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Abstract: We study the impact of the cosmological parameters uncertainties on the measure-

ments of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While

this is not expected to be an issue for the standard ΛCDM model, it may not be the case for

more general models that modify the large-scale shape of the power spectrum. We consider the

so-called local non-Gaussianity model, parametrized by the fNL non-Gaussianity parameter which

is zero for a Gaussian case, and make forecasts on fNL from planned surveys, alone and combined

with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast

the correlations among fNL and the running of the spectral index αs, the dark energy equation

of state w, the effective sound speed of dark energy perturbations c2s, the total mass of massive

neutrinos Mν =
∑

mν , and the number of extra relativistic degrees of freedom N rel
ν . Neglecting

CMB information on fNL and scales k > 0.03h/Mpc, we find that, if N rel
ν is assumed to be known,

the uncertainty on cosmological parameters increases the error on fNL by 10 to 30% depending

on the survey. Thus the fNL constraint is remarkable robust to cosmological model uncertainties.

On the other hand, if N rel
ν is simultaneously constrained from the data, the fNL error increases by

∼ 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over

a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local

form with a marginalized 1–σ error of the order ∆fNL ∼ 2− 5, after combination with CMB priors

for the remaining cosmological parameters. These results are competitive with CMB bispectrum

constraints achievable with an ideal CMB experiment.
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1. Introduction

Tests of deviations from Gaussian initial conditions offer an important window into the

very early Universe and a powerful test for the mechanism which generated primordial

perturbations. While standard single-field slow-roll models of inflation lead to small de-

partures from Gaussianity, non-standard scenarios allow for a larger non-Gaussianity (NG)

level (e.g. [1, 2, 3], and refs. therein).

In particular, large NG can be produced if any of the conditions below is violated: a)

single field, b) canonical kinetic energy c) slow roll and d) adiabatic (Bunch-Davies) initial

vacuum state. The type of NG arising in standard inflation reads [4, 5, 6, 7]

Φ = φ+ fNL

(

φ2 − 〈φ2〉
)

, (1.1)

where Φ denotes Bardeen’s gauge-invariant potential, which, on sub-Hubble scales reduces

to the usual Newtonian peculiar gravitational potential up to a minus sign, and φ denotes a

Gaussian random field. The NG parameter fNL is often considered to be a constant, yielding

NG of the local type with a bispectrum which is maximized for squeezed configurations [8].

NG of the local type is generated in standard inflationary scenarios (where fNL is expected

to be of the same order of the slow-roll parameters) as well as in multi-field inflationary

scenarios1.

The standard observables to constrain NG are the Cosmic Microwave Background

(CMB) and the Large-Scale Structure (LSS) of the Universe. Traditionally, the most

1Note that Eq. (1.1) is not general, i.e. there is a plethora of possible deviations from Gaussianity arising

in the different inflationary scenarios proposed in the literature.
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popular method to detect primordial NG has been to measure the bispectrum or the three-

point correlation function of the CMB [6, 9, 10], while the LSS bispectrum has been shown

to be sensitive to primordial NG only at high redshift [6, 11, 12, 13, 14].

Other powerful techniques to measure NG are based on weak lensing tomography [15],

Integrated Sachs-Wolfe effect (ISW) [16, 17], abundance [18, 19, 20, 21, 22] and clustering

[23, 24] of rare events such as density peaks, since they trace the tail of the underlying

distribution.

Refs. [25] and [26] (hereafter MV08) showed that primordial NG affects the clustering

of dark matter halos inducing a scale-dependent large-scale bias. This effect, which goes

under the name of non-Gaussian halo bias, is particularly promising, yielding already

stringent constraints from existing data [27, 17]. Forthcoming constraints on NG exploiting

the non-Gaussian halo bias are expected to be similar to those achievable from an ideal

CMB survey [16]. These predictions have been confirmed by N-body simulations [25, 28,

29, 30].

Forecasts for fNL constraints from the halo-bias have been carried out so far assuming

perfect knowledge of all other cosmological parameters. While for a ΛCDM model this is

expected to be a reasonable assumption, for more general models one may expect fNL to

be degenerate with other parameters and thus to have a larger marginal error. Here we

study the degeneracies among the large-scale non-Gaussian halo bias (for NG of the local

type) and the cosmological parameters which affect the large-scale halo power spectrum,

focusing on dark energy perturbations, massive neutrinos, number of relativistic species,

and running spectral index, which can produce large deviations of the underlying cosmology

from the minimal ΛCDM scenario. The paper is organized as follows. In §2 we briefly

review the analytic expressions of the non-Gaussian halo power spectrum generalized to

redshift dependent transfer functions. The redshift dependence is due to the presence of

both dark energy perturbations and massive neutrinos. In §3 we summarize the Fisher

matrix formalism applied to the observed halo power spectrum. In §4 we describe the

assumed fiducial cosmology. Finally, in §5 and §6 we discuss the results and draw our

conclusions.

2. Non-Gaussian halo bias

Here we summarize the derivation of [26], extending it to the case of a redshift dependent

transfer function. In Fourier space, the filtered linear over-density δR is related to the

primordial potential Φ(k) by the Poisson equation:

δR(k, z) =
2

3

D(z)T (k, z)k2c2

H2
0Ωm,0

WR(k)Φ(k) ≡ MR(k, z)Φ(k) , (2.1)

where T (k, z) denotes the matter transfer function (which is redshift dependent in the

presence of massive neutrinos and/or dark energy perturbations), WR(k) is the Fourier

transform of the top-hat function of width R, H0 and Ωm,0 are the current values of

the Hubble constant and the total matter energy density respectively, and D(z) = (1 +
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z)−1g(z)/g(0) is the linear growth-factor of density fluctuations, normalized to D(0) = 1

with g(z) being the growth suppression factor for non Einstein-de Sitter universes.

