13(k)/P lin(k)

]
(green dashed line) and N2(k)2 (see eq. (2.15))

(orange dotted line). We see that at large scales, all Ni functions converge to 1, and it is at
intermediate and smaller scales (k > 0.03h/Mpc) where the differences between these three
models are significant. For the scales of interest, we see that N0(k) < N2(k) < N1(k). Thus,
as we include higher-order propagators in the computation of Ni, these functions oscillate
about the ‘true’ damping function. This approach explains why RPT-N0 under-predicts N-
body data and why RPT-N1 slightly over-predicts it. Every loop correction in the resummed
propagator tends to the true value, but in a oscillatory way. For z ≥ 0.5, the 2-loop correction
in the resummed propagator seems to be sufficient for a ≤ 1% prediction. However at z = 0,
the convergence in the resummed propagator is still not reached for the 2-loop correction
in N . In that case, higher-order loop corrections would be necessary to reach the ≤ 1%
deviation. In the right bottom panel we show the effective σ2

v , i.e. −2 ln[Ni(k)]/k2, for the
different orders in the resummed propagator: 0-loop (red solid line), 1-loop (blue dashed line)
and 2-loop (orange dotted line). In that case, we see that at large scales the three models
diverge, whereas at small scales all models seem to converge (at least for z ≥ 0.5).

In other words, it may happen that a lower-order approximation appears to work better
than a higher-order approximation which, in principle, should be more accurate. This is due
to a fortuitous cancellation of the truncation errors in the propagator and in the damping
function. This cancellation does not hold for all redshifts and/or all cosmologies. The
performance of an analytical approximation scheme must be quantified looking at different
redshifts (or different cosmologies).

The formalism presented here deals with the Fn kernels, that correspond to the δ-field.
However, this formalism is also perfectly valid for the computation of Pδθ and Pθθ, only
changing appropriately the Fn kernels by the Gn kernels as in SPT.

4.2 Dark matter multipoles

In order to obtain information about the growth rate f from the redshift-space distortions,
it is convenient to work with the expansion in Legendre moments, P`, defined as,

P`(k) = (2`+ 1)

∫ 1

0
dµP s(k, µ)L`(µ), (4.1)

where L` are the Legendre polynomials of order `. For the first three non-vanishing P`,

L0(x) = 1, (4.2)

L2(x) =
1

2
(3x2 − 1), (4.3)

L4(x) =
1

8
(35x4 − 30x2 + 3). (4.4)
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According to linear theory (Kaiser model with P lin
δδ ) only the monopole (` = 0), the

quadrupole (` = 2) and the hexadecapole (` = 4) are different from 0. In that case, for
an unbiased tracer these three moments read,

P0(k) = P lin(k)

(
1 +

2

3
f +

1

5
f2

)
, (4.5)

P2(k) = P lin(k)

(
4

3
f +

4

7
f2

)
, (4.6)

P4(k) = P lin(k)

(
8

35
f2

)
. (4.7)

Hence, knowing the dark matter power spectrum in both real and redshift space, one can
directly measure the growth rate f from any of these multipoles. It is interesting to note
that the ratio between any of these multipoles does not depend (at large scales) on the
real-space power spectrum and the ratio tends to a constant that only depends on f when
k → 0. However, non-linearities produce deviations from these formulae. Depending on the
ability of modeling the non-linearity in the redshift space distortions, we will be able to use
information from non-linear scales to estimate f with accuracy.

In this section we focus on checking the quality of the different theoretical models in
predicting the multipole power spectrum of dark matter in redshift space. We focus on
the models described in section 2.2, using as real-space inputs, the PT-theory approaches
described in section 2.1. Here, we assume that f is known and we only fit the FoG parameter
σ0 assuming a Lorentzian damping function (eq. (2.26)), although no significant difference is
observed when a Gaussian damping function is assumed. We allow σ0 to depend on z and
on kmax,5 and find the best-fit value by minimizing

χ2 =

kmax∑
k=k0

[
P `sims(k)− P `theo(k)

σP,sims(k)

]2

. (4.8)

Here, the subscript “sims” refers to the simulations and “theo” to the theoretical models de-
scribed above. σ2

P,sims(k) is the variance of the multipoles computed from the 160 simulations
and ko is the minimum k considered, which is set by the size of the simulation box but has
little effect on the final results. Note that we neglect for simplicity any covariance between
different k-bins, which is a good approximation for small k and broad bins.

In figure 3, we show the measurements of the monopole (top panels), quadrupole (mid-
dle panels) and hexadecapole (bottom panels) from N-body simulations (black empty circles)
in top sub-panels. In all cases, the multipoles have been normalized to the non-wiggle linear
prediction to reduce the dynamical range. In the top subpanels, different theoretical pre-
dictions are shown: the Kaiser model (dotted lines), the Scoccimarro model (dashed lines)
and the TNS model (solid lines). The chosen real-space power spectrum for each of these
models is: linear prediction (black dotted lines), 1L-SPT (red lines), 2L-SPT (blue lines),
2L-RPT-N1 (green lines) and 2L-RPT-N2 (orange lines). In all cases, the TNS model com-
bined with both SPT and RPT predictions is the model that describes best the N-body
results. Using the TNS model it is possible to achieve < 1% accuracy for the monopole up to
k ≤ 0.12h/Mpc at z = 0 and k ≤ 0.17h/Mpc at z = 1. The models are also very accurate for
the quadrupole: at z = 0 we can describe N-body data up to scales of k = 0.12h/Mpc and at

5kmax is the maximum k used for the fit.
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Figure 3. Multipoles corresponding to dark matter power spectrum: monopole (top panels),
quadrupole (middle panels) and hexadecapole (bottom panels), for z = 0 (left panels) and z = 1
(right panels), where f is fixed to the true value, and σ0 is the only free parameter, fit to N-body
data. In the upper subpanels the value of the corresponding multipole is shown, normalized to the
linear, no-wiggles value to reduce the dynamical range. In the lower subpanels the ratio between the
N-body simulation data and different perturbation theory predictions is shown. Dotted lines corre-
spond to the Kaiser model, dashed lines to Scoccimarro model and solid lines to the TNS model.
Different perturbation theory models are shown: linear prediction (black dotted lines), 1L-SPT (red
lines), 2L-SPT (blue lines), 2L-RPT-N1 (green lines) and 2L-RPT-N2 (orange lines). In bottom
subpanels the 2% deviation is marked with black dot-dashed horizontal lines.
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Figure 4. Best-fit values of σ0 as a function of kmax corresponding to multipoles shown in figure 3
with the same color notation. As indicated, top, middle and bottom panels stands for monopole,
quadrupole and hexadecapole fits alone. Left and Right panels show the result at z = 0 and z = 1
respectively. Also theoretical predictions for σ0 are shown according eq. (2.28): with Pθθ as input
using 1L-SPT prediction in solid black line and using Plin as input in dot-dashed black line. Error-bars
are not shown for the sake of clarity, but are negligible for k > 0.05h/Mpc.

z = 1 up to k = 0.30h/Mpc with a deviation . 2%. For the hexadecapole, the agreement is
more modest: at z = 0 we can only achieve ∼ 10% accuracy up to scales of k = 0.20h/Mpc
at z = 0 and ∼ 5% at z = 1.

Both the Scoccimarro and Kaiser model provide a reasonably good approximation on
large scales but both fail to give an accurate description on mildly non-linear scales where
baryon acoustic oscillations (BAO) are located. The difference between the TNS model and
the other models is more evident for the quadrupole and hexadecapole possibly suggesting
that non-linearities become more important for higher-order multipoles.

The imprint of the BAO in the multipoles is clearly visible: note that the Scoccimarro
and Kaiser models slightly over-predict the BAO amplitude, especially for the quadrupole,
while the TNS model does better, although a trend towards the under-prediction is observed.
All models correctly predict the BAO location. These considerations might be relevant for
recovering in an unbiased way the angular and radial BAO information (separately) from
forthcoming surveys.

We conclude that the TNS model with the RPT and SPT models studied here, has the
ability of describing the redshift space power spectrum monopole and quadrupole at z = 0
and z = 1 within 1− 2% for k . 0.2 and the hexadecapole within about ' 5%.

