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ABSTRACT

We have performed cosmological N-body simulations which include the effect of the masses of the individual
neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter
power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of
hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different
hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially
measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up
the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.
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1. INTRODUCTION

Neutrino oscillation experiments have demonstrated that neu-
trinos have non-zero mass (Fukuda et al. 1998). Measurements
of the flavor changing oscillations have provided a difference
in the squares of the masses of the lightest and heaviest mass
eigenstates Δm2 � (0.05 eV)2, yielding a lower limit on the
total neutrino mass (Σ = ∑

mνi
). Ongoing and forthcoming

ground-based neutrino experiments (Cremonesi 2010) are sen-
sitive to neutrino flavor and to the nature of neutrino mass (Dirac
or Majorana) but are only sensitive to the absolute mass scale
for large masses. On the other hand, cosmological probes are
blind to flavor but sensitive to the absolute neutrino mass scale
and recently there has been significant progress in constraining
the sum of neutrino masses from cosmological observations.
Massive neutrinos affect the observed matter power spectrum:
their free-streaming damps the small-scale power and modifies
the shape of the matter power spectrum below the free-streaming
length (Doroshkevich et al. 1980; Hu et al. 1998; Takada et al.
2006; Kiakotou et al. 2008). The cosmological constraints on
the total neutrino mass are getting tighter—the current limits on
the total mass are �0.3 eV (e.g., Thomas et al. 2009; Reid et al.
2010a; Komatsu et al. 2011; Saito et al. 2011; Riemer–Sørensen
et al. 2011; de Putter et al. 2012)—and closer to the ex-
perimental lower limits derived from accelerator, reactor, so-
lar, and atmospheric neutrino oscillations (see the reviews by
Lesgourgues & Pastor 2006; Gonzalez-Garcia & Maltoni 2008,
and references therein). Detecting the effect of neutrino masses
on cosmological structure and measuring the neutrino mass scale
is well within the reach of upcoming cosmological surveys (e.g.,
Takada et al. 2006; Hannestad & Wong 2007; Kitching et al.
2008; LSST 2009; Hannestad 2010; Lahav et al. 2010; Reid
et al. 2010a; Jimenez et al. 2010; Carbone et al. 2011, and
references therein).

The neutrino mass splitting required to explain the oscillation
results implies that for three neutrino species there are two
possible hierarchies: normal hierarchy (NH) with two light states
and one heavy state and a total mass Σ � 0.05 eV; and inverted
hierarchy (IH) with two heavy states and one light state with
Σ � 0.1 eV. If the absolute mass scale is much higher than
the mass difference then the mass hierarchy does not matter

(this is called degenerate spectrum). The degenerate hierarchy
however is under pressure from observations (Thomas et al.
2009; Reid et al. 2010a; Gonzalez-Garcia et al. 2010); see
Figure 1, where we have introduced the neutrino mass splitting
parameter Δ relating the lightest (m) and heaviest (M) neutrino
masses following Jimenez et al. (2010)3

NH : Σ = 2m + M Δ = (M − m)/Σ
IH : Σ = m + 2M Δ = (m − M)/Σ . (1)

A determination of the hierarchy can complement results from
neutrinoless double-β decay to help determine the nature of the
neutrino itself (Jimenez et al. 2010): Is it its own antiparticle?
That is, is it a Majorana fermion? As discussed in Bahcall
et al. (2004; see their Figure 3 recalling that a light neutrino
mass of 0.07 eV corresponds to Σ ∼ 0.2–0.25 eV), if the
next generation of neutrinoless double-β decay experiments
find a signal, then neutrinos are Majorana. If these experiments
do not see a signal, it is important to discriminate if that
is because the signal is below the detection threshold, or if
neutrinos are truly Dirac particles. Here is where cosmology
enters (Jimenez et al. 2010): If Σ > 0.25 eV, then the hierarchy
is effectively degenerate and neutrinos are Dirac. The interesting
region to determine the hierarchy is for 0.1 eV < Σ < 0.25 eV,
where the absence of neutrinoless double-β decay indicates
that neutrinos are Dirac only if the hierarchy is inverted. In
Jimenez et al. (2010), we addressed the above question using
linear theory to predict the effect of neutrinos on the matter
power spectrum. Our conclusion was that an ambitious survey
à la stage IV dark energy task force (Albrecht et al. 2006) could
in principle distinguish between the IH and NH if Σ < 0.15 eV.
However, because the effect on the matter power spectrum
of neutrinos extends into the nonlinear regime, it is crucial
to perform N-body simulations that include massive neutrinos
to properly quantify the effect. The main physical effect that
distinguishes different hierarchies is the fact that neutrinos of
different masses have different transition from relativistic to
non-relativistic, thus influencing the shape of the matter power

