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Abstract

Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, 

but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is 

sufficiently ubiquitous to merit further characterization and classification, which may stimulate 

clinicopathological studies and research into its pathobiology. This paper aims to harmonize 

evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a 

morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially 

with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but 

not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG 

include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or 

clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the 

astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various 

forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. 

Based on morphology and anatomical distribution, ARTAG can be distinguished from primary 

tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend 

four steps for evaluation of ARTAG: (1) identification of five types based on the location of either 

morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray 

matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, 

parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of 

tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may 

underlie neurological symptoms; however, the clinical significance of ARTAG is currently 

uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial 

tau pathology in the aged brain, facilitating communication among neuropathologists and 

researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on 

tau-related indicators.
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Introduction

Tau is a microtubule-associated protein that binds to tubulin and promotes its polymerization 

and stabilization into micro-tubules. Tau isoforms, ranging from 352 to 441 amino acids, are 

generated by the alternative splicing of exons 2, 3, and 10 of the MAPT gene. The six 

isoforms differ from each other by the presence or absence of 29- or 58-amino acid inserts in 

the N-terminus domain and by the presence of either three (3R tau isoforms) or four (4R tau 

isoforms) tandem repeat sequences of 31 or 32 amino acids [24]. Mutations in the tau gene 

(MAPT) can cause hereditary frontotemporal dementia and associate with frontotemporal 

lobar degeneration (FTLD) [23, 26, 51, 63]. Following the description of a disorder in one 

family named ‘multiple system tauopathy with presenile dementia’ [62], the term tauopathy 

was introduced to refer to disorders in which tau protein deposition is the predominant 

feature [23]. Tauopathies are characterized by the accumulation of abnormal and hyper-

phosphorylated tau protein in the brain and are also classified as primary or secondary [32, 

37]. Tau pathology is characterized as 3R or 4R predominant or mixed 3R + 4R type [12, 30, 

32]. Primary tauopathies are grouped also as FTLD-tau and comprise Pick disease (PiD), 

progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic grain 

disease (AGD), neurofibrillary tangle (NFT) predominant senile dementia (NFT-dementia or 

“tangle-only” dementia; now included in the category of PART, see below), and globular 

glial tauopathy (GGT) [32, 47]. In addition, many other diseases or conditions with diverse 

etiology, including Alzheimer disease (AD), may be associated with tau pathology [32]. The 

recently introduced term ‘primary age-related tauopathy’ (PART) encompasses neuronal 

changes previously considered as “normal aging” as well as NFT-dementia [14]. PART is 

distinguished from AD, largely by the absence or scarcity of amyloid (Aβ) plaques [14]. In 

aged individuals sex-dependent tau pathology, developing independently from AD has been 

also described in the hypothalamus [16, 54, 56]. Furthermore, chronic traumatic 

encephalopathy (CTE) is associated with a distinctive pattern of progressive neuronal and 

glial tau pathology [40–42].

The introduction of the Gallyas silver stain and particularly diagnostic tau 

immunohistochemistry led to the identification of astroglial tau pathology in the aging brain 

in people with or without AD-related changes, cognitive decline or movement disorders [5, 

7, 11, 21, 25, 31, 34–36, 38, 46, 57]. There have been attempts to classify these tau 

astrogliopathies [34], but there is lack of consensus as to how best to describe and categorize 

them. We recommend the term aging-related tau astrogliopathy (ARTAG) to describe the 

spectrum of otherwise unclassified tau immunoreactivity in astrocytes (i.e., distinct from 

tufted astrocytes, astrocytic plaques, ramified astrocytes, or globular astroglial inclusions) 

mostly in aged individuals detected by tau immunohistochemistry using phosphorylation-

specific, conformation-specific, or isoform-specific (4R) anti-tau antibodies. Both ARTAG 

and PART affect predominantly the elderly, but PART is characterized by neurofibrillary 

degeneration that is largely restricted to the medial temporal lobe (MTL), basal forebrain, 

brainstem, and olfactory bulb and cortex [14]. PART thus describes neuronal tau pathology, 

while ARTAG focuses on astrocytic tau pathology. Whether PART and ARTAG belong to 

separate or shared pathogenic processes is unknown.

Kovacs et al. Page 2

Acta Neuropathol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We propose a four-step approach for the morphological classification of ARTAG. We 

anticipate that harmonizing the nomenclature and improving consistency in documentation 

of ARTAG is a necessary first step for defining diagnostic guidelines that will result in 

progress in clinicopathological correlation and investigation of the pathogenesis of ARTAG.

