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Abstract

Background—HIV protein Nef plays a key role in impairing cholesterol metabolism in both 

HIV infected and bystander cells. The existence of a small cohort of patients infected with Nef-

deficient strain of HIV presented a unique opportunity to test the effect of Nef on lipid metabolism 

in a clinical setting.

Methods—Here we report the results of a study comparing six patients infected with Nef-

deficient strain of HIV (ΔNefHIV) with six treatment-naïve patients infected with wild-type HIV 

(WT HIV). Lipoprotein profile, size and functionality of high density lipoprotein (HDL) particles 

as well as lipidomic and microRNA profiles of patient plasma were analyzed.

Results—We found that patients infected with ΔNefHIV had lower proportion of subjects with 

plasma HDL-C levels <1 mmol/l compared to patients infected with WT HIV. Furthermore, 

compared to a reference group of HIV-negative subjects, there was higher abundance of smaller 

under-lipidated HDL particles in plasma of patients infected with WT HIV, but not in those 

infected with ΔNefHIV. Lipidomic analysis of plasma revealed differences in abundance of 
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phosphatidylserine and sphingolipids between patients infected with ΔNefHIV and WT HIV. 

MicroRNA profiling revealed that plasma abundance of 24 miRNAs, many of those involved in 

regulation of lipid metabolism, was differentially regulated by WT HIV and ΔNefHIV.

Conclusion—Our findings are consistent with HIV protein Nef playing a significant role in 

pathogenesis of lipid-related metabolic complications of HIV disease.
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1. Introduction

HIV disease is characterized by severe metabolic complications including dyslipidemia and 

atherosclerosis [1, 2]. Adverse side-effects of antiretroviral regimens were originally blamed 

for these complications, however, as development of better treatment regimens with reduced 

effect on lipid metabolism did not eliminate dyslipidemia [3] and high risk of atherosclerosis 

[4], it is becoming increasingly clear that HIV disease itself makes a substantial contribution 

to the pathogenesis of these complications. We have demonstrated that HIV protein Nef 

inhibits cholesterol efflux causing cholesterol accumulation in HIV-infected macrophages 

[5]. The same effect was observed in uninfected cells treated with recombinant Nef or with 

plasma containing soluble Nef released from infected cells [6]. Furthermore, recombinant 

Nef injected in mice in vivo caused atherosclerosis and dyslipidemia supporting a key role 

of Nef in pathogenesis of HIV-associated metabolic abnormalities [7]. However, no clinical 

evidence supporting the role of Nef in lipid dysregulation is available.

In this study we analyzed plasma samples of six patients infected with Nef-deficient strain 

of HIV-1 (ΔNefHIV), all members of the Sydney Blood Bank Cohort (SBBC). 

Pathogenicity and immunogenicity of this strain have been described in previous 

publications [8–11] and summarized in a recent review [12]. In brief, all patients were 

infected with the same strain of HIV-1 through blood transfusion; they were slow-

progressors or non-progressors and remained asymptomatic for an extended period of time 

[12]. Lipid metabolism in these patients was never investigated and, considering a 

potentially key role of Nef in the pathogenesis of HIV related impairment of lipid 

metabolism, these patients provided a unique opportunity to elucidate the role of Nef in 

HIV-associated metabolic disorders in a clinical setting.

2. Methods

2.1. Patients

Patients infected with Nef-deficient strain of HIV-1 (ΔNefHIV, n=6) were all members of 

the SBBC cohort. Clinical and immunological parameters of these patients were originally 

described in several publications [8–11]; age, sex, CD4+ cell count and viral load values for 

these patients are shown in Table 1 in comparison to the same parameters in WT HIV 

subjects. All patients, except patient D36, were not receiving antiretroviral therapy. Two 

subjects (C49, C64) were postmenopausal females, all other patients were males.
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The ΔNefHIV-infected patients were matched with patients infected with Nef-positive (WT) 

HIV-1 strain. Patients infected with Nef-positive strain of the virus (n=6) were selected from 

a cohort of treatment-naïve HIV patients described in our previous study [13]. All subjects 

were males. Reference values for HIV-negative subjects were obtained by analyzing plasma 

samples of six HIV negative subjects (all males) selected from a group of healthy volunteers 

from the blood bank of the Baker IDI Heart and Diabetes Institute.

