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Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple 

genetic associations with such disorders, but better methods are needed to derive the underlying 

biological mechanisms that these signals indicate. We sought to identify biological pathways in 

GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We 

developed an analysis framework to rank pathways that requires only summary statistics. We 

combined this score across disorders to find common pathways across three adult psychiatric 

disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes 

showed the strongest association, and we also found statistically significant evidence for 

associations with multiple immune and neuronal signaling pathways and with the postsynaptic 

density. Our study indicates that risk variants for psychiatric disorders aggregate in particular 

biological pathways and that these pathways are frequently shared between disorders. Our results 

confirm known mechanisms and suggest several novel insights into the etiology of psychiatric 

disorders.

Psychiatric disorders account for a large proportion of global disease burden1. They are 

clinical syndromes with largely unknown etiology whose classification has been developed 

on the basis of their observable symptomatology and course of illness. However, there is 

considerable evidence for strong heritability of these disorders, and recent work by the 

Psychiatric Genomics Consortium (PGC) using genome-wide association study (GWAS) 

data has demonstrated that a considerable proportion of this heritability is attributable to 

common genetic variants2 and has also shown clear evidence of shared genetic risk at 

individual loci3.

To make further progress in the treatment and prevention of these disorders, there is an 

urgent need to clearly identify the biological mechanisms and pathways underlying risk. 

However, the analyses available to date have focused primarily on single disorders and on 

gene-expression approaches (for example, in schizophrenia4) and, although interesting, such 

approaches are subject to potential confounding by the downstream effects of disorders and 

their treatment. Genetic pathway analysis methods for GWAS data have been developed5,6 

and aim to identify which biological pathways show an excess of etiological association. 

Though the power to detect pathway associations can be limited by lack of power in the 

original GWAS data, genome-wide ‘chip-heritability’ estimates3 demonstrate that the loci 

showing nominal significance, but with values below genome-wide significance cutoffs, 

contribute to a significant proportion of disease liability. Pathway analysis provides a way to 

separate the true signals among these loci from the noise. Furthermore, pathway analysis can 

translate GWAS signals into a level of understanding that is biochemical and/or system-

wide and can provide successful replication in the presence of allelic and locus 

heterogeneity7,8.

In psychiatric genetics, several reports have found significant association with biological 

processes using GWAS. Analyses of bipolar disorder provided evidence of association with 

hormone action and adherens junctions7,9,10. Activity of voltage-gated calcium ions was 

also implicated in a pathway analysis of a bipolar disorder GWAS data set11. We 

hypothesized that combining pathway-based GWAS signals across multiple related 
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disorders could be a powerful approach to identify pathways susceptible to genetic risk in 

neuropsychiatric disorders.

The PGC was established in 2007 (http://pgc.unc.edu)12 and has been conducting field-wide 

mega-analyses of genomic data for common and severe psychiatric disorders2,3,11,13–15. 

Summary data are now available for PGC phase 1 studies that comprise >60,000 study 

participants representing schizophrenia (SCZ), major depressive disorder (MDD), bipolar 

disorder (BIP), autism-spectrum disorder (ASD) and attention deficit–hyperactivity disorder 

(ADHD). We have previously reported cross-disorder analyses via a single-nucleotide 

polymorphism (SNP)/association-based approach3 and as estimated “chip-heritability” and 

genetic covariance via the genome-wide evidence2. We now extend this work, seeking to 

statistically identify the molecular pathways implicated by variants underlying genetic risk, 

the identification of which may have major impact on the understanding and future 

treatment of psychiatric disorders.

RESULTS

We summarize pathway data sets and provide gene membership in Supplementary Tables 1 

and 2, respectively. From an initial compiled set of 19,752 pathways across five gene set 

databases (GO, KEGG, Panther, Reactome, TargetScan), we restricted downstream analyses 

to the 4,949 pathways of size 10–200 genes.

Comparisons among methods

We first obtained pathway-level P values for each pathway for the five disorders (SCZ, 

MDD, BIP, ASD and ADHD) across the five methods (SETSCREEN, MAGENTA, 

INRICH, FORGE and ALIGATOR). Overall, methods were significantly correlated with 

each other (see Supplementary Fig. 1 and Supplementary Table 3). Using both disorder data 

(SCZ) and null data (permuted phenotypes), we noted a statistically significant degree of 

overlap among methods (Supplementary Fig. 1).

Deriving a method-wise and disorder-wise joint statistic

Pathways that achieve strong association using all five methodologies would be expected to 

be more robustly associated with disorder, owing to the differences between methods. We 

estimated a combined P value for each pathway (within each disorder) by calculating the 

average rank of each pathway within each method (ranks were used to ensure comparability 

between methods) and then comparing to a null distribution of expected ranks, built by 

drawing from the uniform distribution, accounting for intermethod correlation (Fig. 1; see 

Online Methods).

There was a significant degree of correlation of pathway-specific enrichment P values 

between disorders (Pearson correlation 0.2–0.3, Supplementary Table 4). Looking for 

pathways common to the adult disorders (SCZ, BIP, MDD), we then derived a combined 

statistic across disorders using Brown’s extension of Fisher’s combined P value16 (see 

Online Methods). Figure 2 shows quantile-quantile plots of P values from combining all 

methods across disorders. Supplementary Figure 2 shows quantile-quantile plots of 

combined P values for SCZ, BIP, MDD, ASD, ADHD and, for contrast, null and HIV 
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acquisition data. The former plots show a marked enrichment of significant P values, 

indicative of shared disease biology captured by the pathways tested. The null and HIV plots 

shows no enrichment of P values, indicating both that there is a lack of shared biology (as 

expected) and that our analysis does not cause a systematic inflation of significance. 

Similarly, the HIV data set showed no inflation.

Top pathways in individual adult-onset psychiatric disorders

We present the results for the different psychiatric disorder data sets in Supplementary Table 

5, obtained using our approach. We identified 10, 1 and 4 pathway(s) that are suggestively 

enriched (at an FDR q-value <0.1) with BIP, SCZ and MDD susceptibility alleles, 

respectively (Table 1). Note that the pathways showing enrichment may change as sample 

sizes increase.