In this context, the non-Gaussian halo power-spectrum takes the form

Ph(k, z) = b2L,h(z,M)Pδδ(k, z) [1 + 4fNLbL,h(z,M)β(k, z)] . (2.2)

Here bL,h(z,M) ≡ qδc(z)/(σ
2
MD(z)) is the Gaussian lagrangian bias2 for dark matter halos

of massM [34], σ2
M is the mass variance linearly extrapolated to z = 0, δc(z) ≡ ∆c(z)/D(z),

being ∆c(z) the linear overdensity for spherical collapse, which can be considered as a

constant ∆c(z) = 1.686, even in the presence of dark energy [35], q is a factor extracted

from N-body simulations ([28] and references therein) and Pδδ(k, z) is the power spectrum

of δR (as it will be shown later in Eq. (4.8)). Finally, β(k, z) is defined as

β(k, z) ≡ 1

8π2MR(k, z)

∫

dk1k
2
1MR(k1, z)Pφ(k1)

∫ 1

−1
dµMR

(√
α, z

)

[

Pφ (
√
α)

Pφ(k)
+ 2

]

, (2.3)

where α = k21 + k2 + 2k1kµ. Here we adopt the so-called CMB fNL normalization where

Eq. (1.1) is intended to be deep in the matter-dominated era3. Consequently, the non-

Gaussian halo Lagrangian bias reads4

bNG
L,h(z,M) ≃ bL,h(z,M)[1 + 2fNLbL,h(z,M)β(k, z)]. (2.4)

Making the standard assumption that halos move coherently with dark matter, the Eulerian

bias is bE = 1 + bL. The halo power spectrum given by Eq. (2.2), is connected directly

to the underlying dark matter power spectrum and can be recostructed from the galaxy

power spectrum using different techniques (e.g. [39]). It provides important information

on the growth of structure, which helps in constraining dark energy and neutrino masses

together with primordial non-Gaussianities. We shall exploit information from both the

shape and the amplitude of the NG halo power spectrum up to scales k < 0.03h/Mpc,

where β(k, z) has a negligible dependence on the halo mass (recall that for local non-

Gaussianity β(k, z) ∝ 1/k2). In addition, Eqs. (2.2)-(2.4) are valid only on scales much

larger than the Lagrangian radius of the halo [26, 16] and have been tested and calibrated

on N-body simulations only on scales k < 0.03h/Mpc [28]. We believe that the approach

followed here is conservative, since in our parameter forecasts we do not consider scales

k > 0.03h/Mpc in the halo power spectrum, which could provide much tighter constraints

on cosmology, via e.g. Baryonic Acoustic Oscillations (BAO). In what follows, we shall use

Eq. (2.2) to propagate errors of the non-Gaussian halo power spectrum into errors of the

cosmological parameters via a Fisher matrix approach, as described below.

2In general, the Gaussian halo bias may have a non trivial dependence on both the halo formation

redshift zf and the observation redshift zo [31, 32, 33]. However, for objects that did not undergo recent

mergers, zf ≫ zo, or in the case of rapid mergers zf ≈ zo for δ2c ≫ σ2
M , i.e. large M and/or high zf , the

bias is well approximated by Eq. (2.2).
3See [28] for the large-scale structure-normalized conversions.
4A more accurate expression is given by bNG

L,h(z,M) = bL,h(z,M)
√

(1 + 4fNLbL,h(z,M)β(k, z))
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3. Methodology

In this paper we adopt the Fisher matrix formalism to make predictions of the cosmological

parameter errors including the NG parameter fNL. The Fisher matrix is defined as the

second derivative of the likelihood surface about the maximum. As long as the posterior

distribution for the parameters is well approximated by a multivariate Gaussian function,

its elements are given by [40, 41, 42]

Fαβ =
1

2
Tr
[

C−1C,αC
−1C,β

]

, (3.1)

where C = S + N is the total covariance which consists of signal S and noise N terms.

The commas in Eq. (3.1) denote derivatives with respect to the cosmological parameters

within the assumed fiducial cosmology5.

To derive realistic parameter forecasts, we consider future redshift surveys, as Euclid6-

and LSST7-like galaxy surveys. While for BAO surveys an accurate redshift measurement

is crucial [43, 44], for our purposes, a precise redshift extraction is not needed, as it will be

explained after Eq. (3.3). For the EUCLID-like survey we will assume a redshift coverage

of 0.5 < z < 2 and a sky area of fsky = 20000 deg2. For the LSST-like survey, we will

consider 0.3 < z < 3.6 and fsky = 30000 deg2 for redshift and area coverages, respectively.

In order to explore the cosmological parameters constraints from a given redshift survey,

it is mandatory to specify the measurement uncertainties of the halo power spectrum. In

general, the statistical error on the measurement of Ph(k) at a given wavenumber bin is

given by [45]
[

∆Ph

Ph

]2

=
2(2π)2

V k2∆k∆µ

[

1 +
1

n̄hPh

]2

, (3.2)

where n̄h is the mean number density of dark matter halos, V is the comoving survey

volume of the galaxy survey, and µ is the cosine of the angle between k and the line-of-

sight direction.

To our purposes it is adequate to perform an angular average over µ. Thus, our Fisher

matrix for the large-scale structure data is given by

FLSS
αβ = 2

V

8π2

∫ kmax

kmin

k2dk
∂ lnPh(k)

∂pα

∂ lnPh(k)

∂pβ

[

n̄hPh(k)

n̄hPh(k) + 1

]2

, (3.3)

where pα represents the chosen set of cosmological parameters.