Morphology of tau-immunoreactive astrocytes in primary tauopathies and 

CTE

The defining lesions of tauopathies are intracellular aggregates of abnormal conformers of 

tau, consistently detectable by immunohistochemistry for phosphoepitopes (e.g., PHF1, 

CP13, and AT8), as well as epitopes to conformational epitopes (e.g., Alz50 and MC1) and 

tau isoform-specific epitopes (e.g., 4R tau isoforms) [32]. Regardless of the tauopathy, 

astroglial tau inclusions are mostly 4R tau-immunopositive, although ramified astrocytes in 

PiD as well as occasional protoplasmic astrocytes in PSP may show 3R-tau 

immunoreactivity [21]. Tufted astrocytes are characteristic of PSP, and astrocytic plaques are 

signature lesions of CBD, while so-called ramified astrocytes have been described in PiD 

[15, 32]. In addition, astroglial, argyrophilic, and intracytoplasmic flame or thorn-shaped 

inclusions were described by Nishimura et al. in PSP [49]. Phosphorylation-dependent anti-

tau antibodies are highly sensitive and label lesions that are not consistently detectable by 

silver impregnation methods, but may show variable ubiquitin or p62/sequestosome 

immunopositivity, such as the globular astroglial inclusions (GAI) of GGT [1], or the fine 

granular tau immunopositivity (some with ‘bush-like’ appearance) of the astrocytes of AGD 

[11]. Some of the variation in the morphology of the immuno-labeled structures was 

interpreted as representing stages of a process of aggregation and fibrillation, analogous to 

progression from pretangles to neurofibrillary tangles in AD [6, 11]. The concept of early-

stage tau accumulation in astrocytes has also been discussed in relation to the changes in the 

basal ganglia in PSP [53]. Finally, subpial and subependymal clusters of astrocytic tangles 

have been described in CTE [41].

Overview of astrocytic tau pathologies in the aging brain

Both neuronal and glial tau pathology increases in frequency with age. The most frequent 

neuronal tau inclusions are neurofibrillary tangles, threads, and argyrophilic grains. 

Neuronal and glial inclusions resembling PSP pathology can be seen in the elderly, even 

without clinical evidence of PSP [17, 18, 34], but these lack the typical multisystem 

degeneration seen with PSP. Furthermore, tuft-shaped astrocytes have been described in a 

subgroup of elderly individuals, especially in association with Lewy body pathology, in a 

distribution resembling that of PSP [25]. Nevertheless, converging data emphasize the 

presence of a tau astrogliopathy that differs from tufted astrocytes or astrocytic plaques as a 

common finding in the elderly. Despite its high prevalence, there is a lack of consensus on 

whether these astroglial tau pathologies in the elderly are clinically relevant, even as a 

concomitant pathology that might lower an individual’s threshold for the development of 

clinical symptoms. Research in this field has been hampered by the variation in staining 

methods, tau antibodies, and the inconsistent nomenclature for astroglial tau pathologies. 

Importantly, hypertrophic astrocytes, as revealed by hematoxylin and eosin staining and 
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immunohistochemistry for glial fibrillary acidic protein and excitatory amino acid 

transporter 2 (EAAT2), are common in the elderly, and presumably represent a reaction to 

multiple types of injury. The location of such reactive astrocytes varies considerably among 

individuals [8, 59]. Colocalization studies have indicated that glial fibrillary acidic protein-

immunoreactive reactive astrocytes are not necessarily those that are also immunoreactive 

for tau pathology [19].

Ikeda et al. were the first to describe tau-positive thorn-shaped astrocytes (TSA), which were 

similar in morphology to tau-positive astrocytes described by Nishimura et al. in PSP [49]) 

in the subpial or subependymal regions of the gray and white matter and frequently in the 

depths of gyri, as well as in the basal forebrain and brainstem, in aged individuals [27–29]. 

TSA may occur in multiple conditions [13]. In comparison to the tufted astrocytes of PSP, 

TSA showed more voluminous perinuclear cytoplasm and their processes are often thicker 

and shorter [27]. TSA were only occasionally found in the deep cortical layers. The authors 

noted that anti-ubiquitin antibodies do not label TSA. They interpreted TSA as a non-

specific finding and found no relationship between the number of TSA and the severity of 

neurofibrillary changes. Argyrophilic, tau-positive subpial and perivascular structures were 

also described as common TSA [27–29].

Schultz et al. reported a high prevalence of TSA in the aged human MTL, particularly the 

anterior MTL, at the level of the amygdala [57]. TSA were absent in individuals under 60 

years, but affected almost half of brains from those over 75 years [57]. Indeed, another study 

also failed to find this type of tau astrogliopathy in younger individuals [33]. Schultz et al. 

