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Abstract

This work is focused on describing the most important properties of the skeleton of the
phase space, the Lorenz attractor and the parameter space to understand the Lorenz sys-
tem. We use different methods to describe the Lorenz system, which includes analytical
and numerical tools. Firstly, we summarize some properties and basic concepts of the
system, in particular, we study stationary points, bifurcations, invariant manifolds and
homoclinic and periodic orbits. Moreover, a description of the geometrical model of the
Lorenz attractor is given. Based on this model, we analyse the dynamics of the attractor.
We discuss how the strong stable foliation formalizes the numerical evidences obtained
previously in different simulations. The existence of this foliation was done through a
computer assisted proof, and we also present the main steps of this proof. Finally, this
work explores the parameter space using ideas of Kneading theory.
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Dynamical systems are a subject widely studied in different scientific fields, such as
engineering, physics, biology, etc. We know from the course Equacions Diferencials that
for a two-dimensional dynamical system, defined by a planar vector field, the Poincaré-
Bendixson theorem states that every ω-limit set of the orbit of a point, provided the orbit
is in a compact set, is either a stationary point, a periodic orbit or a "graphic", that is, a set
of stationary points connected by homo/heteroclinic orbits between them. The Poincaré-
Bendixson theorem is based on the Jordan Curve Theorem and on properties of the natural
ordering of points in R. These ideas cannot be generalized to higher dimensional flows.
Indeed, for a three dimensional flow one can have other situations. In this work we shall
consider the Lorenz system of equations and we will see that, for suitable parameters, the
ω-limit of most of the orbits has a complicated structure.

The Lorenz system is one of the most iconic examples of nonlinear continuous dy-
namical systems. It was one of the first examples showing up dissipative chaos. Lorenz
equations define a simple quadratic polynomial vector field. But the associated dynamics
is far from being trivial. It took large effort to understand the mechanism leading to chaos.
There is a huge amount of papers, books and material available on the Lorenz system. We
have referred a short amount of references only, those that helped in this work or where
related data can be obtained.

Following previous ideas of Satzman, E. Lorenz approximated the motion of the atmo-
sphere using a 2-layer model where the fluid (a gas) is contained representing the upper
and lower part of the atmosphere. Different constant temperature is considered in the two
layers. This creates a external force on the fluid which causes the convection. If the gradi-
ent of temperature is large enough the convection becomes turbulent. This is the regime
he was interested in. To be able to perform simulations, he reduced the PDE equations to a
simple system of 3 differential equations. Although this simplification might be too rough
to describe the actual motion of the atmosphere, he investigated the reduced system and
show that most orbits have sensitivity with respect to initial conditions, which is an im-
portant ingredient for having chaos in the system. Concretely, after several simplifications,
E. Lorenz deduced the so-called Lorenz equations in 1963, [9],

ẋ = σ(y− x),
ẏ = ρx− y− xz,
ż = −βz + xy,

where the parameters σ, β and ρ represent magnitudes describing the atmosphere prop-
erties. Concretely, σ is the so-called Prandtl coefficient, ρ refers to the Rayleigh coefficient
and β is an scaling (aspect-ratio) coefficient. These are typical quantities to describe the
properties of fluids in general.

For the classical parameters σ = 10, β = 8/3 and ρ = 28, E. Lorenz observed a stable
chaotic attractor. However, all his considerations where based on intuitive ideas but far
from being rigorous. It took several years to formalize what he observed and prove the
existence of the attractor. Several geometrical considerations and analytical approaches
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where developed to this end. Furthermore, the last step required a computer assisted
proof. This was done by W. Tucker, [14], who proves the existence of the Lorenz attrac-
tors using rigorous theoretical concepts and the constructions of a numerical method with
precise error estimation.

The goal of this work is to review the geometrical mechanisms that leads to the for-
mation of the Lorenz attractor and to stablish the main features of its structure. To this
end, we shall combine theoretical tools with simple numerical illustrations to obtain some
insights. The theoretical tools include basics of dynamical systems theory (bifurcations,
stability, etc), local analysis and global geometrical tools. For the numerics we have im-
plemented a Taylor method with variable stepsize, see appendix A. Using our implemen-
tation we have explore both the phase space and the parameter space of the Lorenz system.

In chapter 1, we summarize some properties of the Lorenz system and basic concepts
of dynamical systems. Chapter 2 is devoted to describe the most important characteristics
of the phase space as a first step to understand the Lorenz system. In particular, we will
provide basic results concerning its stationary points, bifurcations, invariant manifolds
and homoclinic and periodic orbits.

In 1979 Guckenheimer and Williams, [6], introduced the geometric Lorenz model and
proved that it has a strange attractor. The behaviour showed in numerical simulations
of the Lorenz system, seems to satisfy the properties of the geometric Lorenz model. In
particular, a flow that satisfies these properties contains a strange attractor, called the ge-
ometric Lorenz attractor. This geometric model is described in Chapter 3.

The existence of the Lorenz attractor relies on the existence of a strong stable foliation.
We shall review the main ideas behind this assertion. Note that for concrete values of
the parameter, for example for classical ones, the existence of the foliation is stablished
through a computer assisted proof, [14]. The main steps of this proof will be discussed in
Chapter 4.

Finally, Chapter 5 contains a numerical exploration of the parameter space with the
goal to stablish parameter regions corresponding to Lorenz attractors with different topo-
logical properties.

During the development of this work, the Lorenz system has been studied using sev-
eral methods that are applicable to any dynamical system. We have combined analytic
techniques with numerical integration of the system. The main goal has been to determine
the main parts of the skeleton of the system, that organizes the phase space dynamics of
a dynamical system.

One of the main methodologies used to describe the topology of the phase space has
been the use of a Poincaré map to study the behaviour of the system. We have numerically
computed the iterates of Poincaré maps but we also have investigate them from analytical
point of view to understand the derivation of suitable return map models. With the same
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aim, the Kneading theory has been used to study the parameter space.

To sum up, this work shows important results of the Lorenz system obtained by using
different methods that we have studied and particularized for the Lorenz system. Be-
yond the particular knowledge of Lorenz system, this work has allowed me to extend my
knowledge about dynamical systems in general and how to systematically use different
techniques to study its dynamics.



Chapter 1

Introduction to Lorenz equations

In this chapter we provide a general view of the Lorenz equations. These are a three-
dimensional system of ordinary differential equations, which was derived from a model
of fluid convection. They are: 

ẋ = σ(y− x),
ẏ = ρx− y− xz,
ż = −βz + xy,

(1.1)

where (x, y, z) ∈ R3 and σ, β, ρ > 0, where σ is called the Prandtl coefficient , ρ is the
Rayleigh coefficient and β is called the aspect ratio coefficient.

E. D. Lorenz used in [9] σ = 10, β = 8
3 and ρ = 28. A solution of the Lorenz equations

for these parameters is shown in Fig. 1.1, where we illustrate the positive semiorbit of an
initial condition close to the origin. Concretely, the figure 1.1 shows the positive semiorbit
of a chosen initial point which tends to the so-called Lorenz attractor. From the initial
point the orbit spirals around one sheet of the attractor and then jump over the other
sheet, where it loops until it jumps to the original one and so on. All orbits of different
initial points, behaves qualitatively to the same Lorenz attractor even though they do not
have the same behaviour. Despite it seems that the Lorenz attractor lies in a 2-dimensional
manifold (the union of the two sheets), we will see that this is not true and has a kind of
fractal structure.

In this work we are interested in dynamical properties of Lorenz system. The Lorenz
equations define a dynamical system. We recall some basic concepts related to dynamical
systems theory.

Definition 1.1. Let T be a time set (in R or C for continuous time, or in Z for discrete
time). An evolutionary process with a phase space, extended to an open set Ω ⊂ T ×Rn

and a domain D ⊂ T ×Ω is a continuous application

Φ : D −→ Rn

(t; t0, x0) −→ Φ(t; t0, x0)

1
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Figure 1.1: Positive semiorbit of the point (0.1, 0.1, 0.1). The orbit tends to a complicated
structure called the Lorenz attractor. Left: We see that the orbit spirals in one part of the
attractor and eventually jumps to the other part. Right: We see that the two parts are thin
and the orbit seems to lie in a planar surface.

such that for all (t0, x0) ∈ Ω, t1 ∈ T:

1. t0 ∈ T and Φ(t0; t0, x0) = x0.

2. If t0, t1, t2 ∈ T, then Φ(t2; t1, Φ(t1; t0, x0)) = Φ(t2; t0, x0).

When an evolutionary process is associated to an ordinary differential equation ẋ =

F(t, x), under suitable regularity conditions of F, one has that Φ verifies:

3. D is an open set and, for all (t0, x0) ∈ Ω, I(t0, x0) = {t ∈ R|(t; t0, x0) ∈ D} is an open
interval. Here I(t0, x0) is the maximal interval of the solution of Cauchy problem
starting for t0 and x0.

4. Φ is derivative respect t, and the partial derivative ∂Φ
∂t : D −→ Rn is continuous.

Definition 1.2. A dynamical system is a tuple (T, M, Φt), where T is as above, M is a non-
empty manifold (the so-called phase space) and Φt = Φ(t; t0, x0) is an evolution operator
satisfying the uniparametric group properties 1. and 2. above.

Dynamical system with T = R are associated to ordinary differential equations, while
dynamical system with discrete time are associated to diffeomorphisms. In this work will
appear both continuous dynamical systems and discrete dynamical systems, which will
be obtained from continuous systems by the Poincaré map.
Note that in definition 1.1 we have consider that we can evaluate evolutionary processes
for all t. In our case, we have a dynamical system given by the ordinary differential
equations 1.1.
If M is a compact manifold, then the flow is defined for all t. However the Lorenz system
is defined in R3 so in general, the flow could not be defined for all t.
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We will see in section 1.2 that Lorenz equations are defined for all t ∈ R. In particular the
attractor is in a compact set, so in this case we will treat a dynamical system in a compact
set. Besides the Lorenz system contains a global attractor, in this chapter are given some
global properties of the flow associated to the Lorenz system.

Usually one studies the phase space of a dynamical system starting with the skeleton,
formed by stationary points, periodic orbits, invariant sets and its homoclinic and hetero-
clinic connections.