We divide the surveys in redshift bins of width ∆z = 0.1 (larger than standard pho-

tometric and spectroscopic redshift errors), and set kmax to be 0.03h/Mpc and kmin to be

greater than 2π/∆V 1/3, where ∆V is the volume of the redshift shell. Conservatively, we

5In practice, it can happen that the choice of parameterization makes the posterior distribution slightly

non-Gaussian. However, even in this case, the error introduced by assuming Gaussianity in the posterior

distribution can be considered as reasonably small, and therefore the Fisher matrix approach still holds as

an excellent approximation for parameter forecasts.
6http://sci.esa.int/euclid
7http://www.lsst.org/lsst/science/scientist dark energy
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do not consider here that scales larger than kmin can be used by cross-correlating different

shells.

The effect of NG alters the broad-band behavior of Ph(k) on very large scales, where

Ph(k) is unaffected by the precision with which the radial positions of the galaxies are

measured. Thus, we can treat photometric and spectroscopic surveys on the same footing.

Moreover, the requirement of surveying a large volume of the universe and sampling highly

biased galaxies to beat shot-noise, which is a key point for BAO surveys, is also a bonus

for constraining primordial NG [16].

Note, moreover, that the NG correction of the halo bias is boosted by the Lagrangian

Gaussian halo bias factor itself.

In particular, for the value of kmin used here, we find that Ph(kmin) ≃ Ph(k =

0.2h/Mpc), thus, the shot-noise requirement for BAO surveys of n̄P (k = 0.2h/Mpc) > 1,

implies that for all scales of interest here, n̄P ≫ 1. We have checked that our results do

not change if we impose n̄P ∼ 3 at all scales.
We compute as well the CMB Fisher matrix to obtain forecasts for the Planck satel-

lite8. We follow here the method of [46], considering the likelihood function for a realistic
experiment with partial sky coverage, and noisy data

−2 lnL =
∑

ℓ

(2ℓ+ 1)

{

fBB
sky ln

(

CBB
ℓ

ĈBB
ℓ

)

+
√

fTT
skyf

EE
sky ln

(

CTT
ℓ CEE

ℓ − (CTE
ℓ )2

ĈTT
ℓ ĈEE

ℓ − (ĈTE
ℓ )2

)

+
√

fTT
skyf

EE
sky

ĈTT
ℓ CEE

ℓ +CTT
ℓ ĈEE

ℓ − 2ĈTE
ℓ CTE

ℓ

CTT
ℓ CEE

ℓ − (CTE
ℓ )2

+ fBB
sky

ĈBB
ℓ

CBB
ℓ

− 2
√

fTT
skyf

EE
sky − fBB

sky

}

(3.4)

and compute its second derivatives to obtain the corresponding Fisher matrix

FCMB
αβ =

〈

− ∂2L

∂pα∂pβ

〉

|p=p̄ . (3.5)

In Eq. (3.4) CXY
ℓ = CXY

ℓ + NXY
ℓ being CXY

ℓ the temperature and polarization power

spectra (X,Y ≡ {T,E,B}) and Nℓ the noise bias. Finally, fXY
sky is the fraction of observed

sky which can be different for the T -, E-, and B-modes. In Eq. (3.5) L ≡ lnL, pα and pβ
denote the cosmological parameters of the assumed model and form the vector p whose

fiducial value is given by p̄.

Combining the Planck and redshift survey Fisher matrices (Fαβ = FLSS
αβ +FCMB

αβ ) we get

the joint constraints for p. The 1–σ error on pα marginalized over the other parameters

is σ(pα) =
√

(F−1)αα, being F−1 the inverse of the Fisher matrix. We then consider

joint constraints in a two-parameter subspace (marginalized over all other cosmological

parameters) to study the covariance between fNL and the other cosmological parameters

considered in this work.

Furthermore, in order to quantify the level of degeneracy between different parameters

and fNL, we estimate the so-called correlation coefficients, given by

r ≡
(F−1)pfNL

pα
√

(F−1)pfNL
pfNL

(F−1)pαpα

, (3.6)

8www.rssd.esa.int/PLANCK
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where pα denotes one of the model parameters. When the coefficient |r| = 1, the two

parameters are totally degenerate, while r = 0 means they are uncorrelated.

Table 1: Correlation coefficients for Mν–cosmology

Ωbh
2 h Ωc,0h

2 ∆2
R
(k0) ns w c2s αs Mν

LSST fNL 0.50 0.31 0.36 0.35 −0.03 0.41 −0.32 −0.31 0.03

LSST+Planck fNL −0.22 −0.19 0.36 −0.12 0.14 −0.07 0.10 −0.13 0.34

EUCLID fNL 0.55 0.25 0.31 0.36 −0.06 0.39 −0.30 −0.24 0.09

EUCLID+Planck fNL −0.17 −0.05 0.24 −0.07 0.06 −0.07 0.09 −0.05 0.16

Table 2: Correlation coefficients for N rel
ν –cosmology

Ωb,0h
2 h Ωc,0h

2 ∆2
R
(k0) ns w c2s αs N rel

ν

LSST fNL −0.06 0.34 0.12 −0.13 0.12 0.34 −0.39 −0.44 −0.64

LSST+Planck fNL 0.24 −0.48 0.61 −0.24 0.19 0.54 0.04 −0.08 0.69

EUCLID fNL −0.05 0.34 0.08 −0.20 0.05 0.11 −0.26 −0.45 −0.69

EUCLID+Planck fNL 0.34 −0.57 0.76 −0.26 0.21 0.64 0.08 −0.05 0.77

4. Model parameters

The Fisher matrix approach propagates errors of the observed Ph, see Eq. (3.2), into

errors of the cosmological parameters which characterize the underlying fiducial cosmology.