Top pathways shared across adult psychiatric disorders

The degree of rank correlation between pathways across pairs of disorders was significant 

(Supplementary Tables 4 and 6), with 49 pathways with combined q-value <0.1 spanning 

the three adult disorders (Table 2, Supplementary Table 7). Of these, 16 are significant at q 

< 0.05, with the top pathway (GO:51568: histone H3-K4 methylation) having a q = 0.0003 

(Table 2). These results are more significant than those observed in any of the disorders 

analyzed alone. We then use multidimensional scaling (MDS) to cluster these sets in terms 

of shared genes. Figure 3 shows a plot of every pathway with suggestive q < 0.1 on the first 

two MDS axes derived from the shared genes between these gene sets. The pathways 

separate in multidimensional space and reveal two distinct branches for neuronal synapse– 

and histone methylation– related gene sets, with a third branch containing pathways with 

genes that share membership in pathways with immune or neurotrophic functional 

annotation (Fig. 3). Although not a main focus of our analysis, the most significant pathway 

(GO:0005262, calcium channel activity) from the previous PGC Cross Disorder group SNP-

based meta-analysis GWAS3 across the five disorders was found to show nominally 

significant association in our pathway level meta-analysis across all five disorders (P = 3.13 

× 10−3) and also in SCZ, MDD and BIP (P = 8.07 × 10−3).

Analysis of null and control disorder data

The enrichment P values of the pathways in Table 2 (and Supplementary Table 7), 

combined across SCZ, BIP and MDD, indicated that there are multiple significant pathways. 

To confirm that this was due to shared disorder biology, we repeated the rank-combining 

analysis on two further data sets as controls: a GWAS of HIV17, chosen because it is not 

thought to share significant disorder etiology with psychiatric disorders but might instead 

share real technical artifacts, and a null GWAS, simulated using the same SNPs as the 

psychiatric GWAS but with no significant loci. The most significant pathways for the HIV 

and null data sets analyzed separately are shown in Supplementary Table 4. As expected, no 

pathways showed significant enrichment in the null data set or HIV data set, and the SCZ, 

HIV and null data sets combined analysis (Supplementary Table 8) gave no significant 

pathways after multiple-testing correction (minimum q-value = 0.454), in contrast to the 

results for SCZ, MDD and BIP shown in Table 2. This gives further evidence that the 
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significant pathway enrichments in Table 2 are due to shared biology across all three 

disorders, rather than being driven by enrichments in any single disorder.

Follow-up of brain gene expression of significant pathways

To place these pathways in a more specific neurobiological context, we analyzed 

coexpression relationships between the genes in pathways identified here at q < 0.1 using 

gene-expression data spanning brain regions and developmental time points18. Out of 797 

genes assessed, 294 (32–37% of each branch from Fig. 3) were coexpressed in 7 modules. 

Figure 4a provides a network plot showing intramodular and intermodular connections 

between the top 10 hub genes in each module. Figure 4b summarizes the average expression 

level of genes in each module in different brain regions and temporal periods. These 

expression patterns are predominantly driven by temporal regulation (four modules have 

greater than twofold temporal change, while only one module, green, shows a twofold 

change between regions, Supplementary Table 9), suggesting that genetic risk across neuro-

psychiatric disorders affects neurodevelopmentally regulated pathways.

Of note, the yellow module is similarly expressed across regions and contains half (19/37) of 

the coexpressed histone methylation genes. Genes in this module exhibit over threefold 

higher average expression during early prenatal development (postconception week (PCW) 

13–24) than during postnatal development or later aging, consistent with histone genes 

primarily functioning during neuronal differentiation and cell-fate commitment. Complete 

module membership and network details are available in Supplementary Table 9, which 

contains complete information about module-region associations and module-stage 

associations. Three other modules predominantly contain immunological and neuronal 

signaling and synapse genes whose expression increases in childhood and plateaus around 

adolescence to late adulthood (blue, brown, turquoise); three other modules are relatively 

highly expressed throughout life with ~75% maximum difference in expression between 

regions (green, black and red modules).

We then asked whether these modules exhibited a cell type–specific pattern by using gene 

lists from 35 genetically tagged and translationally profiled cell types in mouse19–21. Two of 

the modules containing immune-neuronal signaling and synapse genes that plateau in 

expression in maturing brain also exhibited cell type enrichment, with the brown module 

enriched for striatal neurons, particularly Drd1+ medium spiny neurons, and the turquoise 

module enriched for Cnp+ myelinating oligodendrocytes, suggesting its involvement in 

white matter maturation. Other modules did not exhibit strong cell type specificity, 

suggesting that either they affect multiple cell lineages (for example, the yellow module) or 

the matching cell type profile has yet to be defined.

DISCUSSION

Major advances have occurred in psychiatric genetics over recent years, largely driven by an 

order-of-magnitude increase in sample sizes. While the identification of specific loci is 

critical to moving the field forward, so too is developing an understanding of the underlying 

biology. In this study we address the latter, integrating data from the largest reported 

psychiatric genetics data sets with well-established tools for interrogating such data sets. We 
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developed a novel rank-based method to combine pathway enrichment results across 

analysis methods and disorders in a manner that is not confounded by the biases or 

shortcomings of the methods, to maximize the informativeness of the results. This contrasts 

with the approach of the previous PGC Cross Disorder group GWAS4, which used a SNP-

based meta-analysis. Pathway analyses based on such results will be powerful if the same 

SNP is implicated across disorders. Importantly, the pathway analyses described here do not 

require the same SNP (or, indeed, gene) within a pathway to be implicated across disorders, 

so they will be more robust to allelic heterogeneity within genes and within pathways across 

disorders, thereby providing a conceptually more powerful framework for conducting 

analyses, while losing power compared to single-SNP-level analyses if the same SNPs are 

driving the association across related disorders. We note that the most significant pathway 

identified from the PGC cross-disorder analysis3 (GO:0005262, calcium channel activity) 

also showed nominally significant enrichment in our analysis, confirming a role for calcium 

channel activity in these disorders.