All subjects were not undergoing any lipid-lowering therapy and did not have a history of 

cardiovascular disease. All samples were stored at −80°C and were analyzed retrospectively.

Plasma samples of both groups of HIV-infected patients used in this study were from the 

previous studies [9, 13]; original human ethics approvals permitted for the extension of 

analysis of the collected samples.

Lipoprotein profile—Total cholesterol (TC), low density lipoprotein cholesterol (LDL-

C), high density lipoprotein cholesterol (HDL-C) and triglycerides (TG) were analyzed 

using Cobas blood analyser. Apolipoprotein A-I and apolipoprotein B concentrations were 

analyzed using ELISA kits (Mabtech, Sweden).

2.2. HDL size

Distribution of apoA-I among HDL subfractions was analyzed by non-denaturing PAGE 

followed by immunoblotting using antibody against human apoA-I as described previously 

[14]. The following definitions of HDL subfractions were used: HDL3c, 7.2–7.8 nm; HDL3b, 

7.8–8.2 nm; HDL3a, 8.2–8.8 nm; HDL2a, 8.8–9.7 nm; HDL2b, 9.7–12 nm.

2.3. Cholesterol efflux

Cholesterol efflux assay was performed using THP-1 human macrophages activated with 

LXR agonist as described previously [15]. 1% plasma or 1.1% apoB-depleted plasma 

(obtained as described previously [15]) were used as an acceptor.

2.4. Lipidomic analysis

Lipidomic analysis was performed as described previously [16]. In brief, lipids from 10 μl of 

plasma were extracted using a modified, single phase Folch method; the analysis was done 

in triplicates. The analysis was performed by liquid chromatography electrospray ionization-

tandem mass spectrometry (LC ESI-MS/MS) using a Agilent 1200 liquid chromatography 

system, and Applied Biosystems API 4000 Q/TRAP mass spectrometer with a turbo-ion 

spray source (350 °C) and Analyst 1.5 and MultiQuant data systems using a Zorbax C18, 1.8 

μm, 50 × 2.1-mm column (Agilent Technologies). Lipid concentrations were calculated by 

relating the peak area of each species to the peak area of the corresponding internal standard.

2.5. Small RNA deep sequencing and bioinformatics analysis

RNA from plasma was extracted using the miRNeasy Mini Kit (Qiagen, Australia). The 

manufacturers’ protocol was followed with a slight modification involving the use of Trizol 

LS (Life Technologies, Australia). The small RNA yield, composition and quality was 

analyzed using the Agilent 2100 Bioanalyser with the Small RNA kit (Agilent 
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Technologies). Sequencing adapters were ligated onto the small RNA sample followed by 

conversion into cDNA libraries using the Ion Total RNA-Seq Kit V2 (Life Technologies, 

Australia) and prepared for deep sequencing on the Ion Torrent Personal Genome Machine 

(PGM™). Pooled libraries with unique barcodes were loaded on 318™ sequencing chips and 

run on the Ion Torrent PGM (Life Technologies, Australia) using the Ion PGM™ 200 

Sequencing Kit (Life Technologies). The Torrent Suite 4.2.1 was used to manage the Ion 

Torrent PGM™ to process raw signals and perform base calling. The sequences were then 

assessed for quality, and primer-adapter sequences were trimmed by the Torrent Suite 

software, followed by alignment to the human reference genome (HG19) using bowtie 2 

followed by a second pass through TMAP using Partek Flow. The trimmed and aligned data 

was mapped to known miRNA using miRBase V.20. The number of reads for each miRNA 

was adjusted to reads per million (RPM) and normalized using the lognormal linear method 

across all samples. Samples containing less than 5 reads per million were removed. The data 

was then transferred to Partek Genomics Suite for statistical analysis, hierarchical clustering 

and to identify unique miRNA in each sample type. TargetScan, mirDB and TarBase were 

interrogated to predict targets for the selected miRNAs. Raw sequencing files in .BAM 

format for each sample sequenced can be downloaded from http://www.ebi.ac.uk/ena/data/

view/PRJEB7984

3. Results

3.1. Plasma lipoproteins

Patient plasma lipoprotein and apolipoprotein levels are shown in Table 1. Total cholesterol, 

