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1. Introduction

The assignment game (Shapley and Shubik, 1972) is the cooperative viewpoint

of a two-sided market. There are two sides of the market, i.e. two disjoint sets

of agents, buyers and sellers, who can trade. The profits are collected in a matrix,

the assignment matrix. The allocation of the optimal profit should be such that no

coalition has incentives to depart from the grand coalition and act on its own. In

doing so, a first game-theoretical analysis of cooperation focuses on the core of the

game. Shapley and Shubik show that the core of any assignment game is always

nonempty. It coincides with the set of solutions of the linear program, dual to the

classical optimal assignment problem. A recent survey on assignment games is

Núñez and Rafels (2015).

Among other solutions, the nucleolus (Schmeidler, 1969) is a “fair” solution

in the general context of cooperative games. It is a unique core-selection that

lexicographically minimizes the excesses1 arranged in a nondecreasing way. The

standard procedure for computing the nucleolus proceeds by solving a finite (but

large) number of related linear programs. As a solution concept, the nucleolus has

been analyzed and computed in many cooperative games. Solymosi and Raghavan

(1994) gives an algorithm for the computation of the nucleolus of the assignment

game, computed in polynomial time. Recently Martı́nez-de-Albéniz et al. (2013b)

provides a new procedure to compute the nucleolus of the assignment game. An

interesting survey on the nucleolus and its computational complexity is given in

Greco et al. (2015).

From a geometric point of view, Llerena and Núñez (2011) have characterized

the nucleolus of a square assignment game, essential for our purposes. To illustrate

1 Given a coalition S ⊆ N, and an allocation x ∈ RN the excess of a coalition is defined as

e(S,x) := v(S)−∑i∈S xi. Notice they can be considered as complaints.
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the geometric characterization, consider the following assignment matrix

B =

 8 5

5 4

 .

There are 2 buyers (rows) and 2 sellers (columns). The worth to share is 12, ob-

tained by pairing both sides on the main diagonal. Its nucleolus is (4,2;4,2) ∈

R2
+×R2

+, as we will see later. Consider also matrix

C =

 8 2

0 4

 ,

which has also the same nucleolus. To see it we draw the core2 of the associated

assignment games and their nucleolus. We depict the projection on the buyers’

(first) coordinates of the core of both games in Figure 1. The core of the first one

C(wB) is in dark shading, vertices B1,B2,B3 and B4, and the second one C(wC) in

light shading, vertices C1,C2,C3,C4 and C5.

From Llerena and Núñez (2011) the nucleolus of matrix B is the unique core

point N such that the distances over some segments to the core’s walls are equal:

A′N = NB′,C′N = ND′ and EN = NF . Notice that for matrix C the analogous

equalities are AN = NB,CN = ND and EN = NF .

From the above geometric illustration we may expect large sets of assignment

matrices sharing a given vector as their nucleolus.

In this paper we focus on the structure the family of assignment matrices that

give rise to the same nucleolus. The main contributions of the paper are the fol-

lowing:

• The family of matrices with the same nucleolus forms a join-semilattice, i.e.

2 The core is defined later in (1) and (2).
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Figure 1: Two cores with the same nucleolus, (4,2;4,2).

closed by entry-wise maximum. The family has a unique maximum element

which is always a valuation matrix (Section 4).

• We show that the above family is a path-connected set and give a precise

path, connecting any matrix of the family with its maximum element. We

also study the cardinality of the family (Section 6).

• The inverse problem is also analyzed and studied, i.e. conditions on a vector

to be the nucleolus of some assignment game (Section 7).

2. Preliminaries on the assignment game

An assignment market (M,M′,A) is defined to be two disjoint finite sets: M the

set of buyers and M′ the set of sellers, and a nonnegative matrix A = (ai j)i∈M, j∈M′

which represents the profit obtained by each mixed-pair (i, j) ∈M×M′. To distin-

guish the j-th seller from the j-th buyer we will write the former as j′ when needed.

The assignment market is called square whenever |M| = |M′| . Usually we denote
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by m = |M| and m′ = |M′| . M+
m denotes the set of nonnegative square matrices with

m rows and columns, and M+
m×m′ the set of nonnegative matrices with m rows and

m′ columns.

Recall that M+
m×m′ forms a lattice with the usual ordering ≤ between matrices.

The maximum C = A∨B of two matrices A,B ∈M+
m×m′ is defined entry-wise, i.e.

as ci j = max{ai j,bi j} for all (i, j) ∈M×M′. Given an ordered subset of matrices

(F ,≤) ,F ⊆ M+
m×m′ , we say matrix C ∈ F is a maximal (minimal) element of

(F ,≤) if whenever there is a matrix D ∈F with D ≥ (≤)C, then D =C. Matrix

C ∈F is a maximum element of (F ,≤) if C ≥ D for all D ∈F .

A matching µ ⊆M×M′ between M and M′ is a bijection from M0⊆M to M′0⊆

M′ with |M0|= |M′0|= min{|M| , |M′|} . We write (i, j) ∈ µ as well as j = µ (i) or

i = µ−1 ( j). If for some buyer i ∈M there is no seller j ∈M′ satisfying (i, j) ∈ µ

we say buyer i is unmatched by µ and similarly for sellers. The set of all matchings

from M to M′ is represented by M (M,M′) . A matching µ ∈M (M,M′) is optimal

for (M,M′,A) if ∑(i, j)∈µ ai j ≥ ∑(i, j)∈µ ′ ai j for any µ ′ ∈M (M,M′) . We denote by

M ∗
A (M,M′) the set of all optimal matchings.

Shapley and Shubik (1972) associate any assignment market with a game in

coalitional form (M∪M′,wA) called the assignment game in which the worth of a

coalition S∪T ⊆M∪M′ with S⊆M and T ⊆M′ is wA (S∪T )= max
µ∈M (S,T )

∑(i, j)∈µ ai j,

and any coalition formed only by buyers or sellers has a worth of zero.

The main goal is to allocate the total worth among the agents, and a prominent

solution for cooperative games is the core. Shapley and Shubik (1972) prove that

the core of the assignment game is always nonempty. Given an optimal matching

µ ∈M ∗
A (M,M′) , the core of the assignment game, C(wA), can be easily described

6



as the set of nonnegative payoff vectors (x,y) ∈ RM
+ ×RM′

+ satisfying

xi + y j = ai j for all (i, j) ∈ µ, (1)

xi + y j ≥ ai j for all (i, j) ∈M×M′, (2)

and all agents unmatched by µ get a null payoff.

