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Abstract
Background: Recent technological advances in DNA sequencing and genotyping have led to the
accumulation of a remarkable quantity of data on genetic polymorphisms. However, the
development of new statistical and computational tools for effective processing of these data has
not been equally as fast. In particular, Machine Learning literature is limited to relatively few papers
which are focused on the development and application of data mining methods for the analysis of
genetic variability. On the other hand, these papers apply to genetic data procedures which had
been developed for a different kind of analysis and do not take into account the peculiarities of
population genetics. The aim of our study was to define a new similarity measure, specifically
conceived for measuring the similarity between the genetic profiles of two groups of subjects (i.e.,
cases and controls) taking into account that genetic profiles are usually distributed in a population
group according to the Hardy Weinberg equilibrium.

Results: We set up a new kernel function consisting of a similarity measure between groups of
subjects genotyped for numerous genetic loci. This measure weighs different genetic profiles
according to the estimates of gene frequencies at Hardy-Weinberg equilibrium in the population.
We named this function the "Hardy-Weinberg kernel".

The effectiveness of the Hardy-Weinberg kernel was compared to the performance of the well
established linear kernel. We found that the Hardy-Weinberg kernel significantly outperformed the
linear kernel in a number of experiments where we used either simulated data or real data.
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Conclusion: The "Hardy-Weinberg kernel" reported here represents one of the first attempts at
incorporating genetic knowledge into the definition of a kernel function designed for the analysis
of genetic data. We show that the best performance of the "Hardy-Weinberg kernel" is observed
when rare genotypes have different frequencies in cases and controls. The ability to capture the
effect of rare genotypes on phenotypic traits might be a very important and useful feature, as most
of the current statistical tools loose most of their statistical power when rare genotypes are
involved in the susceptibility to the trait under study.

Background
Recent advances in DNA technology have led to the accu-
mulation of a remarkable quantity of data on genetic pol-
ymorphisms. Consequently, there has been a growing
interest in the possibility of carrying out studies for a vari-
ety of human complex traits, that is traits due to the vari-
ability of many genes, each contributing a minor or very
small effect. For instance, many studies have been devoted
to the analysis of the genetic components of cancer, cardi-
ovascular diseases, dementias, and aging. In particular,
the availability of ultra-high-volume genotyping plat-
forms at a manageable cost has permitted genome-wide
association studies where genetic profiles observed in
groups of affected subjects (cases) are compared to groups
of healthy subjects (controls) in order to identify multiple
low-penetrance variants involved in complex phenotypes
[1-5]. In fact, the number of genome-wide association
studies aimed to identify genetic variants involved in
complex phenotypes has recently increased exponentially
[6-11]. However, the development of new statistical and
computer based tools for the effective processing of the
large amount of data arising from these studies has not
evolved equally as fast (for a review see [12]).

Recently, kernel-based methods have attracted the atten-
tion of many researchers in the broad field of Knowledge
Discovery and Machine Learning methodologies. The
main aim of a kernel-based method is to devise a suitable
kernel function to encode a similarity among the entities
of the data set. In this framework many kernel-based
methods have been developed, e.g. kernel principal com-
ponent analysis [13], kernel logistic regression [14], and
kernel Fisher discriminant analysis [15]. More specifically,
kernel-based methods have become popular tools in the
Machine Learning community since the introduction of
Support Vector Machines (SVMs) during the early 1990s
[16].

SVM represent a set of data mining methods that, taking
advantage of a kernel function, are used to analyze large
datasets in order to perform classification, clustering, and
regression analysis [17]. For instance, they are widely used
to analyze very large sets of gene-expression data. How-
ever, different studies have shown that the performance of
a SVM classifier is strongly related to the similarity meas-

ure used in the classifier (kernel function) [16,17]. In spite
of their well known statistical power, to date Machine
Learning literature relies on relatively few papers which
focus on the development and application of data mining
methods specifically devised for the analysis of genetic
polymorphisms [18-23]. However, this field lacks the
development of specific measures that take into account
the main laws regulating the dynamics of population
genetics.