3 Since one mass splitting is much larger than the other, for cosmological
applications we can safely ignore the small-mass splitting.
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Figure 1. Constraints on the mass splitting from neutrino oscillations (shaded
regions) and total neutrino mass from cosmology (vertical dashed line) in the
parameter space defined by the sum of neutrino masses Σ and the mass splitting
parameter Δ characterizing the hierarchy. The key region where it is interesting
to determine Δ is 0.1 eV < Σ < 0.3 eV. The triangles indicate the cases studied
in this Letter: normal and inverted hierarchies (at Σ = 0.1 eV) and degenerate
hierarchy (at Σ = 0.3 eV). Plot adapted from Figure 1 of Carbone et al. (2011).

(A color version of this figure is available in the online journal.)

spectrum (Lesgourgues et al. 2004; Slosar 2006; de Bernardis
et al. 2009). Agarwal & Feldman (2011) performed N-body
simulations for the IH and NH with Σ = 0.1 eV by only altering
the initial conditions. In contrast, in this Letter we present
results for which the neutrino perturbations and their nonlinear
evolution was fully taken into account during the simulation.

Note that neutrino oscillation experiments rule out large
regions in the Σ–Δ parameter space (see Figure 1) and therefore
it is worth investigating only the allowed region (gray swath in
Figure 1).

2. NUMERICAL SIMULATION METHOD

In this Letter, we are interested in the effect of the neutrino
mass splitting on the nonlinear matter power spectrum. To study
this effect we run cosmological N-body simulations for different
neutrino mass configurations: (1) three massless neutrinos;
(2) three neutrinos of equal mass (degenerate case, Σ = 0.3 eV);
(3) one massless neutrino and two massive neutrinos (IH,
Σ = 0.1 eV, Δ = −0.50); and (4) two light neutrinos and
one heavy neutrino (NH, Σ = 0.1 eV, Δ = 0.32). When
analyzing the simulation results, we focus on relative quantities
like the ratio of the power spectrum for different neutrino mass
configurations, since in this case systematic effects and sample
variance are suppressed.

So far there have been mainly two approaches to incorporating
neutrinos into cosmological N-body simulations: sampling the
neutrino density with particles just like in the case of cold dark
matter (White et al. 1983; Klypin et al. 1993; Brandbyge et al.
2008; Viel et al. 2010) or evolving the neutrino density on
a grid (with a fixed size) using linear theory (Brandbyge &
Hannestad 2009; Viel et al. 2010). These two approaches were
combined into a hybrid method by Brandbyge & Hannestad
(2010). The particle-based approach has the advantage of being
able to capture the nonlinear evolution of the neutrinos and their
effect on the cold matter components, while the linear evolution
of the neutrino density on a grid is by construction only able
to model the linear gravitational effect of the neutrinos on the
nonlinear matter distribution. In the particle-based approach,

however, the neutrinos are always treated as non-relativistic
particles, since standard cosmological N-body codes do not
include relativistic effects. Another problem of this approach
is that the finite number of particles used to sample the neutrino
phase space generate shot noise. As the neutrinos have high
thermal velocities, they move quickly away from their initial
positions and give rise to a Poisson-like shot noise. Both
these problems can be somewhat circumvented by starting the
simulation at a sufficiently low redshift, when the neutrinos
are practically non-relativistic and their input power spectrum
is large compared to the shot noise. On the other hand, one
does not want to start too late, when nonlinearities have already
become significant on the scales of interest. Hence, in order to
keep the shot noise sub-dominant already at the initial redshift
of the simulation, a large number of neutrino tracers is required.