Now we define the nucleolus (Schmeidler, 1969) of an assignment game, tak-

ing into account that its core is always nonempty. The excess of a coalition /0 6=

R ⊆M∪M′ with respect to an allocation in the core, (x,y) ∈C(wA), is defined as

e(R,(x,y)) := wA (R)−∑i∈R∩M xi−∑ j∈R∩M′ y j. By the bilateral nature of the mar-

ket, it is known that the only coalitions that matter are the individual and mixed-pair

ones (Núñez, 2004). Given an allocation (x,y) ∈C(wA), define the excess vector

θ (x,y) = (θk)k=1,...,r as the vector of individual and mixed-pair coalitions excesses

arranged in a non-increasing order, i.e. θ1 ≥ θ2 ≥ . . . ≥ θr. Then the nucleolus of

the game (M∪M′,wA) is the unique core allocation ν (wA) ∈C(wA) which mini-

mizes θ (x,y) with respect to the lexicographic order3 over the whole set of core

allocations. For ease of notation we will use, for A ∈ M+
m×m′ , ν (A) instead of

ν (wA) if no confusion arises.

We use the characterization of the nucleolus of a square assignment game of

Llerena and Núñez (2011), see also Llerena et al. (2015). To introduce this char-

acterization we define the maximum transfer from a coalition to another coalition.

Given any square assignment game (M∪M′,wA) , and two arbitrary coalitions

3 The lexicographic order ≥lex on Rd is defined in the following way: x≥lex y, where x,y ∈ Rd ,

if x = y or if there exists 1≤ t ≤ d such that xk = yk for all 1≤ k < t and xt > yt .
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/0 6= S⊆M and /0 6= T ⊆M′ we define

δ
A
S,T (x,y) := min

i∈S, j∈M′\T

{
xi,xi + y j−ai j

}
,

δ
A
T,S (x,y) := min

j∈T,i∈M\S

{
y j,xi + y j−ai j

}
,

for any core allocation (x,y) ∈C (wA).

Llerena and Núñez (2011) gives a geometric characterization of the nucleolus

of a square assignment game. They prove that the nucleolus of a square assignment

game is characterized as the unique core allocation (x,y) ∈C(wA) such that

δ
A
S,T (x,y) = δ

A
T,S (x,y) (3)

for any /0 6= S ⊆M and /0 6= T ⊆M′ with |S|= |T |. In certain cases, the number of

equalities can be reduced. Indeed, note that if T 6= µ(S) for some µ ∈M ∗
A (M,M′) ,

then it holds δ A
S,T (x,y) = δ A

T,S (x,y) = 0. Therefore, for this characterization we

only have to check (3) for the cases T = µ(S) for some optimal matching µ ∈

M ∗
A (M,M′) and any /0 6= S⊆M, i.e.

δ
A
S,µ(S) (x,y) = δ

A
µ(S),S (x,y) , for any /0 6= S⊆M. (4)

To analyze the non-square case we can use two different approaches and we

will apply any of them.

The first and classical approach consists in adding null rows or columns in

order to make the initial matrix square. The added rows or columns correspond to

dummy agents and they receive a null payoff at any core allocation and hence also

in the nucleolus. At this extended square assignment matrix we apply the previous

geometric characterization. Notice that the number of coalitions to be checked

grows quickly for each added agent.

To fix our first approach we introduce some notation. Given any arbitrary as-

signment matrix A∈M+
m×m′ , with m<m′ and where µ = {(1,1),(2,2), . . . ,(m,m)}
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is an optimal matching for A, we define the following square matrix A0 ∈ M+
m′

obtained from the original matrix A by adding m′−m zero rows, that is m′−m

dummy players. Let M0 = M ∪ {m+1, . . . ,m′} be the new set of buyers and

A0 =
(

a0
i j

)
1≤i, j≤m′

where

a0
i j =

 ai j if (i, j) ∈M×M′,

0 if (i, j) ∈ (M0\M)×M′.
(5)

We know that the matching µ0 = {(1,1),(2,2), . . . ,(m′,m′)} is optimal for matrix

A0.

The second approach keeps the dimension of the problem as low as we can

and it has an interest on its own. Basically it consists in reducing the assignment

problem to an appropriate square matrix, dropping out those agents unassigned by

an optimal matching, and reassessing the matrix entries. Apart from the dimension

issue, the main feature of this approach is that we must not care about the added

zero rows or columns when we deal with the matrix.

To introduce the second approach we need some notations. Let (M,M′,A) ,A∈

M+
m×m′ be a non-square assignment market with m < m′ and let µ ∈M ∗

A (M,M′)

be an optimal matching. Define the vector aµ =
(
aµ

i

)
i∈M ∈ RM

+ by

aµ

i := max
j∈M′\µ(M)

{
ai j
}

for each buyer i ∈M, (6)

and define the square matrix Aµ ∈M+
m by

aµ

i j := max
{

0,ai j−aµ

i

}
, for (i, j) ∈M×µ (M) . (7)

Then the relationship between their nucleolus is the following one:

νi(A) = νi(Aµ)+aµ

i , for i ∈M, (8)

ν j(A) =

 ν j(Aµ) for j ∈ µ(M), and

0 for j ∈M′\µ (M) .
(9)
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Moreover the fixed matching µ is also optimal for matrix Aµ . A proof of these facts

is included in the Appendix.

3. A numerical example

The nucleolus of an assignment game is a geometrical half-way point of a

nonempty compact polyhedron, its core. From its description we can conceive its

invariance from synchronizing displacements of the core “walls”. In other words,

the effects of raising or lowering some appropriate entries of the assignment ma-

trix do not change the nucleolus. Our main objective is to analyze the family of

assignment matrices that give rise to the same nucleolus. We illustrate our purpose

by a 2×2 numerical example.

Example 3.1. Consider the following assignment matrix

A =

 8 6

6 4

 .