We do not observe a crucial difference between 1- and 2-loop SPT. Also, no significant
difference between using N1 and N2 for 2-loop RPT is detected. This indicates that on these
mildly non-linear scales at redshifts . 1.5 the accuracy of the modeling of redshift space
distortions is more important than that of the non-linear evolution of the real-space dark
matter power spectrum.

Because of that, for simplicity we focus on 1-loop SPT and 2-loop RPT with N1 when
measuring f from dark-matter multipoles in the next subsection.

In figure 4 we show the best-fit value for σ0 corresponding to the fits shown in figure 3
using the same color notation for the different models. Additionally we show the theoretical
predictions of eq. (2.28) using as an input the 1L-SPT prediction for Pθθ (solid black line)
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and Plin (dot-dashed line). As indicated, top, middle and bottom panels correspond to the
monopole, quadrupole and hexadecapole, whereas left panels show the result for z = 0 and
right panels for z = 1.

We note that at z = 1 all the models produce a best-fit σ0 which is close the the theoret-
ical predictions, although an overestimate is observed for the monopole and underestimation
for the hexadecapole, being the quadrupole the case which is closer to the theoretical predic-
tion. For z = 0, the discrepancy between theory and best-fit value is larger. We will analyze
again the agreement between theory and best-fit σ0 in the next section, when will allow f
also to vary.

4.3 Estimating f from dark matter multipoles

In the last section we have shown that the TNS model was able to describe well the multipoles
when one free parameter was allowed to vary in order to account for the FoG effect. In this
section we want to check the ability of these models to recover f from the dark-matter field.
In this case, we will allow both f and σ0 to freely vary. As before, in order to find the f and
σ0 best fit parameters, we minimize the χ2 value.

In figure 5 we show the obtained values for f (top subpanels) and σ0 (bottom subpanel)
as a function of the maximum scale used in the fitting, namely kmax. We show the results
at different redshift: z = 0 (left panels) and z = 1 (right panels). Top, middle and bottom
panels show the derived values for f and σ0 for each of the multipoles: monopole, quadrupole
and hexadecapole as indicated. As in figure 3, dotted lines stands for Kaiser model, dashed
lines for Scoccimarro model and solid lines for TNS model. For simplicity, we only show
the results corresponding to 1L-SPT (red lines) and 2L-RPT-N1 (green lines). 2L-SPT and
2L-RPT-N2 yield similar results. In top subpanels, horizontal solid black line shows the true
value for f , whereas black dot-dashed horizontal lines show the 1% and 2% deviation, as
labeled. In the bottom subpanels, the horizontal lines stands for the theoretical predictions
of σ0 according to eq. (2.28) when Pθθ (blue line) and P lin (orange line) are used as inputs.
In the case of Pθθ we use 1L-SPT prediction. All the error bars correspond to 1 − σ errors
for f and σ0, and have been computed from the contour in the f -σ0 space that corresponds
to ∆χ2 = 2.3. Since our N-body sample consists of 160 realizations (∼ 133[Gpc/h]3 volume),
the dispersion in the measured monopole, quadrupole and hexadecapole is small. Therefore
the corresponding error bars for the recovered parameters are also small, especially in the
case of the monopole and quadrupole. However, one should be aware that these statistical
errors in f and σ0 are not comparable to the expected errors from future surveys. These
errors just provide information about the uncertainties and shortcomings of the models. Note
that for most of the studied models, these errors are much smaller than the expected ones
from any galaxy survey.

From figure 5, we see that the TNS model using both 1L-SPT and 2L-RPT-N1 is the only
model able to recover the value of f to 1% accuracy: for the monopole up to k ' 0.15h/Mpc
for z = 0 and up to k ' 0.20h/Mpc for z = 1; for the quadrupole up to k ' 0.20h/Mpc for
z = 0 and up to k ' 0.25h/Mpc for z = 1; and for the hexadecapole up to k ' 0.15h/Mpc
for z = 0 and up to k ' 0.20h/Mpc for z = 1. However, in the case of the hexadecapole,
the statistical errors are too large to be able to claim 1% accuracy of the model predictions.
Also note the difference between the theoretical value of σ0 and the best-fit value obtained
from the N-body data: at z = 1 for both monopole and quadrupole, the best-fit σ0 value for
TNS model + 2L-RPT-N1 yields a very similar result as eq. (2.28). However at z = 0 there
is a large discrepancy between these two values.
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Figure 5. Estimates for f (top subpanels) and σ0 (bottom subpanels) from the dark matter multipoles
of the N-body data: monopole (top panels), quadrupole (middle panels) and hexadecapole (bottom
panels); for z = 0 (left panels) and z = 1 (right panels). Results from different theoretical models are
shown: dotted lines are Kaiser model, dashed lines Scoccimarro model and solid lines TNS model.
Green lines are 2-loop-RPT-N1 and red lines 1-loop SPT. In top subpanels, the true value of f is
represented in a horizontal black-solid line, whereas 1% and 2% deviations are shown in the horizontal
black dot-dashed lines, as indicated. In the bottom subpanels the theoretical predictions for σ0
(eq. (2.28)) are shown in blue (with Pθθ as input using 1L-SPT prediction) and in orange (with Plin

as input).
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4.4 Halo biasing and stochasticity

So far, we have been able to recover the f parameter with high accuracy using the dark
matter multipoles. However, galaxy redshift surveys consist of galaxies residing in dark
matter haloes, which are biased and stochastic tracers of the underlying dark matter field.
Furthermore, since we only consider massive isolated haloes, we do not expect any FoG effects
in the halo redshift-space statistics.

In this paper, we model the biasing, i.e. the relation between the halo overdensity and
the the dark matter density contrast as,

δh(k) = b(k)δ(k) + ε(k), (4.9)

where b(k) is the scale-dependent bias function and ε describes a stochastic field. The stochas-
tic field ε stands for any physical or statistical process that produces a non-deterministic
relation between the dark matter and the halo field. This includes the shot noise due to the
discrete nature of haloes.6 For a Poisson process the shot noise is inversely proportional to
the mean number density, namely nh,

PPoisson =
1

nh
. (4.10)

However, the formalism used here allows for other stochastic processes. Assuming the ε field
to be uncorrelated with δ, namely, 〈δε〉 = 0, the bias function can be written as,

b(k) =
〈δh(k)δ(k′)〉δD(k + k′)(2π)3

〈δ(k)δ(k′)〉δD(k + k′)(2π)3
≡ Pmh(k)

Pmm(k)
, (4.11)

where the second equality stands for the numerator and denominator independently. Here the
subscripts “h” and “m” stand for haloes and dark matter respectively. The power spectrum
of the ε field can be computed combining eq. (4.9) and (4.11),

Pεε(k) ≡ 〈ε(k)ε(k′)〉δD(k + k′)(2π)3 = 〈δh(k)δh(k′)〉δD(k + k′)(2π)3 − Pmh(k)2

Pmm(k)
. (4.12)

Finally, we define the (shot noise free) halo-halo power spectrum Phh as,

Phh(k) ≡ 〈δh(k)δh(k′)〉δD(k + k′)(2π)3 − Pεε(k). (4.13)

Note that by this definition the following equality holds,

Phh(k) = b(k)Pmh(k) = b(k)2Pmm(k). (4.14)

Hence, in this biasing scheme, the bias functions that relate the halo-matter and halo-halo
power spectra to the matter-matter power spectrum are the same. This is a reasonable
approximation at least on large scales [66], where the bias becomes linear.