[57] commented that tau immunopositivity was not confined to the thorn-shaped proximal 

processes of astroglia, but also presented as thread-like processes in the neuropil. They 

found that immunolabeling with AT8 was the most sensitive for demonstrating the TSA, 

while silver staining was less consistent [57]. They also speculated that the preferential 

subpial and perivascular location could be a result of exposure to CSF or to extravasated 

plasma proteins due to defects in blood–brain barrier permeability commonly seen in aging 

and neurodegeneration [36, 57]. Interestingly, a similar distribution of TSA was reported in 

aged baboons [55]. A study by the MRC-CFAS group confirmed the findings of Schultz et 

al. and added that the TSA could be less commonly observed in the vicinity of neuronal cell 

bodies in gray matter areas such as amygdala and dentate gyrus [36]. Also, this study 

documented the 4R tau nature of TSA [36]. Variable staining for Gallyas and p62 suggest 

that some of these astrocytes accumulate tau in a fibrillar state [34–36, 38, 46]. Uchikado et 

al. also reported that the frequency of TSA increased with age and was independent of AGD 

[66]. All studies agree that the burden of TSA is independent of AD pathology, AGD, coiled 

bodies, dementia status at death, or presence of the APOE ε4 allele [27, 28, 36, 57, 66]. 

These studies, however, were limited to evaluation of the MTL and did not take account of 

cortical and subcortical tau astrogliopathy. Few studies reported tau immunopositivity in 

glial cells in AD cases with prolonged duration of the disease [5, 48, 68]. Finally, a report on 

NFT-dementia mentioned the presence of astrocytic tau pathology in white matter and cortex 

[31].

The possibility that TSA may have clinical significance was first raised by Munoz et al. [46]. 

They used the term “argyrophilic thorny astrocyte clusters (ATACs)” and observed them in 
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the frontal, temporal, and parietal cortices and in subcortical white matter in a cohort of 

patients with nonfluent variant of primary progressive aphasia associated with AD pathology 

[46]. Subsequent reports also linked TSA to symptomatology, although not all found an 

association of ATACs with focal neurological syndromes [9, 43]. Munoz et al. noted ATACs 

in the white matter without discernible changes in sections stained for myelin. ATACs did 

not show a consistent topographic relationship to amyloid deposits, NFTs, or reactive 

astrogliosis [46]. Interestingly, focal glial tauopathy, interpreted as PSP-type, associated with 

progressive aphasia was reported by Wakabayashi et al. [67]. These observations suggested 

that TSA-like astrocytes might be detected not only in a subependymal or subpial location.

A peculiar constellation of tau pathology was documented in a subset of patients with 

dementia [35]. The most characteristic feature was a tau astrogliopathy, which was described 

as diffuse granular tau immunoreactivity in astrocytic processes [35]. The study emphasized 

additional neuronal pathologies, including threads and diffuse neuronal cytoplasmic tau 

immunoreactivity (pretangle-like). A further study distinguished four different patterns 

based on the anatomical distribution of the tau astrogliopathy and its combination with 

neuronal tau pathology, characterized mostly by pretangles and scattered threads [34]: (1) 

medial temporal lobe type (Group I); (2) amygdala type (Group II); (3) limbic-basal ganglia-

nigral type with neuronal tauopathy (Group III); and (4) hippocampus-dentate gyrus-

amygdala type with neuronal tauopathy (Group IV). Some of these might represent stages of 

the same process whereas others might be different. Nevertheless, evaluation of tau 

astrogliopathy in several anatomical regions indicated that in some cases astroglial tau 

pathology in the elderly extends beyond the MTL to involve the frontal and parietal cortices, 

striatum, substantia nigra, and medulla [34]. The morphology of tau astrogliopathy in these 

studies, was reminiscent of that reported by Munoz et al. as ATACs [46], although extension 

of the immunoreactivity into the astrocytic processes was emphasized [34, 35]. Distinct 

accumulation of TSA in the dentate gyrus of the hippocampus was also recognized [34, 36]. 

Mathematical modeling of hippocampal tau immunolabeling patterns suggested that some 

forms of tau astrogliopathy in the elderly involve hippocampal subregions in a different 

pattern from that of primary tauopathies [44]. Ferrer et al. [21, 38] showed that the 

biochemical signature of astroglial tau pathology in the elderly in both white and gray matter 

differed from that of other astrocytic tau pathologies in primary tauopathies. Specifically, 

astroglial tau pathologies in the white matter and gray matter in aging brains were not 

consistently detectable using phospho-specific anti-tau antibody Ser262 or conformational 

tau modifications at amino acids 312–322 (MC1), or tau truncated at aspartic acid 421 (tau-

C3) [21, 38].