The aim of our study was to define a new similarity meas-
ure specifically conceived for incorporating the knowl-
edge of population genetics into the study of genetic
datasets obtained from high throughput analysis for asso-
ciation studies. The main feature of such measure is that
the similarity between groups of subjects typed for their
genetic profiles is weighed according to the estimates of
gene frequencies at Hardy-Weinberg equilibrium in the
population. The Hardy-Weinberg equilibrium represents
the main principle regulating population genetics. It states
that allele and genotype frequencies in a population are
constant – that is, they are in equilibrium- from genera-
tion to generation unless specific disturbing influences are
introduced. This allows the estimation of the expected fre-
quency of a genotype on the basis of allele frequencies
and vice versa. Thus, we named this kernel the "Hardy-
Weinberg kernel" (HWk). This kernel, estimates the simi-
larity between different genetic profiles based on the fre-
quency of each genotype in the general population.
Consequently, once embedded in a SVM classifier, HWk
allows to estimate the influence of each genotype on the
probability of it being part of a given group of subjects
(for instance a group of subjects with a given phenotype
or disease).

Methods
Data encoding
In the present study, a dataset is a table composed of n
rows, namely X1, X2,..., Xn, where Xi represents the genetic
profile of a single subject. The subjects typed for their
genetic profiles are subdivided into two different classes,
i.e. class +1 and -1, reflecting the presence or absence of
one specific phenotype (i.e. subjects belonging to class +1
are the "cases" and -1 are the "controls"). Each row Xi is
composed of m variables, SNP1, SNP2,..., SNPm, represent-
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ing the set of Single Nucleotide Polymorphisms (SNPs)
under study (see Table 1). Lastly, each variable SNPj can
assume one of three values, {A1A1, A1A2, A2A2}, each
value corresponding to one combination (i.e. genotype)
of the generic alleles A1 and A2 (A1A2 ∈ A2A1).

Since standard SVM classifiers cannot handle categorical
variables directly, SNPs data must be encoded in a numer-
ical format. A possible solution consists in constructing
three binary variables, SNPjk (k = 1, 2, 3), for each SNPj; in

this way each binary variable represents one of the three
possible genotypes of the relevant SNP. By encoding in
numerical format, each row Xi of the dataset will contain

3· m binary variables (Table 2); the generic element of the

row Xi will be indicated as , i.e.,  takes value 1 if

the ith genetic profile present the genotype k for the SNP j,
and value 0 otherwise (Table 2).

It should be noted that other methods exist for encoding
genetic profiles in numerical format, i.e. by introducing
different numbers of variables in the transformed dataset
[18,19,21,24]. The number of variables obtained is critical
for the choice of the methodology to be used, as it may
emphasize or overlook the dominant/recessive character-
istics of the alleles to be analyzed [20,22]. Even though
the selected code could turn out to be quite cumbersome,
such encoding preserves all the information harboured by
the original data. In addition, it is worth to note that the
adopted data encoding allows a simple and direct treat-
ment of missing values. Let us suppose that the informa-
tion about the genotype of the generic SNPj is missing, the
three binary variables SNPjk will all be assigned the value
0. This kind of representation adeguately models the
absence of information and does not require complex
data imputation methodologies.

Datasets
We used several datasets in order to demonstrate the
validity of our similarity measure. In particular, many
simulated datasets were generated in order to mimic data
collection as faithfully as possible in order to study phe-
notypes influenced by genetic factors.

In a second approach, we used a real data set obtained by
genotyping a group of subjects affected by Sporadic Color-
ectal Cancer (cases) and a comparabale number of
healthy subjects (controls). In all the cases, to avoid
biased estimates due to the phenotypic selection, we esti-
mated the allele frequencies from the control group (class
-1) of each dataset.

a. Simulated dataset
We assumed the existence of a generic population, where
one percent (1%) of subjects is affected by a specific phe-
notype. The subjects with the phenotype under study are
called cases, while the remaining subjects are controls. We
further assumed that all subjects of the population were
genotyped for 20 different SNPs. Among the 20 SNPs, 5
were assumed to be informative with respect to the phe-
notype, while the remaining were not influencing (they
can be considered as noise).