In figure 6 we show the scale dependence of the halo bias (left panel) and the ε-field power
spectrum (right panel) measured from the halo catalogues at different redshifts. Remember
that the minimum halo mass is Mcut = 1014M�/h, which ensures that all the haloes have at
least ∼ 40 particles. The number density of haloes with this mass cut at different redshifts is

6In N-body simulations, dark matter particles represent also a discrete field. However, the number density
of particles is large enough to render this effect negligible.
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Figure 6. Left panel : Halo bias for different redshifts snapshots with Mcut = 1014M�/h. Right
panel : ε-field power spectrum normalized to the Poisson prediction, associated to haloes with Mcut =
1014M�/h. In both panels, red lines are for z = 0, blue lines are for z = 0.5, green lines are for z = 1
and orange lines are for z = 1.5.

redshift 0 0.5 1.0 1.5

nh in (h/Mpc)3 1.79× 10−5 7.02× 10−6 1.66× 10−6 2.33× 10−7

Table 1. Number density of haloes at different redshifts with a minimum mass of Mcut = 1014M�/h.

z 0 0.5 1.0 1.5

Phh/Pεε = 1.0 0.168h/Mpc 0.065h/Mpc — —

Phh/Pεε = 0.5 — 0.132h/Mpc 0.033h/Mpc —

Phh/Pεε = 0.1 — — 0.225h/Mpc 0.031h/Mpc

Table 2. Scale where the noise starts to be comparable to the signal: Phh/Pεε = 1.0, 0.5, and 0.1 for
haloes with Mcut = 1014M�/h at z = 0, 0.5, 1.0 and 1.5.

shown in table 1. Figure 6 shows that the bias increases with z and with k. The Pεε increases
with z and slightly decreases with k. For Mcut = 1014M�/h, the Pεε is sub-Poissonian at low
redshifts, 65% at z = 0 and 90% at = 0.5, but turns out to be very close to the Poissonian
prediction at high redshifts, z = 1 and z = 1.5.

In figure 7 we show the signal-to-noise ratio (or Phh/Pεε) for the haloes studied here at
different redshifts: z = 0 (red line), z = 0.5 (blue line), z = 1.0 (green line) and z = 1.5
(orange line). Horizontal dotted lines mark the values Phh/Pεε = 1.0, 0.5 and 0.1 as a
reference. In table 2 the scale at which the signal-to-noise ratio reaches these values is
written for the same z-snapshots. We see that only for z = 0 and z = 0.5 the signal-to-noise
ratio is above 0.5 at scales k < 0.1hMpc, whereas for z = 1.0 is above 0.5 only at very large
scales, k < 0.03h/Mpc and never for z = 1.5. Conservatively, in this paper we consider only
the scales where Phh/Pmm & 0.5 to be suitable for extracting information. Hence, we do not
study the halo power spectra at z = 1.5 and z = 1.0 because only at very large scales (where
the behavior is linear) the signal-to-noise ratio satisfies this condition.
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Figure 7. Signal-to-noise for haloes with mass above Mcut = 1014M�/h for z = 0 (red line), z = 0.5
(blue line), z = 1.0 (green line) and z = 1.5 (orange line). For reference, the values corresponding to
1, 0.5 and 0.1 of the signal-to-noise value have been plotted in horizontal black dotted lines.

4.5 High-bias halo power spectrum multipoles

The multipoles for the halo power spectrum are defined by eq. (4.1) just changing P smm(k, µ)
by P shh(k, µ). In this case, we define the halo-power spectrum in redshift space by

P shh(k, µ) = 〈δsh(k)δsh(k′)〉δD(k + k′)(2π)3 − Pεε(k), (4.15)

where we assume that Pεε does not depend on µ. For the monopole term, the shot noise
subtraction is important. However, since we are assuming that Pεε does not depend on µ, it
is irrelevant for higher-order moments. Indeed, a µ-independent offset on P shh(k, µ) has no
effect in the quadrupole and hexadecapole, only in the monopole. As in eq. (4.5)–(4.7), at
very large scales, the halo multipoles are written as,

P0(k) = P lin(k)

(
b(k)2 +

2

3
b(k)f +

1

5
f2

)
, (4.16)

P2(k) = P lin(k)

(
4

3
b(k)f +

4

7
f2

)
, (4.17)

P4(k) = P lin(k)

(
8

35
f2

)
. (4.18)

Note that for the case of biased tracer, f and b are degenerate in the linear regime when
we treat b2P lin as input or when any ratio between different multipoles is used to constrain
f . In this case, only the ratio among them, β(k) ≡ f/b(k) can be measured. However, as
for the dark matter case, non-linearities cause deviations from these formulae. Depending
on the ability of modeling the redshift space distortions, we will be able to use information
from non-linear scales to estimate f with accuracy but also, in the case of biased tracers, we
might be able to break the degeneracy between the bias and f . For both the Kaiser and the
Scoccimarro model, f and b always appear in the β combination, only for the TNS model
this degeneracy is not exact.

Figure 8 shows the halo monopole (top panels) and halo quadrupole (bottom panels)
for z = 0 (left panels) and z = 0.5 (right panels). Both f and b(k) have been set to their
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Figure 8. Multipoles corresponding the halo-halo power spectrum: monopole (top panels),
quadrupole (bottom panels), for z = 0 (left panels) and z = 0.5 (right panels). In the upper subpanels
the value of the corresponding multipole is shown, normalized to the corresponding non-wiggle linear
prediction to reduce the dynamical range. In the lower subpanels the ratio between the N-body simu-
lation data and different PT-predictions is shown. Dashed lines corresponds to Scoccimarro model and
solid lines to the TNS model. Different PT models are shown: linear prediction (black dotted lines),
1L-SPT (red lines), 2L-SPT (blue lines), 2L-RPT-N1 (green lines) and 2L-RPT-N2 (orange lines).
In bottom subpanels the 2% deviation is marked with black dot-dashed horizontal lines. Vertical
dot-dashed lines mark the regions where Phh/Pεε = 1.0 and Phh/Pεε = 0.5 as labeled.

true values. The color and line notation is the same as in figure 3: dashed lines stands for
Scoccimarro model and solid lines for TNS model. The different real-space power spectrum
inputs are: linear prediction (black dotted lines), 1L-SPT (red lines), 2L-SPT (blue lines),
2L-RPT-N1 (green lines) and 2L-RPT-N2 (orange lines). Since we do not expect Fingers of
God for isolated haloes, the theoretical models have no free parameters in this case.

From figure 8, we see considerably different results compared to the dark matter case
(see figure 3). The accuracy of the modeling is reduced, especially for the quadrupole at
z = 0. In the case of the halo-halo monopole, we see that the different PT models make very
different predictions, while this was not the case for the dark matter. In particular we see
that TNS + 2L-RPT-N2 is the only model able to make sub-percent predictions at z = 0 up
to k = 0.15h/Mpc and at z = 0.5 up to k = 0.10h/Mpc for the monopole. Any other PT
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theory + TNS yields worse results. We also see that Scoccimarro + 1L-SPT and Scoccimarro
+ 2L-RPT-N1 provide a good description at z = 0 but not at z = 0.5. This is due to an
(accidental) cancellation of two terms that go in opposite directions. The Scoccimarro model
does not take into account the A and B functions of the TNS model, that add a positive
contribution to P s (see figure 11 in the next section). On the other hand, in figure 1 we
have seen that 1L-SPT and 2L-RPT-N1 over-predict the true value for Pδδ at z = 0 (but
also for Pδθ and Pθθ). For the dark matter power spectrum, both effects are small and
negligible. However, for massive haloes, the high bias increases these effects. At z = 0.5, the
TNS approach is clearly modeling better the monopole than the Scoccimarro model, which
under-predicts the N-body data by ∼ 10%.

In the case of the halo-halo quadrupole, we see that all the PT models make similar
predictions, and that the main difference is due to the RSD model chosen but the modeling
breaks down at relatively large, almost linear, scales. We see that the TNS model is able to
describe well the quadrupole only up to k = 0.05h/Mpc at z = 0 and up to k = 0.10h/Mpc
at z = 0.5.

In general we see that for the monopole, all the models describe the N-body data better
at z = 0 than at z = 0.5. This seems counter-intuitive, because at higher redshifts, non-
linearities are less important and perturbation theory should work better. However, it could
be explained by the fact that at z = 0.5 the signal-to-noise ratio is considerably less than
at z = 0 (see table 2 and figure 7). For instance, recall that at z = 0, Phh/Pεε = 1.0 at
k = 0.168h/Mpc whereas at z = 0.5 this happens already at k = 0.065h/Mpc. Also the bias
of the selected haloes grows with redshift, making more apparent any systematic error in the
model (of both RSD and biasing). It is reasonable to expect (but it remains to be tested)
that the model performance improves for lower mass –thus less rare and less biased– haloes.