triglyceride and apolipoprotein B levels were similar between the groups, while LDL-C 

levels trended higher in WT HIV group. In comparison to a reference group of HIV-negative 

subjects level of HDL-C was reduced by 25% in WT HIV infected patients, but only by 8% 

in ΔNefHIV infected subjects, however, due to limited power of the study these substantial 

differences did not reach statistical significance. However, when we defined 

hypoalphalipoproteinemia (HALP) as HDL-C below 1 mmol/l, the proportion of subjects 

with HALP was significantly lower among patients infected with ΔNefHIV compared to 

those in WT HIV group (chi-square, P=0.05). Levels of apoA-I were similar in both HIV-

infected groups, consequently, the HDL-C/apoA-I ratio, which may be considered a 

surrogate marker of HDL lipidation, was 20% higher in ΔNefHIV patients, but again, the 

difference was not statistically significant.

3.2. HDL structure and functionality

We previously demonstrated that Nef reduces abundance and functionality of ABCA1 [5, 6, 

17]; the most likely consequence of this effect at systemic level would be changes in 

lipidation of HDL, which, in turn, may affect HDL functionality. An indication of this was a 

higher ratio of HDL-C/apoA-I in ΔNefHIV patients compared to HIV patients (Table 1). We 

therefore analyzed the distribution of HDL among particles of different sizes. In patients 

infected with WT HIV the proportion of large HDL2b particles (9.7–12 nm) was reduced 

relative to that in the reference group of uninfected subjects, whereas this effect was 

partially eliminated in patients infected with ΔNefHIV (Fig. 1A). The proportion of smaller 

HDL3a particles (8.2–8.8 nm) was increased in plasma of WT HIV infected patients, but not 
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in patients infected with ΔNefHIV. Proportion of HDL3b particles (7.8–8.2 nm) was 

increased in plasma of patients from both WT HIV and ΔNefHIV groups, while the 

proportion of smallest HDL3c particles (7.2–7.8 nm) was not affected by HIV status. Thus, 

HIV infection reduced the proportion of large fully lipidated HDL particles and increased 

the proportion of smaller under-lipidated HDL, this effect was partially eliminated in 

patients infected with ΔNefHIV.

To investigate the effect of these changes in HDL structure on HDL functionality, the ability 

of whole plasma and of HDL to support cholesterol efflux from human macrophages was 

tested. Macrophages were activated with LXR agonist to ensure that most of the efflux 

represents specific ABCA1/G1-dependent cholesterol efflux. When the efflux to whole 

plasma was tested, we found no statistically significant difference between the groups in the 

capacity of plasma to support cholesterol efflux (Fig. 1B). Next, we measured the efflux to 

plasma depleted of apoB-containing lipoproteins (i.e. plasma where HDL is the only 

available lipoprotein). We found that while there was no difference between the efflux to 

apoB-depleted plasma from HIV-negative subjects and subjects infected with ΔNefHIV, 

cholesterol efflux to plasma from WT HIV group was higher (Fig. 1C). We hypothesized 

that increased cholesterol efflux to HDL from WT HIV-infected subjects was due to 

increased proportion of small HDL3a particles, and indeed when data for all three groups 

were combined, there was a correlation between the capacity of HDL to support cholesterol 

efflux and proportion of HDL3a particles (r=0.50; p<0.05).

3.3. Lipidomic profiling

We have previously reported the effects of HIV infection on plasma lipidomic profile [16]. 

Using a similar approach, we compared lipidomic profile of patients infected with WT or 

Nef HIV. The full lipidomic profile (330 lipid species) is provided in the accompanying 

Data in Brief article [18], and lipid species significantly different between the groups are 

shown in Table 2. Compared to the reference group of uninfected subjects, three species of 

phosphatidylserine (PS) and PS as a group were reduced in WT HIV group, but not in 

ΔNefHIV group. Lipid species affected in ΔNefHIV group but not affected in WT HIV 

group, include individual species of dihydroceramide (dhCer), ceramide, 

alkylphosphatidylethanolamine, phosphatidylethanolamine (PE) and two species of 

sphingomyelin. Individual species of phosphatidylinositol and dhCer were increased in both 

HIV infected groups. One species each of dihexosylceramide, PE and PS were only 

increased in ΔNefHIV group.