According to the latest observations (e.g. [51] and refs. therein), our fiducial ΛCDM

cosmological parameters are: Ωm,0h
2 = 0.1358, Ωb,0h

2 = 0.02267, h = 0.705, ∆2
R
(k0) =

2.64 × 10−9, ns = 0.96, αs = 0 and fNL = 0. Here Ωm,0 and Ωb,0 are the total matter and

baryon present-day energy densities, respectively, in units of the critical energy density of

the Universe, h is given by H0 = 100h km s−1 Mpc−1 , where H0 is the Hubble constant,

∆2
R
(k0) represents the dimensionless amplitude of the primordial curvature perturbations

evaluated at a pivot scale k0, ns is the scalar spectral index of the primordial matter

power spectrum, assumed to be a power-law, and αs is the running of the scalar spectral

index. We will consider two different fiducial models matching this ΛCDM cosmology

as follows. We adopt the same values for the 7 “base” parameters. We do not consider

primordial gravitational waves and assume a flatness prior, ΩK = 0, as predicted by long-

lasting inflation models, so that Ωde,0 = 1 − Ωm,0, where ΩK and Ωde,0 are, respectively,

– 6 –



Table 3: fNL 1-σ errors for Mν–cosmology

fixed parameter LSST LSST+PLANCK EUCLID EUCLID+PLANCK

non-marginalized 1.65 1.65 2.79 2.79

marginalized 4.52 2.11 8.86 3.12

Ωb,0h
2 3.91 2.06 7.41 3.07

h 4.29 2.07 8.58 3.11

Ωc,0h
2 4.22 1.97 8.43 3.02

∆2
R
(k0) 4.22 2.10 8.27 3.11

ns 4.52 2.09 8.85 3.11

w 4.12 2.11 8.16 3.11

c2s 4.27 2.10 8.44 3.11

αs 4.30 2.10 8.61 3.11

Mν 4.52 1.99 8.83 3.08

αs, c
2
s 4.05 2.09 8.13 3.10

αs,Mν 4.28 1.94 8.57 3.07

c2s,Mν 4.26 1.97 8.35 3.06

c2s,Mν , αs 4.02 1.93 8.03 3.06

Table 4: fNL 1-σ errors for N rel
ν –cosmology

fixed parameter LSST LSST+PLANCK EUCLID EUCLID+PLANCK

non-marginalized 1.46 1.46 2.56 2.56

marginalized 5.08 2.56 10.15 4.79

Ωb,0h
2 5.07 2.49 10.13 4.51

h 4.77 2.25 9.53 3.93

Ωc,0h
2 5.05 2.03 10.12 3.13

∆2
R
(k0) 5.04 2.49 9.94 4.62

ns 5.05 2.51 10.13 4.68

w 4.78 2.16 10.09 3.67

c2s 4.69 2.56 9.79 4.77

αs 4.57 2.55 9.06 4.78

N rel
ν 3.88 1.86 7.32 3.06

αs, c
2
s 4.16 2.55 8.70 4.77

αs, N
rel
ν 3.76 1.76 7.15 2.92

c2s, N
rel
ν 3.57 1.86 7.15 3.05

c2s, N
rel
ν , αs 3.43 1.76 6.95 2.91

the present-day energy densities associated to the spatial curvature and to the dark energy

component of the Universe, in units of the critical density.
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A Gaussian prior of 5% on the present-day Hubble’s constant H0 =

100h km s−1 Mpc−1 is assumed, following the results of [52]. While this uncertainty is

comparable to the one achieved by recent WMAP-7yr data9 in the determination of H0

for the ΛCDM model [51], this information will improve, as expected, the parameter con-

straints on models different from the minimal ΛCDM model, such as models with dark

energy perturbations, massive neutrinos and non-vanishing running of the spectral index.

We also consider dark energy to be a cosmic fluid with clustering properties on the

Gpc scale, described by an equation of state that we assume to be constant

w ≡ pde
ρde

= w|fid , (4.1)

where where pde and ρde represent respectively the pressure and energy density of the

dark energy fluid, and we assume a fiducial value w|fid = −0.9 which lies well within the

current 95% C.L. limits on a constant dark energy equation of state parameter w. The dark

energy fluid will be also described here by an effective sound speed cs which parametrizes

the transition between the smooth and clustered dark-energy regimes [47]

c2s ≡
δpde
δρde

, (4.2)

whit fiducial value c2s|fid = 0.9. Dark energy perturbations will arise only if the dark energy

equation of state parameter w is different from −1.

We assume the power spectrum of primordial curvature perturbations, PR(k), to be

∆2
R(k) ≡

k3PR(k)

2π2
= ∆2

R(k0)

(

k

k0

)ns−1+ 1
2
αs ln(k/k0)

. (4.3)

where k0 = 0.002/Mpc and ∆2
R
(k0)|fid = 2.64 × 10−9 [48].

The matter energy density Ωm,0 includes the neutrino contribution when neutrinos are

non-relativistic

Ωm,0 = Ωc,0 +Ωb,0 +Ων,0 , (4.4)

where Ων,0 is related to the sum of neutrino masses Mν ≡∑mν as

Ων,0 =
Mν

93.8h2 eV
, (4.5)

and the neutrino mass eigenstates are assumed to have a degenerate spectrum, i.e. the

three neutrinos have the same mass.