4.6 Simultaneously estimating f and b from halo multipoles

In this section we show how well the f parameter can be recovered from the halo-monopole
N-body data. Since in the last section we have seen that none of the models studied here
is able to reproduce the quadrupole data for haloes with sufficient accuracy at the mildly
non-linear scales we are interested in, we do not try to recover f from P2. Instead we focus
on the degeneracy between f and the bias in the monopole. According to eq. (4.5), these two
parameters are perfectly degenerate when P (k)b2 is set from observations or when the P2/P0

ratio is used to compute f and b. This is the case for the Scoccimarro and Kaiser models
without Finger-of-God effects. However, non-linear terms, namely the A and B functions
of the TNS model, are expected to break this degeneracy at non-linear scales even when
P (k)b2 is fixed: from eq. (2.21)–(2.22), we see that f and b do not appear always in the
same combination in the A and B functions. In particular A can be expressed as b3A(k, µ, β)
and B as b4B(k µ, β). Since in this paper the input is the dark matter power spectrum, the
degeneracy between b and f is not perfect, and there is the possibility of recovering these
parameters separately with certain accuracy even for the Kaiser and Scoccimarro models.
For simplicity, we do not model or fit the scale dependence of the bias function b(k), but
instead assume that we do know the scale dependence of the bias, and try to recover the
growth rate f and the bias amplitude, Ab defined to be 1,

b(k)→ Abb(k). (4.19)

Realistic approaches need an analytical modeling of the scale dependence of the bias, that
in principle one could expand perturbatively e.g., [52, 67]. Here we focus on the modeling of
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Figure 9. Best-fit values for f derived from the halo monopole for z = 0 (left panel) and z = 0.5 (right
panel), assuming that the bias amplitude Ab is perfectly known. Results from different theoretical
models are shown: dashed lines correspond to Scoccimarro model and solid lines to the TNS model.
Different PT models are shown: 1L-SPT (red lines), 2L-SPT (blue lines), 2L-RPT-N1 (green lines)
and 2L-RPT-N2 (orange lines) whereas 5% deviations are shown in the horizontal black dot-dashed
lines, as indicated. Errors correspond to 1− σ error, or ∆χ2 = 1.0.

the dark matter and redshift space distortions and thus we measure the bias directly from
the simulations.

First, we assume that we also know that Ab = 1 when we fit f . The fitting results are
shown in figure 9 using the same color and line notation as in figure 8. As before, the error
bars correspond to the interval defined by ∆χ2=1.0.

As we have commented for the dark matter case, these errors are much smaller than the
ones which could be obtained form a real survey. They contain information of 160 realizations
of a large volume, the total volume is close to that enclosed by an all-sky survey up to z = 25.

For both z = 0 and z = 0.5 the models that do best at recovering f are TNS + 2L-
SPT (solid blue line) or TNS + 2L-RPT-N2 (solid orange line), especially the latter one. In
particular, at z = 0, the TNS model with 2L-RPT-N2 implementation is able to recover the f
parameter within a 5% accuracy up to scales k = 0.17h/Mpc and up to scales k = 0.13h/Mpc
at z = 0.5. Scoccimarro models with accurate implementations of the real-space power
spectra such as 2L-SPT and 2L-RPT-N2 largely over-predict f at k > 0.05h/Mpc.

Next we show in figure 10 the results of extracting both Ab and f from the halo monopole
at the same time. We only show the two models that performed best at extracting f when Ab
is known: TNS + 2L-SPT (solid blue line) and TNS + 2L-RPT-N2 (solid orange line). Since
now there are two free parameters, the 1−σ error bars correspond to contours of ∆χ2 = 2.3 in
the f − b space. We see that in general, at z = 0 and z = 0.5, 2L-RPT-N2 works better than
2L-SPT, as we have already observed in figure 9. However, 2L-RPT-N2 tends to overestimate
the bias amplitude and underestimate the f parameter. In particular, at z = 0 and z = 0.5,
at scales around k ' 0.11h/Mpc, this model overestimate Ab by 1% and underestimate f
by about 15%. However, when Ab was set 1, the systematic error of f was less than 5%.
Similar results were obtained by [12], when the TNS model was combined with the Closure
perturbation theory of [53]. We have checked that this large underestimation in f is due to
the 1% overestimation in the bias amplitude. In other words, if the bias amplitude is set
by hand to a fixed value of Ab = 1.01, we obtain similar results as in figure 10. Thus, this
formalism tends to underestimate f by ' 15% while overestimating Ab by only . 1%. Since
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Figure 11. Top subpanels: different contribution terms to the halo-monopole for 2L-RPT-N2 model:
Scoccimarro model (red line), TNS model (blue model), TNS-A function (green line), TNS-B function
(orange line) and Pεε (black line). Bottom subpanels: ratio between these models and Pεε, or the
signal-to-noise (S/N). Dashed lines indicate a negative contribution. Horizontal dotted lines in bottom
subpanels mark the reference quantities: S/N=1, 0.5, and 0.1. Left panels at z = 0 and right panels
at z = 0.5.

the Scoccimarro model + 2-loop perturbation theory predictions were not able to predict
f when Ab was assumed to be 1, the TNS terms A and B are the key ingredient of the
TNS model to achieve a high accuracy recovering f when the bias amplitude is assumed.
However, the signal-to-noise ratio of these terms is low compared to the signal-to-noise of
the whole monopole term. In figure 11 we show this for z = 0 (left panel) and z = 0.5 (right
panel). In top subpanels, the total contribution of Scoccimarro and TNS models is shown
in red and blue lines respectively. In green and orange lines, the isolated contribution of A
and B of the TNS model is shown respectively. Black line shows the stochastic noise, Pεε.
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In bottom subpanels, the ratio of all the signal terms with respect to Pεε is shown. As a
reference, the lines where S/N = 1, 0.5 and 0.1 are also shown as black dotted lines. We see
that the signal associated to the A and B terms is much less than for the Pδδ, Pδθ and Pθθ
term. In particular, we see that for the scales of interest (0.10h/Mpc < k < 0.15h/Mpc)
at z = 0 the signal for A and B terms is about S/N = 0.1 and even less at z = 0.5. This
means that in figure 9, the crucial difference between red and blue lines (for a given PT
model) comes from terms with low signal-to-noise ratio. In figure 10, when f and Ab are
allowed to vary, the low signal that the A and B terms have, has to be split to find one
more parameter, and then, the accuracy recovering f must decrease. In order to break the
degeneracy between f and b from redshift space distortions, the signal-to-noise of the non-
linear A and B terms must be as high as possible and it could be optimized by selecting haloes
with suitable cuts in mass. The shot noise increases with the mass cut but also does the bias.
When optimizing for a measurement of the angle-averaged power spectrum, for a fixed Pmm,
the signal-to-noise scales as a function of mass cut like b2/shot noise. If the shot noise can
be approximated as Poissonian then the signal-to-noise can be roughly approximated as b2n
with n number density of tracers. When considering redshift space distortions, the signal for
the A and B terms scales like b3 and b4 suggesting a different scaling of the signal-to-noise
with mass than for the real-space power spectrum, which is favored by higher bias. These
considerations might be useful when optimizing a survey selection of targets, although the
bias of observable tracers might not behave as the halo bias especially when multiple galaxies
occupy the same halo.

5 Summary and conclusions

Using a suite of 160 N-body simulations each with a volume of Vbox = 13.8 (Gpc/h)3, we have
investigated the accuracy of analytic models in predicting the non-linear power spectrum
of matter and dark-matter haloes in real and redshift space. The total simulated volume
amounts to 2,200 (Gpc/h)3, much larger than the volume surveyed by any forthcoming or
planned survey ensuring that statistical errors in the determination of the simulation data
points is negligible. We make the dark matter and halo power spectra publicly available and
also provide the multipoles measured from these simulations for possible comparisons.7

We considered a number of theoretical schemes obtained by combining standard or
resummed perturbation theory with analytical models for redshift-space distortions (based
on the simplification of eq. (2.7)). To predict power spectra in real space, we have employed
1- and 2-loop standard perturbation theory, and the resummed perturbation theory proposed
by [24, 56] that we have generalized to account for 2-loop correction terms in the resummed
propagator. For the redshift-space power spectra, we have focused on the models proposed
by Kaiser [26], Scoccimarro [27] and Taruya et al. [28].