In addition, isolated tufted astrocytes were reported in the occipitotemporal gyrus in an 

elderly, population-representative cohort [36], and a tauopathy with tufted, thorny, fibrous, 

and protoplasmic forms of astrocytic pathology was described by Beach et al. [7], in a series 

of cases with hippocampal sclerosis and also in a community-based study [34]. Sakai et al. 

[52] reported prominent subcortical white matter astrocytic tau pathology in brains from two 

elderly patients in whom CBD was considered. In a study on cervical spondylotic 

myelopathy, AT8 immunohistochemistry revealed tau-positive, neuropil threads, astrocytic 

foot-like perivascular or subpial structures, and glial cells with short and thick processes, 

Kovacs et al. Page 5

Acta Neuropathol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which the authors termed TSA [58]. Interestingly, prominent tau astrogliopathy may be seen 

in familial disorders without MAPT mutation [20].

In summary, tau-immunoreactive astrogliopathy in the elderly represent a spectrum of 

morphological abnormalities including those originally described as TSA (plump, peri-

nuclear cytoplasmic immunoreactivity) and additional fine granular tau immunoreactivity 

extending into the astrocytic processes in the gray matter. These two morphologies can be 

present in the same brain. TSA may be seen in subpial, sub-ependymal, or perivascular 

areas, as well as in the white and gray matter, while the fine granular immunoreactivity is 

seen in the gray matter. Most likely, the different tau-immunoreactive astroglial 

morphologies in different locations in the aging brain, with or without clinical correlation, 

reflect different pathogenetic events. We propose the umbrella term ARTAG to encompass 

all of these, with or without accompanying morphological features of other 

neurodegenerative disorders, including PSP, CBD, PiD, GGT, PART, AD, AGD, and Lewy 

body pathology. Some clinicopathological studies suggest that ARTAG may present 

clinically with focal symptoms like aphasia when circumscribed to a smaller number of 

regions [46]; whereas, in cases with widespread pathology dementia with or without 

parkinsonism might be the clinical presentation [34, 35]. On the other hand, studies focusing 

only on the MTL have found no relationship between ARTAG and cognitive impairment or 

dementia [36].

Differential diagnosis

We provide the following operational criteria for the six well-defined tau-immunoreactive 

astrocytic cytopathologies seen in primary tauopathies and aging brain as follows (see 

comparison in Table 1; Fig. 1):

1. Tufted astrocytes Star-like tufts of tau-positive radiating fibers. The dense tau-

immunoreactive tufts are detected in the proximal part of the astrocytic processes, 

often usually in a symmetrical fashion. They are localized to the gray matter 

(mostly basal ganglia and neocortex).

2. Astrocytic plaques Focal and densely tau-immunoreactive stubby dilatations of 

distal processes of astrocytes giving a senile-plaque-like appearance without 

amyloid core. They are localized to the gray matter (mostly basal ganglia and 

neocortex).

3. Ramified astrocytes Tau immunoreactivity occupying mostly the perikarya and 

ramifying into the cell processes usually localized to one side of the cell giving the 

appearance of eccentric nuclei of the astrocyte. They are localized to the gray 

matter and to the white matter in neocortices with severe neuronal loss.

4. Globular astroglial inclusions Tau-immunoreactive distinct globules (up to the size 

of the astroglial nucleus; 1–5 μm) and dots (1–2 μm) in the perikarya and proximal 

parts of astrocytic processes, found in gray matter.

5. Thorn-shaped astrocytes (TSA) Tau immunoreactivity is localized in astrocytic 

perikarya with extension into the proximal parts of the astrocytic processes, with 
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inclusions also in the astrocytic endfeet at the glia limitans around blood vessels 

and at the pial surface. The processes are thick and short and reminiscent of thorns. 

They are preferentially found at subpial and perivascular locations, as well as in the 

white matter and less often as clusters in the gray matter.

6. Granular or fuzzy tau immunoreactivity in processes of astrocytes (GFA) Fine 

granular immunoreactivity of branching processes with a few dilations of gray 

matter astroyctes. The perinuclear soma is densely immunore-active in most of 

these astrocytes.