For all the informative SNPs, we assigned allele A1 with a
frequency p-1 for the control subjects. Thus, the other allele
A2 will be forced to have a frequency q-1 = 1 - p-1, while the
genotype frequencies will be determined by the Hardy-
Weinberg law Table 3.

For the cases, the A1 alleles of the informative SNPs had a
frequency equal to p1 = r·p-1 where r is a real number
greater than one. That is, the allele A1 of each informative
SNPs is more common in the subset of the population
affected by the phenotype than in the control subset. In
this way we created a relationship between the informa-
tive SNPs and the phenotype itself.

In order to vary the strength of the relationship between
the informative SNPs and the phenotype, we adopted dif-
ferent rules for the generation of r:

1. r values set to 1.5;

Xi
jk Xi

jk

Table 2: Numeric encoding of Table 1

ID SNP11
(A1A1)

SNP12
(A1A2)

SNP13
(A2A2)

SNP21
(A1A1)

SNP22
(A1A2)

SNP23
(A2A2)

Class

SAMPLE1 1 0 0 1 0 0 +1
SAMPLE2 0 0 1 0 1 0 -1
SAMPLE3 0 1 0 0 0 1 -1

Table 1: Example of a genetic dataset with two SNPs

ID SNP1 SNP2 Class

SAMPLE1 A1A1 A1A1 +1
SAMPLE2 A2A2 A1A2 -1
SAMPLE3 A1A2 A2A2 -1
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2. r values set to 2;

3. r values set to 2.5;

4. r values set to 3;

5. r values randomly chosen in the interval [1.5, 3].

In cases 1–4 the strength of the relationship grows, while
the fifth case ensures there is a variable strength of rela-
tionship for each informative SNP.

Regarding the 15 uninformative SNPs, we set that they are
not related to the presence of phenotype, by simply forc-
ing the genotypes frequencies at thirty three percent both
for the cases and for the controls.

At this point, we generated several populations by varying
the p-1 frequency and the rule for the setting of the r values.
In particular, the p-1 frequency ranged from 0.005 to 0.10
with a step of 0.005, and from 0.11 to 0.33 with a step of
0.01. It should be noted that the p-1 frequency is low, the
informative SNPs have a rare allele that influence the pres-
ence of the phenotype, while when the p-1 frequency is
high, the informative SNPs do not have any rare genotype.
In such a way we can test the validity of our kernel either
in situations where we expect a better performance (rare
alleles), or in those situations where the HWk and the lin-
ear kernel should not show significant differences.

In synthesis, for each value of r, we generated a total of 43
populations (corresponding to the 43 values of p-1); each
population was composed by 30000 subjects, and then
approximately 300 subjects were cases. From each popu-
lation we extracted only one dataset by selecting all the
cases and an equal number of randomly chosen controls.

Finally, we generated a last set of populations, by intro-
ducing a different kind of noise. The new noising SNPs
were characterized by having a rare allele, with the same
frequency for both cases and control. We replaced 5 of the
uninformative SNPs with 5 of the new noising SNPs. In
this way we wanted to test whether the HWk performance
is influenced by the presence of uninformative SNPs with
rare alleles. For this last set of populations, we used the

same values of p-1 frequency that we used for the other
populations, but only the fifth rule for the generation of r
values.

b. Dataset on sporadic colorectal cancer
To further test the function of our kernel function we used
a dataset which included genotypic data collected in the
context of a study aimed at investigating the role of
genetic variability of candidate genes in the susceptibility
to Sporadic Colorectal Cancer (SCC). A complete list of
the genes and of the polymorphisms can be requested
from VM.

Genotyping was carried out by APEX technology [25] on
a sample of unrelated subjects recruited from the Spanish
population which included a group of 377 patients
affected by SCC (cases) and a group of 329 healthy sub-
jects representing the general population (controls),
matched for age, sex and ethnicity with the cases. A total
of 160 informative SNPs linked to 66 genes were used.
These genes were involved in the metabolism of dietary
carcinogens and xenobiotics, in the DNA repair and in the
apoptotic process. Some of the data included in this data-
set have previously been analyzed and the results pub-
lished [26-29].