At the level of dark matter in real space, increasing the order in loop corrections for
the resummed propagator improves the theoretical predictions of the power spectrum. In
particular, working at 2-loop correction in the resummed propagator, N2, an accuracy of
. 1% is achieved at different redshifts up to the following scales: k = 0.10h/Mpc at z = 0;
k = 0.15h/Mpc at z = 0.5; k = 0.20h/Mpc at z = 1.0 and k = 0.25h/Mpc at z = 1.5
for a 2-loop truncation of the infinite series. In general, working at 2-loop correction in the
resummed propagator provides a more accurate description than working at 1-loop correction
(as many of the public codes do [50, 54, 56]).

7http://icc.ub.edu/∼hector/Hector Gil Marin/Public.html.
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Also, the price of working at 2-loop instead of 1-loop correction in the resummed prop-
agator is not very high in terms of computational resources. It is true that evaluating N2

involves the 5-dimensional integration of P15, but the angular part of this function can be
either analytically computed, or numerically precomputed for any shape of the linear power
spectrum so, in the end, one ends up with a 2-dimensional integration,which can be eas-
ily performed.

For dark matter in redshift space, our results show that the model by Taruya et al.
combined with a Lorentzian damping term for the FoG effect with σ0 as a free parameter,
is able to reproduce the multipoles from N-body simulations with high accuracy. In this
paper, we have fit σ0 as a function of kmax using monopole, quadrupole and hexadecapole
data separately, which yields to 3 different values for σ0. Although is possible to fit all
these 3 multipoles with the same value of σ0, the accuracy is expected to be reduced. When
3 different σ0 are used, the high accuracy holds true for the monopole (. 2%) and the
quadrupole (. 5%) irrespective of the flavor of perturbation theory adopted to compute the
real-space power spectrum. For higher-order moments, such as the hexadecapole, the level
of accuracy is more modest, ∼ 10% at z = 1. This suggests that even on mildly non-linear
scales at redshifts z . 1.5 the accuracy of the modeling of the redshift space distortions is
more important than the modeling of the non-linear evolution of the real-space dark matter
power spectrum.

The difference between the Taruya et al. model (which attempts to include the density-
velocity coupling at higher orders) and the other two models become more evident as the
multipole order is increased, possibly suggesting that non-linearities become more important
for higher-order multipoles.

While in linear theory only the monopole, quadruple and hexadecapole are non-zero,
in principle non-linearities should “excite” all higher-order multipoles, and thus cosmological
signal could, in principle, be extracted from them. We find from the N-body simulations that
the signal-to-noise decreases with increasing multipole, making the hexadecapole errors large
even from the large suite of simulations considered here. This suggests that for cosmological
applications most of the signal-to-noise at these mildly non-linear scales –where analytic
approaches can provide a good modeling– is still enclosed in the monopole and quadrupole.

The imprint of the baryon acoustic oscillations, is also visible in the multipoles. We
find that all models of redshift space distortions considered do not bias the wiggles location
although the more linear models (Kaiser and Scoccimarro) over-predict their amplitude.
These considerations might be relevant for recovering in an unbiased way the angular and
radial BAO information (separately) from forthcoming surveys.

Overall, the accuracy of the analytic description allows measurements of the logarithmic
growth rate f to percent level, when σ0 is allowed to vary. In this case, when the Taruya
et al. model is combined with the RPT prediction for the power spectrum in real space,
f is recovered within . 1% up to kmax = 0.15h/Mpc for the monopole and quadrupole
(separately) at z = 0 and up to kmax = 0.20h/Mpc at z = 1. This indicates that the Taruya
et al. model combined with the RPT real-space predictions is accurate enough to be used for
precision cosmology.

Since most of the current and future redshift surveys target galaxies as tracers of the
matter distribution, a more realistic way of estimating f is to use dark-matter haloes instead
of the dark matter density. The limited mass resolution of our N-body simulations, allows us
to consider only cluster-sized haloes M > 1014M�/h. Dealing with isolated haloes has the
advantage of eliminating the imprint of FoGs from the power spectrum. However, the effect
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of the scale-dependent (and possibly non-linear) bias plays an important role. In this work,
we have assumed that the bias is linear and that its k-dependence is known. Under these
approximations, we have been able to recover f with . 5% when the amplitude of the bias
is known a priori. For these massive haloes, the effect of bias is important: the degraded
accuracy in recovering f indicates that, at least for these massive haloes, the modeling of
biasing is crucial. In particular, given the high shot noise that the statistics of these tracers
have, a modeling of its behavior both as a function of scale and halo mass is important at
mildly non-linear scales.

When both the f parameter and the bias amplitude are allowed to vary, we recover the
bias amplitude to 1% level in the best cases, but f is underestimated by 10%− 20% at z = 0
and slightly more at z = 0.5. Similar results are reported in the literature [12]. Most likely
this is not (or not only) due to a limitation of the model for the power spectrum, but also to
the poor signal-to-noise ratio of the population of haloes used to extract f . It remains to be
seen whether reducing the halo mass threshold increases the signal-to-noise. The scaling with
halo mass of the signal-to-noise of the RSD terms that can break the degeneracy between
f and b, is different from the usual nP ∼ b2n used for the angle-averaged, real-space power
spectrum. Our simple considerations indicate that a lower mass threshold increases the
signal-to-noise, but if the number density is kept fixed, then the signal-to-noise for the A
and B terms is favored by a higher bias (the signal-to-noise scales like b3n and b4n rather
than like b2n). These considerations might be useful when optimizing a survey selection of
targets, although one should keep in mind that bias of observable tracers might not behave
as the bias of the host haloes.

The results found in this paper are in agreement with those found in recent works.
Kwan et al. [12] found that, most of the RSD models fail at recovering f , underestimating its
value even at large scales for z = 0 and z = 0.5. Considering the Taruya et al. model, relaxes
the discrepancy (compared to Kaiser or Scoccimarro models), but does not completely fixes
the problem. Other works, such as de la Torre & Guzzo [11], show that the Taruya et al.
model (in configuration space) + numerical and phenomenological schemes to estimate the
real-space spectra, are able to recover f with . 5% accuracy from different low-biased galaxy
population. Okumura & Jing [14] show that β can be estimated accurately from very massive
haloes (Mh ≥ 1014M�/h) using linear theory (Kaiser model) at large scales (k ≤ 0.1h/Mpc);
and f can be also recovered with similar accuracy when the bias is assumed to be known,
although the precision achieved is not very high.

Future surveys and missions will provide datasets about the distribution of galaxies on
large scales. We envision that in order to extract useful information from these datasets, we
will need more accurate theoretical models of structure formation. In this paper, we have
shown that for extracting the growth of structure correctly, accurate analytic models for
both real and redshift space clustering are crucial. In particular 2L-RPT-N2 in combination
with the Taruya et al. formula, seems to be able to recover f accurately from massive
haloes, when the bias is assumed to be known or equivalently when one wants to recover
the combination β = f/b. However, in our study we found that this approach fails when
trying to recover the individual values of f and b simultaneously. This can be due to the
low signal-to-noise ratio of this halo population, or a limitation in the model itself. Should
the determination of f and b separately rather than in the β combination from RSD alone
become a priority, studies will attempt to improve both the real and redshift-space models.
In the case of real space, this can be done extending resummation theories both in Eulerian
or Lagrangian spaces. In the case of redshift space, considering higher-order terms in the
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TNS formula should improve the model. Finally, it is also important to model correctly
the stochasticity associated with the halo population and to determine correctly the scale
dependence of the bias and its possible non-linearities.
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A Standard perturbation theory

In this section, we provide a short summary of the equations used to compute the 1- and
2-loop correction in Eulerian perturbation theory. For a detailed description of perturbation
theory see [31, 68].