Notice that it has two optimal matchings and wA(M∪M′) = 12. To draw its core

we fix an optimal matching. Let us take µ1 = {(1,1),(2,2)} and we depict the

projection of the core on the buyers’ coordinates (see Figure 2). The core is given

by the segment A1A2. Its nucleolus is ν(A) = (4,2;4,2), since it is its midpoint.

Just by looking the geometric interpretation of the nucleolus N, it is easy to

see that matrices At =

 8 6− t

6− t 4

 for 0 ≤ t ≤ 4 share the same nucleolus

ν = (4,2;4,2) since the “distances” to the walls of the core are equal: A′N =

NB′,C′N = ND′ and A1N = NA2.

After t = 4 the walls can be moved independently, which adds matrices A = 8 a12

a21 4

 . for a12,a21 ∈ [0,2] to the family of matrices with the same nucle-

olus we are dealing with.
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Figure 2: Several cores of matrices At =
( 8 6−t

6−t 4

)
for 0≤ t ≤ 4 with the same nucleolus, (4,2;4,2).

We have just described the family of matrices with the same nucleolus ν(A)

when we fix matching µ1. See L1∪L2 in Figure 3.
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M
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Figure 3: Matrices
(

8 a12
a21 4

)
with the same

nucleolus (4,2;4,2).
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Figure 4: Matrices
(

a11 6
6 a22

)
with the same

nucleolus (4,2;4,2).

To obtain the whole family of matrices with nucleolus ν(A) we have to repeat

the above argument fixing in matrix A the optimal matching µ2 = {(1,2),(2,1)}.

This process adds matrices L3∪L4 in Figure 4. Notice that M represents the same
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matrix A in Figures 3 and 4. Matrices B and C from the Introduction correspond

to points M1 and M2 in Figure 3.

From the previous Example 3.1 we can discuss the structure of the family

which will be analyzed in the next sections. Firstly, this family of assignment

matrices with the same nucleolus is composed of branches that share a unique

maximal element, its maximum, which is matrix A. This family is not a convex

set but path-connected. Finally in this case there is no minimum, but two minimal

elements.

4. Assignment games with the same nucleolus

We introduce the family of matrices with a given nucleolus. To this end, for an

arbitrary assignment matrix A ∈M+
m×m′ we denote by

[A]ν :=
{

B ∈M+
m×m′ | ν (B) = ν (A)

}
the family of matrices that share the same nucleolus than A.

It is clear that matrices with the same nucleolus must have the same worth for

the grand coalition even if they do not have any optimal matching in common, see

Example 3.1.

We focus now on the structure of this family: it is a nonempty compact join-

semilattice4 with a unique maximal element. Secondly we characterize this maxi-

mum and show it is a specific type of assignment matrix, a valuation matrix.

Theorem 4.1. Let A ∈M+
m×m′ be an assignment matrix. The family [A]ν forms a

compact join-semilattice with a unique maximal element.

4 A family F ⊆M+
m×m′ is a join-semilattice if A∨B ∈F for all A,B ∈F .
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Proof. First we prove that this family is a join-semilattice. Let B,B′ ∈ [A]ν . If

m 6= m′, we add zero rows or columns to make the matrices square, recall (5). It

is known that these rows or columns correspond to dummy players which obtain

zero payoff at any core allocation, and also in the nucleolus. Therefore we can

assume from now on that matrices are square. We have B,B′ ≤ B∨B′, and also

C(wB)∩C(wB′) 6= /0, since both games share the nucleolus. We claim

C(wB)∩C(wB′) =C(wB∨B′).

To see it, take any (x,y) ∈C(wB)∩C(wB′). It is clear xi +y j ≥max{bi j,b′i j} for all

(i, j) ∈M×M′. Then for any optimal matching µ of matrix B∨B′ we have

wB∨B′(M∪M′)= ∑
(i, j)∈µ

max{bi j,b′i j}≤ ∑
(i, j)∈µ

[xi+y j] =wB(M∪M′)=wB′(M∪M′).

As a consequence wB∨B′(M∪M′) = wB(M∪M′) = wB′(M∪M′). Now it is easy to

see (x,y) ∈C(wB∨B′). The other inclusion is straightforward.

Now to see ν (B) = ν (B′) = (x,y) is the nucleolus of wB∨B′ , just note that, for

all /0 6= S⊆M and /0 6= T ⊆M′ with |S|= |T |,

δ
B∨B′
S,T (x,y) = min

{
δ

B
S,T (x,y) ,δ

B′
S,T (x,y)

}
, and

δ
B∨B′
T,S (x,y) = min

{
δ

B
T,S (x,y) ,δ

B′
T,S (x,y)

}
.

As a consequence, since (x,y) is the nucleolus of wB and wB′ , we obtain the equality

δ B∨B′
S,T (x,y) = δ B∨B′

T,S (x,y) , proving that B∨B′ ∈ [A]ν .

Now we show that this family is a compact set, and therefore with a unique

maximal element. We show that it is bounded and closed. It is bounded since

0≤ bi j ≤ xi+y j for all (i, j) ∈M×M′ and B ∈ [A]ν with ν(A) = (x,y). It is closed

because the functions δ B
S,T (x,y) and δ B

T,S (x,y) are continuous in B ∈M+
m×m′ for all

/0 6= S⊆M, /0 6= T ⊆M′ and |S|= |T | , and they must satisfy equalities (3).
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In contrast with the previous result, the minimum defined entry-wise of two

matrices with the same nucleolus may not have the same nucleolus, see Example

3.1.

Now we introduce a kind of assignment matrices, useful for our purposes. A

matrix A ∈M+
m×m′ is a valuation matrix5 if for any i1, i2 ∈ {1, . . . ,m} and j1, j2 ∈

{1, . . . ,m′} we have ai1 j1 +ai2 j2 = ai1 j2 +ai2 j1 . Clearly this definition is equivalent

to see that any 2×2 submatrix has two optimal matchings.

Obviously, any fully-optimal6 square matrix is a valuation matrix, and for

square matrices the converse also holds. This characterization fails for non-square

matrices as the following matrix shows:

D =


3 6 8 1 0

4 7 9 2 1

6 9 11 4 3

 . (10)

This is a valuation matrix, but clearly not all matchings are optimal.

Finally we want to point out two general properties for non-square valuation

matrices. Let A ∈ M+
m×m′ be an non-square valuation matrix with m < m′ and

µ ∈M ∗
A (M,M′) any optimal matching, Then:

(i) The square submatrix AM×µ(M) is fully-optimal. Its worth is wA(M∪M′).