Studies by Brandbyge & Hannestad (2010) and Bird et al.
(2012) have shown that in spite of the shortcomings mentioned
above the particle-based approach is more accurate in computing
the effect of massive neutrinos on the nonlinear matter power
spectrum than the grid-based approach. Hence, in this Letter,
we present results of particle-based simulations only.

We focus on scales in the range of 0.01 h Mpc−1 < k <
1 h Mpc−1. These scales will be probed to high accuracy by
future surveys (e.g., Euclid4) and are much less affected by
baryonic physics,5 which we neglect in this Letter, than smaller
scales. Hence, we simulate a volume of (600 h−1 Mpc)3 with
a particle load of 1 billion cold matter tracers and 2 billion
neutrino tracers.

We adopt a flat ΛCDM cosmology with cosmological param-
eters compatible with current constraints. The primordial curva-
ture power spectrum is specified by the scalar amplitude Δ2

R =
2.45×10−9 at the pivot scale kp = 0.002 Mpc−1 with a spectral
index ns = 0.97. We keep the present-day total matter fraction
the same for all neutrino models: Ωm = ΩCDM +Ων +Ωb = 0.27
with the baryon fraction and the neutrino fraction given by
Ωb = 0.046 and Ων = Σ/(93.8 eVh2), where Σ is the sum of
neutrino masses in units of eV. We choose the Hubble parameter
to be h = 0.7. This choice of cosmological parameters yields
a present-day linear mass variance in spheres of 8 h−1 Mpc of
σ8 ≈ 0.8.

To set up the initial conditions and assessing the N-body
simulation results, we need accurate linear predictions for the
transfer functions for each component of the universe. We
modified the linear Einstein–Boltzmann solver CAMB (version
2012 January; Lewis et al. 2000) to output a separate transfer
function for each neutrino species in addition to the individual
linear transfer functions for cold dark matter, baryons, and
photons.

To reduce transients due to the late start of the simulation
(Scoccimarro 1998), we implement second-order Lagrangian
perturbation theory for the cold matter component. We compute
numerically the (k-dependent) linear growth rate from two
CAMB outputs around the initial redshift. The second-order
growth function D2 is approximated by D2 ≈ −3/7 D2

1 , where
D1 is the linear growth function (Bouchet et al. 1995). At the
initial redshift (zi = 9) the neutrino perturbations are still very
much in the linear regime. Hence, for the neutrino particles,
it suffices to use the Zel’dovich approximation to displace

4 http://sci.esa.int/euclid
5 Recent cosmological hydrodynamical simulations including AGN feedback
showed that baryonic effects alter the matter power spectrum by 1%, 10%, and
30% at k = 0.1 h Mpc−1, k = 1 h Mpc−1, and k = 10 h Mpc−1, respectively
(van Daalen et al. 2011).
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Figure 2. Fractional difference in the total matter power spectrum between the massive and massless neutrino model. We show the simulation results (data points),
linear theory predictions (solid lines), and the effect of nonlinearities estimated using the extended HALOFIT formula (Bird et al. 2012; dotted lines). The left panel
shows the degenerate case with Σ = 0.3 eV. The middle and right panels show the normal and inverted hierarchy, respectively, with Σ = 0.1 eV. Note that nonlinearities
enhance the signal and lead to a maximum in the suppression located at mildly nonlinear scales.

(A color version of this figure is available in the online journal.)

the particles from the initial grid points and to assign the
gravitational velocities. Then thermal velocities drawn from the
appropriate Fermi–Dirac distribution are added to the neutrino
velocities. We neglect higher-order multipoles of the neutrino
phase space distribution (see Ma & Bertschinger 1994 for a
treatment of the full neutrino phase space). Tests with CAMB
where these multipoles were set to zero at z = zi and then
evolved further to low redshift have shown that the effect of
these initial conditions on the linear matter power spectrum is
negligible at z � 2 (R. de Putter 2012, private communication).