When data for all three groups were combined, there was positive correlation between the 

proportion of HDL2a particles (which was similar in the three groups) and plasma 

abundance of phosphatidylcholine (r=0.69, p<0.002), cholesterol (r=0.54, p<0.05), 

alkenylphosphatidylcholine (r=0.47, p<0.05) and phosphatidylethanolamine (r=0.50, 

p<0.05); all these lipid species are major constituents of large lipidated HDL particles. There 

was also negative correlation between cholesterol efflux to whole plasma and the abundance 

of cholesteryl esters (r=−0.50, p<0.05) and ceramide (r=−0.45, p<0.05).
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3.4. miRNA profiling

Abundance of small RNAs extracted from plasma samples was analyzed by deep 

sequencing. RNA from two patients infected with ΔNefHIV did not pass quality control 

testing and were not sequenced. Unsupervised hierarchical clustering was performed on 

significantly differentially expressed miRNA using Euclidean average linkage by miRNA. 

The full dataset is presented in Supplemental Dataset 1, and differentially expressed 

miRNAs are shown in Fig. 2. Twenty-four miRNAs were found to be significantly 

deregulated in patients infected with WT HIV compared to the ΔNefHIV groups. These 24 

miRNAs were observed to show similar or recovered expression levels within ΔNefHIV and 

uninfected subject groups but were significantly deregulated in HIV patients. There are two 

major nodes of the dendrogram. Node 1 contains 4 miRNAs which were found to be up-

regulated in WT HIV group. Node 2 contains 20 miRNA which were found to be down-

regulated in WT HIV group. Predicted and validated targets for these miRNAs that are 

related to lipid metabolism and/or HIV infection are listed in Table 3.

4. Discussion

Metabolic complications are an important part of HIV disease and include impairment of 

cellular and systemic lipid metabolism and enhanced development of atherosclerosis. We 

have demonstrated the key role of HIV protein Nef in disturbances of cellular cholesterol 

metabolism caused by HIV infection [5]. Nef is an HIV accessory protein expressed early in 

infection; it is located on the plasma membrane of infected cells (for review see [19]) and is 

also released from infected cells. The documented effects of released Nef on uninfected cells 

include apoptosis [20], endothelial dysfunction [21], impairment of immune response [22], 

and impairment of cholesterol metabolism. The effects of extracellular Nef on lipid 

metabolism in bystander cells include down regulation of ABCA1 and inhibition of 

cholesterol efflux in vitro and hypoalphalipoproteinemia and hyperetrigliceridemia in vivo 

[6, 7]. Furthermore, Nef affects the spectrum of miRNAs released from infected cells in 

exosomes, including several miRNAs with established role in cholesterol metabolism, such 

as miR-33a*, miR-16b, miR-145, miR-144* [23]. Collectively, these findings suggest that 

Nef released from infected cells may be an important factor in pathogenesis of metabolic 

complications of HIV disease, but this concept was never tested in a clinical setting. Patients 

infected with ΔNefHIV provided a unique opportunity to close this gap.

The main finding of this study is a lower prevalence of hypoalphalipoprotenemia in patients 

infected with ΔNefHIV compared to patients infected with WT HIV. Furthermore, the 

proportion of smaller, presumably immature, HDL was increased in WT HIV infected 

patients similar to what was documented for SIV infection [6]. This effect was not observed 

in patients infected with ΔNefHIV. The HDL-C/apoA-I ratio trended to be higher in 

ΔNefHIV infected patients, also suggesting that HDL particles in these patients are more 

lipidated. These findings are consistent with our previous observations implicating Nef in 

reducing liver ABCA1 and impairing generation and/or maturation of HDL particles [6, 7]. 