We will constrain the following set of “baseline” parameters

pα =
{

Ωb,0h
2, h,Ωc,0h

2,∆2
R(k0), ns, w, cs, αs, fNL

}

. (4.6)

From here we specify two cosmological models:

9http://lambda.gsfc.nasa.gov/
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• N rel
ν –cosmology, where neutrinos are effectively massless but the the number of rel-

ativistic species N rel
ν can deviate from the standard value N rel

ν = 3.04. In this case

the fiducial value N rel
ν |fid = 3.04 is chosen, fixing Mν = const = 0. N rel

ν is given by

the energy density associated to radiation

Ωr,0 = Ωγ,0

(

1 + 0.2271N rel
ν

)

, (4.7)

where Ωγ,0 = 2.469 × 10−5h−2 is the present-day photon energy density parameter

for Tcmb = 2.725 K [49].

• Mν–cosmology, where N rel
ν is fixed at the fiducial value and Mν is allowed to vary.

In this case, being still consistent with current data [50, 51] we choose a fiducial

value Mν |fid = 0.3 eV. This choice is motivated by the fact that for taking two-sided

numerical derivatives, the fiducial Mν must be non-zero. It is well known that the

error from cosmological observations on the neutrino mass depends somewhat on the

fiducial mass chosen; from [53] we estimate that around a fiducial Mν = 0 the error

on Mν = 0 would increase by less than 20%. As it will be clear from Sec. 5 the

effect of this correction will be negligible on the fNL error estimate. In addition most

of the signal to constrain Mν from LSS surveys will come from smaller scales (not

considered here).

At the CMB level, if neutrinos are still relativistic at the decoupling epoch, z ≃ 1090,

i.e. if the mass of the heaviest neutrino specie is mν < 0.58 eV, massive neutrinos do not

affect the CMB power spectra, except through the gravitational lensing effect [49], and,

as a consequence, the dark energy equation of state w is not degenerate with the neutrino

mass. However, the limit on the the sum of the neutrino masses degrades significantly

when the dark energy equation of state is a function of redshift, if the amplitude of the

galaxy spectrum is used for getting constraints on w andMν , since dark energy and massive

neutrinos both affect the growth rate of structures.

In this work, both massive neutrinos and clustering properties of the dark energy

perturbations are considered. In this scenario, the growth function of the dark matter

perturbations is scale-dependent, even at the linear level. The overall effect induces a

redshift-dependent transfer function [54, 55, 56], and the power spectrum of the linear

density field, smoothed on a sphere of radius R, takes the form

Pδδ(k, z) =
8π2c4k0∆

2
R
(k0)

25H4
0Ω

2
m,0

W 2
R(k)T

2(k, z)D2(z)

(

k

k0

)ns+
1
2
αs ln(k/k0)

, (4.8)

where D(z) is the scale independent linear growth-factor defined in §2. The redshift-

dependent transfer function T (k, z) is directly extracted from CAMB10[57] at each redshift

z, in order to compute the Fisher matrix, given by Eq. (3.3), within each redshift bin.

Our analysis exploit exclusively the linear matter power spectrum, since we restrict

ourselves to scales k 6 0.03h/Mpc, where the details of the halo occupation distribution of

10http://camb.info/
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galaxies are irrelevant. We focus here on dark matter halos with mass ∼ 1012–1013 (where

the lower mass limit is relative to the highest redshift of the survey).

Notice as well that in our Fisher matrix analysis we do not add constraints on the fNL

parameter from CMB experiments, so that our forecasts on fNL result exclusively from

future redshift survey measurements of the dark matter halo power spectrum on scales

k 6 0.03h/Mpc, i.e. without including information from BAOs which will further reduce

the forecasted errors and residual degeneracies. For all the reasons explained above, the

results presented in the next section should be considered conservative.

5. Results

In this Section we present the predicted 1–σ marginalized errors of the fNL parameter, and

the fNL covariance with the remaining cosmological parameters considered in our Fisher

matrix analysis. We show forecasts both from LSST and EUCLID data only, as well as

the expected errors after combining the results from these two experiments with Planck

forecasted errors.

First of all, when considering forecasts from the redshift surveys alone, we expect that

the fNL parameter will be correlated with all cosmological parameters which affect the

amplitude and shape of Ph(k) at scales k 6 0.03h/Mpc. Tables 1-2 show the correlation

r (see Eq. (3.6)) among fNL and the other cosmological parameters pα. We expect w and

fNL to be correlated. In fact, at scales k 6 0.03h/Mpc, an increase of w produces a trend

on the matter power spectrum which is opposite to the one produced in Ph(k) by increasing

fNL. So the effect of positively increasing fNL can be mimicked by a larger w (see Fig. 1).

Likewise, fNL is correlated with Ωb,0h
2, Ωc,0h

2, and Mν , since, on the scales consid-

ered, the larger these parameters are, the smaller the matter power spectrum is, and this

competes with the rise of Ph(k) due to an increasing value of fNL.

On the other hand, fNL is negatively correlated with both the running of the scalar

spectral index αs and the effective sound speed of dark energy perturbations cs. In fact,

if either αs or cs increase, the matter power spectrum Pδδ is modified in a very similar

way to the halo power spectrum Ph(k) for a larger fNL value. Consequently, the effect

of a positively increasing fNL can be mimicked by decreasing either αs or cs. For what

concerns the effective number of relativistic species, the fNL–N
rel
ν correlation is more

complicated, as it depends on several factors. Naively, one would expect a positively

correlation between these two parameters, since an increase in the number of relativistic

particles should suppress the matter power spectrum, which can be compensated by

increasing fNL. However, since the redshift evolution of the halo bias is also modified in

this situation, the correlation coefficient may change its sign.