According to standard perturbation theory (SPT) the power spectrum in real space can
be expressed as a sum of loop corrections,

P (k) = P (0)(k) + P (1)(k) + P (2)(k) . . . , (A.1)

where P (0)(k) = P lin(k) is the linear term. For Gaussian initial conditions, the different loop
corrections read as,

P (1)(k) = 2P13(k) + P22(k) 1-loop correction, (A.2)

P (2)(k) = 2P15(k) + 2P24(k) + P33(k) 2-loop correction, (A.3)

where, as already mentioned in the main text, the subscripts i and j refer to the perturbative
order of the terms δ(k) used in eq. (2.1) to compute the power spectrum Pij(k). For the case
of matter-matter power spectrum, namely Pδδ, these terms are [32],

P13(k) = 3P lin(k)

∫
d3q

(2π)3
F s3 (k,q,−q)P lin(q), (A.4)

P22(k) = 2

∫
d3q

(2π)3
F s2

2(q,k− q)P lin(q)P lin(|k− q|), (A.5)

P15(k) = 15P lin(k)

∫
d3q1

(2π)3

d3q2

(2π)3
F s5 (k,q1,−q1,q2,−q2)P lin(q1)P lin(q2) (A.6)

P24(k) = 12

∫
d3q1

(2π)3

d3q2

(2π)3
F s2 (q1,k− q1)F s4 (q1,k− q1,q2,−q2)× (A.7)

×P lin(q1)P lin(q2)P lin(|k− q1|),

P33(k) = 9P lin(k)

[∫
d3q

(2π)3
F s3 (k,q,−q)P lin(q)

]2

+ (A.8)

+6

∫
d3q1

(2π)3

d3q2

(2π)3
F s3

2(q1,q2,k− q1 − q2)P lin(q1)P lin(q2)P lin(|k− q1 − q2|).

In the 1-loop correction, P22 accounts for the mode coupling between vectors with frequencies
k−q and q, whereas P13 can be interpreted as the 1-loop correction to the linear propagator.
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In a similar way, in the 2-loop correction term, only the second term of P33 accounts for a
full 2-loop mode coupling because is the only term that contains P lin(|k − q1 − q2|). Also
note that P24 contains a term similar to a 1-loop coupling, P lin(|k − q1|), is similar to P22.
P15 and the first term of P33 contain no coupling between k and qi and can be interpreted
as a 2-loop propagators. In particular, the full n-propagator can be written as [32]

P1n(k) = n!!P lin(k)

∫
d3q1

(2π)3
. . .

d3qx
(2π)3

F sn(k,q1,−q1, . . . ,qx,−qx)P lin(q1) . . . P lin(qx), (A.9)

where x = (n− 1)/2.
These similarities between these terms is the basis of the resummation process that is

described in appendix B. The kernels of eqs. (A.4)–(A.8) are expressed as,

Fn(q1, . . . ,qn) =

n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(k,k1)Fn−m(qm+1, . . . ,qn)+ (A.10)

+ 2β(k,k1,k2)Gn−m(qm+1, . . . ,qn)] ,

Gn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[3α(k,k1)Fn−m(qm+1, . . . ,qn)+ (A.11)

+ 2nβ(k,k1,k2)Gn−m(qm+1, . . . ,qn)] ,

with F1 ≡ 1 and G1 ≡ 1. Also, k1 ≡ q1 + · · ·+qm, k2 ≡ qm+1 + · · ·+qn, k ≡ k1 +k2 where
the functions α and β are defined as,

α(k,k1) ≡ k · k1

k2
1

, (A.12)

β(k,k1,k2) ≡ k2(k1 · k2)

2k2
1k

2
2

. (A.13)

The symmetrization process of the kernels is given by,

F sn(q1, . . . ,qn) =
1

n!

∑
π

Fn(qπ(1), . . . ,qπ(n)), (A.14)

where the sum is taken over all the permutations π of the set {1, . . . , n}. In particular, the
expressions for F s2 (k1,k2) and Gs2(k1,k2) are,

F s2 (k1,k2) =
5

7
+

1

2
cos θ

(
q

k
+
k

q

)
+

2

7
cos2 θ, (A.15)

Gs2(k1,k2) =
3

7
+

1

2
cos θ

(
q

k
+
k

q

)
+

4

7
cos2 θ, (A.16)

where, cos θ ≡ (k1 · k2)/(k1k2).
This SPT formalism presents some shortcomings. As noted by [24], at large scales only

the linear term contributes to the total power spectrum. However, at smaller scales, all loop
corrections become of the same order with a significant cancellation among them. In particu-
lar, at low redshifts it can be seen that 1-loop correction overestimates the full power spectrum
(from N-body simulations), whereas the 2-loop correction underestimates it. This is due to
the fact that P (1) is negative on large scales while P (2) is positive, and both almost cancel
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out giving a remaining quantity which is close to the full power spectrum. In the same way,
as we go to higher order, more cancellations come out among the different loop corrections.
Thus, truncating at certain loop in SPT will naturally produce a systematic over- and under-
prediction of the real-space power spectrum. A way to avoid this behavior is to resum some
terms of the total SPT expansion. In [24, 25] a formalism for resumming part of these terms
was proposed. The resulting expansion presents a more controlled behavior because each
different loop contributes only positively to the total power spectrum and acts at different
scales. In appendix B we present an alternative description (but mathematically identical)
of the resummation presented by [24, 25]. As an extension of current works, we write not
only the 1-loop resummed propagator, but we perform our computation up to 3-loops.

B Resummation in standard perturbation theory

In this section we present the derivation of eq. (2.11), (2.14) and (2.15). We also show that
the N1 expression is identical to the one used in [56] when the propagator is perturbed at
1-loop. For completeness, we also show the result of perturbing the propagator for 3-loops.
These equations come from resumming some terms in SPT under certain approximation in
the kernels. In particular, under the Zel’dovich approximation, the kernels read [69],

F sn(k1, . . . , kn) =
1

n!

k · k1

k2
1

. . .
k · kn
k2
n

, (B.1)

Gsn(k1, . . . , kn) =
1

n!

k · k1

k2
1

. . .
k · kn
k2
n

, (B.2)

where k = k1 + · · · + kn. As shown by [24], with this approximation the resummation
process yields,

P (k, z) =
[
P lin(k, z) + P 1L

22 (k, z) + P 2L
33 (k, z) + · · ·+ P (n−1)L

nn (k, z) + . . .
]
N0(k, z)2, (B.3)

where,

N0(k, z) ≡ exp

[
−1

2
k2σv(z)

2

]
, (B.4)

with

P (n−1)L
nn (k, z) ≡ n!

∫
d3q1

(2π)3
· · · d

3qn−1

(2π)3
F sn

2(q1, . . . , qn−1, k

−
n−1∑
i=1

qi)P
lin(q1, z) . . . P

lin(qn−1, z)P
lin

(∣∣∣∣∣k−
n−1∑
i=1

qi

∣∣∣∣∣ , z
)
, (B.5)

and σv is a characteristic scale defined as

σ2
v(z) ≡

4π

3

∫
dq

(2π)3
P lin(q, z) . (B.6)

We will refer to eq. (B.3) as RPT-N0 model. With this technique the behavior of PT improves,
since every new loop adds a positive term that only acts on a small range of scales. Therefore,
using this technique the oscillatory behavior observed in standard PT vanishes.