(ii) The entries of matrix A satisfy ai j1 ≥ ai j2 for all i ∈M, j1 ∈ µ(M) and j2 ∈

M′ \µ(M).

Theorem 4.2. Let A ∈M+
m×m′ be an assignment matrix. The maximal element of

the family [A]ν is a valuation matrix. In the square case, m = m′, the maximal

element is the unique valuation matrix of the family.

5 Following Topkis (1998), a function is a valuation if it is submodular and supermodular.
6 A∈M+

m×m′ is a fully-optimal matrix if all matchings are optimal, i.e. M ∗
A (M,M′) =M (M,M′)
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Proof. Let ν(A) = (x,y)∈RM
+×RM′

+ be the nucleolus of matrix A∈M+
m×m′ , where

we assume without loss of generality that m≤m′ and µ = {(1,1),(2,2), . . . ,(m,m)}

is an optimal matching for A.

Define now matrix A ∈M+
m×m′ as follows

ai j =


xi + y j, for 1≤ i, j ≤ m,

xi− min
j=1,...,m

{
y j
}

otherwise.

We claim:

(i) ai j ≥ 0, for all (i, j) ∈M×M′,

(ii) A ∈ [A]ν , i.e. ν(A) = ν(A),

(iii) A is the maximum of the family [A]ν , and clearly a valuation matrix.

To prove claim (i), let A0,M0, and µ0 the notation introduced in (5) to make square

the initial matrix A. We denote by
(
x0,y0

)
∈RM0

+ ×RM′
+ the vector defined by x0

k =

xk if k ∈M and x0
k = 0 if k ∈M0\M and y0

k = yk if k ∈M′.

We know ν
(
A0
)
=
(
x0,y0

)
and then δ A0

M,µ0(M)
(x0,y0) = δ A0

µ0(M),M(x0,y0), but

δ
A0

µ0(M),M(x0,y0) = min
i∈M0\M, j∈µ(M)

{y0
j ,x

0
i + y0

j −a0
i j}= min

j∈µ(M)
{y j}, and

δ
A0

M,µ0(M)(x
0,y0) = min

i∈M, j∈M′\µ(M)
{x0

i ,x
0
i + y0

j −a0
i j}=

=


min
i∈M
{xi} if m = m′,

min
i∈M, j∈M′\µ(M)

{xi−ai j} if m < m′.

where we have used that y0
j = y j = 0 for j ∈M′ \ µ(M) and x0

i = xi ≥ xi− ai j for

i ∈M and j ∈M′ \µ(M).

From the above equality we easily deduce xi ≥ min
j∈µ(M)

{y j} for i ∈ M which

proves our first claim.
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We prove claim (ii), ν(A) = (x,y), by proving its equivalent form, ν((A)0) =

(x0,y0). Notice that µ0 = {(1,1),(2,2), . . . ,(m′,m′)} is optimal for matrix (A)0. To

prove ν((A)0) = (x0,y0), we distinguish several cases depending on an arbitrary

coalition S⊆M0,S 6= /0 :

Case 1: S∩ (M0 \M) 6= /0. We obtain δ
(A)0

S,µ0(S)(x
0,y0) = 0 and δ

(A)0

µ0(S),S(x
0,y0) =

0, since x0
i = 0 for all i ∈ S∩ (M0 \M) for the first equality and there exists j ∈

µ0(S)∩ (M′ \µ(M)), which implies y j = 0 for the second.

Case 2: S ⊆ M,S 6= M. We obtain δ
(A)0

S,µ0(S)(x
0,y0) = 0, since there exists j ∈

µ(M)\µ(S) and then xi + y j = ai j for all i ∈ S. Similarly δ
(A)0

µ0(S),S(x
0,y0) = 0.

Case 3: S = M. We have

δ
(A)0

µ0(M),M(x0,y0) = min
i∈M0\M, j∈µ(M)

{y0
j ,x

0
i + y0

j −a0
i j}= min

j∈µ(M)
{y j}, and

δ
(A)0

M,µ0(M)
(x0,y0) = min

i∈M, j∈M′\µ(M)
{x0

i ,x
0
i + y0

j −a0
i j}=

=


min
i∈M
{xi}, if m = m′,

min
i∈M, j∈M′\µ(M)

{xi−ai j}= min
i∈M
{xi− (xi− min

j∈µ(M)

{
y j
}
)}= min

j∈µ(M)
{y j}, if m < m′.

Now, for m < m′ they trivially coincide and for m = m′, the square case, they

coincide since ν(A) = (x,y), and then δ A
M,µ(M)(x,y) = min

i∈M
{xi} = δ A

µ(M),M(x,y) =

min
j∈µ(M)

{y j}.

Therefore, we have proved the second claim.

To prove claim (iii), let B ∈ [A]ν be an arbitrary matrix of the family. We can

assume that µ = {(1,1),(2,2), . . . ,(m,m)} is optimal for matrix B, since in other

case, we consider matrix B∨A as a new matrix B, see Theorem 4.1 and notice

B≤ B∨A. Recall ν(B) = ν(A) = (x,y). Clearly ai j = xi+y j ≥ bi j for 1≤ i, j≤m.

If m = m′ we are done, and B≤ A. Otherwise, m < m′. Consider matrix B0, see

16



(5). We know ν(B0) = (x0,y0). Then

δ
B0

µ0(M),M(x0,y0) = min
i∈M0\M, j∈µ(M)

{y0
j ,x

0
i + y0

j −b0
i j}= min

j∈µ(M)
{y j}, and

δ
B0

M,µ0(M)(x
0,y0) = min

i∈M, j∈M′\µ(M)
{x0

i ,x
0
i + y0

j −b0
i j}= min

i∈M, j∈M′\µ(M)
{xi−bi j}.

We obtain for all i ∈ M and j ∈ M′ \ µ(M), xi− bi j ≥ min
i∈M, j∈M′\µ(M)

{xi− bi j} =

min
j∈µ(M)

{y j}, or equivalently

ai j = xi− min
j∈µ(M)

{y j} ≥ bi j for all i ∈M, j ∈M′ \µ(M).