When the Planck Fisher matrix information is added to the survey Fisher matrix,

all degeneracies are either resolved or drastically reduced. In some cases, the correlation

coefficient r can even change sign, see Tabs. 1-2. This change in the behavior of r arises

either due to the presence of dominant parameter degeneracies affecting the CMB spectrum,

or because of marginalization of a high-dimension parameter space down to two variables.
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Figure 1: The solid blue line represents the NG halo power spectrum for fNL = 100 and halo

mass M = 1013M⊙, while the dotted blue line is the corresponding Gaussian halo power spectrum

(fNL = 0), at redshift z = 0. The dashed red line represents the matter power spectrum calculated

for w = −0.9, while the red three-dot-dashed line is the matter power spectrum for w = −0.2. The

matter power spectra are evaluated at z = 0 and normalized to the same amplitude at k = 0.002.

Note that ∆(lnPh(k))/∆w and ∆(lnPh(k))/∆fNL have opposite sign in the range of k of interest

here: it is clear from Eq. (3.3) that the two parameters can compensate each other, i.e. they are

correlated

In particular, it is worth noting here that, while fNL and N rel
ν are negatively correlated if

only galaxy survey data are considered, they are positively correlated after adding Planck

priors. In fact, since both N rel
ν and Ωc,0h

2 are strongly, positively correlated at the CMB

level via the equality redshift zeq, then, a positive correlation between Ωc,0h
2 and fNL

automatically turns into a correlation of the same sign between N rel
ν and fNL. Despite the

residual non-zero correlation coefficients, one should bear in mind that the marginalized

fNL errors decrease by a factor > 2 when the CMB prior is added.

From our analysis, we conclude that the effective number of relativistic species is the

main parameter affecting the constraints on fNL.

The 1–σ errors of fNL, for the two fiducial cosmologies considered here, are shown in

Tabs. 3 and 4. Let us notice that the marginalized errors are significantly larger than the

non-marginalized ones when only the LSS surveys are used for the forecasts. Nonetheless,

the marginalized errors become comparable in magnitude to the non-marginalized errors

when Planck priors are added, since the CMB mitigates the intrinsic degeneracies between

fNL and the other cosmological parameters at the LSS level. It is also worth noting that the

non-marginalized 1–σ errors of fNL presented in this work are larger than the corresponding

errors presented in [16]. In fact we now consider less highly biased halos, with a fiducial

bias parameter more in-line with the expected one for (blue) EUCLID galaxies [58, 59]. It

– 11 –



Figure 2: 2-parameter fNL-pα joint contours for the fiducial model with extra relativistic degrees of

freedom N rel
ν as described in the text, obtained after combining LSST (upper panels) and EUCLID

(lower panels) data with Planck priors. The blue dotted line, the red dashed line and the orange

dot-dashed line represent the 68% C.L., 95.4% C.L. and 99.73% C.L., respectively. The black solid

line shows the 1-parameter confidence level at 1–σ.

is important to note that the fNL effect on the halo bias is modulated by bL,h(z,M), which

depends crucially on the selected halo and its merging history [60, 61].

Tabs. 3-4 show as well the effect of each cosmological parameter on the fNL forecasts.

Obviously the parameters which have a larger impact on the fNL errors are the ones more

degenerated with it, and can be directly inferred from Tabs. 1-2. Moreover, since with the

inclusion of the parameters αs, cs, Mν and N rel
ν , we have considered cosmologies which

deviate substantially from the minimal ΛCDM model, we fix pairs/triplets composed by

these parameters to show how much deviations from a ΛCDM cosmology can affect the

fNL constraints. For the N rel
ν model cosmology there is an important impact on the fNL

marginalized errors from Ωc,0h
2, h, w and, in particular, from N rel

ν . In summary, if N rel
ν

is assumed to be fixed, the uncertainties on the other cosmological parameters increase

the error on fNL only by 10 to 30%, depending on the survey. If N rel
ν is considered as an

extra parameter to be simultaneously constrained from the data then the uncertainty in

the underlying cosmology increases the fNL error by ∼ 80%.

In Figs. 2-3 we show the 2-parameter projected 68% C.L., 95.4% C.L. and 99.73% C.L.

contours in the fNL-pα sub-space with pα = w, c2s , αs,Mν , N
rel
ν , obtained after combining

LSST and EUCLID data with Planck priors for the two fiducial models considered in this

work. The black line shows the 1-parameter confidence level at 1–σ. The orientation of

the ellipses reflects the correlations among the parameters shown in Tabs. 1-2.

6. Conclusions

Deviations from non-Gaussianity, usually parameterized by the parameter fNL, offer a

powerful tool to identify the mechanism which generates the seeds for the structures we

observe currently in our Universe.

Here we study the impact of the uncertainties of the cosmological parameters on the

fNL errors expected for the case of local non-Gaussianity for the large-scale non-Gaussian
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Figure 3: The same as in Fig. 2, for the fiducial model with massive neutrinos of total mass

Mν |fid = 0.3 eV, as described in the text.

halo bias effect. We forecast the correlations among fNL and the remaining cosmological

parameters (including the running of the spectral index αs, and the dark energy parameters

w and c2s) within two possible cosmological models. The first model contains massive

neutrinos (hypothesis robustly confirmed by neutrino oscillation data), where the total

neutrino mass is a parameter to be constrained by the cosmological data. The second

model assumes massless neutrinos (or neutrinos with a mass too small to be relevant for

the cosmological observations considered here) and allows for extra relativistic degrees of

freedom N rel
ν , which could be induced by the presence of sterile neutrinos, non minimally

coupled quintessence fields, or even by the violation of the spin statistics theorem in the

neutrino sector.