In this section we show that performing a slightly different approximation (not
Zel’dovich) in the kernels we can end up with the same formula used in [56]. Also, depending
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on how we ‘factorize’ the kernels, we will end up with a 1-, 2- or higher-loop correction in the
resummed propagator. These formulae present a notable improvement respect to eq. (B.3)
for a similar computational effort. In this work we do not follow the approach of Feynman
diagrams to resum the infinite terms as it is done in [24, 25]. Alternatively, we present a
different approach for doing this without requiring any knowledge of quantum field theory.
We hope that this way of resumming is clearer for the reader who is no familiar with this
kind of formalism. Furthermore, this approach allows us to easily compute the resummed
propagator for higher-order loops. Our method consists of rewriting the terms of the `-loop
correction (where ` ≡ (n + m)/2 − 1), namely Pnm, as a sum of subterms which can be
associated to lower loop corrections as we show below,8

Pnm(k) = P 0L
nm(k) + P 1L

nm(k) + P 2L
nm(k) + · · ·+ P `Lnm(k). (B.7)

The subterm with an index 0L contains a P lin(k) and corresponds to the linear power spec-
trum (no-loop correction), the subterm with an index 1L contains a P lin(|k−q1|) and there-
fore is similar to P22(k) (that corresponds to 1-loop correction). In the same way, the 2L
subterm is similar to P33(k) (that corresponds to 2-loop correction) because contains a term
P lin(|k− q1 − q2|) and so on. The generic way of writing these terms is the following.9

The 0-L subterm can be written,

1. for n & m even,
P 0L
nm(k) = 0; (B.8)

2. for n & m odd,

P 0L
nm(k) = n!!m!!

∫
d3qn1
(2π)3

. . .
d3qnxn
(2π)3

d3qm1
(2π)3

. . .
d3qmxm
(2π)3

F sn(k,qn1 ,−qn1 , . . . ,qnxn ,−q
n
xn)×

×F sm(k,qm1 ,−qm1 , . . . ,qmxm ,−q
m
xm)P lin(k)P lin(qn1 ) · · · ×

×P lin(qnxn)P lin(qm1 ) . . . P lin(qmxm), (B.9)

where xi = (i− 1)/2.

The 1-L subterm can be written,

1. for n & m even,

P 1L
nm(k) =

1

2
n(n− 1)!!m(m− 1)!!×

×
∫

d3q1

(2π)3

d3qn2
(2π)3

. . .
d3qnxn
(2π)3

d3qm2
(2π)3

. . .
d3qmxm
(2π)3

P lin(|k− q1|)P lin(q1)×

×F sn(q1,k− q1,q
n
2 ,−qn2 , . . . ,qnxn ,−q

n
xn)P lin(qn2 ) . . . P lin(qnxn)×

×F sm(q1,k− q1,q
m
2 ,−qm2 , . . . ,qmxm ,−q

m
xm)P lin(qm2 ) . . . P lin(qmxm), (B.10)

where xi = i/2;

2. for n & m odd,
P 1L
nm(k) = 0. (B.11)

8The redshift dependence is understood for simplicity: it only appears through P lin.
9Note that the terms with n odd and m even (and vice versa) vanish for Gaussian initial conditions.
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The 2-L subterms can be written,

1. for n & m even,

P 2L
nm = 0; (B.12)

2. for n & m odd,

P 2L
nm=

n!!m!!

6
(n−1)(m−1)

∫
d3q1

(2π)3

d3q2

(2π)3

d3qn3
(2π)3

. . .
d3qnxn
(2π)3

d3qm3
(2π)3

. . .
d3qmxm
(2π)3

×

×P lin(q1)P lin(q2)F sn(q1,q2,k− q1 − q2,q
n
3 ,−qn3 , . . . ,qnxn ,−q

n
xn)×

×P lin(|k− q1 − q2|)P lin(qn3 ) . . . P lin(qnxn)× (B.13)

×F sm(q1,q2,k− q1 − q2,q
m
3 ,−qm3 , . . . ,qmxm ,−q

m
xm)P lin(qm3 ) . . . P lin(qmxm),

with xi = (i− 3)/2.

The 3-L subterms are,

1. for n & m even,

P 3L
nm(k) =

1

24
n(n−2)(n−1)!!m(m−2)(m−1)!!

∫
d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3

d3qn4
(2π)3

. . .
d3qnxn
(2π)3

×

× d
3qm4

(2π)3
. . .

d3qmxm
(2π)3

F sn(q1,q2,q3,k−q1−q2−q3,q
n
4 ,−qn4 , . . . ,qnxn ,−q

n
xn)×

×F sm(q1,q2,q3,k−q1−q2−q3,q
m
4 ,−qm4 , . . . ,qmxm ,−q

m
xm)P lin(q1)P lin(q2)×

×P lin(q3)P lin(|k−q1−q2 − q3|)P lin(qn4 ) . . . P lin(qnxn)P lin(qm4 ) . . . P lin(qmxm),

(B.14)

with xi = (i− 4)/2;

2. for n & m odd,

P 3L
nm(k) = 0, (B.15)

and similarly for higher-order subterms. In particular, it is important to note that when
n = m the subterm with the highest loop correction (` = n− 1) is expressed as,

P (n−1)L
nn (k) = n!

∫
d3q1

(2π)3

d3q2

(2π)3
. . .

d3qn−1

(2π)3
F sn

2

(
q1,q2, · · · ,qn−1,k−

n−1∑
i=1

qi

)
×

×P lin(q1) . . . P lin(qn−1)P lin

(∣∣∣k− n−1∑
i=1

qi

∣∣∣) , (B.16)

which is the same term used in eq. (B.3). This indicates that the resummation of terms
described in [24] corresponds to resumming the terms P `Lnm for ` < (n + m)/2 − 2. In order
to make possible the resummation we perform an approximation in the kernels.
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B.1 1-loop factorization

If we want to end up with a resummed propagator of 1-loop correction, the prescription in
factorizing the kernels is the following,

1. for 0-L subterms,

F sn(k,q1,−q1, . . . ,qxn ,−qxn)' 1

n!
[3!F s3 (k,q1,−q1)]· . . . · [3!F s3 (k,qxn ,−qxn)]; (B.17)

2. for 1-L subterms,

F sn(q1,k−q1,q2,−q2, . . . ,qxn ,−qxn)' 1

n!
[2!F s2 (q1,k− q1)]× (B.18)

×[3!F s3 (k,q2,−q2)]· . . . ·[3!F s3 (k,qxn ,−qxn)];

3. for 2-L subterms,

F sn(q1,q2,k− q1 − q2,q3,−q3, . . . ,qxn ,−qxn) ' (B.19)

' 1

n!
[3!F s3 (q1,q2,k− q1 − q2)]×

× [3!F s3 (k,q3,−q3)] · . . . · [3!F s3 (k,qxn ,−qxn)] ;

and similarly for higher-order loops. We factorize the n-order kernel in a product of 2- and 3-
order kernels (which correspond to 1-loop correction terms) keeping the sum q1 +q2 + · · · = k
in all the 2- and 3-order kernels. Under these approximations we rewrite the subterms
of eq. (B.7).

1. For 0-L subterms with n & m odd,

P 0L
nm(k) ' P lin(k)

xn!xm!

(
P13(k)

P lin(k)

)xn+xm

, (B.20)

with xi = (i− 1)/2.

2. For 1-L subterms with n & m even,

P 1L
nm(k) ' P22(k)

xn!xm!

(
P13(k)

P lin(k)

)xn+xm

, (B.21)

with xi = (i− 2)/2.

3. For 2-L subterms with n & m odd,

P 2L
nm(k) ' P 2L

33 (k)

xn!xm!

(
P13(k)

P lin(k)

)xn+xm

, (B.22)

with xi = (i− 3)/2;
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and similarly for higher-order subterms. Now we can proceed with the resummation of
eq. (B.7). Reordering the terms we write,

P (k)=

odd∑
n=1

odd∑
m=1

P 0L
nm(k) +

even∑
n=2

even∑
m=2

P 1L
nm(k) +

odd∑
n=3

odd∑
m=3

P 2L
nm(k) + . . . . (B.23)

The first term is,

odd∑
n=1

odd∑
m=1

P 0L
nm(k)=P lin(k)

∞∑
xn=0

∞∑
xm=0

1

xn!xm!

[
P13(k)

P lin(k)

]xn+xm

=P lin(k) exp
[
2P13(k)/P lin(k)

]
.

(B.24)
The second term is,

even∑
n=2

even∑
m=2

P 1L
nm(k)=P22(k)

∞∑
xn=0

∞∑
xm=0

1

xn!xm!

[
P13(k)

P lin(k)

]xn+xm

=P22(k) exp
[
2P13(k)/P lin(k)

]
.