Results and discussion
The proposed HWk was obtained by modelling Hardy-
Weinberg law into a linear kernel function. In order to
introduce the HWk, we will first describe how the similar-
ity measure between two genetic profiles, X1 and X2 is
computed using the well known linear kernel function KL:

As we stated in the "Methods" section the indexes j and k
represent, respectively, the jth SNP with the kth genotype. It
is clear that the similarity measure computed by the linear
kernel merely consists in the sum of SNPs presenting the
same genotypes in both genetic profiles X1 and X2.

In order to model the Hardy-Weinberg law into a linear
kernel function, we introduced a weight wjk for each vari-
able SNPjk. The HWk KHW can now be defined as:

The weights wjk were defined in terms of genotypic fre-
quencies fjk as:

K X X X XL
jk jk

j k

1 2 1 2,
,

( ) = ⋅∑ (1)

K X X w X w X w X XHW jk
jk

jk
jk

j k

jk
jk jk

j k

1 2 1 2
2

1 2,
, ,

( ) = ⋅ ⋅ ⋅ = ( ) ⋅ ⋅∑ ∑
(2)

Table 3: Genotypic frequencies as determined by Hardy-
Weinberg law given two alleles A1 (with a frequency of p) and A2 

(with a frequency of q).

Genotype Frequency

A1A1 p2

A1A2 2 pq
A2A2 q2
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where fjk is defined according to the Hardy-Weinberg law
by the frequencies of the alleles it is made of.

The term  encodes the inverse relationship between fjk

and wjk; the term  is a regularization term that

normalizes the weights of the generic SNP j with respect to
its highest genotypic frequency. Consequently, wjk

assumes the highest values for rare genotypes and the
smallest values for common genotypes.

Experimentation protocol
The main objective of our experimentation protocol was
to demonstrate that the incorporation of previous data
derived from the Hardy-Weinberg law in a kernel function
provides sensible advantages.

In order to achieve this objective, we compared the per-
formance obtained using the HWk embedded in SVM
models to results obtainable using the well known linear
kernel.

We chose to compare the HWk with the linear kernel
because the first can be considered as an extension of the
latter. Thus, we attempted to measure the advantage of
employing the genotype frequencies calculated according
to Hardy-Weinberg equilibrium. Moreover, we had to
choose a class of classification function in order to test our
similarity measure, since kernel functions are exclusively
used embedded in classification/regression algorithms.
SVM models seemed to be the most suitable choice, given
their wide applicability.

A drawback of SVM algorithms is that SVM require the
choice of a regularization parameter, called C. This param-
eter can be thought as a lever for regulating the training
phase of SVM models: high C values force the SVM train-
ing algorithm to be more sensitive to the presence of out-
liers, while lower C values make SVM models more robust
but can fail in detecting the real shape of the data.
Machine Learning practitioners usually adopt the cross-
validation technique in order to determine the optimal
values of C. Cross-validation consists in splitting the data-
set in n folds and repetitevily hold out one fold while the
remaining ones are used to fit the model. The n models
are then tested on the respective hold – out fold. In this
way it is possible to obtain an almost unbiased estimation
of SVM model performances. However, cross-validation
performance estimation strongly depends on the dataset

splitting. Thus, we adopted a repeated cross-validation tech-
nique, by repeating the whole cross-validation procedure
multiple times and then averaging the results. Schemati-
cally, our experimentation protocol can be described as
follows:

1. Repeat n times:

a. Split the dataset D in k different folds.

b. For each C value:

i. Perform a whole cross-validation on the k dif-
ferent folds.

2. For each C value, average the n performance values.

3. Select the best values of C.

Please note that we average n cross-validated perform-
ances for each values of C, and then we selected the best C
value. Therefore our choice is far away more robust than
using a single cross-validation. The whole experimental
protocol was repeated once for each kernel function.

A key point of each model evaluation procedure is the
choice of an appropriate metric; for our experimentation
protocol we adopted the Area Under the Curve (AUC)
measure. AUC metric is a widely used performance metric
in the field of Machine Learning [30], since AUC exhibits
a number of advantages with respect to other simpler per-
formance measures, including independence from the
decision threshold, invariance with respect to a priori
class probabilities, and it gives low scores to both random
and "one class only" classifiers.