Our analysis method uses GWAS summary statistics rather than using phenotype 

permutations on individual genotype data for two reasons. First, the PGC data sets are large 

and highly complex (>50 separate data sets) with a mixture of study designs and covariates 

(for example, those modeling ethnic stratification). For example, the PGC autism and 

ADHD genotype data are mixtures between trio and case-control studies. All of these 

complexities greatly increase the computational time necessary, so we implemented a more 

efficient method. For example, using a permutation-based approach that performed 

sufficient permutations across all the different data sets to generate disorder-level P values 

would have been computationally prohibitive. In addition, it is not always possible to obtain 

individual genotype data, particularly for large meta-analyses. It is therefore important that a 

pathway analysis method is applicable in such situations.

The primary strength of our integrated GWAS pathway analysis approach is the use of 

multiple analysis methods that differ in their assumptions and individual strengths. Methods 

that combine individual SNP P values across genes and pathways (FORGE, SETSCREEN) 

will pick up pathways containing genes with multiple, perhaps weak, independent 

association signals. Conversely, methods such as ALIGATOR or INRICH assign 

significance to genes based on the single most significant SNP in that gene, and will thus 

detect enrichment to pathways containing genes with individually, stronger associations. 

Notably, despite these differences, all of these methods yielded pathway rankings that were 

correlated with each other (Supplementary Table 5). As expected, the strongest correlations 

were observed between the most similar methods: FORGE and SETSCREEN, and 

ALIGATOR and INRICH.

Biological themes within and across disorders

Our primary aim was to combine pathway associations across disorders, as we hypothesized 

that this would be a more powerful approach, and we show a large increase in the evidence 

arising after meta-analyzing across disorders. The correlation of pathway-specific 

enrichment P values between SCZ and BIP was the highest among all pairs of disorders 

(0.29, Supplementary Table 5), consistent with the reported genetic correlation using 
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common SNPs for these disorders4. Notably, combining the pathway-specific P values 

across the three ‘adult’ disorders in our primary meta-analysis (SCZ, BIP and MDD) 

resulted in greatly increased significance compared to the analyses of the separate disorders. 

This allowed us to identify biological themes spanning these disorders.

A secondary aim was to examine pathway themes within individual disorders, in order to 

show which disorders were contributing most to the cross-disorder findings. Among 

individual disorders, BIP, SCZ, MDD and ADHD gave significant results at FDR q < 10%, 

but ASD and HIV did not (Table 1 and Supplementary Table 4). Our results suggest that 

histone methylation appears to play a more prominent role in bipolar disorder and that 

synapse- and postsynapse-related processes are more strongly implicated in the etiology of 

schizophrenia (Table 1). We note that pathways involved in the methylation of other 

molecules, such as DNAs, were not highly enriched in this study, suggesting a degree of 

specificity in the nature of methylation gene sets implicated here. For schizophrenia, we note 

that “KEGG_DOPAMINERGIC_SYNAPSE” was reported as the third-highest-ranked 

pathway (of 9,016) in the latest GWAS data (analysis by ALIGATOR)22. Our top SCZ 

pathway—postsynaptic density—did not rank highly in either the ALIGATOR or INRICH 

analysis reported in that paper, but those pathway analyses were applied to a heavily 

restricted set of genes (those containing a SNP with P < 5 × 10−8) and used only two of our 

five analysis methods (ALIGATOR and INRICH), making that analysis not directly 

comparable with ours. We also include methods (FORGE, MAGENTA, SETSCREEN) that 

may favor more polygenic, complex patterns of association. Analyses presented here use a 

more relaxed significance criterion, thus picking up signals that do not reach genome-wide 

significance. We note that strong, independent support of our findings comes from the 

observation that analyses of rare variants have also implicated postsynaptic pathways in 

SCZ etiology23,24, suggesting that both rare and common variants are relevant.

Emerging landscape of psychiatric pathways

We show that synapse-related as well as newly implicated histone methylation and immune 

and neuronal signaling pathways are statistically significantly associated within and across 

SCZ, BIP and MDD. These pathways are core molecular processes, disruption of which may 

increase risk for multiple psychiatric disorders. Especially interesting in this regard is the 

identification of synaptic and immune dysfunction as the major pathways altered in 

postmortem brain in ASD25, as well as of emerging genetic overlap across many 

neurodevelopmental conditions. Our top results for schizophrenia, post-synaptic density, has 

been previously suggested by CNV findings and convergent lines of evidence23,26, as well 

as recent exome sequencing data27,28, suggesting a role for both rare and common variants 

in affecting SCZ-relevant changes in the postsynaptic membrane proteins. “Histone H3-K4 

methylation” featured among top bipolar hits, achieving study-wide significance (q = 0.005). 

Variable H3-K4 methylation of synapsin genes has been shown to give rise to altered 

expression patterns in bipolar disorder and major depression29, which may suggest a role for 

epigenetic regulatory mechanisms in the etiology of mood disorders. Histone methylation 

mechanisms have roles in the coordination of complex cognitive processes such as long-

term memory and roles in conditions from addiction to schizophrenia to 

neurodegeneration30.
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Recent studies of de novo mutations have also implicated this pathway (often referred to by 

a broader term, chromatin regulation/ modification or transcriptional regulation) in 

ASD31–33. However, our ASD data set, based on GWAS, did not have sufficient power 

(owing to both the smaller sample size available and the combination of case-control and 

trio data sets) and was excluded from the primary pathway analysis. For MDD alone the top 

pathway was “protein phosphatase type 2A regulator activity,” which achieved a q-value of 

0.012. Prior studies have implicated this pathway in serotonergic neurotransmission and in 

the mechanism of response to antidepressants34.