This ends our third claim, and proves the maximality of matrix A since we have

seen that in the non-square case, B≤ A.

The fact that A is a valuation matrix is left to the reader. Moreover in the square

case any valuation matrix of the family (with the same nucleolus) is fully-optimal,

and then it must coincide with matrix A.

From the statement of Theorem 4.2 we expect several valuation matrices if

the initial assignment matrix is not square. In (10) we have introduced matrix D ∈

M+
3×5 which is an example of such a situation. By (4), (8) and (9) it is easy to check

that the nucleolus of matrix D is ν(D) = (2,3,5;1,4,6,0,0) and the maximum

matrix of [D]ν is given by the valuation matrix

D =


3 6 8 1 1

4 7 9 2 2

6 9 11 4 4

 ,

which is strictly greater than the valuation matrix D. Both valuation matrices share

the same nucleolus.

In the proof of Theorem 4.2 we have found the expression of the maximum
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element of family [A]ν , with ν(A) = (x,y). It is matrix A ∈M+
m×m′ as follows

ai j =


xi + y j, for (i, j) ∈M×µ(M),

xi− min
j∈µ(M)

{
y j
}

for (i, j) ∈M× (M′ \µ(M)),
(11)

where µ ∈M ∗
A (M,M′) is an optimal matching. A close look at (11) could raise

expectations of different maximum matrices A depending on the chosen optimal

matching µ, but this is not the case, as the reader can check.

5. The 2×2 case

As an application of the above results we reveal how to describe the whole

family [A]ν , when we deal with 2×2 assignment matrices.

Consider an arbitrary 2×2 assignment market represented by matrix

A =

 a11 a12

a21 a22

 .

From now on and without loss of generality, we assume the following normal-

ization conditions:

a11 +a22 ≥ a12 +a21,

a11 ≥ a22, a12 ≥ a21. (12)

These conditions mean that the main diagonal of matrix A is an optimal matching

and it is sorted from highest to lowest. Sectors are interchangeable so that entries

of matrix A outside the main diagonal are ordered, following (12).

We assume that matrix entries a11 and a22 are fixed, and depict in Figure 5 any

arbitrary matrix A satisfying (12), depending on matrix entries a12 and a21. Notice

that conditions (12) force the range of variables a12 and a21 to belong to the triangle

with vertices A,B and C in Figure 5.

18



a12 +3a21 = a11 +a22

a12 = a21

(0,0)

(0,a11 +a22)

a21

a12
(0, a22

2 )
A

B

CD

E F

G

H

X’

Y’
Z’

X

Y

Z

A = (0,0)
B = (a11+a22

2 , a11+a22
2 )

C = (a11 +a22,0)
D = (a22

2 ,0)
E = (a22

2 , a22
2 )

F = (a11− a22
2 , a22

2 )

G = (a11− a22
2 ,0)

H = (a11,a22)

Figure 5: The regions for families with the same nucleolus

Now whenever we have a matrix A with the normalization conditions (12) we

depict it in the above Figure 5. In this way we easily describe the family [A]ν . The

analysis is divided in three regions.

Region 1: Matrix A belongs to triangle ADE or segment EB. All these matrices

share the same nucleolus, precisely the equal division between optimal matched

pairs. This region corresponds to the symmetric case, a12 = a21, and matrices

where a12 and a21 are “small” with respect the optimal entries: a21 ≤ a12 ≤ a22
2 .

Notice because of the normalization conditions, we have a symmetric region out-

side triangle ABC with the same nucleolus. Therefore the family is composed of a

square and a segment, see e.g. Figure 3. Outside this region the family is composed

of two segments.

Region 2: Matrix A belongs to the region limited by D,E,B,H,F,G. In this
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case, a generic family is given in Figure 5 by segments [X ,Y ]∪ [Y,Z]. One of them,

the vertical one [X ,Y ], increases entry a21 from zero up to a22
2 and the other [Y,Z]

has a 45◦ slope.

Region 3: Matrix A belongs to the region limited by G,F,H,C. In this case, a

generic family is given in Figure 5 by segments [X ′,Y ′]∪ [Y ′,Z′]. One of them, the

vertical one [X ′,Y ′], increases smaller entry a21 from zero up to the straight line

FC with equation a12 +3a21 = a11 +a22 and the other [Y ′,Z′] has a 45◦ slope.

Matrices given by points Z or Z′, on the segment [B,C] in Figure 5, correspond

with the unique valuation matrix A of each family [A]ν . Recall that in general there

are two branches of each family, depending on the chosen optimal matching of A.

In Table 1 we show buyers’ coordinates of the nucleolus of an assignment

matrix satisfying the normalization conditions (12). In it we denote by dA the

difference between the main diagonal and the secondary diagonal, i.e. dA = a11 +

a22−a12−a21. Recall that the whole nucleolus ν(A) = (u∗1,u
∗
2;v∗1,v

∗
2) is obtained

by v∗i = aii− u∗i for i = 1,2. A proof of the facts given in Table 1 can be checked

in Martı́nez-de-Albéniz et al. (2013a), computed under the previous normalization

conditions (12).

The above formulas for the nucleolus allow us to obtain the valuation matrix

of the family, given by (11). Then once reached matrix A to describe the whole

family [A]ν we have to repeat the analysis rearranging conveniently the entries of

A, now for the other optimal matching, given by the secondary diagonal.

6. About the cardinality of the family

The family of matrices with the same nucleolus is not in general a convex set.

To see it just consider appropriate matrices of Example 3.1 and their midpoint, but

as the reader must suspect, there is a path linking any two matrices of the family,
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Table 1: Nucleolus formulas of an arbitrary 2×2 assignment matrix satisfying normalization condi-

tions (12)

Region u∗1 u∗2

A D E

a21 ≤min
{

a22
2 , dA

2

}
a12 ≤ a22

2
a11
2

a22
2

D G F E a22
2 < a12 ≤ a11− a22

2
a11
2 + a12

2 −
a22
4

a22
2

G C F a11− a22
2 < a12 a11− a21

3 −
dA

3
a21
3 + dA

3

E F H B
a21 > min

{
a22
2 , dA

2

} a21 ≥ a12 +a22−a11
a11
2 + a12

2 −
a21
2

a22
2

F C H a21 < a12 +a22−a11 a11− a21
2 −

dA

4
a21
2 + dA

4

maybe passing through its maximum.