The two major cytomorphologies of ARTAG (i.e., TSA and GFA) may accompany 

tauopathies or other neurode-generative disorders, but ARTAG should be distinguished from 

the more specific astrocytic lesions that are characteristic of primary tauopathies. To 

understand the frequency and relevance of ARTAG, we recommend documenting ARTAG as 

an additional feature in primary tauopathies. It must be noted, that the astroglial tau 

immunoreactivity described by Botez et al. in the amygdala of AGD [11] fits best with the 

GFA now included as a form of ARTAG. Indeed, astrocytic tau pathology is variably seen in 

AGD [22]. Therefore, it is helpful to comment whether in a case of AGD additional ARTAG 

is present. Furthermore, there are other tau-related disorders with astrocytic tau pathology. 

For instance, astrocytic tau pathology is also a component of CTE [40–42]. CTE is 

associated with a history of repetitive concussive or subconcussive brain trauma and is 

characterized by widespread accumulation of hyper-phosphorylated tau in NFTs and 

astrocytes, which have similarity to TSA seen in ARTAG [41]. ARTAG has features that 

overlap those of CTE, including the accentuation of tau pathology around small cerebral 

vessels and in subpial and periventricular areas. On the other hand, tau pathology, including 

neuronal and astroglial, in CTE is more abundant in the depths of the convexity cerebral 

sulci, especially in early stages [41], an aspect that has not been reported in tau 

astrogliopathy in the aging brain [29, 34–36, 46, 57]. It is possible that CTE pathology has 

been considered to be age-related astrogliopathy, especially for lesions in the MTL, which 

can be severely affected in more advanced stages of CTE [42]. The characteristic patchy 

lesions at depths of cerebral sulci were not recognized as a specific morphological feature of 

CTE in earlier studies. Finally, tufted astrocytes in PSP, astrocytic plaques in CBD, globular 

astrocytic inclusions in GGT, and ramified astrocytes in PiD are distinct from tau-

immunoreactive astrocytes in the gray matter in ARTAG (see Table 1).

These observations raise the possibility that ARTAG affects distinct astrocytic populations to 

those in established primary tauopathies. Ikeda et al. noted that the distribution of TSA was 

coexistent with prominent subpial and subependymal gliosis [29]. Corpora amylacea, which 

are heavily invested by reactive astrocytes, also share this distribution. Importantly, these 

astroglial populations of the “glia limitans” share common features with fibrous astrocytes, 

which predominate in the white matter and subpial zone [8] and with a subset of astrocytes 

in the gray matter [61], where ARTAG can be also observed. In contrast, astrocytic tau 

pathologies in CBD or PSP involve protoplasmic astrocytes and are independent of reactive 

astrogliosis [19, 65]. A few studies report association of glial fibrillary acidic protein and 

AT8 immunore-activity not only in subpial, but also in gray matter localization of tau 

astrogliopathy in elderly brains [35, 36]. Protoplasmic and fibrous astrocytes differ 
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substantially in their glutamate uptake capabilities and capacity and have very different 

degrees of coupling, which are important with regard to their respective calcium wave 

signals, resting membrane potentials, potassium buffering, glutamate metabolism, exchange 

of second messengers, metabolites, and other signaling intermediates between cells [50]. In 

addition to these differences, reaction of astrocytes varies considerably between distinct 

diseases of the nervous system [60]. It is these differences that may be of pathogenetic 

relevance to the morphologic diversity of astrogliopathy in ARTAG.

Evaluation of ARTAG

Inconsistency in assessing, describing and documenting ARTAG has impeded research and 

limited our understanding of the significance of this pathology. It is not clear whether the 

different patterns of anatomical involvement represent a continuum or distinct abnormalities 

with different causes. Most previous studies have focused on the MTL, but more widespread 

involvement is possible [34, 35]. The relative frequency of ARTAG limited to MTL as 

opposed to more widespread tau astrogliopathy remains unclear. Potential etiologies are not 

known, although defective function of the blood–brain barrier [57], metabolic 

encephalopathy, neurodegenerative pathologies, hypoperfusion associated with aging, AD, 

or vascular dementia [39, 64], and even repeated minor trauma with possible genetic risk 

factors may play a role. Clinical, imaging and neuropathological data related to these aspects 

need to be documented precisely to allow a better understanding of the pathogenesis of 

ARTAG [47]. A method is needed to describe morphologies that can be widely accepted and 

reproducible. As silver impregnation methods are difficult to standardize and 

immunohistochemistry for ubiquitin and p62 does not demonstrate all forms of tau 

cytopathology, optimal characterization of ARTAG requires the use of 

immunohistochemistry for phosphorylated tau. The most widely used phosphorylation-

dependent anti-tau antibodies that have allowed characterization of ARTAG to date include: 

AT8 (pSer202/Thr205; available from different commercial sources), CP13 (Ser202; Peter 

Davies, Litwin-Zucker Research Center for The Study of Alzheimer’s Disease and Memory, 

Manhasset, NY, USA) and PHF-1 or AD2 (Ser396/Ser404; Peter Davies, NY, USA for 

PHF-1 or commercial sources for AD2s). Other antibodies that may prove useful in the 

characterization of ARTAG include those specific for tau phosphorylated at Thr181, Ser202, 

Ser214, Ser396, Ser422, N-terminus region epitope-specific, 4R tau isoform-specific, and 

some conformation-dependent antibodies such as Alz50 (but not MC-1) [21, 35, 38].