We excluded the schizophrenia-associated MHC region of 6p21–22 in our analysis to avoid 

confounding of methods by the very high levels of linkage disequilibrium at this locus. 

Despite this, key immune processes such as TGF-beta_signaling (P00052), 

B_cell_activation (P00010) and T_cell_activation (P00053) feature highly in our significant 

pathways. KEGG infectious disease pathways also featured at suggestive significance. 

Although these pathways contain immune processes, such as the Tuberculosis (hsa05152) 

and Hepatitis C (hsa05160) pathways, their role in the brain has been highlighted by, for 

example, studies finding that both hepatitis C infection and interferon alpha treatment for 

hepatitis C are associated with a range of additional neuropsychiatric symptoms35.

We also found pathway genome-wide association across SCZ, BIP and MDD with histone 

methylation (rather than DNA methylation) processes via Histone H3-K4 methylation (GO:

51568), Histone methylation (GO:16571), Histone lysine methylation (GO:34968) and 

Macromolecule methylation (GO:43414). Replicated environmental risks for schizophrenia 

occur at critical periods early in development, for example, in the Dutch Hunger Winter and 

Chinese famine studies36, when the epigenome is known to be particularly labile. At this 

time rapid cell replication is occurring and the standard epigenetic signals, including histone 

H3-K4 and lysine methylation and other related processes, are driving development and 

tissue differentiation37. Given the role of this process in establishing active promoters38, it 

appears likely that the dysregulation of histone methylation may have downstream effects 

with the potential to disrupt neurodevelopment and coordinated gene expression, as animal 

studies have demonstrated39. Our results suggest that dysregulation of the genes in histone 

methylation pathways is a common etiological mechanism for adult psychiatric disorders.

Our gene network analysis of how the identified pathways are expressed in brain revealed 

modules of coexpressed genes that identify developmental time points and brain regions that 

may inform future experiments aimed at manipulating the identified pathways (Fig. 4). 

Additionally, enrichment for cell type–specific transcriptomic signatures identifies which 

cellular subtypes may be affected upon manipulation of specific genes. For example, the 

temporal trajectory of modules suggests which pathways may not be amenable to 

pharmacologic manipulation as a result of their prominence in early development (for 

example, the yellow module which contains histone methylation genes), but also pathways 

whose activity is potentially modifiable in adults (for example, the brown and turquoise 

modules, which were enriched for genes specific to striatal neurons and white matter, 

respectively). Additionally, the blue module’s expression pattern is similar across regions, 

and the hub genes suggest both intracellular and intercellular signaling processes. It shows 

an increase during late prenatal and early postnatal development, peaking before age 6, 
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suggesting the genes in this module may be related to postnatal synaptic pruning, another 

potential target for developing interventions. We emphasize that these results should be 

considered preliminary, as they are a first-pass analysis using the results of a novel 

approach. Nevertheless, they do point a clear way forward for unbiased assessment of 

pathways affected by common genetic variation, which is expected to explain a majority of 

the genetic architecture of neuropsychiatric diseases. They suggest that the integration of 

gene expression with pathway-level analyses on larger GWAS can identify even greater 

specificity. Furthermore, future analyses can increase neurobiological specificity by 

searching across denser time point data or using cell type–specific transcriptomes acquired 

from single-cell sequencing in human brain, as they become available.

Our analyses have shown the general ability of pathway analyses to discover novel biology 

underlying complex human disorders. The immune-neuronal signaling and histone 

methylation findings illustrate how genetic risk aggregation in pathways may underlie 

vulnerability to environmental risk factors in the prenatal environmental, while 

strengthening the evidence for the role of synaptic pathways. Our results shed light on the 

biology underlying GWAS of psychiatric disorder and could suggest novel functional and 

drug discovery studies, as pathways make far larger and better drug targets than individual 

genes40. Our observation that the degree of correlation between pathways across disorders is 

higher than expected by chance builds on the observation of shared genetics between these 

disorders4 and, importantly, indicates that polygenic overlap is nonrandom at a molecular or 

pathway level.

ONLINE METHODS

Method rationale

The PGC (Psychiatric Genomics Consortium) has applied SNP association data3 and 

estimated “chip-heritability” estimate approaches2 to compare and contrast psychiatric 

disorders. Here we study the molecular pathways in which genetic risk for psychiatric 

disorders aggregate and examine whether or not these pathways are shared between related 

psychiatric disorders. The multiplicity of methods and parameters that can be used for such 

an undertaking led to the formation of a subgroup of the Psychiatric Genomics Consortium 

(http://pgc.unc.edu/) to develop a protocol and pipeline for five published methods of 

GWAS pathway analysis along with a methodology to combine results from different 

analytical methods to show the most robust pathway signals arising from GWAS data.

Samples and genotypes

The samples for these analyses (total N = 61,220) included cases, controls and family-based 

samples assembled for published genome-wide mega-analyses of individual-level data 

conducted by the PGC (see refs. 2,3,11,13–15 for details). To ensure comparability across 

samples, raw genotype and phenotype data for each study were uploaded to a central server 

and processed through the same quality control, imputation and analysis pipeline. This 

approach is detailed elsewhere11, but we describe it briefly here: to ensure independence of 

individual disorder analyses, only one of pair of related or duplicate individuals were 

retained, and in only one disorder case or control set, resulting in 61,220 cases and controls 
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in total. Stringent and standardized quality control procedures were applied as previously 

described3. For the family-based samples, alleles transmitted to affected offspring (“trio 

cases”) were matched with untransmitted alleles (“pseudo-controls”). The disorder samples 

comprised ASD (4,788 trio cases, 4,788 trio pseudo-controls, 161 cases, 526 controls), 

ADHD (1,947 trio cases, 1,947 trio pseudo-controls, 840 cases, 688 controls,), BPD (6,990 

cases, 4,820 controls), major depressive disorder (9,227 cases, 7,383 controls) and SCZ 

(9,379 cases, 7,736 controls). Identity-by-descent relationships were estimated for all pairs 

of individuals to identify any duplicate individuals across the component data sets. When 

duplicates were detected, one member of each set was retained. These individuals were then 

randomly apportioned to a single disorder case-control data set. All subjects were of 

European ancestry and met DSM-III-R or DSM-IV criteria for the primary disorder of 

interest.