Now we prove an interesting property. There is a continuous piecewise linear

path (maybe not unique) between any matrix in [A]ν and its maximum element A.

From here it is clear that the family [A]ν is a path-connected set.

Theorem 6.1. Let A ∈M+
m×m′ be an assignment matrix, and A ∈ [A]ν the maximal

element of the family. Then for any B ∈ [A]ν there exists an increasing piecewise

linear path7 from B to A inside [A]ν . As a consequence, the family [A]ν is a path-

connected set. In particular, for any B ∈ [A]ν ,B 6= A, there exists C ∈ [A]ν with

7 A path in X ⊆M+
m×m′ from A to B, A,B ∈X , is a continuous function f from the unit interval

I = [0,1] to X , i.e. f : [0,1]→X , with f (0) = A and f (1) = B. Moreover a subset X ⊆M+
m×m′ is

path-connected if for any two elements A,B ∈X there exists a path from A to B entirely contained

in X .
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B <C < A.8

Proof. First we analyze the square case, m = m′. We can assume |M| = |M′| ≥

2. Let it be B ∈ [A]ν , and ν(A) = ν(B) = (x,y) ∈ RM
+ ×RM′

+ . Let us define the

set formed by the distances that appear in the geometric characterization of the

nucleolus, see (3), except for the grand coalition,

∆(B) =
{

δ
B
S,T (x,y) |S⊆M,T ⊆M′, |S|= |T |,S 6= /0,M, and T 6= /0,M′

}
.

These elements are used for the characterization of the nucleolus and correspond to

the minimum of some numbers. The elements of ∆(B) can be ordered increasingly:

0 = δ
B
0 < δ

B
1 < .. . < δ

B
r∗ ,

and then ∆(B) = {δ B
0 ,δ

B
1 , . . . ,δ

B
r∗}.

From these parameters we can define a new matrix B0 with the same nucleolus.

We set b0
i j = bi j if xi + y j−bi j ∈ ∆(B), and we raise the worth of entry bi j to b0

i j in

such a way that xi + y j−b0
i j equals the closest one-below element of ∆(B), that is,

if δ B
k < xi + y j−bi j < δ B

k+1 for some k, then b0
i j = xi + y j−δ B

k .

It is clear that matrix B0 has the same nucleolus as matrix B since the equalities

of the geometric characterization of the nucleolus haven’t changed and therefore

B0 ∈ [A]ν . Moreover ∆(B) = ∆(B0). We may choose increasing linear paths from B

to B0, one for each entry to raise. Notice that since we are moving up the entries that

do not determine the distances of ∆(B), all matrices on these paths will preserve

the original nucleolus.

Now we have a matrix B0 ∈ [A]ν such that xi + y j−b0
i j ∈ ∆(B0) for all (i, j) ∈

M×M′. Moreover if δ B0

S,T (x,y) = δ B
r∗ , for some S⊂M and T ⊂M′ with |S|= |T | 6=

8 If B,C ∈M+
m×m′ , B <C if and only if B≤C and B 6=C.
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m, then we have, for all i ∈ S and j /∈ T, xi + y j−b0
i j = δ B

r∗ . We finish the proof in

the square case by raising the entries of matrix B0 iteratively up to get A.

Firstly, notice that if r∗ = 0, that is ∆(B) = ∆(B0) = {0}. Then matrix B0 co-

incides with the valuation matrix of the family A since then xi + y j = b0
j for all

(i, j) ∈M×M′, see (11) and recall m = m′.

Otherwise, r∗ > 0. In this case, for all (i, j) ∈M×M′ such that xi + y j−b0
i j =

δ B0

r∗ raise linearly and simultaneously b0
i j to b1

i j defined by the equality xi + y j −

b1
i j = δ B0

r∗−1. We obtain a new matrix B1 ∈ [A]ν , defined for all i ∈M and j ∈M′ by

b1
i j =

 xi + y j−δ B0

r∗−1 if xi + y j−b0
i j = δ B0

r∗ ,

b0
i j otherwise.

It is easy to see that ∆(B1) ⊆ ∆(B0), and ∆(B1) 6= ∆(B0). This means we have

reduced the set of distances related with the nucleolus. Once again by (3) it is easy

to see that ν(B1) = (x,y) or equivalently B1 ∈ [A]ν .

Now, in a finite number of steps, proceed sequentially raising all entries until

for all (i, j) ∈M×M′ we have xi + y j−br∗
i j = 0. That is, matrix Br∗ coincides with

matrix A for the square case. In it all matchings are optimal.

For the non-square case, we assume |M| < |M′| . Let B ∈ [A]ν , and let µ ∈

M ∗
B (M,M′) be an optimal matching.

Notice first that matrix B can be modified without changing its nucleolus in the

following way:

(i) for all (i, j)∈M×µ(M) if bi j < bµ

i then raise these entries to bµ

i = max
j∈M′\µ(M)

{bi j},

see (6);

(ii) for all (i, j) ∈M× (M′ \µ(M)) raise entries bi j to bµ

i , and we do not modify

the rest of entries.

This new matrix, denoted by B̃ has the same nucleolus and then B̃ ∈ [A]ν .
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Indeed, matrix B̃ has also µ as an optimal matching and then by definition it has

the same same square matrix Bµ ∈ M+
m , i.e. (B̃)µ = Bµ , see (7). It is easy to see

that the relationships between matrices B̃ and (B̃)µ are

b̃µ

i j = b̃i j−bµ

i for all (i, j) ∈M×µ(M). (13)

From (8) and (9) applied to matrix B̃ we know ν

(
B̃
)
= ν (B) = (x,y) ∈ RM

+ ×

RM′
+ or equivalently ν

(
(B̃)µ

)
= (x′,y′) ∈RM

+ ×Rµ(M)
+ , with x′i = xi−bµ

i for i ∈M,

and y′j = y j for j ∈ µ(M).

We can apply the previous procedure for square matrices to obtain an increas-

ing piecewise linear path from (B̃)µ to its maximum matrix in [(B̃)µ ]ν . This path,

applied to matrix B̃M×µ(M), see (13), induces a path from B̃M×µ(M) to AM×µ(M),

where A denotes the maximum element of the family [A]ν .