The protocol was applied to both the simulated and the
SCC datasets. However, the SCC dataset was treated with
some additional pre-processing steps. In fact, we prelimi-
narly eliminated the SNPs that did not comply to Hardy-
Weinberg equilibrium. Then, we further reduced the
number of variables of the real dataset, by applying an
univariate feature selection protocol. In particular, we
selected all the variables that were significatively corre-
lated to the class attribute from a χ2 test. Only the varia-
bles with p-values lower than a threshold T were selected.
We used three significance thresholds, namely 0.1, 0.15
and 0.2, and thus we constructed three reduced datasets
from the original one. The elimination of uncorrelated
features was necessary in order to eliminate possible
noise. Actually, a far more sophisticated feature selection
procedure could be employed, but we decided to use the
simple univariate selection procedure in order to main-
tain the focus of our experimentation on the differences
between the linear and the HWk.

w
f jk

fjk
k

jk= ⋅ ( )1
max

1
f jk

max
k jkf( )
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The experiments were run using a computer program
implemented in MATLAB; the script was interfaced with
the software package LIBSVM [31] for the training of the
SVM models. The code is freely available from http://bio
logia.unical.it/template.php?ID=106 or upon request
from the corresponding author.

Computational results
Figure 1 summarizes the results obtained on the simu-
lated datasets. Each figures refers to different rules for the
generation of the r parameter; the horizontal axis reports
the p-1 frequency, while the vertical axis reports the best
cross-validated AUC values obtained with HW and linear
kernels.

Figure 1 shows that the HWk always obtains greater or
equal AUC values than those obtained by the linear ker-
nel. The pattern followed by the results is independent of
the procedure for the generation of r; also the datasets
generated with a different type of noisy SNPs follow the
same behaviour of the other datasets.

We observed an evident linear trend in each figure: the
performances of both HW and linear kernels tend to
growth as p-1 increases. We can explain this trend by look-
ing at the odds ratio (OR) between cases and controls with
respect to a single informative SNP. This OR can be for-
mulated in terms of p-1, p1 and r:

In (3), as p-1 increases, the numerator decreases, but the
denominator diminishes faster, since r is greater than one.
Then the OR grows with p-1, and the SNP becomes more
informative.

Lastly, we noted that the performances of the HWk kernel
follow a characteristic trend also with respect to the C
parameter of the SVM classifier. In fact, we observed that
the best AUC values were always obtained with small C
values, while for higher C values the performances of the
HW and linear kernels tended to the same value.

The results using the SCC dataset confirm the characteris-
tics of the HWk already pointed out with the experiments
on simulated datasets. Figures 2a, 2b and 2c report the
results for the SCC dataset with a threshold T for the uni-
variate feature selection procedure of respectively 0.2,
0.15 and 0.10. The results for each repetition of the cross-
validation procedure are reported in Additional file 1,
Tables S1a S1b and S1c. We can observe that the perform-
ances of HWk are better for small values, while the two
kernels shows similar results with higher C values.

Conclusion
We set up a new kernel, the HWk, which is specific for
handling genetic profiles data and that performs better
than the linear kernel. It is worth noting that, the HWk
described here represents one of the first attempts aimed
at inserting specific-domain knowledge into the defini-
tion of a kernel function specifically devised for the anal-
ysis of SNPs in complex phenotypes. The results obtained
from the simulated data, as well as the results on the SCC
dataset, pointed out that the HWk always obtains better
performance than the linear kernel, especially with small
C values. This characteristic can be explained by noting
that the HWk essentially multiplies the variables corre-
sponding to rare genotypes for positive factors. In fact, by
multiplying a relevant dimension (i.e. a dimension that
gives a strong contribution to the separation of the two
classes) it is possible to obtain SVM models which are
more robust, because of a larger separation margin. A
wide separation margin ensures better generalization
capabilities, that is a higher probability of correctly classi-
fying new instances [32]. On the other hand, multiplying
an irrelevant feature leads to the same result of the
absence of stretching.