Definition 1.3. We define an invariant set S for a flow φt as a subset S ⊂ Rn such that

φt ∈ S for x ∈ S for all t ∈ R.

Definition 1.4. The ω-limit set of a point x ∈ Rn for φt is the set of accumulation points
of φt(x), when one considers t −→ ∞.
The α-limit set of x for φt is the set of accumulation points of φt, t −→ −∞.

We recall that if the orbit of x is bounded then the α and ω-limit sets are non-empty,
compact and connected invariant sets. In particular, if y = φt(x) then ω(x) = ω(y) and
α(x) = α(y). One speaks about α, ω-limit of orbits.

Definition 1.5. A homoclinic orbit to an invariant object x∗ is a non-trivial orbit with α

and ω-limit equal to x∗. A heteroclinic orbit (between two invariant objects x∗ and y∗) is
a orbit which tends towards x∗ in reverse time and towards y∗ in forwards time.

We first note that the Lorenz system has a symmetry L(x, y, z) = (−x,−y, z) for all values
of the parameters β, σ, and ρ. That is, the solutions are symmetrical with respect to the
z-axis. This follows from the following simple observation. If (x(t), y(t), z(t)) is a solution
then (−x(t),−y(t), z(t)) is also a solution of the equations because

(−x)′ = −σ(y− x) = σ((−y)− (−x)), (−y)′ = −x(ρ− z) + y = (−x)(ρ− z)− (−y).

Indeed the z-axis, x = y = 0, is invariant. The restricted dynamics to x = y = 0 is
ż = −βz. Hence, for β > 0, the origin is a fixed point of the system and the z-axis is an
attracting direction. That is, the z-axis is contained on the stable manifold of the origin for
all values of the parameters that we consider.

We shall see that the origin has a stable invariant manifold of dimension, at least, two (it
depends on ρ, it is 2-dimensional for ρ > 1 while for ρ < 1 the origin is an attracting
node and, hence, it has a 3-dimensional invariant manifold). Here we just note that all the
trajectories that starts on the z-axis, remain on it and tends to the origin.
In particular, for ρ = 1, the Lorenz system suffers a qualitative change of the topology of
the phase space. This variation is what it is called a bifurcation. The Lorenz equations
presents some bifurcations as a result of changing parameters ρ, σ and β.



4 Introduction to Lorenz equations

1.1 Bifurcations

It is useful to divide bifurcations into two principal classes: local and global bifurcations.

Local bifurcations are those which changes can be entirely analysed considering an arbi-
trarily small neighbourhood of the stationary point (or the periodic orbit or, in general, of
the invariant set considered). Therefore, a local bifurcation can be studied using a Taylor
approximation of the system around the invariant set.

In section 2.1 we will try to describe how the Lorenz attractor is created. To this end
we shall study the evolution of phase space with respect to parameters. The changes of
topology are related to bifurcations. In particular the following local bifurcations will be
of interest.

1. Pitchfork: Is a local bifurcation where the system transitions from one stationary
point to three stationary points. Pitchfork bifurcation is generic to problems that
have symmetry. One usually requires to have a line of stationary points for all
values of λ.

A Pitchfork bifurcation is called supercritical if the new stationary point exists for
values greater than the bifurcation value. Otherwise, the Pitchfork bifurcation is
called subcritical. As a simple model to illustrate a supercritical Pitchfork bifurcation
(which occurs for the Lorenz system for ρ = 1), we consider

ẋ = µx− x3. (1.2)

For µ < 0, there is one stable stationary point at x = 0. For µ > 0, the origin is an
unstable stationary point and there is two stable stationary points at x = ±√µ. This
situations is analogous for the Lorenz system.

2. Hopf: Is a local bifurcation in which a equilibrium point of focus type changes the
stability and, as a by product, a periodic orbit can be created/destroyed. A Hopf
bifurcation occurs when a pair of complex conjugate eigenvalues cross the imaginary
axis of the complex plane.

A Hopf bifurcation is called supercritical if a stable limit cycle surrounds an unstable
focus equilibrium point. Otherwise, if an unstable limit cycle surrounds a stable
focus point then the Hopf bifurcation is referred as subcritical. We are interested
in the subcritical case since, for the Lorenz system, a subcritical Hopf bifurcation
happens for ρ = ρh = 470/16 ≈ 24.76. As a simple model to illustrate this type of
bifurcations we consider the following planar system

ṙ = r(r2 + µ), θ̇ = 1,

which is expressed in polar coordinates (r, θ). For µ < 0, the origin is an stable focus
and there is an unstable limit cycle. This cycle collides with the origin when µ = 0
and disappears for µ > 0 when the origin becomes an unstable focus. The situation
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is analogous for the Lorenz system.

Global bifurcations are those which are not local, that is if they cannot be analysed in a
small neighbourhood of the invariant object. There is not a systematic way to study global
bifurcations. Some of them are associated to global changes on the topology of the phase
space, caused by homoclinic or heteroclinic explosions between invariant objects.

In the Lorenz system we can observe some global bifurcations, as for example T-points,
see section 5.2. We will not do a deep study of all of them. However, we will see in Section
2.3 that a global bifurcation plays a key role in the formation of the Lorenz attractor. In
such a bifurcation a limit cycle is born from a homoclinic connection.

1.2 Global attractor

To study a dynamical system, usually we analyse the behaviour of the solutions. In par-
ticular for the Lorenz system this requires some previous concepts to define the Lorenz
attractor. In the following we assume that a vector field ẋ = F(x), x ∈ Rn, F ∈ C1(Rn) is
given, and we denote by φt the associated flow.

Definition 1.6. The closed invariant set Λ is indecomposable if for every pair of points
x, y in Λ and ε > 0, there are x = x0, x1, · · · , xn−1, xn = y and t1, · · · , tn ≥ 1 such that the
distance from φt(xi−1) to xi is smaller than ε.

Definition 1.7. An attractor is an indecomposable closed invariant set Λ with the property
that, given ε > 0, there is a set U of positive Lebesgue measure in the ε-neighbourhood
of Λ such that x ∈ U implies that the ω-limit set of x is contained in Λ, and the forward
orbit of x is contained in U. We shall call an attractor strange if it contains a transversal
homoclinic orbit.

In fact, the Lorenz system contains a global attractor. This follows from the existence of
a trapping region which contains the Lorenz attractor. Thus the orbits do not diverge
to infinity and the system has global stability. To prove this fact we use the following
function:

V =
1
2
(x2 + y2 + (z− σ− ρ)2).

Note that

1. V : R3 −→ R is differentiable with respect to all the variables,

2. V ≥ 0 for all (x, y, z) ∈ R3,

3. dV
dt (x(t), y(t), z(t)) = xx′+ yy′+ (z− σ− ρ)z′ = −σx2− y2− βz2 + β(σ + ρ)z, where
(x(t), y(t), z(t)) is a solution of the Lorenz equations.
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Let S := {(x, y, z) ∈ R3 : dV(x,y,z)
dt ≥ 0} be a bounded region and let

E := {(x, y, z) ∈ R3 : σx2 + y2 + βz2 = β(σ + ρ)z} ⊂ S,

be a bounded ellipsoid. Then

x /∈ S =⇒ dV(x)
dt

< 0.

In fact, dV(x)
dt ≤ −δ for some small δ > 0.

Therefore V decreases strictly until (x(t), y(t), z(t)) goes into S with initial conditions
(x(0), y(0), z(0)) = (x, y, z).
As S is a non-empty, bounded and positive invariant set, every orbit that moves into S
will remain there as the system evolves. Thus S is a trapping region. Therefore the Lorenz
flow is defined for all t.



Chapter 2

Phase space structure

In this chapter is given a general view of the phase space structure of the Lorenz system.
As varying the value of the parameter ρ, the character of the stationary points and some
bifurcations are studied.
The sequence of bifurcations detailed in this chapter leads to the topological structure of
the Lorenz attractor.

2.1 Stationary points and bifurcations

Given ẋ = F(x) with x ∈ Rn, x∗ is a stationary point if F(x∗) = 0. Taking the Lorenz
equations we get the following stationary points:

ẋ = σ(y− x) = 0
ẏ = ρx− y− xz = 0
ż = −βz + xy = 0

⇐⇒


x = y

x(ρ− 1− z) = 0
x2 = βz

• If x = 0 then (0, 0, 0) is a stationary point.

• If z = ρ− 1, x = y = ±
√

β(ρ− 1) which implies that

C1,2 = (±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1) are stationary points (for ρ > 1).

Note that the origin is a stationary point for all values of σ, β and ρ. However, C1,2 only
exists for ρ > 1.

We will study now the character of the stationary points for different values of the pa-
rameter ρ. If the stationary point x∗ is hyperbolic, using Hartman-Grobman theorem we
can study the stability of x∗ looking at its linear stability, given by the eigenvalues of the
matrix

DF(x∗) =

 −σ σ 0
ρ− z −1 −x

y x −β

 .

We recall that x∗ is a hyperbolic point whenever Re(λ) 6= 0 for all λ in the spectrum of
DF(x∗).

7
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• For 0 < ρ < 1, the matrix DF((0, 0, 0)) has eigenvalues λ1 = −β and λ2,3 =
−σ−1±

√
σ2+(4ρ−2)σ+1

2 . One has Re(λi) < 0, i = 1, 2, 3, which implies that (0, 0, 0)
is a stable stationary point. The previous reasoning implies local stability, but one
has indeed that the origin is global attractor.

Consider the Lyapunov function (see def. B.1) V(x, y, z) = x2

σ + y2 + z2 ≥ 0, then

dV
dt

(x(t), y(t), z(t)) =
2xẋ

σ
+ 2yẏ + 2zż = 2((ρ + 1)xy− x2 − y2 − βz2) =

= −2
(

x− ρ + 1
2

y
)2
− 2

(
1−

(
ρ + 1

2

)
y
)

y2 − 2βz2.

As 0 < ρ < 1, 1−
(

ρ+1
2

)
> 0 and therefore dV

dt (x(t), y(t), z(t)) < 0.

So the Lyapunov function is strictly decreasing for all values (x(t), y(t), z(t)). There-
fore V(t) tend to 0 as t tend to infinity, so (x(t), y(t), z(t)) tend to the origin. Thus
the origin is a global attractor.