Recommendations for sampling and staining are as follows:

• Preliminary screening for ARTAG should include tau immunohistochemistry 

(antibodies AT8, CP13, AD2 or PHF-1 are recommended) on two sections 

representative of the MTL (i.e., amygdala and hippocampus at the level of the 

lateral geniculate body). These regions are vulnerable to TSA and GFA.

• If tau astrogliopathy is noted in the screening section, a systematic characterization 

of ARTAG will require analysis involving additional areas of the frontal, parietal, 

lateral temporal, and occipital cortices, as well as anterior and posterior portion of 

the basal ganglia, thalamus, midbrain at the level of substantia nigra, pons at the 

level of locus coeruleus, and medulla oblongata.
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• In cases where focal cortical symptoms are reported, further cortical areas 

corresponding to the clinical symptoms or signal alterations detected in MRI should 

also be evaluated.

ARTAG should be considered when detecting either or both of the two cytomorphologies: 

TSA or GFA. As such, we propose the following four-step characterization TReSS 

algorithm (Table 2): Type? Regional involvement? Severity? Subegional involvement?

• First Identify the morphologic and distribution types of ARTAG based on 

parenchymal localization of TSA and GFA (note that combination of these types is 

generally the rule):

1. Laminar subpial TSA (Fig. 2a) Plump perinuclear cytoplasmic tau 

immunoreactivity in astrocytes in subpial locations. It is important to note 

whether this is more pronounced in the sulcal depths in the convexity 

cerebral cortices, as in CTE.

2. Subependymal TSA Plump perinuclear cytoplasmic tau immunoreactivity in 

astrocytes in subpial or subependymal locations (Fig. 2b).

3. Perivascular TSA Plump cytoplasmic immunoreactivity with tau-

immunoreactive astrocytic processes around vessels (Fig. 2c) in the gray or 

white matter.

4. White matter TSA Astrocytes in the subcortical white matter that show 

plump cytoplasmic immunoreactivity (Fig. 2d). Note that in the white matter 

these usually form small clusters (>3 astrocytes) and that it may extend into 

the adjacent gray matter as described for ATAC [46].

5. Gray matter GFA Solitary (one or two/20× field) (Fig. 2e, f) or clustered 

(Fig. 2g, h) GFA (three or more/20× field) with fine granular 

immunopositivity of the cytoplasmic processes (GFA), with plump 

perinuclear cytoplasmic tau immunoreactivity. Less frequently, TSA can be 

also seen in the gray matter.

It must be noted that tau immunohistochemistry occasionally decorates astrocytes at the 

border of chronic vascular lesions in young and aged individuals. Therefore, this lesion-

associated tau astrogliopathy is important to document, but is not considered an aging-

related astrogliopathy.

• Second Identify involvement of gross anatomical regions:

A. MTL

B. Lobar

C. Subcortical

D. Brainstem

Although the most frequently involved region is the MTL, involvement of further regions 

should be recognized. Moreover, MTL is important for comparison with neuroim-aging data 

on MTL atrophy.
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• Third Document the severity of ARTAG pathology in the region or subregion (see 

step four) examined. ARTAG may appear in focal clusters or in a widespread 

distribution. We propose documentation as to whether ARTAG involves only (1) 

occasional or (2) numerous astrocytes. If the latter, the focal clusters or widespread 

distribution should be noted. Semiquantitative scoring for ARTAG will need to be 

refined.

• Fourth Map subregional involvement to promote future exploration and scientific 

discovery related to ARTAG. These are the subdivisions within the gross 

anatomical regions of the second step and include the following (Table 3; examples 

are shown in Fig. 3):

– amygdala and hippocampus, inferior temporal gyrus for MTL

– frontal, parietal, occipital, lateral temporal (middle and superior gyrus) for 

lobar

– caudate nucleus, putamen, nucleus accumbens, glo-bus pallidus, thalamus, 

basal forebrain for subcortical

– mesencephalon, pons, medulla oblongata for brainstem.

It should be noted whether ARTAG is associated with features of a particular 

neurodegenerative disorder, or with other disease (cerebrovascular, inflammatory, metabolic, 

etc.) followed by the description of the type and major regional involvement.