Moreover, for (i, j)∈M×(M′\µ(M)) recall by (11) that ai j = xi− min
j∈µ(M)

{
y j
}
.

From the equality δ
(B̃)µ

M,µ(M)(x
′,y′)= δ

(B̃)µ

µ(M),M(x′,y′) we know that min
i∈M
{x′i}= min

j∈µ(M)
{y′j}=

min
j∈µ(M)

{
y j
}
, and then for some i∗ ∈M we have x′i∗ = xi∗−bµ

i∗ = min
j∈µ(M)

{
y j
}
. That

is, for i∗ ∈ M we have ai∗ j = bµ

i∗ for all j ∈ M′ \ µ(M). For any i 6= i∗, i ∈ M

such that x′i > min
i∈M
{x′i} or equivalently x′i = xi − bµ

i > min
i∈M
{x′i} = min

j∈µ(M)

{
y j
}
,

that is bµ

i < xi− min
j∈µ(M)

{
y j
}
, we can raise at the same time entries b̃i j = bµ

i to

ai j = xi− min
j∈µ(M)

{
y j
}

for all j ∈M′ \µ(M) without changing the nucleolus, as the

reader can check applying (8) and (9). This ends the proof.

There is a continuum of elements in any family [A]ν , A ∈M+
m , except for the

null matrices and 2×2 assignment matrices k k

0 0

 ,

 0 0

k k

 ,

 k 0

k 0

 ,

 0 k

0 k

 , k > 0.

In these special cases the family [A]ν reduces to a singleton. The null case is
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obvious and the case m = 2 is checked easily from the description of the family in

the 2×2 case.

In the case m≥ 3, notice that if matrix A ∈M+
m is not the maximum element of

the family Theorem 6.1 gives a continuum of elements of the family. It only rests

to analyze the case A = A. In this case we know, since we are in the square case,

that xi+y j = ai j for all (i, j) ∈M×M′, where ν(A) = (x,y). Clearly all matchings

are optimal. In this case let ai∗ j∗ be an arbitrary positive entry of matrix A. It exists

since we are not in the null case. Define matrix B ∈M+
m by lowering this entry to

zero, i.e.

bi j =

 ai j if (i, j) 6= (i∗, j∗),

0 if (i, j) = (i∗, j∗).

We leave some details to the reader to check that matrix B ∈ [A]ν and B 6= A by

using (3). Once again by Theorem 6.1 the continuum of elements of [A]ν is guar-

anteed.

7. The inverse problem

In this section we study the conditions to ensure that a given vector is the

nucleolus of some assignment game.

Firstly notice that not any vector is a candidate to be a nucleolus. For instance,

the vector (3,2,1,4)∈R2
+×R2

+ can never be the nucleolus of any 2×2 assignment

game. For any candidate (x,y) ∈RM
+ ×RM′

+ with |M|= |M′|, to be the nucleolus of

an assignment game with matrix A ∈M+
m , by (3) it must satisfy

δ
A
M,M′ (x,y) = min

i∈M
{xi}= min

j∈M′

{
y j
}
= δ

A
M′,M (x,y) . (14)

In our case min{x1,x2}= 2 6= 1 = min{y1,y2} .

Moreover, let us see that condition (14) turns out to be a simple characterization

of it. To see the characterization, just define the square matrix V = (vi j)1≤i, j≤m
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defined by vi j := xi+y j, for all (i, j)∈M×M′ being (x,y)∈RM
+×RM′

+ with |M|=

|M′| and min
i∈M
{xi}= min

j∈M′

{
y j
}
. Indeed, any matching is optimal in V and the vector

(x,y)∈C(wV ). Therefore δV
S,T (x,y) = δV

T,S (x,y) = 0 for all /0 6= S⊆M and /0 6= T ⊆

M′ with |S|= |T |, and S 6= M. Moreover δV
M,M′ (x,y) = δV

M′,M (x,y) by assumption.

Hence we have ν (V ) = (x,y). Summarizing we have the following result.

Theorem 7.1 (Condition for the nucleolus in the square case). Let (x,y)∈RM
+×

RM′
+ be a vector, with |M|= |M′|. The following statements are equivalent:

1. There exists a matrix A ∈M+
m , such that ν(A) = (x,y),

2. min
i∈M
{xi}= min

j∈M′

{
y j
}
.

To analyze the non-square case we use the approach given in (8) and (9). Since

it is well known that the nucleolus of a non-square assignment game gives zero

payoff to all non-optimally assigned players, then a candidate vector must assign

zero to some players. The next result is the precise necessary and sufficient condi-

tion. Its proof is in the Appendix.

Theorem 7.2 (Condition for the nucleolus in the non-square case). Let (x,y) ∈

RM
+ ×RM′

+ be a vector, with |M| < |M′|, and let Z0 =
{

j ∈M′ | y j = 0
}
. The fol-

lowing statements are equivalent:

1. There exists a matrix A ∈M+
m×m′ , such that ν(A) = (x,y),

2. (a) There exists Z′0 ⊆ Z0 with |Z′0|= |M′|− |M|, and

(b) min
i∈M
{xi} ≥ min

j∈M′\Z′0

{
y j
}
.

Notice that from Theorem 7.1 and 7.2, the vector (3,2,1,4) ∈ R2
+×R2

+ can

never be the nucleolus of any 2×2 assignment game, but the vector (3,2,1,4,0) ∈

R2
+×R3

+ is the nucleolus of some assignment game. Indeed, matrix V =

 2 7 2

3 5 1


has the desired nucleolus.
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8. Appendix

Proof of (8) and (9)

Proof. Let A∈M+
m×m′ ,m<m′ and let µ ∈M ∗

A (M,M′) . Without loss of generality,

we can assume that µ = {(1,1),(2,2), . . . ,(m,m)} is an optimal matching of matrix

A.

We first prove that matching µ is also an optimal matching of matrix Aµ , de-

fined by (6) and (7). To see it, consider any allocation (x,y) ∈ C(wA). Clearly

xi≥ aµ

i = max
j∈M′\µ(M)

{
ai j
}

for all i∈M. Then, as xi−aµ

i ≥ 0 for all i∈M, we obtain

(xi−aµ

i )+ y j ≥ 0, for all (i, j) ∈M×µ(M). Moreover, for all (i, j) ∈M×µ(M),

we also have (xi−aµ

i )+ y j ≥ ai j−aµ

i . From both inequalities we have

(xi−aµ

i )+ y j ≥ aµ

i j for all (i, j) ∈M×µ(M).