• At ρ = 1, one of the eigenvalues of DF(x∗) is equal to 0. In this case we are going to
see that a supercritical Pitchfork bifurcation occurs, see left Fig. 2.1.

Considering the Lorenz equations for ρ = 1, we have seen that DF(x∗) has eigen-
values λ1 = −β, λ2 = 0 and λ3 = −σ − 1. The eigenvectors are v1 = (0, 0, 1),
v2 = (1, 1, 0) and v3 = (σ,−1, 0) respectively. As λ2 = 0 the Lorenz system has a
central manifold, see [5]. To study the dynamics in the (1, 1, 0) direction, near to
ρ = 1, consider 

ẋ = σ(y− x),
ẏ = ρx− y− xz,
ż = −βz + xy,
ρ̇ = 0.

which has a 2-dimensional central manifold Wc. We introduce a new parameter
η = ρ− 1 ≈ 0 to study the dynamics around the origin, so the system is now

ẋ = σ(y− x),
ẏ = ηx + x− y− xz,
ż = −βz + xy,
η̇ = 0.

The Center Manifold Theorem states that Wc can be locally represented as a graph{
y = g1(x, η) = a10x + a01η + a20x2 + a11xη + a02η2 + O(3),
z = g2(x, η) = b10x + b01η + b20x2 + b11xη + b02η2 + O(3).

Setting this graph to be invariant, we will find the coefficients aij and bij and thus
we get {

y = x + 1
σ+1 xη − 1

β(σ+1) x3 − σ
(σ+1)3 xη2 + O(4),

z = 1
β x2 + 2σ

(σ+1)β
x2η + O(4).
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Therefore the dynamics on Wc is{
ẋ = σ(y− x) = σ( 1

σ+1 xη − 1
β(σ+1) x3 − σ

(σ+1)3 xη2) + O(4),

η̇ = 0.

Given η, then

ẋ =

(
σ

σ + 1
η − σ2

(σ + 1)3 η2
)

x− 1
β(σ + 1)

x3 + O(4).

Removing order four terms and scaling time, we obtain:

ẋ =

(
βση − σ2β

(σ + 1)2 η2
)

x− x3 = µx− x3.

In particular one has µ positive for η sufficiently small and that gives a Pitchfork
bifurcation, comparing with example 1.2.

The previous computations are analogous to the ones done in [5], but note that there
the authors adapt coordinates to the eigenvectors before representing the manifolds
as graphs.

• For ρ > 1, the origin is unstable. The matrix DF((0, 0, 0)), has three real eigenvalues:

λ1 = −β, λ2,3 =
−σ−1±

√
σ2+(4ρ−2)σ+1

2 .

λ2 is positive and, λ1 and λ3 are negative, so the origin is a saddle point. Note that
−λ1 < λ2 < −λ3.

The stable manifold theorem (see [5]) states that if all eigenvalues of DF(x∗) have
real part different from zero, then there exists Ws stable manifold, and Wu unsta-
ble manifold, such that its tangent spaces have the same dimensions as the stable
space Es, and as the unstable space Eu respectively, generated by the eigenvectors of
DF(x∗). Moreover Ws and Wu are tangent to Es and Eu at x∗. Therefore, the origin
has a one-dimensional unstable manifold and a two-dimensional stable manifold.

Recall that in general the stable manifold Ws (respectively, unstable manifold Wu)
of a compact invariant set S is the set of points x ∈ R3, such that the trajectories
through x tend towards S (respectively, towards S in reverse time). By Hartman-
Grobman theorem, the local dynamics around x∗ is topologically conjugated to the
dynamics of the linearized system ξ̇ = DF(x∗)ξ.

The eigenvalues of DF(C1,2) are the roots of the characteristic polynomial

P(λ) = λ3 + λ2(σ + β + 1) + λβ(σ + ρ) + 2σβ(ρ− 1) = 0.
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Since σ, β and ρ are positive parameters,

P′(λ) = 3λ2 + 2λ(σ + β + 1) + β(σ + ρ) > 0 ∀λ ≥ 0.

For λ = 0 we have P(0) > 0, and since it is a third degree polynomial equation and
its cubic coefficient is positive, we can conclude that all the roots are negative, and
at least one of them is real. We denote by λ1 < 0 this real eigenvalue.

For the other two roots, denoted λ2,3 they can be both real or a complex conjugate
pair λ2,3 = α± iγ. Numerically one checks that for ρ > ρc (ρc ≈ 1.3456), the roots of
P(λ) have γ 6= 0. Summarizing one has:

• For 0 < ρ < ρc, all three eigenvalues are real, so C1,2 are saddle points.

• For ρ > ρc, we have one real eigenvalue and a pair of complex eigenvalues. In this
case, C1,2 are stationary points of node-focus type.

Then to study the stability of C1,2, we have to consider the Re(λ2,3):

– For α < 0, all three eigenvalues have a negative real part, so C1,2 are stable
focus.

– For α > 0, C1,2 are saddle points. Again, by the stable manifold theorem C1,2
have a one-dimensional stable manifold and a two-dimensional unstable mani-
fold,

– At α = 0, we have a stability boundary, so we will study for which values of ρ,
that occurs.

P(iγ) = (iγ)3 + (iγ)2(σ + β + 1) + (iγ)β(σ + ρ) + 2σβ(ρ− 1) =

= (2βσ(ρ− 1)− (β + σ + 1)γ2) + i(β(σ + ρ)− γ2)γ = 0.

Solving the equations,{
2βσ(ρ− 1)− (β + σ + 1)γ2 = 0

β(σ + ρ)− γ2 = 0
=⇒ ρh =

σ(σ + β + 3)
σ− β− 1

.

Let σ = 10 and β = 8
3 , then, ρh = σ(σ+β+3)

σ−β−1 = 470
19 ≈ 24.7468. Then we have the

following:

∗ For ρ < ρh, C1,2 are stable. All three eigenvalues of DF(C1,2), have negative
real part.

∗ Consider ρ = ρh. Here the eigenvalues of DF(C1,2) are

λ1 = −(σ + β + 1), λ2,3 = ±i

√
2σ(σ + 1)
σ− β− 1

.
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As α = 0, one can numerically observe that ρh is the value for which the
pair of complex conjugate eigenvalues cross the imaginary axis. Therefore
a Hopf bifurcation occurs at the stationary points C1,2. Indeed a subcritical
bifurcation takes place. As it is been announced in section 1.1, this subcriti-
cal Hopf bifurcation destroyed a periodic orbit that arise from a homoclinic
orbit. More details about this will be done in section 2.3.

∗ For ρ > ρh, C1,2 are unstable. DF(C1,2) has one negative real eigenvalue
and a complex conjugate pair of eigenvalues with positive real part.

2.2 Invariant manifolds

We have seen that for ρ > 1, the origin has a one-dimensional unstable manifold and a
two-dimensional stable manifold, also called the Lorenz manifold.
In this section we will display the unstable invariant manifold for different values of ρ.
Also we will provide some comments on how the stable manifold could be approximated.

The existence of this manifold is given by the stable manifold theorem. So the unstable

manifold comes from the eigenvalue λ2 =
−σ−1+

√
σ2+(4ρ−2)σ+1

2 .

The corresponding eigenvector of λ2 is v2 =

(
1−σ+

√
σ2+(4ρ−2)σ+1

2ρ , 1, 0
)

.

As these points corresponds to the linear approximation of the unstable manifold, if we
take a value in this axis close to the origin we can claim that this point will be in the
unstable invariant manifold of (0, 0, 0). Thus we take as a initial condition the point
(x0, y0, z0) = v2

||v2||
· 10−4, and we plot in Fig. 2.1 its orbit using the Taylor method for

different values of ρ.
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Figure 2.1: We display the one-dimensional invariant manifold of the Lorenz system.
From left to right ρ = 1.2, 10 and 24.0579.

The Lorenz 2-dimensional manifold can be computed using the parametrization method
for invariant manifolds, which is explained with details in [7]. Note that this manifold
is extremely difficult to be computed accurately due to the different time-scales (the two
stable eigenvalues are of very different magnitude for the parameters we are interested).
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In the following we denote by ẋ = F(x) the Lorenz system of equations. The invariant
stable manifold of x∗ = (0, 0, 0) is denoted by Ws. Let VL be a 2-dimensional subspace
invariant for v̇ = DF(x∗)v. The aim is to find the 2-dimensional invariant manifold tan-
gent to VL in x∗, which is the Lorenz manifold. This leads to the so-called "invariance
equation". The internal dynamics on Ws is conjugated to the linear dynamics that the lin-
earized equations at x∗ have on the linear 2-dimensional stable manifold. This is because
the fixed point is a saddle (in particular, hyperbolic).

More concretely, we look for a function W such that (x, y, z) = W(s1, s2), with W(0, 0) =
x∗. We require the internal dynamics to be given by ṡ = f (s) = (λ1s1, λ3s2), where
s = (s1, s2). Thus we get the following Invariance Equation:

F(W(s)) = DW(s) f (s). (2.1)

Then we consider the Taylor expansion of W,

W(s) = ∑
k≥1

Wk(s),

where Wk are homogeneous polynomials of degree k. The basic idea is to truncate the
series representation to a suitable order so that one obtains a good representation of the
local invariant manifold.

To solve the Invariance Equation 2.1 one can use an iterative procedure. The values of
W1(s) are already known (they are the components of the eigenvectors associated to the
linearized system at the origin, normalized in a suitable way). For each k ≥ 2, the goal is
to compute Wk(s) assuming that we have already computed Wi(s) for all i < k.

Following this method we give the second order approximation of W(s), that is, we solve
the invariance equation up to k = 2. For concreteness we consider the classical parameters
σ = 10, β = 8/3 and ρ = 28. Since W(0, 0) = (0, 0, 0) the Taylor expansion of second order
is given by

W(s1, s2) = (x(s1, s2), y(s1, s2), z(s1, s2)), (2.2)

where
x(s1, s2) = a10s1 + a01s2 + a11s1s2 + a20s2

1 + a02s2
2 + O(3),

y(s1, s2) = b10s1 + b01s2 + b11s1s2 + b20s2
1 + b02s2

2 + O(3),
z(s1, s2) = c10s1 + c01s2 + c11s1s2 + c20s2

1 + c02s2
2 + O(3).