The simulations were carried out with the N-body code
Gadget-2 (Springel 2005), which we modified to take into
account the effect of the massive neutrinos (and the radiation)
on the evolution of the scale factor a.

Using smaller test runs, we performed convergence tests
on the neutrino time stepping. We found that a maximum
time step max(Δ ln a) = 0.025 in the long-range particle-mesh
force computation is sufficient for an accurate computation of
the effect of the neutrinos on the matter power spectrum. Note
that we disabled the Courant condition for the neutrino tracers.
Hence, the time step for the long-range force is determined
from the velocity dispersion of the cold matter tracers alone.
This speeds up the computations significantly and leaves the
nonlinear matter power spectrum virtually unchanged. We set
the softening length of the short-range force to 20 kpc h−1 for
both the cold matter and neutrino component.

Varying the initial redshift and the number of neutrino tracers,
we confirmed that the measured ratio of the nonlinear matter
power spectrum from simulations with and without massive
neutrinos is robust against the neutrino shot noise and the
residual transients due to the late start (Brandbyge et al. 2008).

We compute the total matter density contrast δ by assigning
the particles to a 20483 grid using the cloud-in-cell scheme. In
this process, cold matter and neutrino particles are weighted
by the fraction they contribute to Ωm. Using fast Fourier
transforms and averaging |δk|2 over spherical shells with a bin
width of Δk = 0.01 h Mpc−1, we obtain the power spectrum
P (k) = 〈|δk|2〉. Note that we only consider the non-relativistic
neutrino species sampled by particles, i.e., the fluctuations in the
radiation (relativistic neutrinos and photons) are not taken into
account. At the redshifts of interest (z � 2), however, radiation
contributes a negligible amount to the total energy budget. One
possible uncertainty in our simulation results is the shot noise
coming from the cold matter particles. As the particles start off
from a grid, the shot noise is sub-Poissonian and scale dependent
at high redshifts. However, for z � 1 and k < 1 h Mpc−1, even

a Poisson shot noise is negligible. Hence, we do not attempt to
correct for shot noise.

3. RESULTS

First, we compare the results of the degenerate case (Σ =
0.3 eV) with previous works. We consider the fractional differ-
ence in the total matter power spectrum between models with
and without massive neutrinos. One advantage of this relative
quantity is that the sample variance present in the N-body sim-
ulations cancels out almost completely. The result in the degen-
erate case is shown in the left panel of Figure 2. The simulation
results show that nonlinearities enhance the effect on mildly
nonlinear scales. This behavior is anticipated by perturbation
theory (Saito et al. 2008; Wong 2008; Lesgourgues et al. 2009).
In contrast to the linear theory predictions (solid lines), in the
nonlinear case there is a maximum suppression, whose depth
and position in k depend on redshift. These numerical results
are in excellent agreement with Brandbyge et al. (2008) and
Viel et al. (2010). Using N-body simulations, Bird et al. (2012)
modified HALOFIT (Smith et al. 2003) to model the ratio of
the nonlinear matter power spectrum with and without massive
neutrinos (black dotted lines).6

In the middle and right panels of Figure 2, we show the power
spectrum suppression for the NH and IH with Σ = 0.1 eV.
We observe the same qualitative behavior as before. Note
that the small differences between the two hierarchies are
not captured by the HALOFIT formula, which was fitted to
N-body simulations for the degenerate hierarchy only. In order
to make the small difference between the two models visible,
the fractional difference in the total matter power spectrum
between the two cases is shown in Figure 3. Similar to the case
of massive versus massless neutrinos, the nonlinear evolution
enhances the difference between the two models on mildly
nonlinear scales (to a maximum suppression of ∼0.5%). On
even smaller scales which are in the stable clustering regime, the
strong nonlinearities eventually overcome the initial differences
and the remaining effect decreases with k and may eventually
drop below the linear theory prediction at large k. These results
are in good agreement with Figure 8 of Agarwal & Feldman
(2011) and thereby confirm that their approximations are valid
for a small total neutrino mass Σ = 0.1 eV.