Since µ = {(1,1),(2,2), . . . ,(m,m)} is an optimal matching for A, then aii ≥ aµ

i

for all i ∈M, and we obtain (xi−aµ

i )+ yi = aii−aµ

i = aµ

ii , for all i ∈M.

Now we can prove that µ is also optimal for matrix Aµ . To see it for any other

matching µ ′ ∈M (M,µ(M)) , we have

m

∑
i=1

aµ

ii =
m

∑
i=1

(xi−aµ

i )+ yi = ∑
(i, j)∈µ ′

(xi−aµ

i )+ y j ≥ ∑
(i, j)∈µ ′

aµ

i j.

Let A0,M0 and µ0 the notation introduced in (5) to make square the non-square

initial matrix A. We know that matching µ0 = {(1,1),(2,2), . . . ,(m′,m′)} is opti-

mal for matrix A0, i.e. µ0 ∈M ∗
A0

(
M0,M′

)
.

For each vector (x,y)∈RM
+×RM′

+ we denote by
(
x0,y0

)
∈RM0

+ ×RM′
+ the vector

defined by x0
k = xk if k ∈ M and x0

k = 0 if k ∈ M0\M and y0
k = yk if k ∈ M′. It is

easy to prove that vector (x,y) ∈C(wA) if and only if
(
x0,y0

)
∈C (wA0) . Moreover

(x,y) ∈C(wA) if and only if (x′,y′) ∈C (wAµ ) , where x′i = xi− aµ

i for i ∈M, and

y′j = y j for j ∈ µ(M). The proof of these facts is left to the reader.
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Let us denote ν (A) = (x,y). We have to show ν (Aµ) = (x′,y′). To this end, take

µ = {(1,1),(2,2), . . . ,(m,m)} an optimal matching of A, and also of Aµ . Recall

that µ0 = {(1,1),(2,2), . . . ,(m′,m′)} is optimal for A0.

We claim that for any S⊆M, S 6= /0 we have

δ
Aµ

S,µ(S)

(
x′,y′

)
= δ

A0

S,µ(S)

(
x0,y0) and δ

Aµ

µ(S),S

(
x′,y′

)
= δ

A0

µ(S),S

(
x0,y0) .

We only prove the first equality, and the second is similar. To see it, notice that

δ
A0

S,µ(S)

(
x0,y0)= min

i∈S j∈M′\µ(S)

{
xi,xi + y j−ai j

}
=

= min
i∈S j∈µ(M)\µ(S)

{
xi,xi + y j−ai j,xi−aµ

i

}
=

= min
i∈S j∈µ(M)\µ(S)

{
xi−aµ

i ,xi + y j−ai j
}
=

= min
i∈S j∈µ(M)\µ(S)

{
xi−aµ

i ,(xi−aµ

i )+ y j− (ai j−aµ

i )
}
=

= min
i∈S j∈µ(M)\µ(S)

{
xi−aµ

i ,(xi−aµ

i )+ y j−aµ

i j

}
=

= δ
Aµ

S,µ(S)

(
x′,y′

)
.

where the second equality comes from the fact that for all j ∈M′ \µ(M) we have

y j = 0, the third equality since for all i∈ S, xi≥ xi−aµ

i and the fifth one comes from

the fact that whenever ai j−aµ

i < 0 we have (xi−aµ

i )+y j− (ai j−aµ

i )> (xi−aµ

i ),

which allows us to introduce the term aµ

i j.

We finish the proof by recalling that ν(A0) = (x0,y0).

Proof of Theorem 7.2

Proof. 1. −→ 2. Let A ∈M+
m×m′ ,m < m′ be a matrix and let ν (A) = (x,y) be its

nucleolus.
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Let µ ∈M ∗
A (M,M′) be an optimal matching. Clearly, non-assigned sellers by

µ get zero payoffs in the nucleolus. Therefore, let Z′0 be the set of non-assigned

sellers by µ, i.e. Z′0 = M′ \µ(M).

Now apply (8) and (9) and ν (Aµ) = (x′,y′), with x′i = xi− aµ

i for i ∈ M, and

y′j = y j for j ∈ µ(M) where vector aµ =
(
aµ

i

)
i∈M and matrix Aµ are defined as in

(6) and (7). Then, applying Theorem 7.1, min
i∈M
{xi}≥min

i∈M

{
xi−aµ

i

}
= min

j∈M′\Z′0

{
y j
}
.

This is condition 2.

2. −→ 1. We define matrix V ∈M+
m×m′ by

vi j :=


xi + y j if i ∈M, and j ∈M′ \Z′0,

xi− min
j∈M′\Z′0

{
y j
}

if i ∈M, and j ∈ Z′0.

Note that any matching between M and M′\Z′0 is optimal for V, i.e. M (M,M′ \Z′0)⊆

M ∗
V (M,M′) . This matrix V ∈M+

m×m′ is, in fact, a valuation matrix and its proof is

left to the reader.

We must prove now that vector (x,y) is the nucleolus of this matrix V. From (8)

and (9), (x,y) = ν (V ) if and only if ν (V µ) = (x′,y′), with x′i = xi− vµ

i for i ∈M,

and y′j = y j for j ∈ µ(M), for some µ ∈M (M,M′ \Z′0) . Indeed, all of them are

optimal.

By (6), vµ

i = xi− min
j∈M′\Z′0

{
y j
}

for all i ∈M and then x′i = xi−vµ

i = min
j∈M′\Z′0

{
y j
}

for all i ∈M. By its definition and the above equalities matrix V µ satisfies, for all

(i, j) ∈M× (M′ \Z′0),

vµ

i j = max
{

0,y j + min
j∈M′\Z′0

{
y j
}}

= y j + min
j∈M′\Z′0

{
y j
}
= y′j + x′i.

Since min
i∈M
{x′i}= min

i∈M

{
min

j∈M′\Z′0

{
y j
}}

= min
j∈M′\Z′0

{
y′j
}

and V µ is a square valuation

matrix, by (3) we obtain ν (V µ) = (x′,y′).
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