The coefficients a10, a01, b10, b01, c10 and c01 are already known since the values of W1
can be considered to be the components of the normalized eigenvectors associated to
the linearized system at the origin. That is, a10 ≈ −0.6148, a01 = 0, b10 ≈ 0.7886, b01 = 0,
c10 = 0 and c01 = 1. Applying the Invariance Equation 2.1, we can compute the coefficients
a20, a02, a11, b20, b02, b11 and c20, c02, c11. The computations reduce to solve some linear
systems. For example, by substituting 2.2 into the invariance equation and collecting terms
in s2

1, we are reduced to solve the linear system Ax = b, where A = DF(0, 0, 0)− 2λ3 I and
b = (0, 0, a10b10). Similar systems are obtained when collecting terms in s1s2 and s2

2.Thus
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Figure 2.2: Idea of the parametrization W(s) of a one-dimensional stable invariant mani-
fold.

we get

W(s1, s2) = (−0.6148s1 + 0.0617s1s2, 0.7886s1 − 0.0957s1s2, s2 + 0.0112s2
1) +O(3).

Assume that the Taylor series of W(s) has been computed up to a given order. One can
determine the maximum value of ‖s‖, such that the Invariance Equation is satisfied for
a given error. This determines a fundamental domain (of radius s∗), where the mani-
folds are accurately represented by the series. One can see in Fig. 2.2 a sketch for a
one-dimensional manifold, with a fundamental interval (−s∗, s∗). In the case of the two-
dimensional manifold W, the fundamental domain is a disk.

After determining a fundamental domain where the approximation given by the trunca-
tion of the Taylor expansion is accurate, the manifold is globalized from this fundamental
domain following an strategy based on numerical integration backward in time that al-
lows to recover the shape of the Lorenz manifold. Details can be found in [7].

2.3 Homoclinic orbit and periodic orbits

An analytic proof of the existence of the homoclinic orbit was done by C. Sparrow in [13].
As this proof is not object of this work, all the arguments done in this section will be based
on the behaviour of the orbits.
The heuristic justification given below based on the behaviour of the orbits for different
values of the parameter ρ leads to the existence of the homoclinic orbit and the periodic
orbits because of the strong stable foliation (see Chapter 4). This is true even though the
Lorenz attractor is not contained in a 2-dimensional manifold as its Hausdorff dimension
denotes (its Hausdorff dimension is approximately equal to 2.06, [11]).

We have seen that for ρ > 1, there’s a two-dimensional stable manifold of the origin
Ws((0, 0, 0)), see section 2.2. This stable manifold divides R3 in two sides. For ρ values
close to 1, the trajectories that starts at one side tend to C1, and the ones that starts at the
other side tend to C2. The trajectories that starts at the stable manifold of the origin tend
to the origin.
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Figure 2.3: From left to right we display the right branch of the one dimensional invariant
manifold for ρ = 13, 13.926 and 15. The centre plot corresponds (roughly) to the value for
which the homoclinic connexion is expected. Accordingly in the left plot, the invariant
manifolds spirals around C1 and in the right plot it spirals around C2. By symmetry the
left branch does the same.

For a value of the parameter ρ (ρ′ ≈ 13.926), there’s a change on the behaviour of the
orbits. For ρ < ρ′, the spirals formed by the trajectory that starts at the unstable manifold
of the origin grow larger and larger around C1 or C2 respectively (Fig. 2.3 Left). For ρ > ρ′,
the trajectories cross and they are attracted by the other stationary point (Fig. 2.3 Right).
For ρ = ρ′, the trajectories that starts at the unstable manifold of the origin, tend to the
stable manifold of the origin, so they tend for backward and forward time to the origin.
Therefore there’s an homoclinic orbit associated to the stationary point (0, 0, 0) (Fig. 2.3
Center). At this parameter a limit cycle is born through a mechanism that we represent,
for a planar vector field, in Fig. 2.4. This is a consequence of the Poincaré-Bendixson
theorem. The same situation happens for the Lorenz system, see section 2.1.

Figure 2.4: Sketch of the birth of an repelling limit cycle from a homoclinic loop to a saddle
stationary point.

Now we will study periodic orbits for ρ > ρ′. There exist different techniques to compute
numerically approximations of the periodic orbits but to use these techniques, a good
approximation of the position and the period of an orbit is needed.
As the value of ρ decreases towards ρ′, the period of the orbit increases and gets closer to
the origin. This fact suggests that the orbit comes from the homoclinic explosion at ρ′.
For values of ρ < ρh the period of the orbit is quite small. We have seen that for ρ = ρh a
subcritical Hopf bifurcation occurs, then, as ρ approaches to that value, the periodic orbit
gets smaller and it tends to a stationary point.



Chapter 3

Geometric model

After seeing some properties of the Lorenz equations, and some numerical results, J. Guck-
enheimer and R. F. Williams introduced in [6] the so-called geometric Lorenz attractor, as
a model to explain the behaviour of the solutions of the Lorenz equations. The hardest
part of those results is to check that the geometric model indeed corresponds to the Lorenz
attractor. This was done by W. Tucker in the computer assisted proof. The main ideas of
Tucker’s approach will be discussed in the following chapter.

3.1 The derivation of the model differential equations

The geometric Lorenz model is a return map model. The return map is obtained as the
composition of two maps. One of the map describes the local dynamics near the saddle
at (0, 0, 0). This local passage can be approximated by the linear flow. The second map is
a global map that reinjects the dynamics. See Fig. 3.1 for a sketch of the construction of
the return map, the two maps are indicate by the red and the blue arrows, respectively.
First, we derive the local map using the linearized system around the origin. As (0, 0, 0)
is a hyperbolic singularity, the Lorenz system is, locally, topologically equivalent to the
linearized system around (0, 0, 0). We will construct a topological 3-cell T, described in
terms of linear differential equations:

Figure 3.1: Sketch of the maps involved in the geometric Lorenz model.

15
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
ẋ = λ2x,
ẏ = λ3y,
ż = λ1z,

where we assume 0 < −λ1 < λ2 < −λ3.

Let Σ = {(x, y, 1) : |x| ≤ 1/2, |y| ≤ 1/2}. Σ will be considered to be the top square of
the 3-cell T. Assume that Σ is a transverse section to the flow, so that every trajectory
eventually crosses Σ. Σ is what we call a Poincaré section. In particular, there is an open
set U ∈ R3, with (x0, y0, z0) ∈ Σ such that for all (x, y, z) ∈ U, there exists a τ(x, y, z) such
that ϕ(τ(x, y, z), (x, y, z)) ∈ Σ.

Solving this linear system with initial conditions (x0, y0, 1), we get

x = x0eλ2t; y = y0eλ3t; z = eλ1t.

The solution of the linear system starting at points in Σ pass close the saddle point at
the origin and they follow one of the two branches of the unstable 1-dimensional linear
manifold. Those points with x0 > 0 (resp. x0 < 0), after the passage close to the origin,
leave following the right (resp. the left) branch of Wu(0, 0, 0). The singularity at zero
is responsible for an infinite "flight" time near the saddle (points with x0 = 0 are in the
2-dimensional Ws(0, 0, 0)). If we look for points in Σ that leave the following the right (or
the left) branch of Wu(0, 0, 0), they form a triangle when crossing x = 1 (resp. x = −1).
Let x0 > 0 and consider the right "triangle" of T taken in the x = 1 plane. So the first time
that the orbit intersects that plane we get the point:

x = 1, y = y0x−λ3/λ2
0 , z = x−λ1/λ2

0 .

Now we will discuss on the global map that describes how the flux maps this "triangle"
into a subset of the top square Σ of T. In this way, we define a Poincaré map F : Σ −→ Σ.
Following [6] we put some assumptions on this map. Concretely, we assume that F is
defined as F(x, y) = ( f (x), H(x, y)) where{

H(x, y) > 1/4 x > 0
H(x, y) < −1/4 x < 0

and where f : I −→ I, I = [−1/2, 1/2], satisfies

1. f (0+) = −1/2

2. f (0−) = 1/2

3. f ′(x) >
√

2 for −1/2 ≤ x ≤ 1/2

4. −1/2 < f (x) < 1/2 for −1/2 ≤ x ≤ 1/2.

Note that f ′(x) >
√

2 implies that f is locally eventually onto. See [6].

Definition 3.1. The map f : I −→ I is locally eventually onto if for any open set J ⊂ I
there exists k ≥ 0 such that f k(I) contains (0, 1).
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This means that if J ⊂ [−1/2, 1/2] is any subinterval, then there is an k > 0 such that
f k(J) = [−1/2, 1/2]. Hence we have chosen −1/2 ≤ x0, y0 ≤ 1/2 to simplify our differ-
ential equations.

3.2 One-dimensional analysis

In [16], the Lorenz attractor is described as the inverse limit of a semiflow on a two-
dimensional smooth branched manifold. Note that this could not be equivalent to the
Lorenz attractor obtained in Lorenz equations. To differentiate them we refer as "geo-
metrical Lorenz attractor" the attractor of the Guckenheimer-Williams model. The return
map of this semiflow is a discontinuous function f : I −→ I which satisfies the following
properties:

1. f is locally eventually onto.

2. f has a single discontinuity c and is strictly increasing on [0, c) and (c, 1].

3. f (c−) = 1, f (c+) = 0 for f (0) < c < f (1).

4. f ′(x) −→ ∞ as x −→ c.

The required properties are inspired in what one observe by numerical computations of
the Poincaré map. We saw the numerical results un Fig. 3.2. We have chosen points in
Σ ∩ {x = y} between the two fixed points C1,2, and we have computed the first return to
Σ. Then, we display the x coordinate of the image point versus the x coordinate of the
initial point. In plot we display different values of ρ, before and after the creation of the
Lorenz attractor. The central plot corresponds to ρ ≈ ρ′, for which one has a homoclinic
orbit. At the exact value ρ′ one should have that the two pieces of the image attach to the
origin.
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Figure 3.2: Numerical approximation of the Lorenz return map, for ρ = 10, 13.926 and 28,
from left to right.