There was no effect of HIV, with or without Nef, on the ability of whole plasma to support 

cholesterol efflux, which is consistent with our previous findings [3, 13]. However, when the 

efflux to HDL was measured, HDL from WT HIV group, but not from ΔNefHIV group, had 
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higher functionality in cholesterol efflux assay. The most likely explanation of this finding is 

higher proportion of small, presumably under-lipidated HDL particles in plasma of WT HIV 

infected patients compared to two other groups; small HDL particles are better acceptors of 

cholesterol compared to larger fully lipidated HDL particles [24]. This finding is 

inconsistent with findings of another recent study where the efflux to apoB-depleted plasma 

from WT HIV infected patients was reduced [25]; however, patient demographics in this 

study was different. Our hypothesis, however, is that the primary effect of extracellular Nef 

is in reducing abundance of ABCA1in both hepatic and extra-hepatic cells. In hepatocytes, 

reduction of ABCA1 would reduce plasma levels of HDL. In extra-hepatic cells, reduction 

of ABCA1 would reduce capacity of the cells for cholesterol efflux; contribution of the 

inhibition of ABCA1 in macrophages used in this study was not tested as cells were neither 

infected with HIV nor treated with Nef.

Lipidomic analysis of patient plasma showed a significant difference between WT HIV and 

uninfected subjects as well as between WT HIV and ΔNefHIV groups in several species of 

phosphatidylserine. The lower level of phosphatidylserine in plasma from WT HIV group 

relative to ΔNefHIV groups may reflect different circulating microparticle levels in these 

groups. Phosphatidylserine is a major lipid in the platelet plasma membrane and in platelet 

derived microparticles, thus the lower level observed in plasma of WT HIV group may 

reflect a role of Nef in suppressing platelet activation and/or microparticle production. Also 

of interest is the lipid species that show a significant difference between the uninfected 

group and the ΔNefHIV group, but no difference between uninfected and WT HIV groups. 

These lipids include primarily sphingolipids (dihexosylceramide, ceramide and 

sphingomyelin) which were elevated in the ΔNefHIV infected patients. We have previously 

reported that ceramides, while not associated with HIV itself, are positively associated with 

risk of future cardiovascular events in HIV infected individuals, and that sphingomyelin, 

which was negatively associated with WT HIV, also showed a positive association with 

future cardiovascular events [16].

Profiling of plasma miRNA showed that the abundance of 24 miRNAs was likely dependent 

on the presence of Nef. Predicted targets of these miRNAs included ABCA1 itself (hsa-

miR-199b-3p) and two factors directly involved in regulation of ABCA1 abundance, 

ABCA12 (hsa-miR-409-3p) [26] and calnexin (hsa-miR-320a) [27]. MicroRNAs apparently 

regulated by Nef were also predicted to target a number of other ABC transporters 

(ABCA10, ABCA13, ABCB9), lipoprotein receptors (LDL receptor, VLDL receptor, 

several members of LDL receptor related protein family) and ligands (apolipoprotein A-II) 

and enzymes involved in lipid biosynthesis (members of long-chain acyl-CoA synthetase 

family, neutral sphingomyelinase). Fifteen of these miRNAs, or their close homologs, were 

also found to be regulated by Nef in exosomes released from Nef-transfected cells [23], 

although the direction of change was not always the same. Despite relatively large changes 

in the abundance of these miRNAs, this did not cause profound changes in plasma 

lipoprotein profile. However, the target cells of these miRNA are not necessarily the cells 

involved in regulation of plasma lipoprotein metabolism, but may be cells where changes in 

intracellular cholesterol metabolism play a role in pathogenesis of common complications of 

HIV, such as cells of vessel wall involved in atherosclerosis or β-cells involved in diabetes. 

Thus, within a limitation of analysis restricted to circulating miRNAs and the fact that not 
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all targets were validated, our findings are consistent with a hypothesis that alteration of 

expression and/or release of miRNAs may be an important mechanism by which HIV Nef 

dysregulates lipid metabolism in HIV disease.

5. Limitations

This study has several important limitations. First, the group size of ΔNefHIV infected 

patients was small. Unfortunately, the cohort of these patients is unique and no more 

patients infected with ΔNefHIV are known to us, therefore, this cohort could not be 

expanded. A change in the treatment guidelines shifting initiation of treatment to primary 

care also prevented expansion of the matching treatment-naïve WT HIV group. The 

ΔNefHIV group included two female patients, but both were of postmenopausal age, 

therefore, this should not have greatly affected the results. Plasma samples from patients of 