Study sample numbers for individual disorders were: ASD (n = 4,949 affected/5,314 

unaffected), ADHD (n = 2,787/2,635), BIP (n = 6,990/4,820), MDD (n = 9,227/7,383) and 

SCZ (n = 9,379/7,736). Imputation was conducted using HapMap III data as references, 

resulting in over 1.2M SNPs. SNPs with imputation quality scores less than 0.8 were filtered 

out. Single SNP-based association analyses were conducted using logistic regression on 

individual disorders with ancestry covariates and GC-corrected. The MHC region on 

chromosome 6 (25–35 Mbp) was excluded from further analyses to prevent potential impact 

of extensive linkage disequilibrium (LD) in the region.

For all analyses, five P-value sets were used: schizophrenia (SCZ), 1,227,336 SNPs; bipolar 

disorder (BIP), 1,223,695 SNPs; major depressive disorder (MDD), 1,220,925 SNPs; 

ADHD, 1,219,982 SNPs; autism (ASD), 1,232,050 SNPs. Our primary analysis included 

SCZ, BIP and MDD.

We also analyzed a null GWAS sample, to assess the degree of dependence between 

methods, as well as to ensure that our analysis did not generate an excesive amount of false 

positives. This was generated from unrelated CEU+TSI Hapmap3 data sets via random 

assignment of case/control phenotypes (100 cases and 100 controls). PGC1 data involves 

only European subjects (imputed using Hapmap3 CEU+TSI panels) and thus the use of 

Hapmap3 European data most closely matches the LD structure of the PGC1 disease 

samples. Since the null sample by definition contains no true effects, power is not an issue. 

Therefore, the relatively small sample size is not important.

Gene and pathway data

We used Ensembl41 gene definitions as the reference gene annotation and map. We 

combined gene set data from six sources: KEGG, GO, PANTHER, TARGETSCAN, 

REACTOME and OMIM. An overview of our methodology is shown in Figure 1. All gene 

sets were downloaded from their respective sources (11 August 2011). The parsing of these 

sets is summarized in Supplementary Table 1 and summary statistics are given in 

Supplementary Table 2.

To ensure the specificity of gene set association findings, further analyses were restricted to 

4,949 gene sets of at most 200 genes and at least 10 genes (we limited our analysis to 
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pathways containing 10–200 genes because statistics for smaller gene sets were over-

dispersed and the few outlier sets with >200 genes were computationally inefficient to 

analyze and largely nonspecific due to the large number of genes (data not shown)). 

Identical pathways were removed. Overlap, measured by correlation between gene content 

across pathways, between the six gene set resources were minimal (R2 < 0.12). The different 

pathway sets were combined into one database and identical pathways merged.

Gene definitions

For all analyses, we used Ensembl identifiers as the master gene set, with −35 kb upstream 

and +10 kb downstream to define the gene boundaries, since transcriptional regulatory 

elements are likely to be contained within these intervals and that there is thus merit in 

capturing the variation within these regions42. Analysis was run both with and without the 

MHC region (chromosome 6, 25–35 Mb).

Standardization of pathway inputs

SNPs were assigned to genes based on human genome build 37 positions if they lay within 

35 kb upstream or 10 kb downstream of the gene. In total, 739,373 SNPs were assigned to 

18,689 genes. Note that if SNPs mapped within more than one gene, they were assigned to 

all such genes. SNPs were also filtered by imputation quality (INFO > 0.8), which resulted 

in 477,792–543,578 SNPs being assigned to 16,334–17,352 genes (these numbers vary 

slightly between disorders). We used a standardized framework of data input for our 

analyses. Empirical results (P values for individual SNPs) from PGC GWAS were gathered 

for each disorder, and all P values were GC-corrected. For all analyses, we used pathways 

with a minimum of 10 genes and a maximum of 200 genes.

Five published pathway analysis methods were used. These fell into two classes with 

differing approaches and assumptions regarding genomic architecture of risk variants in 

pathways as well as different methods for the correction of LD and gene size effects. 

FORGE43 and SET SCREEN TEST44 are meta-analysis methods that combine P values 

across all the SNPs in genes or pathways while adjusting for the confound of LD. 

INRICH45, ALIGATOR9 and MAGENTA46 are “best SNP per gene” methods that count 

the number of genes in a pathway where a number of independent SNPs exceed a predefined 

significance, and adjust for LD and genomic structure with corrected statistics derived by 

Monte-Carlo simulation. We describe these methods below.

FORGE method

FORGE is a software suite that implements a range of methods for the combination of P 

values for the individual genetic variants within a gene or genomic region while adjusting 

for linkage disequilibrium–induced correlations43. The software can be used with summary 

statistics (marker ids and P values) and accepts as input the result file formats of commonly 

used genetic association software. In addition, several utility programs are distributed with 

FORGE allowing users to (i) map SNP to genes using the Ensembl human genome 

annotation, (ii) parse different gene-set files, and (iii) calculate meta-analysis statistics for 

gene and gene-set analysis results when studies are carried out on multiple data sets. For 

each pathway, a nonparametric test yields a P value for enrichment of genes in a pathway 
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given the entire set of pathways analyzed. FORGE can be freely accessed at https://

github.com/inti/FORGE.

MAGENTA method

MAGENTA is an acronym for Meta-Analysis Gene-set Enrichment of variaNT Associations 

and is a program that takes as input summary P values from GWAS46. Testing for statistical 

significance of pathways using MAGENTA is a 3-step process. First, every gene is assigned 

the best GWAS P value that falls within that gene or the user-defined upstream and 

downstream regions of that gene. These P values are corrected, using multivariate linear 

regression, for known confounders of P values including gene size and linkage 

disequilibrium properties. Finally, for each pathway, the observed number of gene P values 

surpassing a certain user-specified threshold for P values (here 95%) is compared against 

expected number of gene P values surpassing that threshold for a given pathway size (i.e., 

number of genes). For each pathway, a nonparametric test yields a P value for enrichment of 

genes above the predetermined threshold.