Some examples for the diagnostic reporting are provided as follows:

1. Examples for pure types:

a. ARTAG subpial type;

Region: MTL;

Subregion: hippocampus, inferior temporal cortex;

Extent: numerous astrocytes and widespread distribution

b. ARTAG subependymal type;

Region: Subcortical;

Subregion: lateral ventricle;

Extent: occasional

2. Examples for combinations:

(a) ARTAG gray matter type;

Region: MTL and subcortical;

Subregion: inferior temporal cortex and nucleus accumbens;

Extent: numerous astrocytes in focal clusters

plus
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ARTAG white matter type;

Region: MTL;

Subregion: hippocampus, periamygdala white matter, and temporal;

Extent: numerous astrocytes with widespread distribution;

(b) ARTAG perivascular type;

Region: lobar and subcortical;

Subregion: frontal cortex and striatum;

Extent: occasional

plus

ARTAG white matter type;

Region: MTL and lobar;

Subregion: lateral temporal, frontal, and parietal lobes;

Extent: numerous astrocytes in focal clusters.

For example, the cases described by Munoz et al. [46] would be summarized in the 

diagnostic report as: ARTAG gray and white matter type; region: MTL and lobar; extent: 

numerous in focal clusters. For research purposes, the subregional involvement should be 

added as: gyrus ambiens, parahippocampal gyrus, fusiform gyrus, inferior, middle, and 

superior temporal gyri, frontal dorsolateral and orbitofrontal cortices, cingulate gyrus, and 

inferior parietal lobe. The cases described by Kovacs et al. [35] could be summarized as 

ARTAG gray matter type; region: MTL, lobar, subcortical, and brainstem; extent: numerous 

in focal clusters; plus white matter type; region: MTL; extent: numerous and widespread; 

with further details on the subregional involvement. The cases discussed by Santpere and 

Ferrer [53] as early PSP-like astrocytic changes also represent ARTAG with additional 

features of concomitant PSP-type pathology (i.e., cases 4 and 5).

Summary

ARTAG describes a spectrum of astroglial tau pathologies detected mainly in the elderly 

represented by TSA and GFA, which are distinct from astroglial lesions of primary 

tauopathies (i.e., tufted astrocytes, astrocytic plaques, ramified astrocytes, or globular 

astroglial inclusions). The frequency of ARTAG varies depending on the type: subpial, 

subependymal, and perivascular types are more frequent, while gray matter and cerebral 

white matter types might be less common. The etiology of different types might be different; 

however, all appear mostly associated with aging. Although documented in several 

publications, there is a lack of consensus on how ARTAG should be recorded and 

interpreted. Here we propose steps for a systematic characterization with the expectation that 

this will improve communication about and understanding of this condition, including its 

relation to other brain pathologies and clinical symptoms. This approach has the potential to 

help in several respects:
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1. It will facilitate communication between neuropathologists and researchers. 

Revisiting and standardizing the terminology should help to move the field forward. 

It will also increase awareness of this pathology, which is under-recognized and 

under-studied.

2. A better differentiation of ARTAG types may help with assessing their relationship 

to other tauopathies. This may be particularly important in the context of CTE-

related tau pathologies. Furthermore, this may help better understanding of 

differences in the pathogenesis of ARTAG types.

3. A regular system for typing and grading of ARTAG should facilitate comparisons 

between different centers, and the pooling of information in harmonized 

clinicopathological studies. These will potentially pave the way towards 

mechanistic insights and genetic studies into their pathogenesis.

4. Understanding the nature of ARTAG may help in the interpretation of clinical 

biomarker and imaging studies.

Development of such a common concept (Fig. 4) and nomenclature that allows comparisons 

across studies and aggregation of data for large-scale multi-institutional analyses is 

imperative in order to understand the phenomena and clinical implications of ARTAG. 

Future studies should also aim to re-evaluate these observations to validate this approach and 

to develop a concise classification of ARTAG for diagnostic neuropathology. To reach this 

goal, paradigms will need to be designed for ARTAG along the lines used to standardize 

evaluation and diagnostic criteria for tau, amyloid and α-synuclein and other major 

pathologies [2–4, 10, 45]. Subsequently, it will be possible to evaluate inter-rater reliability 

of the proposed evaluation and eventually to merge clinical and pathologic data from 

multiple centers to determine practical significance of ARTAG. At this preliminary stage, 

however, our recommendation is limited to an evaluation strategy focusing primarily on 

common nomenclature and classification of aging-related tau astrogliopathy.
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Fig. 1. 
Comparison of tau (using AT8 antibody) immunoreactivities seen in primary tauopathies 

with those observed in aging-related tau astrogliopathy (ARTAG)
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Fig. 2. 
Representative photomicrographs of ARTAG types. Plump cytoplasmic tau 

immunoreactivity of astrocytes and tau-positive lining in subpial (a) and subependymal (b) 

location. Perivascular type: tau-immunoreactive astrocytic processes arranged around vessels 