We follow here a conservative approach, assuming that fNL is constrained exclusively

from the very large scale halo power spectrum (i.e. we neglect CMB information on fNL),

and restrict ourselves to scales k 6 0.03h/Mpc, without exploiting information e.g., from

BAOs, which will further reduce degeneracies and forecasted errors. We present first the

Fisher matrix forecasts for fNL assuming EUCLID- and LSST-like surveys for the two

model cosmologies considered here. Then, we add the Planck Fisher forecasts for the

remaining cosmological parameters to study the impact on the fNL correlations.

The combined errors on fNL do not change significantly in the presence of a dark

energy equation of state, massive neutrinos, running of the spectral index, or clustering

of dark energy perturbations, which are the parameters we have particularly focused on,

since they are expected to affect the matter power spectrum on large scales, and represent

the main deviations from a minimal ΛCDM model. However, the errors on fNL are highly

affected in the presence of extra relativistic degrees of freedom N rel
ν . We find that if N rel

ν

is assumed to be fixed, the effect of the uncertainties on the other cosmological parameters

increases the error on fNL only by 10 to 30% depending on the survey. If N rel
ν is considered

as a parameter to be simultaneously constrained from the data, then the uncertainty in the

underlying cosmology increases the fNL error by ∼ 80%. We thus conclude that, except

for the effect of N rel
ν , the halo-bias fNL constraints are remarkably robust to uncertainties

in the underlying cosmology.
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One important point to discuss is the effect of the (Gaussian) halo bias, as its value

boosts the effect of fNL on the halo power spectrum shape, and in our analysis it has been

assumed to be known. The (Gaussian) halo bias depends strongly on the type of halos

selected by the survey –whether they correspond to extremely high and rare peaks in the

initial fluctuation field–, and on their accretion history. Errors on fNL may be improved

-at least in principle- by up to a factor of two by optimizing the choice of tracers.

The bias factor itself will need to be estimated from the survey, at the same time as

the other cosmological parameters; the signal comes from scales much smaller than those

used here, where the NG effect on halo bias is completely negligible. We estimate that the

error on the (Gaussian) halo bias will be of the same order (in %) as the error on the linear

growth factor f as a function of redshift, which is forecasted to be <∼ 10% [62, 63]. Such

a residual uncertainly will therefore increase the fNL errors reported here by at most 10%.

Let us recall that the purpose of this work is to show the main correlations between

fNL and the other cosmological parameters, and to understand if these degeneracies can

degrade dramatically the fNL errors. We have shown that, after the combination with

Planck constraints on parameters different from fNL, the degeneracies get mostly broken,

independently on the particular cosmological parameter, even without adding information

from smaller scales corresponding to k > 0.03h/Mpc. Therefore we conclude that the fNL

constraints are very robust against underlying cosmology assumptions.

Finally, future surveys which provide a large sample of galaxies or galaxy clusters over

a volume comparable to the Hubble volume (LSST, EUCLID) will measure primordial

non-Gaussianity of the local form with a marginalized 1–σ error of the order ∆fNL ∼ 2−5,

after combination with CMB priors for the remaining cosmological parameters. These

results are competitive with CMB bispectrum constraints achievable with an ideal CMB

experiment ∆fNL ∼few [64, 65].
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Università di Bologna, where part of the work was carried out.

References

[1] Bartolo, N., Komatsu, E., Matarrese, S., & Riotto, A. 2004, Phys. Rep., 402, 103

[2] Bartolo, N., Matarrese, S., & Riotto, A. 2005, J. Cosm. Astropart. Phys., 10, 10

[3] Chen, X. 2010, arXiv:1002.1416, to appear in special issue of Advances in Astronomy on

“Testing the Gaussianity and Statistical Isotropy of the Universe”

[4] Salopek, D. S., & Bond, J. R. 1990, Phys. Rev. D, 42, 3936

[5] Gangui, A., Lucchin, F., Matarrese, S., & Mollerach, S. 1994, Astrophys. J., 430, 447

– 14 –

http://arxiv.org/abs/1002.1416


[6] Verde, L., Wang, L., Heavens, A. F., & Kamionkowski, M. 2000, Mon. Not. Roy. Astron.

Soc., 313, 141

[7] Komatsu, E., & Spergel, D. N. 2001, Phys. Rev. D, 63, 063002

[8] Babich, D., Creminelli, P., & Zaldarriaga, M. 2004, J. Cosm. Astropart. Phys., 8, 9

[9] Komatsu, E., Spergel, D. N., & Wandelt, B. D. 2005, Astrophys. J., 634, 14

[10] Yadav, A. P. S., & Wandelt, B. D. 2008, Phys. Rev. Lett., 100, 181301

[11] Scoccimarro, R., Sefusatti, E., & Zaldarriaga, M. 2004, Phys. Rev. D, 69, 103513

[12] Sefusatti, E., & Komatsu, E. 2007, Phys. Rev. D, 76, 083004

[13] Cooray, A. 2006, Phys. Rev. Lett., 97, 261301

[14] Pillepich, A., Porciani, C., & Matarrese, S. 2007, Astrophys. J., 662, 1

[15] Fedeli, C., & Moscardini, L. 2009, arXiv:0912.4112, Mon. Not. Roy. Astron. Soc. in press

[16] Carbone, C., Verde, L., & Matarrese, S. 2008, Astrophys. J., 684, L1

[17] Afshordi, N., & Tolley, A. J. 2008, Phys. Rev. D, 78, 123507

[18] Matarrese, S., Verde, L., & Jimenez, R. 2000, Astrophys. J., 541, 10

[19] Verde, L., Jimenez, R., Kamionkowski, M., & Matarrese, S. 2001, Mon. Not. Roy. Astron.