In other words, the performance of HWk is always favour-
able with respect to linear kernel, but such a difference in
performance is maximum when relatively rare genotypes
(about 10%) are crucial for distinguishing between cases

OR
p p

p p

r p p

p r p

r p
=

− −( )
− −( ) =

⋅ − − −( )
− − ⋅ −( ) =

⋅ − −( )
−

1 1 1

1 1 1

1 1 1

1 1 1

1 1
1 rr p⋅ −( )1

(3)

Results obtained on the simulated datasetsFigure 1
Results obtained on the simulated datasets. Each set of 
figures refers to different rules for the generation of the r 
parameter (r = 1.5 (a), r = 2.0 (b), r = 2.5 (c), r = 3.0 (d), r in 
[1.5–3.0] (e), r in [1.5–3.0] with "low frequency uninforma-
tive" SNPs (f)); the horizontal axis reports the frequency p of 
the allele A1 of the relevant SNP, while the vertical axis 
reports the best cross validated AUC values obtained with 
HW (black) and linear (red) kernels.
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and controls, that is to say they have a role in the suscep-
tibility to the trait analyzed. This is a very important and
useful feature, as most of the current statistical tools loose
most of their statistical power when rare genotypes are
involved in the susceptibility to the trait under study.
Thus, HWk may represent a valuable tool for the case-con-
trol studies carried out with high-throughput genotyping.
Finally, it might be worth noting that in most of the
human complex traits, the genetic component account for
10–50% of the individual risk. That is, in most cases the
possibility to estimate the individual risk on the basis of
genetic factors is quite low [33]. Thus, the set up of a sta-
tistical tool that consistently improves the probability of
correct classification of about 5% may represent an
important step forward in this field.
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Polymerase Chain Reaction; APEX: Arrayed Primer Exten-
sion; SCC: Sporadic Colorectal Cancer; HWk: Hardy-
Weinberg kernel; AUC: Area Under the Curve.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
VL and AM carried out all the computational experiments.
FDC, SL, VM provided the molecular data of the samples
included in the dataset. DC, GR and GP conceived the
study, and participated in its design and coordination.
The Ms was initially drafted by GP and then finalized with
VL, AM, FDC and GR. All the authors read and approved
the final manuscript.

Additional material

Acknowledgements
The work was supported by: grants of the University of Calabria to GP, to 
GR and to DC; a grant (protocollo 913) to CESIC; VL and FDC were sup-
ported by CESIC, in the frame of the grant "protocollo 913". AM was sup-
ported by a fellowship (assegno di ricerca) of the University of Calabria.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 6, 2009: European Molecular Biology Network (EMBnet) Confer-
ence 2008: 20th Anniversary Celebration. Leading applications and 
technologies in bioinformatics. The full contents of the supplement are 
available online at http://www.biomedcentral.com/1471-2105/10?issue=S6.

Additional file 1
The results for each repetition of the cross-validation procedure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S6-S24-S1.doc]

Mean values of the AUC performances computed on the five repeated cross-validations obtained using a SVM classifier with either HWk (black) and the linear kernel (red) with the SCC datasetFigure 2
Mean values of the AUC performances computed on 
the five repeated cross-validations obtained using a 
SVM classifier with either HWk (black) and the linear 
kernel (red) with the SCC dataset. The results refer to 
a threshold T for the univariate feature selection procedure 
of respectively 0.20 (a), 0.15 (b) and 0.10 (c).
Page 7 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-S6-S24-S1.doc
http://www.biomedcentral.com/1471-2105/10?issue=S6


BMC Bioinformatics 2009, 10(Suppl 6):S24 http://www.biomedcentral.com/1471-2105/10/S6/S24
References
1. Risch N, Merikangas K: The future of genetic studies of complex

human diseases.  Science 1996, 273:1516-1517.
2. Lander ES: The new genomics: Global views of biology.  Science

1996, 274:536-539.
3. Hirschhorn JN, Daly MJ: Genome-wide association studies for

common diseases and complex traits.  Nat Rev Genet 2005,
6:95-108.

4. Neale BM, Sham PC: The future of association studies: gene-
based analysis and replication.  Am J Hum Genet 2004,
75:353-362.

5. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA: Mapping com-
plex disease loci in whole-genome association studies.  Nature
2004, 429:446-452.

6. Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry
JR, Elliott KS, Hackett R, Guiducci C, Shields B, Zeggini E, Lango H,
Lyssenko V, Timpson NJ, Burtt NP, Rayner NW, Saxena R, Ardlie K,
Tobias JH, Ness AR, Ring SM, Palmer CN, Morris AD, Peltonen L,
Salomaa V, Diabetes Genetics Initiative; Wellcome Trust Case Con-
trol Consortium, Davey Smith G, Groop LC, Hattersley AT, McCa-
rthy MI, Hirschhorn JN, Frayling TM: A common variant of
HMGA2 is associated with adult and childhood height in the
general population.  Nat Genet 2007, 39:1245-1250.

7. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH,
Zismann VL, Beach TG, Leung D, Bryden L, Halperin RF, Marlowe L,
Kaleem M, Walker DG, Ravid R, Heward CB, Rogers J, Papassotirop-
oulos A, Reiman EM, Hardy J, Stephan DA: A high-density whole-
genome association study reveals that APOE is the major
susceptibility gene for sporadic late-onset Alzheimer's dis-
ease.  J Clin Psychiatry 2007, 68:613-618.

8. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A,
Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths
AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro
M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ,
Brant SR: Genome-wide association study identifies new sus-
ceptibility loci for Crohn disease and implicates autophagy in
disease pathogenesis.  Nat Genet 2007, 39:596-604.

9. van Hoek M, Dehgan A, Witteman JC, van Duijn CM, Uitterlinden
AG, Oostra BA, Hofman A, Sijbrands EJ, Janssens AC: Predicting
type 2 diabetes based on polymorphisms from genome wide
association studies: a population-based study.  Diabetes 2008,
57:3122-3128.

10. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sell-
ick G, Wild R, Sullivan K, Vijayakrishnan J, Wang Y, Pittman AM, Sun-
ter NJ, Hall AG, Dyer MJ, Matutes E, Dearden C, Mainou-Fowler T,
Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Hillmen P, Allsup
DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Allan JM, Catovsky D, Houl-
ston RS: A genome-wide association study identifies six sus-
ceptibility loci for chronic lymphocytic leukemia.  Nat Genet
2008, 40:1204-1210.

11. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D,
Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova
E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G,
Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G,
Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L,
Linseisen J, Clavel-Chapelon F, Vineis P, Bueno-de-Mesquita HB, Lund
E, Martinez C, Bingham S, Rasmuson T, Hainaut P, Riboli E, Ahrens W,
Benhamou S, Lagiou P, Trichopoulos D, Holcátová I, Merletti F, Kjaer-
heim K, Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R,
Conway DI, Znaor A, Healy C, Zelenika D, Boland A, Delepine M,
Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop
M, Brennan P: A susceptibility locus for lung cancer maps to
nicotinic acetylcholine receptor subunit genes on 15q25.
Nature 2008, 452:633-637.

12. Liang Y, Kelemen A: Statistical Advances and Challenges for
Analyzing Correlated High Dimensional SNP Data in
Genomic Study for Complex Diseases.  Statistics Surveys 2008,
2:43-60.

13. Scholkopf B, Mika S, Burges CC, Knirsch P, Muller KR, Ratsch G,
Smola AJ: Input space versus feature space in kernel-based
methods.  IEEE Trans Neural Netw 1999, 10:1000-1017.

14. Keerthi S, Duan K, Shevade S, Poo A: A Fast Dual Algorithm for
Kernel Logistic Regression.  Machine Learning 2005, 61:151-165.

15. Mika S, Rätsch G, Müller K-R: Advances in Neural Information Processing
Systems 13 Edited by: Leen TK, Dietterich TG, Tresp V. MIT Press, Cam-
bridge, MA; 2001:591-597. 

16. Vapnik V: The Nature of Statistical Learning Theory New York, NY:
Springer-Verlag; 1995. 

17. Schölkopf B, Smola AJ: Learning with Kernels Cambridge, MA: MIT Press;
2002. 

18. Waddell M, Page D, Shaughnessy J: Predicting cancer susceptibil-
ity from single-nucleotide polymorphism data: a case study
in multiple myeloma.  Proceedings of the 5th international Workshop
on Bioinformatics: 21–21 August 2005; Chicago 2005:21-28.