To study the dynamics of f , we will use the Kneading invariant of f which, in particular,
gives some information about periodic points.
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Define a map K : I −→ Z[t] given by K(x) = ∑∞
i=0 Ki(x)ti where Ki(x) = K0( f i(x)) and

K0(x) =


1 if x > c
0 if x = c
−1 if x < c

Given a point x ∈ I, K(x) is called the Kneading sequence of x and describes the behaviour
of an orbit near the attractor.

We shall compute a truncation of the Kneading sequence from a numerical integration of
the Lorenz equations in Chapter 5. Here we use this object to describe the dynamics of
the geometric Lorenz attractor of Guckenheimer-Williams model.

With a metric in Z[t], for example, with the metric induced by the distance

d

(
∞

∑
i=0

θiti,
∞

∑
i=0

θ′i t
i

)
=

∞

∑
i=0
|θi − θ′i |2−i,

there exist limy−→x+ K(y) = K(x+) and limy−→x− K(y) = K(x−), and we call (K+, K−) =
(K(c+), K(c−)) the Kneading invariant of f .

D. Rand in [12] proves that there is a one-to-one map between a point x ∈ I and a formal
power series θ = ∑∞

i=0 θiti with θi ∈ {−1, 0, 1} if θ is (K+, K−)-admissible. We say that θ is
(K+, K−)-admissible if for all n ≥ 0 satisfies

1. K+ − 1 < ∑∞
i=n θiti−n+1 < K− + 1 and,

2. either ∑∞
i=n θiti = 0, K− > ∑∞

i=n θiti−n or ∑∞
i=n θiti−n > K+.

As a consequence, a θ periodic (K+, K−)-admissible power series corresponds to a peri-
odic point of f with (K+, K−) kneading invariant of f . In particular, since the Lorenz
system has a symmetry, one has that K+ = −K−.

Then, if θ is a formal power series which satisfies∣∣∣∣∣ ∞

∑
i=n

θiti−n

∣∣∣∣∣ > K+ or
∞

∑
i=n

θiti = 0, (3.1)

also satisfies conditions 1. and 2. and hence θ is (K+, K−)-admissible.

Summarizing, the map x 7−→ K(x) induces a one-to-one map between the periodic points
of f and a periodic θ = ∑∞

i=0 θiti with θi ∈ {−1, 0, 1} which satisfy 3.1 for all n ≥ 0.

One can also prove using Kneading invariant that for ∂ f
∂x >

√
2, the periodic points of f

are dense in I, and that periodic points determine K+ and K−, see [12].
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One of the properties of a one-dimensional chaos is that the set of periodic orbits is dense,
[4]. In particular, we will see that for the tent map in section 4.5, that will allow us to
deduce that the strange attractor is chaotic for classical parameters σ = 10, β = 8/3 and
ρ = 28.

3.3 Recovering the Geometric Lorenz attractor

We have seen how to pass from a 3-dimensional flow defined by the Lorenz equations to
a 2-dimensional Poincaré map P : Σ −→ Σ, and then to a 1-dimensional map f : I −→ I.
This process is reversible, so we will study now how to recover the geometric Lorenz at-
tractor from the attractor of the Poincaré map. In the next chapter we shall discuss how to
recover the Lorenz attractor in Lorenz equations from the Guckenheimer-Williams model.

We will make some assumptions about the flow. The first of these assumptions is that the
eigenvalues of the origin satisfy 0 < −λ1 < λ2 < −λ3, that is, that the linear dynamics
around the saddle is like the one that we have in Lorenz equations. The second assump-
tion is that there exist a family F of leaves in Σ such that F is invariant under the return
map F. In the next chapter we shall discuss details of this foliation (see Definition 4.2 for
a definition of foliation and the smoothness required). That is, if γ ∈ F then F is defined
in γ and F(γ) ∈ F . The family F is part of a strong stable foliation for the flux defined in
a neighbourhood of the attractor. Also we assume that all points of Σ\{x = 0} return to
Σ and the return map F is sufficiently expanding in the transverse direction to the leaves
of F . Finally, we assume that the flux is symmetric with respect to a rotation around the
z-axis.

Note that all of these hypothesis are satisfied by the Lorenz equations for σ = 10, β = 8/3
and ρ = 28. The second assumption was proved by W. Tucker in [14] and the first and last
assumptions have been already seen in this work.

Analytically, these assumptions can be rewritten using a system of coordinates (x, y) on
Σ, such that F has the following properties:

1. The leaves of F are given by x equals a constant, with −1/2 ≤ x ≤ 1/2.

2. There exist functions f and g such that F(x, y) = ( f (x), g(x, y)) for x 6= 0 and such
that F(−x,−y) = −F(x, y).

3. f ′(x) >
√

2 for all x 6= 0 and limx−→0 f ′(x) = ∞.

4. ∂g
∂y (x, y) < δ < 1 for all x 6= 0 and limx−→0

∂g
∂y (x, y) = 0 independently of y.

Note that F is not defined for x = 0 and as conditions 3. and 4. are satisfied, there exist
a hyperbolic structure, defined on the invariant set (the attractor) of the system. Let us
recall what is referred as hyperbolic structure, see [2] for further details.
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Definition 3.2. Let Λ be an invariant set for the discrete dynamical system defined by
F : Rn −→ Rn. A hyperbolic structure for Λ is a continuous invariant direct sum decom-
position TΛR

n = Eu
Λ ⊕ Es

Λ, with the property that there are constants C > 0, 0 < λ < 1,
and k > 0 such that:

• if v ∈ Eu
x , then |DF−k(x)v| ≤ Cλk|v|;

• if v ∈ Es
x, then |DFk(x)v| ≤ Cλk|v|.

Moreover, only a countable union of vertical leaves in Σ have trajectories that ends on
x = 0, while all the other trajectories remain inside Σ. Therefore, any invariant set of F
will have a suitable defined hyperbolic structure and be attracting.

Let r± and t± such that limx−→0− F(x, y) = (r+, t+) and limx−→0+ F(x, y) = (r−, t−). Due
to the assumption 4. on the behaviour of the derivatives of g(x, y) the limits exist. As the
condition 4. is satisfied, the set V = {(x, y) : r− ≤ x ≤ r+}\{x = 0} is mapped into itself.
In this way, with the exception of points in a zero measure set, all points of Σ have orbits
that eventually enter in V and then remain there when F is iterated. So V is a positive
invariant set for F.

Let A =
⋂

n≥0 Fn(V). As said, all points of V tend to A or have orbits that end on
{x = 0}. If we provide that the images of U are dense in A, we can assert that A is an
attractor for the map F since then A will contain a transitive orbit. This will guarantee the
indecomposable property required in the definition of attractor, see Definition 1.7.

Proposition 3.3. Let x ∈ A and consider a neighbourhood U ⊂ A of x. Then the {Fk(U), k ≥
0} ⊂ A is a dense set.

Proof. We show that exists an integer n with f n(J) = (r−, r+) for any interval J ⊂ (r−, r+)
and 0 /∈ J. Then we choose any points x ∈ A and we shall locate a point of U ⊂ A whose
orbit passes within distance ε > 0 of x, for a given ε. This proves that the image of U are
dense in A.

Since 0 /∈ T, f (J) is connected. If 0 /∈ f (J), we replace J by f (J) which satisfies l( f (J))
l(J) >

√
2, (l(J) is the length of the interval J) from property 3. and consider f 2(J).

If 0 ∈ f (J) then f 2(J) has two components and one of these components must be longer
that J because ( f 2)′ > 2 from property 3. and the chain rule. Then we replace I by the
longer component of f 2(J) and continue the argument.

Since J has a finite length, there exists an integer n with f n(J) = (r−, r+). Then we choose
any points x ∈ A.

For (x′, y1) and (x′, y2) ∈ Σ we obtain d(Fn(x′, y1), Fn(x′, y2)) < δn|y1 − y2| as a result of
apply properties 2. and 4.. And consequently, given any ε > 0 we can find m such that
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d(Fm(x′, y1), Fm(x′, y2)) < ε. Since x ∈ A there is a point (u, v) ∈ Σ such that Fm(u, v) = x.

Given n, w then there is a point (x′, y′) ∈ U such that Fn(x′, y′) = (u, w) and then
d(Fm(u, w), Fm(u, v)) = d(Fm+n(x′, y′), x) < ε.

To describe the topology of A we will consider now the orbits that tends to {x = 0} by
defining a new map G : V\{x = 0} −→ V, such that G(x, y) = ( f (x), hx(y)), where
hx(y) = αy − sign(x)β, 0 < α < 1/2 and β is chosen such that G is a one-to-one map.
Using the properties of f described above, we deduce that Gn(V) consists of a certain
number or rectangles. Moreover, Γ =

⋂
n≥0 Gn(V) will be an attractor of the points of V.

Topologically, A can be obtained from Γ, by pinching together vertically all the points
which lie in the image of a vertical segment {Gn(u, v) : u = r±}.

Note that since the preimages f−n(0) are dense in (r−, r+), by arbitrarily small adjust-
ments in the mapping f , we can arrange that the f orbits of the points r± ends at 0. Those
are the homoclinic orbits inside the attractor.

Finally, the geometric Lorenz attractor can be obtained from A. This construction is quite
involved and used the existence of the strong foliation of the geometrical model. We do
not provide further details here, but these can be found in the work of Gukenheimer and
Williams [6], [16] and [5].



Chapter 4

Strange attractor

Many authors have performed numerical simulations of the Lorenz equations, and pro-
vide evidence that the Lorenz system contains an attractor for ρ between 13.926 and 31.01.
On the other hand, to prove the existence of Lorenz attractor requires to prove that the
system admits a strong stable foliation transversal to the restriction of the vector field at
the points (in a neighbourhood) of the attractor.

In this chapter we start by considering a hyperbolic attractor. In this case, we will see that
there exists a transversal strong stable foliation. But the Lorenz attractor is not hyperbolic,
since it contains a singular point, so we will discuss the existence of such a foliation for
the Lorenz system.

In particular, for the classical parameters of Lorenz, σ = 10, β = 8/3 and ρ = 28, W. Tucker
[14], proved the existence of the strong stable foliation and, in turn, that the strange attrac-
tor of Lorenz system is equivalent to a geometrical Lorenz attractor. That is, it is equiva-
lent to the attractor obtained in a geometrical model as considered in the previous chapter.