Soc., 325, 412

[20] LoVerde, M., Miller, A., Shandera, S., & Verde, L. 2008, J. Cosm. Astropart. Phys., 0804,014

[21] Robinson, J., & Baker, J. E. 2000, Mon. Not. Roy. Astron. Soc., 311, 781

[22] Robinson, J., Gawiser, E., & Silk, J. 2000, Astrophys. J., 532, 1

[23] Grinstein, B., & Wise, M. B. 1986, Astrophys. J., 310, 19

[24] Matarrese, S., Lucchin, F., & Bonometto, S. A. 1986, Astrophys. J., 310, L21

[25] Dalal, N., Dore, O., Huterer, D., & Shirokov, A. 2008, Phys. Rev. D, 78, 123507

[26] Matarrese, S., & Verde, L. 2008, Astrophys. J., 677, L77 (MV08)

[27] Slosar, A., Hirata, C., Seljak, U., Ho, S., & Padmanabhan, N. 2008, J. Cosm. Astropart.

Phys., 08, 031.

[28] Grossi, M., Verde, L., Carbone, C., Dolag, K., Branchini, E., Iannuzzi, F., Matarrese, S., &

Moscardini, L. 2009, Mon. Not. Roy. Astron. Soc., 398, 321

[29] Desjacques, V., Seljak, U., & Iliev, I. T. 2009, Mon. Not. Roy. Astron. Soc., 396, 85

[30] Pillepich, A., Porciani, C., & Oliver, H. 2010, Mon. Not. Roy. Astron. Soc., 402, 191

[31] Efstathiou, G., Frenk, C. S., White, S. D. M., Davis, M. 1988, Mon. Not. Roy. Astron. Soc.,

235, 715

[32] Cole, S., Kaiser, N. 1989, Mon. Not. Roy. Astron. Soc., 231, 1127

[33] Mo, H. J., & White, S. D. M. 1996, Mon. Not. Roy. Astron. Soc., 282, 347

[34] Kaiser, N. 1984, Astrophys. J., 284, L9

[35] Percival, W. J. 2005 Astron. Astrophys., 443, 819

– 15 –

http://arxiv.org/abs/0912.4112


[36] Cooray, A., & Sheth, R. 2002, Phys. Rep., 372, 1

[37] Sheth, R. K., Mo, H. J., & Tormen, G. 2001, Mon. Not. Roy. Astron. Soc., 323, 1

[38] Sheth, R. K., & Tormen, G. 1999, Mon. Not. Roy. Astron. Soc., 308, 119

[39] Reid, B., A., et al. 2009, arXiv:0907.1659

[40] Tegmark, M., Taylor A., Heavens A. 1997, Astrophys. J., 440,22

[41] Jungman, G., Kamionkowski, M., Kosowsky, A., Spergel, D. 1996, Phys. Rev. D, 54, 1332

[42] Fisher, R. 1935, J. Roy. Statist. Soc., 98, 35

[43] Seo, H.-J., & Eisenstein, D. J. 2003, Astrophys. J., 598, 720

[44] Blake, C., & Bridle, S. 2005, Mon. Not. Roy. Astron. Soc., 363, 1329

[45] Feldman, H., A., Kaiser, N., & Peacock, J., A. 1994, Astrophys. J., 426, 23

[46] Verde, L., Peiris, H., Jimenez, R. 2006, J. Cosm. Astropart. Phys., 0601, 019

[47] Hu, W. 1998, Astrophys. J., 506, 485

[48] Larson, D., et al. 2010, arXiv:1001.4635

[49] Komatsu, E., et al. 2009, Astrophys. J. Suppl., 180, 330

[50] Reid, B., A., Verde, L. Jimenez, R., Mena, O. 2010, J. Cosm. Astropart. Phys., 01, 003

[51] Komatsu, E., et al. 2010, arXiv:1001.4538

[52] Riess, A., G., et al. 2009, Astrophys. J., 699, 539

[53] Kitching, T. D., Heavens, A. F., Verde, L., Serra, P., & Melchiorri, A. 2008, Phys. Rev. D,

77, 103008

[54] Takada, M., Komatsu, E., & Futamase, T. 2006, Phys. Rev. D, 73, 083520

[55] Takada, M. 2006, Phys. Rev. D, 74, 043505

[56] Eisenstein, D., J., & Hu, W. 1997, Astrophys. J., 511, 5

[57] Lewis, A., Challinor, A., & Lasenby, A. 2000, Astrophys. J., 538, 473

[58] Geach, J. E., et al. 2009, Mon. Not. Roy. Astron. Soc., 402, 1330

[59] Orsi, A., Baugh, C. M., Lacey, C. G., Cimatti, A., Wang, Y., Zamorani G. 2009,

arXiv:0911.0669

[60] Slosar, A. 2009, J. Cosm. Astropart. Phys., 03, 004

[61] Reid, B., A., et al. 2010, in preparation

[62] Verde, L., et al. 2002, Mon. Not. Roy. Astron. Soc., 335, 432-440

[63] White, M., Song, Y. S., and Percival, W. J. 2008, Mon. Not. Roy. Astron. Soc., 397, 1348

[64] Yadav, A. P. S., Komatsu, E., & Wandelt, B. D. 2007, Astrophys. J., 664, 680

[65] Liguori, M., & Riotto, A. 2008, Phys. Rev. D, 78, 123004.

– 16 –

http://arxiv.org/abs/0907.1659
http://arxiv.org/abs/1001.4635
http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/0911.0669