Set screen test method

The set screen test is based on theoretical approximation of Fisher’s statistics such that the 

combination of P values at a gene or across a pathway is carried out in a manner that 

accounts for the correlation structure, or linkage disequilibrium, between single nucleotide 

polymorphisms. The approach is similar to that applied in FORGE (LD)43. The test is 

implemented in PLINK47. We applied this method to the PGC data, corrected for GC 

inflation, using CEU founders from HapMap to describe the LD structure. We used the same 

gene sets as described above which were filtered to contain no less than 2 and no more than 

200 genes. For a given pathway or set, we assigned a P value to the set when at least one 

SNP was present. Where more than one SNP was present, the combined P value (accounting 

for LD) was given.

ALIGATOR method

ALIGATOR converts a list of significant and nominally significant SNPs into a list of 

significant genes, and, for each predefined gene set, tests whether this gene list contains 

more genes from the gene set than would be expected by chance9. This is done by 

comparing the gene list to 100,000 random gene lists of the same length generated by 

sampling SNPs (not genes) at random, correcting for variable numbers of SNPs per gene and 

variable gene size. Correction for the multiple testing of non-independent gene sets is 

performed using a bootstrap method repeated 5,000 times. Gene sets require at least two 

signals to be counted as enriched to remove the possibility of a small gene set being deemed 

significantly enriched based on one signal. An important modification to the original 

ALIGATOR method is that significant genes in the same gene set that mapped less than 1 

Mb apart (and thus could be explained by the same association signal) are counted as a 

single signal. In this analysis, SNP-wise P value criteria for defining “significant” SNPs, and 

thus “significant” genes, were chosen so that the resulting list of significant genes contained 

the top 5% of all genes. When no filtering was performed, P value criteria varied from 8.4 × 

10−4 to 3.31 × 10−4 when the −35 kb/+10 kb gene window was used. When SNPs were 

Page 12

Nat Neurosci. Author manuscript; available in PMC 2015 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/inti/FORGE
https://github.com/inti/FORGE


filtered by information score, the P values increased slightly, from 1.64 × 10−3 to 5.18 × 

10−3.

INRICH method

INRICH45 takes a set of independent, nominally associated genomic intervals and then tests 

for the enrichment of predefined gene sets. An interval will typically correspond to a 

genomic region of SNP association defined by LD from a genome-wide scan, although 

intervals could also represent regions identified as homozygous-by-descent, for example, 

deletion or duplication events observed in cases. The INRICH analysis procedure comprises 

three major steps: (i) linkage disequilibrium (LD)-based interval data generation to identify 

unique regions of association; (ii) empirical enrichment calculation using an interval-based 

permutation strategy; and (iii) second-step permutation for multiple testing correction at the 

gene set level. INRICH also presents global enrichment statistics Gp, and the empirical 

significance of Gp is evaluated within a permutation procedure.

Pathway analysis strategy

Given that the results of the five analysis methods are correlated but not identical, pathways 

genuinely involved in disease susceptibility would be expected to show consistent 

enrichment for association signal across several methods. Therefore, we ranked the 

pathways in ascending order of enrichment P value for each method and calculated the 

average rank of each pathway across all five methods. This analysis was carried out for each 

disease separately. The lower the average rank of a pathway, the more consistent its 

evidence for enrichment of association signal across the methods, and thus the greater the 

likelihood of involvement in disease susceptibility. Ranks were used to control for differing 

power of each method.

Our general approach is outlined in Figure 1. Our primary analysis sets consisted of the 

samples for the adult disorders of schizophrenia (SCZ), bipolar disorder (BIP) and major 

depressive disorder (MDD) as these three have the highest genetic relationship in the recent 

pair-wise analysis of the five psychiatric disorders using GWAS data2. Supplemental 

analyses were performed on attention deficit hyperactivity disorder (ADHD) and autism 

(ASD) data sets3,13. We used a Monte-Carlo simulation approach, modeling the dependence 

between methods in terms of the observed pairwise correlations of pathway enrichment P 

values to calculate the average rank and significance of a pathway in a disorder across all 

methods (Supplementary Analysis and Supplementary Tables 12–15). However, the analysis 

method and results are robust to variation in these correlations (Supplementary Tables 15 

and 16). The motivation for using ranks rather than P values was to ensure that all methods 

were treated equally. Specifically, FORGE and SET-SCREEN combine the P values of the 

SNPs, and it is therefore possible for them to achieve very small enrichment P values if the 

pathway contains strongly associated SNPs. This is not the case for ALIGATOR, INRICH 

and MAGENTA, which use simulation to give enrichment P values. Note also that INRICH 

and ALIGATOR require a pathway to contain two significant genes for an enrichment P 

value to be calculated. Thus, missing enrichment P values count as evidence against 

enrichment for these methods, and such pathways are assigned the joint bottom rank. It is 

possible that a pathway may rank relatively poorly on one method compared to the others, 
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thus reducing the power of the average rank to detect enrichment. We therefore performed a 

secondary analysis based on the average of the best four ranks. However, this had little 

effect on the results (see Supplementary Analysis and Supplementary Tables 12 and 13).

We calculated observed and expected overlaps between all combinations of methods to 

assess the extent of concordance between methods. For the top 10% ranked pathways in 

each disorder, we then compared observed and expected overlaps between all combinations 

of the three adult disorders.