Moreover, it will be shown that the Lorenz attractor is robust since, for small perturba-
tions, hyperbolicity guarantees the persistence of transversal strong stable foliation .

4.1 Hyperbolic attractors

Definition 4.1. An attractor A ∈ M of a dynamical system, defined by a smooth vector
field F with evolution operator φ, is called hyperbolic if for each p ∈ A there exists a split-
ting of the tangent space Tp(M) = Eu(p)⊕ Ec(p)⊕ Es(p) with the following properties:

1. The linear subsets Eu(p), Ec(p), and Es(p) depend continuously on p whereas their
dimensions are independent of p.

2. For any p ∈ A, the linear subspace Ec(p) is 1-dimensional and generated by F(p).

22
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3. The splitting is invariant under the derivative dφt in the sense that for each p ∈ A
and t ∈ R:

dφt(Eu(p)) = Eu(φt(p)), dφt(Ec(p)) = Ec(φt(p)), dφt(Es(p)) = Es(φt(p)).

4. The vectors v ∈ Eu(p) (respectively Es(p)), increase (respectively, decrease) exponen-
tially under application of dφt as a function of t, in the following sense. Constants
C ≥ 1 and λ > 1 exist, such that for all 0 < t ∈ R, p ∈ A, v ∈ Eu(p), and w ∈ Es(p),
we have:

|dφt(v)| ≥ C−1λt|v| and |dφt(w)| ≥ Cλ−t|w|

where | · | is the norm of tangent vectors.

One of the tools used to provide persistence of hyperbolic attractors is the existence of
a stable foliation. We will see first a general definition, based on [2], of a foliation of a
manifold V, which is a decomposition of V in lower-dimensional manifolds, called the
leaves of the foliation.

Definition 4.2. Let V be a m-dimensional C∞-manifold. A Cl-foliation of V by Ck h-
dimensional leaves is a map

F : v ∈ V 7−→ Fv,

where Fv is an injectively immersed submanifold of V containing v, in such a way that for
certain integers k, l, and h (h ≤ m) one has

1. If w ∈ Fv, then Fv = Fw.

2. For each v ∈ V the manifold Fv is of class Ck.

3. For any v ∈ V there exist C l-coordinates x = (x1, · · · , xm), defined on a neighbour-
hood Vv ∈ V of v, such that for any w ∈ Vv, the connected component of Fw

⋂
Vv,

has the form
{xh+1 = xh+1(w), · · · , xm = xm(w)}.

In the case of Lorenz equations, the existence of such a foliation will be done over V,
where V is the Poincaré section Σ = {z = ρ− 1} introduced in Section 3.1. One can define
a hyperbolic attractor for discrete dynamical systems. The formal definition is similar to
the Definition 1.2 above, but in this case the evolution operator is defined in terms of the
iterates of the map, and the splitting of the tangent space is of the form Eu(p) ⊕ Es(p)
(there is no central direction). The Lorenz attractor turns out to be hyperbolic for the
Poincaré map.

The hyperbolicity of the Lorenz attractor is a consequence of the existence of a strong
stable foliation. Here we introduce what we understand by foliation. We say that two
points v, w ∈ U belong to the same stable equivalence if

lim
t−→∞

ρ(Φt(v), Φt(w)) = 0.

where ρ is a distance function on M, and Φt is an evolution operator as in def. 1.2. For a
hyperbolic attractor A, it can be shown that the connected components of the equivalence
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classes of the stable equivalences are leaves of a foliation in a neighbourhood U ⊃ A, such
that Φt(U) ⊂ U for 0 < t ∈ T and

⋂
0<t∈T Φt(U) = A. This is called the stable foliation,

denoted by F s. Some properties of the stable foliation are described in the following
theorem, which can be found in [2].

Theorem 4.3. For a hyperbolic attractor A of a dynamical system with time maps φt and a
neighbourhood U ⊃ A, such that φt(U) ⊂ U for 0 < t ∈ T and

⋂
0<t∈T φt(U) = A. Then for

the stable foliation F s one has

1. The leaves of F s are manifolds of dimension equal to dimEs(p), p ∈ A, and of differentiabil-
ity equal to that of φt.

2. At each point p ∈ A one has that TpF s(p) = Es(p).

3. F s is of class C0.

4. For any p ∈ U and 0 < t ∈ T one has that φt(F s(p)) ⊂ F s(φt(p)) that is, the foliation is
invariant under the forward dynamics.

For Lorenz equation, the leaves of this foliation are 1-dimensional, and consequently F s

is C1.

Since the Lorenz equations has a singular point at (0, 0, 0), the Lorenz attractor is no
hyperbolic but it is a partially hyperbolic set for ODE’s system. More concretely, it is a
singularly hyperbolic attractor (it contains singularities which are hyperbolic points).

Definition 4.4. A compact invariant set Λ of X is partially hyperbolic if there exists a
continuous dominated splitting TΛ M = Es ⊕ Eu such that Eu contains the direction of the
flow and Es is one-dimensional and contracting. That is, they are constants 0 < λ < 1,
c > 0 and T > 0 such that

||dXt/Es|| · ||dX−t/Eu|| < cλT , ||dXt/Es|| ≤ cλT .

So in this case, we cannot claim that the stable foliation exists for the Lorenz attractor. But
for classical values of the parameters, it has been proved the existence of a strong stable
foliation [14], and therefore, that the Lorenz system contains a strange attractor.

Remark 4.5. In the literature one can find other types of strange attractors. There are
examples of uniformly hyperbolic attractors (e.g. the so-called Plykin attractor). Also there
are examples of non-hyperbolic (e.g. the Hénon attractor). In particular, these last type of
attractors are no robust with respect to changes in the parameters and/or perturbations.

4.2 Computer assisted proof

W. Tucker combines rigorous proofs with the construction of a numerical method to proof
the existence of a strong stable foliation in the Lorenz system. Using interval arithmetic
with directed rounding eliminates the problem of control rounding errors.
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He uses the classical Euler method applied to the Lorenz equations, so that he obtain an
interval solution that contains the right solution. The numerical method implemented
proves the following statements:

1. The return map F : Σ −→ Σ, Σ := {z = ρ − 1}, is well defined for the geometric
model. F is not defined on the line Γ = Σ ∩Ws(0).

2. There exists a compact subset S ⊂ Σ such that S\Γ is forward invariant under F.
That is F(S\Γ) ⊂ S.
S is a trapping region, see Section 1.2. This ensures that the flow has an attracting
set A with a large basin of attraction. In particular

Λ = A
⋂

Σ =
∞⋂

n=0
Fn(S)

is an attracting set for F.

3. On S, there exists a cone field C which is mapped strictly into itself by DF. A cone
field is a smooth map that associate a cone Cx to a given point x ∈ S. That means
DF(x)Cx ⊂ CF(x), for all x ∈ S. The computation of DF(x) requires the integration
of the variational equations.

4. The tangent vectors in C are eventually expanded under the action of DF: there
exists C > 0 and λ > 1 such that for all v ∈ Cx, x ∈ S, we have

|DFn(x)v| ≥ Cλn|v|, n ≥ 0.

These conditions imply the existence of a dense orbit in Λ, hence Λ is an attractor, see def-
inition 1.7. As a consequence of 3. and 4., we have that the return map F has an invariant
stable foliation. We refer to [10] for related comments.

W. Tucker constructs the set S by the finite union of rectangles Si, all included in the plane
Σ. He consider the Lorenz equations with the classical parameters σ = 10, β = 8

3 and
ρ = 28.

Due to the symmetry of the Lorenz equations, it is only needed to compute one of the
branches x > 0 or x < 0, to reduce the running time. Each rectangle Si is associated with
a constant cone, identified for two vectors and such that contains the tangent vectors of
the flow for all points in Si.

Initially the algorithm starts from the rectangles Si in the chosen branch and from the
associated cones located in the return plane Σ = {z = ρ− 1 = 27}.

To compute one iterate of the Poincare map a sequence of local Poincaré map Πk : Σ(k) −→
Σ(k+1) is computed (parallel shooting), where Σ(0) = Σ and the last one returns to Σ. The
plane Σ(k+1) is defined such that it contains the vector ej, j = 1, 2, 3, associated to the di-
rection of the component of maximum modulus of the vector field. In this way a pseudo-
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path between return planes Σ(k), which are either (x, y)-plane, (y, z)-plane or (x, z)-plane,
is constructed. Using the pseudo-path as an initial guess, one can prove the existence of a
true solution of the system.

The main idea is the following. While applying Π1 to an initial rectangle Si, here denoted
as R(0), we get a rectangle R(1) in the plane Σ(1). If Π1 is computed using interval arith-
metic one gets the rectangular hull of the largest image of Si. R(1) is then flowed to Σ(2)

and we obtain the rectangle R(2) in the plane Σ(2) and so on. Generally,

Πk(R(k)) ⊆ R(k+1).

If the rectangles obtained grow too much, then they are divided in smaller rectangles and,
for each rectangle, the local Poincaré map is applied. When computing the complete re-
turn map F, the initial rectangle Si is contained in the union of overlapping rectangles.

This algorithm is not applied near to the origin. In particular, it is applied outside of a
small cube centered at the origin. Inside this cube, Tucker uses a local map similar to the
on shown in Section 3, Fig. 3.1. However, instead of using a local map, a change of vari-
ables is applied to the Lorenz equations to get a normal form, to avoid difficulties on the
computation near to the origin. When an orbit arrives to the cube, the program computes
the image of the orbit when it comes out of the cube, and it continues with the algorithm.

This procedure ends after n0 steps such that R(n0) is contained in Σ. The result obtained is
a finite set of overlapping rectangles that contains Si. Therefore, we can rigorously check
that S verify F(S\Γ) ⊂ S. In this way, 1. and 2. were proved.

For quantifying the hyperbolic properties of the return map, each initial rectangle Si comes
with a cone C[αi ]

, where [αi] = [α−i , α+i ], α−i is the angle between the vector ui and the x-axis
and α+i is the angle between the vector vi and the x-axis. Both ui and vi are the tangent
vectors. Hence we want to compute the evolution of the tangent vectors associated to
each rectangle. In each step k, the two vectors located in Σ(k) are translated to Σ(k+1). An
enclosure cone C(k+1) of the image of C(k) over DΠk, is evaluated. It is also computed
using interval arithmetic with directed rounding.