(B.25)
The third term is,

odd∑
n=3

odd∑
m=3

P 2L
nm(k)=P 2L

33 (k)
∞∑

xn=0

∞∑
xm=0

1

xn!xm!

[
P13(k)

P lin(k)

]xn+xm

=P 2L
33 (k) exp

[
2P13(k)/P lin(k)

]
,

(B.26)
and the same for higher-order terms. Therefore, after this resummation we can express the
power spectrum as,

P (k) =
[
P lin(k) + P 1L

22 (k) + P 2L
33 (k) + . . .

]
N1(k)2, (B.27)

with,

N1(k) ≡ exp
[
P13(k)/P lin(k)

]
. (B.28)

Here, P 1L
22 (k) ≡ P22(k) is given by eq. (A.5), whereas P 2L

33 (k) is given by the second term of
eq. (A.8),

P 2L
33 (k) = 6

∫
d3q1

(2π)3

d3q2

(2π)3
F s3

2(q1,q2,k−q1−q2)P lin(q1)P lin(q2)P lin(|k−q1−q2|). (B.29)

The factor in the exponential, P13(k)/P (k), can be partially computed, because the integral
over the angular part of eq. (A.4) can be performed for any shape of P lin. For doing this, is
convenient to express the symmetrized F s3 kernel as,

6F s3 (k,q,−q) =
1

9
Gs2(k,q) [7α(k,k + q) + 4β(k,k + q,−q)] (B.30)

+
1

9
Gs2(k,−q) [7α(k,k− q) + 4β(k,k− q,q)]

+
7

9
α(k,q) [F s2 (k,−q)− F s2 (k,q)] .

Taking into account eqs. (A.12)–(A.15), the angular dependence is now explicit through cos θ,
and the angular integration of eq. (A.4) can be performed. This computation yields,

2
P13(k)

P lin(k)
=

∫ ∞
0

4π

504k3q3

[
6k7q − 79k5q3 + 50q5k3 − 21kq7+ (B.31)

+
3

2
(k2 − q2)3(2k2 + 7q2) ln

∣∣∣∣k − qk + q

∣∣∣∣]P lin(q) dq,
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which is the expression proposed by [56] as the resummed propagator. We will refer to the
model of eq. (B.27) as RPT-N1 model.

B.2 2-loop factorization

It is also possible to obtain a 2-loop resummed propagator if we factorize the kernels in a
different way. In that case, we want to split the kernels in pieces of F s3 and F s5 kernels,

1. for 0-L subterms with n = 1, 5, 9, 13, . . . ,

F sn(k,q1,−q1, . . . ,qxn ,−qxn) ' (B.32)

' 1

n!
[5!F s5 (k,q1,−q1,q2,−q2)] · . . .×

× . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;

2. for 0-L subterms with n = 3, 7, 11, 15, . . . ,

F sn(k,q1,−q1, . . . ,qxn ,−qxn) ' (B.33)

' 1

n!
[3!F s3 (k,q1,−q1) · 5!F s5 (k,q2,−q2,q3,−q3)]

× . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;

3. for 1-L subterms with n = 4, 8, 12, 16, . . . ,

F sn(q1,k− q1,q2,−q2, . . . ,qxn ,−qxn) ' (B.34)

' 1

n!
[2!F s2 (q1,k− q1)] · [3!F s3 (k,q2,−q2)]×

× [5!F s5 (k,q3,−q3,q4,−q4)] · . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;

4. for 1-L subterms with n = 2, 6, 10, 14, . . . ,

F sn(q1,k− q1,q2,−q2, . . . ,qxn ,−qxn) ' (B.35)

' 1

n!
[2!F s2 (q1,k− q1)]×

× [5!F s5 (k,q2,−q2,q3,−q3)] · . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;

5. for 2-L subterms with n = 1, 5, 9, 13, . . . ,

F sn(q1,q2,k− q1 − q2,q3,−q3, . . . ,qxn ,−qxn) '

' 1

n!
[3!F s3 (q1,q2,k− q1 − q2)] · [3!F s3 (k,q3,−q3)]× (B.36)

× [5!F s5 (k,q4,−q4,q5,−q5)] · . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;

6. for 2-L subterms with n = 3, 7, 11, 15, . . . ,

F sn(q1,q2,k− q1 − q2,q3,−q3, . . . ,qxn ,−qxn) '

' 1

n!
[3!F s3 (q1,q2,k− q1 − q2)]× (B.37)

× [5!F s5 (k,q3,−q3,q4,−q4)] · . . . · [5!F s5 (k,qxn−1,−qxn−1,qxn ,−qxn)] ;
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and similar for higher-order loops. As before, with this approximation we can perform an
exact resummation of all terms yielding to,

P (k) =
[
P lin(k) + P 1L

22 (k) + P 2L
33 (k) + . . .

]
N2(k)2, (B.38)

with,

N2(k) ≡ cosh

[√
2P15(k)

P lin(k)

]
+
P13(k)

P lin(k)

√
P lin(k)

2P15(k)
sinh

[√
2P15(k)

P lin(k)

]
. (B.39)

This is the general form for N2. However, at large scales, P15 < 0, and this expression
becomes,

N2(k) = cos

[√
2|P15(k)|
P lin(k)

]
+
P13(k)

P lin(k)

√
P lin(k)

2|P15(k)|
sin

[√
2|P15(k)|
P lin(k)

]
. (B.40)

We will refer to eq. (B.38) as RPT-N2 model.

Note that if we perform on P15(k) in eq. (B.39) the approximation,

F s5 (k,q1,−q1,q2,−q2) ' 1

5!
3!F s3 (k,q1,−q1)3!F s3 (k,q2,−q2), (B.41)

we obtain that 2P15 →
(
P13/P

lin
)2
P lin and therefore N2 → N1. In the same way, when we

apply the Zel’dovich approximation on the kernel of P13,

F s3 (k,q,−q) ' 1

3!

k · q
q2
· −k · q

q2
, (B.42)

we obtain that 2P13/P
lin → −k2σ2

v , and therefore, N1 → N0. Note that for the computation
of N2(k) one needs to compute P15(k) which requires the knowledge of F s5 . This computa-
tion is a 6-dimensional integral that reduces trivially to 5-dimensional exploiting rotational
invariance. In principle, one could integrate analytically the remaining 3 angles and reduce
the computation of P15 to a 2-dimensional integral in the same way P13 is reduced to a 1-
dimensional integral in eq. (B.31). However this is hard, because the symmetrized kernel F s5
is the sum of 5! = 120 different cyclic permutations. A possible alternative, is to precompute
the angular part of P15 as a 3-dimensional integral for a wide range values of k, q1 and q2, and
then use this to compute P15 as a 2-dimensional integral for any shape of P lin. Nevertheless,
for practical reasons, in this paper P15 is always computed numerically as a 5-dimensional
integral. For completeness we also report the expression for the 3-loop resummed propagator,
N3(k) function as function of the full-propagator terms P13, P15 and P17,

N3(k) ≡ 1

3

{
A

[
3

√
6P17(k)

P lin(k)

]
+
P13(k)

P lin(k)
3

√
P lin(k)

6P17(k)
B

[
3

√
6P17(k)

P lin(k)

]
+ (B.43)

+
2P15(k)

P lin(k)
3

√(
P lin(k)

6P17(k)

)2

C

[
3

√
6P17(k)

P lin(k)

] ,
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where the functions A,B and C are given by,

A(x) ≡ exp(x) + 2 exp
(
−x

2

)
cos

(√
3

2
x

)
, (B.44)

B(x) ≡ exp(x)− exp
(
−x

2

)[
cos

(√
3

2
x

)
+
√

3 sin

(√
3

2
x

)]
, (B.45)

C(x) ≡ exp(x)− exp
(
−x

2

)[
cos

(√
3

2
x

)
−
√

3 sin

(√
3

2
x

)]
. (B.46)

We do not use this function in this paper, because it requires the computation of P17 which
is a 8-dimensional integral (after exploiting rotational invariance), which goes beyond the
scope of this paper. We leave the analysis of this function for a future work.
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