Combination of pathway ranks across methods

Finally, we combined pathway P values across disorders using Brown’s method (an 

extension of Fisher’s method for correlated data). To ensure that the observed pathway 

enrichments across the disorders were a result of shared biology, rather than artifacts of the 

analysis method, we also applied our rank-based method to a null data set (simulated to have 

no phenotype effects) and a GWAS of HIV-1 acquisition17. HIV infection acquisition can be 

assumed to share little biology with the psychiatric disorders studied here because, although 

two MHC associations have been discovered, we excluded the entire extended MHC region 

from our analyses. The null and HIV data sets were tested individually, as well as in 

combination with the SCZ data set.

The following procedure yields a single combined P value for each pathway in a given 

disease data set by merging results across the 5 methods, accounting for correlation. For 

each disease, do the following:

1. Determine average rank per pathway within each method. After ranking P 

values (ties receive the average rank), average the ranks across the five methods to 

yield 1 rank per pathway.

2. Determine the expected distribution of averaged ranks under the null. (a) 

Calculate the Pearson correlation statistics between pairs of methods. Null data 

(generated from unrelated European CEU+TSI Hapmap3 GWAS data set via 

random phenotype assignment (100 cases, 100 controls)) from each method was 

used for these calculations. (b) Generate 5 sets of null P values (1 for each pathway 

drawn without replacement from the uniform distribution [0,1]) such that the 

intercorrelation among methods is preserved, using the method described at http://

comisef.wikidot.com/tutorial:correlateduniformvariates. Do this 10,000 times. (c) 

Transform P values into ranks for each permuted P value distribution. Note that in 

the permuted data, there will be few ties, if at all. Therefore, introduce ties by 

replacing the ranks for those pathways that tied in the real data with their average 

rank in the permuted data. (d) For each set of 5 permuted and ranked distributions, 

determine the average rank per pathway (as in Step 1).

3.

Assign empirical P values to each pathway. , where i = 0 if the 

permuted rank is greater than the real rank, and i = 1 if the permuted rank is less 

than or equal to the real rank. Note that this procedure does not allow for 

dependence between pathways, so it cannot be used to test whether there is an 
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excess of pathways with average rank achieving a given level of significance. 

However, it does give a valid test of significance for each pathway separately. To 

correct for multiple testing of pathways, q-values were calculated48. For each 

pathway, the q-value corresponds to the minimum value of the FDR at which that 

pathway would be declared significant.

Comparisons between methods: method overlap

To robustly test the significance of overlap in enriched pathways between methods, it is 

necessary to restrict the analysis to a set of independent pathways (by gene membership). 

This was done by pruning by Jaccard distance (see below). Note that such a restriction is not 

necessary and was not used for the pathway analysis combining methods, which uses the full 

set of pathways. To facilitate comparisons between methods, we use quantiles, not P values. 

Specifically, we focus on pathways that are in the top 25% for a particular method within a 

disease or null data set. This is because it is otherwise difficult to compare pathway P values 

from methods that have different statistical power. We use the following procedure to 

determine the extent to which methods overlap:

1. For a given data set, reduce the data set down to only pathways that are in the top 

25% in ≥1 of the methods;

2. Reduce redundancies in this data set by removing smaller pathways for which there 

exists a larger pathway whose Jaccard distance (intersection divided by the union) 

is ≥0.2;

3. Using this reduced data set, which represents a set of independent pathways that are 

in the top 25% of ≥1 of the methods, calculate all overlaps among five methods (5-

way, 4-way, 3-way and 2-way);

4. Calculate the expected overlap between pathways in the top 25% assuming top 

25% of pathways for each method is random.

Testing pathway overlap between diseases

In order to enable testing to be carried out for correlation in pathway enrichment P values 

and overlap in top pathways among diseases, a subset of 1,918 pathways was selected such 

that no two pathways had a Jaccard similarity measure >0.2. Initially, Pearson correlation 

coefficients were calculated between the pathway-specific enrichment P values of the null 

data set and each of the five disease data sets in turn. These correlations lay between 0.111 

and 0.156, with a mean of 0.132. This indicates that ranking pathways within methods and 

calculating the average rank across methods induces some correlation between pathway 

ranks between data sets. For example: ALIGATOR and INRICH only return a P value if a 

pathway contains at least two significant genes, otherwise the pathway was assigned equal 

bottom rank. Thus, small pathways are likely to have low ranks for these methods in most 

data sets. However, correlations between the diseases with respect to the pathway-specific 

enrichment P values were higher than those with the null or HIV (see Supplementary Tables 

5 and 14), suggesting that the interdisease correlation is not simply a function of 

methodological correlation.
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To test for significant correlation and overlap between the five disease data sets while 

allowing for correlations induced by the ranking method (as described above), we generated, 

for each pair of diseases, 1,000 random sets of 1,918 bivariate uniform variables with 

correlation of 0.132. The Pearson correlation of the two variables within each replicate data 

set was calculated and compared to that observed in the actual data. A similar method was 

used to compare the overlap in the top 10% of pathways between the two variables to that 

observed in the actual data. P values for these comparisons are shown in Supplementary 

Table 6. Correlation coefficients in the actual data were nominally significant for all pairs of 

the five diseases of interest (ADHD, ASD, BIP, MDD, SCZ), but not between these diseases 

and HIV or the null data set (with the exception of the HIV-MDD correlation, which was 

nominally significant but is likely to be an artifact of multiple testing).

Combining pathway enrichments across diseases

For each pathway, P values were combined across diseases using Brown’s method (an 

extension of Fisher’s method that accounts for correlation between data sets). This method is 

described49, but a brief description is provided here. To attain a joint test statistic for N tests 

that are not independent, the statistic has a mean m = 2N and a variance (σ2) where

and where pi and pj (i, j = 1,…, N) are the P values for each test and covariance (cov) is 

calculated as

for non-negative correlation coefficients ρij between the two P value distributions (here, set 

to be 0.132, which is the average correlation in P values between the disease data sets and 

the null, calculated in the previous section). Finally the overall significance of a set of non-

independent tests is calculated using the statistic T which under the null hypothesis follows 

the central chi-square distribution T = T0/c, with 2N/c degrees of freedom, where

and T0 is the sum of −2ln(p), as used in Fisher’s method.