If the enclosure of the cone C(k+1) gives new cones, associated to rectangles Sk, that are
not contained in S, then one verify if these cones are included in C(k). If not, we wide
the associated cone with Sk and recompute the information of Sk with the new cone.
Therefore, when the process ends, for all Si of S,

F(Si) ∩ Sk 6= 0 =⇒ DF(Si)C[αi ]
⊂ C[αi ]

.

That gives the proof of the existence of a forward invariant cone field, and therefore 3. is
proved.

Respect to the range of expansion of the cone field C, W. Tucker take the following con-
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siderations respect to the cones in each step:

(a) The vectors u(k+1) and v(k+1) have the maximum angle, which guarantee that the
resultant cone C(k+1) contains the images of the tangent vectors of the initial cone.

(b) For each step and each cone associated to a rectangle, the algorithm estimates the
expansion of the angle of the cone. When the algorithm ends and arrives again to Σ,
the estimate of the expansion of a cone associated to a rectangle is the product of the
estimations done in each step.

(c) And finally, an estimation E (k)i ≥ 1 of the expansion of the cones is the minimum of
the estimations computed for all the vectors of the cone associated to Si.

Therefore, any tangent vector v ∈ C[αi ]
following the orbit of an initial point x0 ∈ Si will

satisfy

|DFn(x0)v| ≥ |v|
n−1

∏
k=0
E (k)i .

W. Tucker proves that the expansion along orbits in S grows exponentially with the num-
ber of iterates and as consequence, 4. is verified.

To sum up, the flow of the Lorenz equations is uniformly volume-contracting and trans-
verse to S. An iterate of the return map F contracts area on S. This property together
with the existence of the forward invariant unstable cone field implies that F admits an
invariant stable foliation with C1 leaves, see definition 4.2.

4.3 Robustness

The existence of the stable foliation establishes the robustness of the Lorenz attractor in
the sense that it is stable for small perturbations. Concretely, the following theorem is
stated in [2].

Theorem 4.6. (Persistence of hyperbolic attractor)
Let (T, M, φt) a dynamical system with time-t maps φt, and let A be a hyperbolic attractor of this
system. Then there exists a neighbourhood U of the evolutionary process φ (in the C1-topology), and
a neighbourhood V ⊂ M of A, such that φt(V) ⊂ V for all 0 < t ∈ T and A =

⋂
0<t∈T φt(V),

and such that for all evolutionary process φ̃ ∈ U :

1. Ã =
⋂

0<t∈T φ̃t(V) is a hyperbolic attractor of φ̃.

2. There exists a homeomorphism h : A −→ Ã, that conjugates φ|A and φ̃|Ã.

In general, for parameters that are not in the neighbourhood U , we cannot claim that there
exists a stable foliation. For the Lorenz system the previous theorem guarantees the exis-
tence of an hyperbolic attractor for parameter values closed to the classical ones. Since the



28 Strange attractor

foliation is needed to be transverse to the attractor, some works have been recently done,
studying the values of ρ such that this transverse condition is lost. The most accurate
value is given by [3], which claim that for ρ > 31.01 the foliation is non-transverse to the
attractor.

4.4 Dynamics of Lorenz attractor

Once we have seen the existence of a strong stable foliation, in this section it will be
discussed how this foliation let us analyse the dynamics of the Lorenz system using a
one-dimensional function.

Suppose there exists F the C1 strong stable foliation of the Lorenz attractor with γx leaves
tangent to the directions of strongest conditions. This leaves satisfies the equivalence re-
lation x ∼ y if and only if γx = γy.

Then, given x ∈ R3, there exists a unique γx ∈ F such that x ∈ γx. Let Σ be the Poincaré
hyperplane. Consider F|Σ =

⋃
x∈Σ γx the restriction to Σ of the foliation. Then we can

define
f̃ : F|Σ −→ F|Σ

γ 7−→ f̃ (γ) = {γP(x), x ∈ γ}

where P(x) is the image of x by the Poincaré map.

As F|Σ is transversal to I = {y = z = 0, x ∈ [−r, r]} (r >
√

β(ρ− 1)), we can define
f : I −→ I, where f (x) ∈ Σ is the unique point such that γ f (x) = f̃ (γx).

Then, if this strong stable foliation exists, is transversal and contractile, the one dimen-
sional dynamics of f is equivalent to the dynamics of the Lorenz attractor.

All this arguments justify that the one dimensional dynamics of f is equivalent to the
dynamics of the Lorenz attractor if the strong stable foliations exists and is transversal
and contractile. We have seen in section 4.2 that this stable foliation exists for the classic
parameters of σ, β and ρ and for Σ = ρ− 1.

Since the Lorenz attractor is hyperbolic for the flow in R3\{(0, 0, 0)}, every Poincaré hy-
perplane Σ, that does not contain the singular point, has the same behaviour. Therefore
we study in the following section another relevant Poincaré map.

4.5 Tent map

To study the Lorenz system, E. Lorenz in [9] defined zn to be the nth local maximum
of z(t), and plotted zn+1 versus zn. This map corresponds to a Poincaré section Σ :=
{(x, y, z) ∈ R3 : ż = 0, z̈ < 0}. We plot in Figure 4.1 a Poincaré map P : Σ −→ Σ.
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Figure 4.1: Left, we the plot zn+1 versus zn. Right, we plot the Tent map

Based on these numerical studies, E. Lorenz observed that this map is similar to the so-
called tent map. Actually the Poincaré map is topologically equivalent to the tent map,
therefore some properties of the Lorenz system can be related to the properties of the tent
map, which are studied in this section.

The tent map T2 : I −→ I is an application in I = [0, 1] defined as

T2(x) = 1− |1− 2x|

Note that T2 is C1(I\{1/2}).

The Lyapunov exponent gives the rate of exponential divergence from two close initial
conditions. Let us recall what is referred as Lyapunov exponent.

Definition 4.7. Let f : I −→ I be a C1 function and x0 some initial condition, the Lyapunov
exponent is defined as

λ(x0) = log lim
n−→∞

n−1

∑
i=0

log
∣∣ f ′(xi)

∣∣ ,

where xi = f (i)(x0) are the points of orbit of x0.

Let x0 be some initial condition and consider the orbit of a nearby point x0 + δ0 where
δ0 is very small. Let δn be the separation in the two orbits after n iterates. If |λn| ≈
|δ0|enλ, then λ is the Lyapunov exponent. A positive Lyapunov exponent means that
orbits separate exponentially fast, which is sufficient to show that the system displays
sensitive dependence on initial conditions. The Lyapunov exponent of the tent map for
all x0 such that its orbit O(x0) is not eventually periodic can be easily computed. Observe
that x0 = 0 is a stationary point, and x0 = 1 or x0 = 1

2 are eventually stationary points.
We consider x0 6= 1

2 , therefore |T′2(x0)| = 2. Thus

λ(x0) = log 2.

As the Lyapunov exponent of the tent map is always positive, the tent map contains
chaotic orbits.
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Moreover, the tent map has periodic orbits of all periods. The plots on Fig. 4.2 shows that
T2 has exactly 2n periodic points of period n. Then the number of stationary points Fix(Tn

2 )

in Tn
2 is 2n. Particularly, the union of k− 1 stationary points Fix(Tn

2 ) is ∑k−1
n=1 2n = 2k − 2.

Therefore there exist a periodic orbit of minimal period k, for all k ≥ 0.
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Figure 4.2: Representation of the 2n periodic points of Tn
2 , for n = 1, 2 and 3.

Since the one dimensional dynamics of f , defined in Section 4.4, is equivalent to the
dynamics of the Lorenz attractor, we can conclude that the properties we have studied for
the tent map can be applied to the Lorenz system.
Indeed, the Lorenz system has a positive Lyapunov exponent, which means that the sys-
tem displays sensitive dependence on initial conditions. The maximal Lyapunov exponent
for the Lorenz system is known to be about 0.9056, see [15].



Chapter 5

Kneading theory

In this chapter we will study the topologically classification of the orbits in the Lorenz
equations using symbolic dynamics.

C. Sparrow introduced this concept in [13], but we will base this study in [1], where from
an approximation of the Kneading invariant value it can be shown which Lorenz attrac-
tors are topologically conjugated.

5.1 Kneading invariant

The Lorenz attractor undergoes a homoclinic bifurcation (See section 2.3) when the sep-
aratrices of the origin change the behaviour from the spirals around C1 and C2 to cross
over to the other stationary point.

The symmetry of the Lorenz equations, (x, y, z) −→ (−x,−y, z) define two sides of a sep-
aratix. The flux has an alternative sign in the x-axis that suggest the introduction of a
symbolic dynamic, {±1}-based alphabet to be employed for the symbolic description of
the separatrix.

The symbolic dynamics defined before has a feature that on one side, the orbit spirals
around the point C1 and on the other side, the orbit spirals around the point C2. We
assign the value +1 around C1, and −1 around C2 and then we can talk about the right
separatrix and left separatrix respectively.

Due to the symmetry of the Lorenz mapping xn+1 = T(xn) = Tn(x0) from the Lorenz
map T(x) = sign(x) · (−1 + β|x|α), forward iterates of the right separatrix O+, of the
discontinuity point are detected to generate a kneading sequence {kn(O+)} defined by
the following rule:

31
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kn(O+) =


+1, if Tn(O+) > 0,
−1, if Tn(O+) < 0,
0, if Tn(O+) = 0,

(5.1)

here Tn(O+) is the n-th iterate of the right separatrix O+ of the origin. The condition
Tn(O+) = 0 is interpreted as the homoclinic orbit.

A kneading invariant is a value that is intended to uniquely describe the complex dy-
namics of the system that admits a symbolic description using two symbols {±1}. In a
symmetric system with the Lorenz attractor, the kneading invariant is assigned to quantify
the symbolic description of either separatrix. Thus, it reflects quantitatively a qualitative
change in the separatrix behaviour, such as flip-flopping patterns, as the parameter of the
system is changed.
The kneading invariant for the separatrix is defined in the form as a power series:

P(q) =
∞

∑
n=0

knqn.