ΔNefHIV group were collected at a different time and by different operators and were stored 

for longer time compared to samples in WT HIV group, potentially contributing to the 

observed variability. Finally, infection with Nef-deficient HIV resulted in much lower viral 

loads and in a milder presentation of several elements of immunologic dysfunction 

compared to patients infected with WT HIV. This makes it difficult to distinguish between 

the direct effects of the deficiency of Nef and indirect effects of milder impairment of 

immunologic status and lower viral load. This compromise is difficult to avoid as viral loads 

similar to those in patients infected with ΔNefHIV are only achievable after effective 

treatment with HAART, which would represent an even bigger confounding factor. Despite 

these limitations, the findings of this study support the hypothesis that Nef secreted from 

HIV infected cells plays, directly or indirectly, a major role in pathogenesis of metabolic 

complications of HIV disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Patients infected with Nef-deficient strain of HIV(ΔNefHIV) have reduced 

prevalence of hypoalphalipoproteinema

• Several lipid classes in plasma lipidomic profile are different in patients infected 

with WT HIV and ΔNefHIV

• HIV induced changes in profile of lipid metabolism related microRNA are 

attenuated in ΔNefHIV patients

• Findings are consistent with Nef playing a significant role in lipid abnormalities 

in HIV patients
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Figure 1. The effect of HIV and ΔNefHIV infection on the structure (A) and function (B, C) of 
plasma high density lipoprotein
A – Analysis of distribution of HDL among different subfractions in plasma of HIV-

negative subjects and patients infected with WT HIV or ΔNefHIV. *p<0.05; **p<0.01 

versus HIV negative subjects. B- Cholesterol efflux from human THP-1 monocyte-

macrophages to 1% plasma from HIV-negative subjects and patients infected with WT HIV 

or ΔNefHIV. C- Cholesterol efflux from human THP-1 monocyte-macrophages to 1.1% 

apoB-depleted plasma from HIV-negative subjects and patients infected with WT HIV or 

ΔNefHIV. *p<0.05 versus HIV-negative; #p<0.05 versus ΔNefHIV.
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Figure 2. Hierarchical clustering of differentially regulated miRNA in WT HIV and ΔNefHIV 
patients
Abundance of miRNAs that show similar or recovered expression levels within ΔNefHIV 

patients and uninfected patients however significantly deregulated in HIV patients. Lines 

connect pairs with p<0.01.
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Table 2

Lipidomic analysis

Lipid Species HIV Negative WT HIV ΔNef-HIV

PS 36:1 1418.5 ± 935.8 259.5 ± 259.9** 7733.5 ± 9425.3#

PS 38:3 299.8 ± 158.4 53.8 ± 91.9* 1559.4 ± 1791.7#

PS 40:5 123.0 ± 65.5 13.6 ± 33.4** 590.9 ± 659.4#

PS (total) 2161.5 ± 1317.7 334.2 ± 121.4* 10,772.2 ± 12,619.5#

dhCer 20:0 20.8 ± 5.6 23.4 ± 9.1 115.7 ± 125.8*

Cer 18:0 80.4 ± 16 102.9 ± 26.6 140.7 ± 76.9*

SM 32:0 423.0 ± 84.8 512.0 ± 136.4 666.2 ± 176.0*

SM 34:0 4,369 ± 686.2 5,402.1 ± 1,442.6 6,326 ± 803.1**

PE(O-36:6) 34.3 ± 10.4 71.7 ± 44.9 95.4 ± 32.5**

dhCer (total) 519.0 ± 77.7 571.9 ± 254.3 1439.2 ± 1033.8*

PI 34:0 153.5 ± 58.0 362.2 ± 298.8* 342.8 ± 287.7

dhCer 16:0 46.3 ± 6.7 71.5 ± 15.7* 120.7 ± 70.5**

dhCer 18:0 46.1 ± 11.4 79.6 ± 22.0* 194.1 ± 184.3*

DHC 20:0 111.3 ± 38.4 85.0 ± 38.6 256.2 ± 249.5#

PE(22:6/0:0) 1378.0 ± 402.6 1723.5 ± 836.7 1042.8 ± 168.4#

PS 40:6 128.4 ± 53.9 36.6 ± 49.7 572.1 ± 619.6#

Abbreviations: dhCer, dihydroceramide; Cer, ceramide; DHC, dihexosylceramide; PE, phosphatidylethanolamine; PE(O), 
alkylphosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin;

*
p < 0.05 vs HIV Negative;

**
p < 0.01 vs HIV Negative;

#
p < 0.05 vs WT HIV (ANOVA)
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