This analysis was primarily performed on the three adult diseases (SCZ, BIP, MDD), which 

have larger and more powerful samples than the other diseases (ADHD, ASD). A secondary 

analysis of all five diseases was also performed. Finally, an analysis was performed 

combining SCZ, HIV and the null data set to confirm that pathway enrichments observed in 

the analysis of SCZ+BIP+MDD were due to shared biology rather than artifacts of the 

analysis method.
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When the diseases were tested separately, one pathway was significant after correction for 

multiple testing in BIP (GO:51568: histone H3-K4 methylation, q = 0.005) and MDD (GO:

8601: protein phosphatase Type 2A regulator activity, q = 0.012). No pathway achieved q < 

0.05 in the other diseases (or the null data set). When the three adult diseases were 

combined, 15 pathways were significant at q < 0.05, with the top pathway (GO:51568: 

histone H3-K4 methylation) having a q-value of 0.0005. These results are more significant 

than those observed in any of the diseases analyzed separately, and illustrate the power to be 

gained by combining pathway analyses across diseases with shared biology. When all five 

diseases were combined, GO:51568 was still significant (q = 0.045), although its 

significance was reduced due to lack of enrichment in ADHD or ASD. Finally, when SCZ 

was combined with HIV (not expected to share common biology with SCZ) and the null 

data set, no pathway was significant after multiple testing correction, as expected.

Supervised weighted coexpression network analysis

We performed a secondary analysis of 797 genes comprising all pathways with q < 0.1 from 

the primary cross disorder pathway enrichment analysis to explore how pathways relate to 

processes of in vivo brain development and aging. We asked how the genes cluster across 

brain regions and developmental time points using the BrainSpan exon array data18. We 

applied weighted gene coexpression network analysis50 to group genes into modules of 

coexpression. Modules were characterized for regional and temporal patterns as well as cell 

type specificity21.

Network analysis was performed using the WGCNA package in R. Gene-expression data 

were obtained from GSE25219 for 16,874 genes across 1,340 samples (75 individuals 

spanning 15 developmental stages with up to 16 brain regions per individual). Only regions 

with at least 10 samples were used, leaving 1,281 samples. After intersecting genes in the 

immune, synapse and methylation pathways, 797 genes were left for the network analysis, 

whose module parameters and membership are outlined in Supplementary Table 17. The 

specific parameters are made available in the supplemental R script for Figure 4 

(Supplementary Software). Similar modules were found with variations on these parameters.

The top 10 genes in each module are plotted in Figure 4a using the igraph package in R. 

Only correlations with r > 0.2 are shown, and the Fruchterman-Reingold force-directed 

algorithm as implemented in igraph was used to layout nodes using default parameters. 

Module expression profiles were summarized by taking the mean expression level of all 

genes in each module for each different brain region (across all time points) and each 

neurodevelopmental epoch (across all regions). We focused on relatively large changes 

between regions or time points (>75%), though statistical analysis of spatial and temporal 

patterns with Kruskal-Wallis tests and pairwise Mann-Whitney U-tests demonstrates many 

smaller differences are significant (due to the large sample size). In general, alternative 

methods for evaluating regional and temporal differences (for example, correlations with 

regional indicator variables, ANOVA with regions as factors) yielded similar patterns as 

those seen in Figure 4b. For simplicity of interpretation and discussion, we therefore chose 

to focus on these larger fold changes in order to highlight the most salient 

neurodevelopmental changes at the pathway level.
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Cell type–specific enrichment for modules was performed by using the cell specific 

expression analysis (CSEA) tool (http://genetics.wustl.edu/jdlab/csea-tool-2/). This tool 

contains cell type–specific genes that are derived from a translational profiling approach that 

isolates transcriptomes in mouse from specific, marker-defined cellular subpopulations21. 

We assessed each module for enrichment of lists for 35 broad and specific cell type gene 

sets (CSEA specificity threshold set to 0.05) across multiple brain regions in mouse, and 

corrected for multiple comparisons across 7 modules and the 35 cell type lists. We report 

enrichments at Benjamini-Hochberg corrected P < 0.05 in Figure 4c. The code underlying 

this analysis is included as Supplementary Software.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of statistical approach for integrative pathway analysis of GWAS data. A 

summary of an analysis of one disorder is shown. Simulated data were generated by drawing 

from a null pathway P-value distribution for each method and for each disease that 

accounted for correlations between methods. Pathway results from all disorders were 

subsequently combined using Fisher’s method.
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Figure 2. 
Quantile-quantile plot showing P-value distribution for a combined analysis combining 

results from five pathway analysis methods and six pathway databases. (a,b) Data are shown 

for schizophrenia (SCZ), bipolar disorder (BIP) and major depressive disorder (MDD; a) 

and SCZ, HIV acquisition and a null simulated data set (b).

Page 31

Nat Neurosci. Author manuscript; available in PMC 2015 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Multidimensional scaling plot of top 50 pathways with suggestive (<0.1) q-values ranked 

across five methods and three disorders (schizophrenia, bipolar disorder and major 

depressive disorder). The number of genes in each pathway is listed in Table 2. Color 

reflects rank (red represents top-ranking sets with lowest P values). Sizes reflect the number 

of genes in the set (maximum of 200, minimum of 11). See Supplementary Data for source 

data.
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Figure 4. 
Gene coexpression networks across brain development and regions for genes in all pathways 

with FDR < 0.1. (a) Network plot of ten hubs genes from each module showing clustering 

across neuroanatomical regions and developmental epochs. The nodes (genes) are annotated 

by gene-set membership while the edges reflect positive correlations across brain regions 

and development. (b) Regional and temporal patterns of gene expression as summarized by 

the average expression level of genes in each module. (c) Enrichment for cell type–specific 

genes across multiple brain regions and cell types; asterisks highlight enrichments passing 

FDR-adjusted P < 0.05.
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