Setting q ∈ (0, 1) make the above series convergent.
The kneading invariant depends on parameters of Lorenz equations, hence two systems
of Lorenz equations can be compared and classifies as its value of kneading invariant.
Two systems with the Lorenz attractors are topologically conjugate when they have the
same kneading invariant.

5.2 Topologically equivalent systems

In this section we will see the Kneading invariant over to numerical studies in the Lorenz
equations, reproducing the work of R. Barrio in [1].
Up to here we have study the Lorenz system while the parameter ρ changes. Now, we
will vary ρ and σ to get the Kneading invariants.

In this computational study we will take the Lorenz equations with a fixed initial condi-
tion, and as the parameters ρ and σ are changed, its Kneading sequence and Kneading
invariant will be approximated.
We start by taking a specific range in the (ρ, σ)-space, for example [10, 150] for ρ and
[1, 80] for sigma, and we scan a grid of 1000 × 1000 points uniformly distributed over
these ranges. For each pair (ρ, σ), integrate the Lorenz equations, using a Taylor series
method, with initial conditions (x0, y0, z0) in the unstable manifold of the origin as in sec-
tion 2.2. During the integration, we identify and record the first 50 values of the Kneading
sequence {kn}50, and compute the partial kneading power series P50(q) = ∑50

n=0 knqn,
where q is set to be 0.5.

Hence we have defined a bi-parametric mapping (σ, ρ) −→ P50(q). We represent in Fig.
5.1 the Kneading-based color scan of the dynamics of the Lorenz equations mapped onto
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the (ρ, σ)-parameter plane. Each value of the Kneading invariant is assigned to a color of
a given palette colors. We use an adjusted logarithmic function applied to the Kneading
invariant to get a graphic representations as it is shown in Fig. 5.1.

Note that we are just taking in consideration the first 50 values, so we cannot guarantee
that two systems are topologically conjugated. We only have a numerical evidence that
they could be equivalent.

Figure 5.1: Numerical approximation of the Kneading invariant on the (ρ, σ), see text for
details

Based on this map, we can study which Lorenz attractors are topologically conjugated
since R. F. Williams proved in [16] that the kneading sequences are topological invariants.
In the following theorem, L denotes an open set of vector fields of R3 which, in particular,
contains all the vector fields generated by the Lorenz equations for parameters σ, β and
ρ for which there is a Lorenz-like attractor. In particular, for the classical parameters σ

and β, this range includes values of ρ between 13.926 and 31.01, which corresponds to the
homoclinic orbit and the loss of tangency as we have explained in sections 2.3 and 4.3.

Theorem 5.1. There is a positive number ∆, such that, if the attractors AX and AY, for X, Y ∈ L,
are homeomorphic via a homeomorphism within ∆ of the identity (C0-sense), the X and Y have the
same kneading sequences.

∆ depends on the parameters σ, β and ρ and delimits the size of the zone, around the
stationary point, where the homeomorphism is close to the identity.
Since there exists a homeomorphism between AX and AY, these attractors are said to be
topologically conjugated.
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Figure 5.2: Heteroclinic connections givin rise to T-point configurations. See text for
details on the parameters used.

In Fig. 5.1 we can see that a section of a solid color corresponds to a constant kneading
invariant (we have approximated the Kneading invariant by the 50 first values). By the
theorem for varies of parameters in the same color region, one expect that the Lorenz
attractor are topologically conjugated while a curve between two solid colors correspond
to a bifurcation. That is, different color sections actually prove that the kneading invariant
are different and hence this Lorenz attractors are not topologically equivalents.

Another important result we can get from the Kneading invariant and the map shown
in Fig. 5.1 is the detection of bifurcations within the Lorenz attractor. In particular we
can look for parameters having one-dimensional heteroclinic connexions between the ori-
gin and C1,2. These global configurations are referred as T-points [13], [1], [3]. The first
T-point is given by σ = 10.1673, β = 8/3 and ρ = 30.868, for which each branch of the
unstable manifold of the origin coincides with the branch of the stable manifold of C1 and
C2 as shown in the left Fig. 5.2. This parameters are related with the loss of transversality
of the strong foliation as it was shown in [1] and [3]. A second T-point which occurs
for σ = 11.8279, β = 8/3 and ρ = 85.0292, that is, for parameters located at the center
of the main spiral structure detected in Fig. 5.1. The corresponding heteroclinic orbit is
displayed in Fig. 5.2 right.

As a final conclusion, the Kneading plot shows us that there are several topological Lorenz
attractors and provides an approximation of the parameters for which the topological
changes (i.e. the bifurcations) occur.



Future work

In this work, we have focused on the study of different dynamical aspects of the Lorenz
system. We end this work referring to some aspects that have been left for the future due
to lack of time.

A good topic to go in depth would be the verification through numerical integration of
the foliation transversality. One can use a grid of points between the stationary points C1
and C2 and integrate the flow and the variational equations for each point. Firstly, one can
check the transversality of the foliation for the classical parameters σ = 10, β = 8/3 and
ρ = 28. From here one can verify the same condition for different parameters of ρ and
stablish some hypothesis over the parameter space related with the foliation transversality.

The computer assisted proof done by W. Tucker showed me a set of methodologies to
study dynamical systems. The usage of an algorithm that guarantees the accuracy of the
results, suggest to study other dynamical systems through a computer assisted proof.

The Kneading theory allow us to study the parameter space of the Lorenz system and
detect bifurcations within the Lorenz attractor. It could be interesting to analyse these
T-points and the bifurcations structure of the parameter space.
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Appendix A

Numerical integration

Taking the Lorenz equations 
ẋ = σ(y− x)
ẏ = ρx− y− xz
ż = −βz + xy

with a given initial conditions, we want to find a function x : [a, b] −→ Rm that gives an
approximation of the solution of the Cauchy problem.
Using Picard’s (existence and uniqueness) theorem we can claim that the solution exists
and is unique. So we can use Taylor’s method to approximate it. In the following we
briefly summarize this method and we give details on how it can be applied to the Lorenz
equations. We closely follow the paper by A. Jorba [8].

A.1 Taylor method

Suppose that we know x(t), y(t), z(t) for some t ∈ R, we want to compute x(t + h), y(t +
h), z(t + h), where h is an appropriate step, using Taylor series of order N.

x(t + h) = x(t) + x′(t)h + x′′(t)
h2

2
+ · · ·+ x(N) hN

N!
=

N

∑
k=0

x(k)
hk

k!

Considering x[k](t) = 1
k! x(k), where x[0](t) = x(t), then the Taylor series can be written as

x(t + h) =
N

∑
k=0

x[k]hk

In this case, x is a three component vector: x, y, z.

A.2 Automatic differentiation

Let’s see how to calculate x[k](t) for k ≥ 1:
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x[1](t) = x′(t) = σ(y[0] − x[0])
x[2](t) = 1

2 x′′(t) = σ
2 (y
′(t)− x′(t)) = σ

2 (y
[1] − x[1])

x[3](t) = 1
3! x(3)(t) = σ

3! (y
′′(t)− x′′(t)) = σ

3 (y
[2](t)− x[2](t))

...
x[k](t) = 1

k! x(k)(t) = σ
k! (y

(k−1) − x(k−1)) = σ
k (y

[k−1] − x[k−1])

Then we can find x[k](t) recursively from: x[0](t), · · · , x[k−1](t) i y[0](t), · · · , y[k−1](t).
In the same way, we will compute the automatic differentiation of y(t) and z(t).

x[k](t) = σ
k (y

[k−1] − x[k−1])

y[k](t) = 1
k (ρx[k−1](t)− y[k−1](t)− (xz)[k−1](t))

z[k](t) = 1
k (−βz[k−1](t) + (xy)[k−1](t))

So it’s only left to know how to calculate (xz)[k−1](t)):

Proposition A.1.

(x · y)[k](t) =
k

∑
j=0

x[j] · y[k−j].

For a detailed proof, see [8].

A.3 Step size control and degree

As we have seen, to apply Taylor’s method, we have to find the appropriate value hm for
every step of Taylor.

xm+1 = xm(tm + hm) =
N

∑
k=0

x[k]m · hk
m.

We describe how to find hm so that the error is small (below a prefixed value ε). So we
want to take a hm value small enough such that

||xm(tm+1)− xm+1|| ≤ ε,

where tm+1 = tm + hm, xm+1 = ∑N
k=0 x[k]m (tm)hk

m and ε the tolerance. Following [8] this can
be achieved by computing

ρ
(j)
m =

(
ε

||x[j]m ||∞

) 1
j

, 1 ≤ j ≤ p,

and then using the estimate hm = min{ρ(N−1)
m , ρ

(N)
m } for the step-size.
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We have implemented the Taylor method adapted to the Lorenz system following the
previous guidelines. All the figures showing quantitative data of this work have been
computed using our implementation.



Appendix B

Lyapunov function

While studying the character of stationary points, usually a Lyapunov functions is needed
to prove Lyapunov stability. In the case of Lorenz equations, a Lyapunov function is used
to proof that the origin is globally attractor for 0 < ρ < 1, see section 2.1. In this appendix
we briefly review the main ideas of Lyapunov stability.

Definition B.1. Let F : Rn −→ Rn be a flux. V : U ⊂ Rn −→ R is a Lyapunov function
for F centered at p ∈ U (where U is an open neighbourhood of p) if

1. V(x) > 0 for x ∈ U\{p},

2. V(p) = 0,

3. d
dt V(x(t)) = 〈∇V(x), F(x)〉 ≤ 0.

Note that F(p) = p is forced by this definition.
If in the third condition, d

dt V(x(t)) is strictly negative, we call V a strictly Lyapunov
function.

The existence of a Lyapunov function of a vector field, allow us to study the stability of a
stationary point of F. Because of the interest of this study, only the globally asymptotically
stability of Lyapunov will be explained.

Globally asymptotically stable
If the Lyapunov-candidate-function V is globally positive definite, radially unbounded
and the time derivative of the Lyapunov-candidate-function is globally negative definite:

V̇(x) < 0 ∀x ∈ Rn\{0},

then the equilibrium is proven to be globally asymptotically stable.
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