19. Kim D, Uhmn S, Kim J, Cho SW, Hahm KB: Predicting Suscepti-
bility to Chronic Hepatitis using Single Nucleotide Polymor-
phism Data and Support Vector Machine.  International
Conference on Hybrid Information Technology 2006, 2:31-35.

20. Statnikov A, Li C, Aliferis CF: Effects of environment, genetics
and data analysis pitfalls in an esophageal cancer genome-
wide association study.  PLoS ONE 2007, 2:e958.

21. Schwender H, Zucknick M, Ickstadt K, Bolt HM, GENICA network:
A pilot study on the application of statistical classification
procedures to molecular epidemiological data.  Toxicol Lett
2004, 151:291-299.

22. Zhou N, Wang L: Effective selection of informative SNPs and
classification on the HapMap genotype data.  BMC Bioinformat-
ics 2007, 8:484.

23. Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey
J, Wishart D, Greiner R, Zanke B: Predictive models for breast
cancer susceptibility from multiple single nucleotide poly-
morphisms.  Clin Cancer Res 2004, 10:2725-2737.

24. Kim G, Kim MH: Application of Support Vector Machine to
detect an association between a disease or trait and multiple
SNP variations.  2001. arXiv:cs/0104015v3.

25. Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM: Direct fluores-
cence analysis of genetic polymorphisms by hybridization
with oligonucleotide arrays on glass supports.  Nucleic Acids Res
1994, 22:5456-5465.

26. Landi S, Bottari F, Gemignani F, Gioia-Patricola L, Guino E, Osorio A,
de Oca J, Capella G, Canzian F, Moreno V, Bellvitge Colorectal Can-
cer Study Group: Interleukin-4 and interleukin-4 receptor pol-
ymorphisms and colorectal cancer risk.  Eur J Cancer 2007,
43:762-768.

27. Gemignani F, Landi S, Moreno V, Gioia-Patricola L, Chabrier A, Guino
E, Navarro M, Cambray M, Capellà G, Canzian F: Polymorphisms
of the dopamine receptor gene DRD2 and colorectal cancer
risk.  Cancer Epidemiol Biomarkers Prev 2005, 14:1633-1638.

28. Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J,
Capella G, Canzian F, Bellvitge Colorectal Cancer Study Group:
Association of common polymorphisms in inflammatory
genes interleukin (IL)6, IL8, tumor necrosis factor alpha,
NFKB1, and peroxisome proliferator-activated receptor
gamma with colorectal cancer.  Cancer Res 2003, 63:3560-3566.

29. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, Guino
E, Navarro M, de Oca J, Capellà G, Canzian F, Bellvitge Colorectal
Cancer Study Group: A comprehensive analysis of phase I and
phase II metabolism gene polymorphisms and risk of color-
ectal cancer.  Pharmacogenet Genomics 2005, 15:535-546.

30. Bradley AP: The Use of the Area Under the ROC Curve in the
Evaluation of Machine Learning Algorithms.  Pattern Recognition
1997, 30:1145-1159.

31. Chang CC, Lin CJ: LIBSVM:a library for support vector
machines.  2001 [http://www.csie.ntu.edu.tw/~cjlin/libsvm].

32. Wang XZ, He Q: Enhancing generalization capability of SVM
classifiers with feature weight adjustment.  In Knowledge-based
intelligent information and engineering systems, PT1, Proceedings, 3213
Edited by: Negoita MG, Howlett RJ, Jain LC. Springer Verlag;
2004:1037-1043. 

33. Iles MM: What can genome-wide association studies tell us
about the genetics of common disease?  PLoS Genet 2008, 4:e33.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8928008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15272419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15272419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15164069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15164069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17767157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17767157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17767157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17474819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17474819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17474819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17435756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17435756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17435756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18694974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18694974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18694974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18758461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18758461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18252603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18252603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17258448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17258448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16030094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16030094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16030094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12839942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006997
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18454206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18454206

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Data encoding
	Datasets
	a. Simulated dataset
	b. Dataset on sporadic colorectal cancer


	Results and discussion
	Experimentation protocol
	Computational results

	Conclusion
	List of abbreviations used
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