(c). White matter (WM)-type: astrocytes in the subcortical white matter with plump 

cytoplasmic immunoreactivity (d). Gray matter (GM)-type: single-appearing (e, f) or 

clusters (g, h) of astrocytes with fine granular tau immunoreactivity in the processes without 

(e) or with (f) plump perinuclear cytoplasmic tau immunoreactivity. The bar shown in “a” 

represents 30 μm for a, b, f; 50 μm for d, e, h; and 100 μm for c, g
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Fig. 3. 
Representative images of different anatomical regions showing ARTAG. a Temporal cortex 

and white matter (WM); b dentate gyrus (gray matter-type cluster enlarged in the right); c 
amygdala; d frontal cortex (gray matter-type single); e nucleus accumbens (gray matter-type 

clusters and single forms); f substantia nigra; g, h medulla oblongata (IO inferior olive; ML 
medial lemniscus; n. XII hypoglossal nucleus). The bar shown in a represents 150 μm for a, 

b; 100 μm for the right inset in b, and c–h
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Fig. 4. 
Summary of the concept of ARTAG. Four distinct astroglial tau pathologies are seen in 

primary tauopathies: tufted astrocytes (TA), astrocytic plaques (AP), globular astroglial 

inclusions (GAI), and ramified astrocytes (RA). Rarely there may be slight overlap of these 

morphologies, but predominance of a type is significantly associated with one of the specific 

primary tauopathies. ARTAG is characterized by two different morphologies: thorn-shaped 

astrocytes (TSA) and fine granular immunoreactivity in astrocytic processes (granular/fuzzy 

astrocytes: GFA); these are seen in the subpial (SP), sub-ependymal (SE), perivascular (PV) 

areas, and in the white (WM) and gray matter (GM). TSA and GFA may be present in the 

same brain together. Other neurodegenerative diseases (NDDs) may coexist with ARTAG or 

with primary tauopathies
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Table 2

Evaluation of aging-related tau astrogliopathy (ARTAG)

Requires:

 Presence of thorn-shaped astrocytes (TSA) and/or solitary or clustered astrocytes with plump cytoplasmic tau immunoreactivity that extend 
into the astroglial processes as fine granular immunopositivity (GFA) distinguishable from AP, TA, RA, and GAI

 Four-step characterization of ARTAG:

  Step 1: Distinguish types according to the location:

   Subpial

   Subependymal

   Gray matter

   White matter

   Perivascular

  Step 2: Describe major anatomical distribution

   Medial temporal lobe

   Lobar

   Subcortical

   Brainstem

  Step 3: Document the severity of ARTAG

   Occasional

   Numerous

    Focal

    Widespread

  Step 4: Map subregional involvement and extent (see Table 3)

Ancillary studies:

 Description of additional tau pathologies in specific anatomical regions:

  Neurofibrillary degeneration

  Neuropil threads

  Diffuse cytoplasmic neuronal tau immunoreactivity (“pretangles“)

  Argyrophilic grains

  Dystrophic neurites around or within amyloid plaques

  Oligodendroglial tau immunoreactivity

 Characterization of tau phosphorylation, conformation, truncation, nitration, ubiquitination, immunohistochemistry for 4R a nd 3R tau; 
ultrastructural study; genetic studies (MAPT and other genes associated with neurodegeneration)

 Description of concomitant neurodegenerative and non-neurodegenerative pathologies

 Description of relation to lesions (“perilesional” astrocytic tau immunoreactivity), to corpora amylacea, and Rosenthal fibers

TSA thorn-shaped astrocyte, GFA granular/fuzzy astrocyte, AP astrocytic plaque, TA tufted astrocyte, RA ramified astrocyte, GAI globular 
astroglial inclusions
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Table 3

Description of aging-related tau astrogliopathy (ARTAG) based on the type and distribution of astrocytic tau 

pathology

MTL medial temporal lobe, Gy gyrus, GP globus pallidus, Caud/Put caudate and putamen, Dent Gyr dentate gyrus, Medulla obl. medulla 
oblongata, Aq aqueduct, LV lateral ventricle, 3V 3rd ventricle

*
In the case of focal cortical symptoms the anatomical area with clinical relevance should be noted additionally. Combinations of subtypes should 

be expected and described
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