6 Note that Bird et al. (2012) fitted the HALOFIT parameters mostly to a
simulation suite with a much smaller box size (150 Mpc h−1). The power
spectrum suppression in those small-box simulations is about 1% smaller than
in their large-box (512 Mpc h−1) simulations (see their Figure 4.).
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Figure 3. Fractional difference in the total matter power spectrum between
the inverted and normal hierarchy run (the sum of neutrino masses is kept
fixed and only the mass splitting is varied). Note that also in this case,
nonlinearities enhance the effect on mildly nonlinear scales compared to linear
theory predictions (solid lines). The error bars are estimated from the distribution
in each bin.

(A color version of this figure is available in the online journal.)

For completeness, we show the neutrino power spectra for
the NH and IH in Figure 4. On large scales (k � 0.1 h Mpc−1),
the neutrino power spectra from the simulations agree well
with the linear predictions. As expected, even at high redshift
we observe a Poisson-like shot noise due to the large thermal
velocities of the neutrinos. Although this shot noise is large
in the neutrino power spectrum, it is much smaller when one
considers the total matter density, since neutrinos contribute less
than 1% to the total matter fraction. Additionally, on scales in the
nonlinear regime, the matter power spectrum is dominated by
the nonlinear power which is sourced from large-scale modes,
for which shot noise is negligible.

4. DISCUSSION AND CONCLUSIONS

The main result of our numerical experiments is that nonlin-
earities enhance the dependence of the power spectrum on the
different neutrino hierarchies, thus making the observational
signature more pronounced. We estimate that, if all other cos-
mological parameters are known (including the sum of neutrino
masses Σ), the two hierarchies can be distinguished with con-
fidence for Σ = 0.1 eV, as illustrated in Figure 5, making the
effect potentially measurable. We have assumed an effective
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(A color version of this figure is available in the online journal.)

volume of 1 (Gpc h−1)3 at z = 0 (blue) and 10 (Gpc h−1)3 at
z = 1 (red).7

Whether degeneracies with other cosmological parameters
and systematic effects (galaxy bias, baryonic physics, obser-
vational limitations, etc.) will cancel the detectability of the
effect remains to be explored and will be considered elsewhere
(C. Wagner et al. 2012, in preparation).

Our findings indicate that cosmology has the potential of
determining the neutrino hierarchy—not only for Σ < 0.1 eV,
for which only the NH is possible—in the interesting window
0.1 < Σ � 0.25 eV.

As an aside and already noted in Jimenez et al. (2010), cos-
mology is more sensitive to |Δ| than to its sign: a measurement of
|Δ| in agreement with that predicted by oscillations experiments
for the measured Σ would provide a convincing consistency
check for the total neutrino mass constraint from cosmology.

However, it is very important to keep in mind that one needs
theoretical predictions of the absolute nonlinear power spec-
trum with an uncertainty smaller than the signal (i.e., 0.1%), to
actually be able to make any measurement of the neutrino hi-
erarchy. In this Letter, we presented numerical predictions only

7 These volumes roughly correspond to the volume out to z = 0.5 and
between z = 0.5 and z = 1.5 in 1/10 of the sky, respectively, in a standard
ΛCDM universe.
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masses (M and m in the notation of Equation (1)), while the inverted hierarchy has effectively only one massive eigenstate M (the light neutrino is massless).

(A color version of this figure is available in the online journal.)

4



The Astrophysical Journal Letters, 752:L31 (5pp), 2012 June 20 Wagner, Verde, & Jimenez

for the relative nonlinear power spectrum suppression. This rela-
tive quantity is much more robust against numerical errors. Even
without massive neutrinos, it is challenging to compute the non-
linear power spectrum to sub-percent precision (e.g., Heitmann
et al. 2010). On small scales (k � 1 h Mpc−1), baryon physics,
which is strongly model dependent and computationally very in-
tensive, is non-negligible and makes it very hard to achieve this
accuracy in the foreseeable future (e.g., van Daalen et al. 2011).
In addition, although it is in principle much less demanding
to compute the linear power spectrum to high accuracy, differ-
ent linear Einstein–Boltzmann codes (e.g., CAMB; Lewis et al.
2000 and CLASS; Blas et al. 2011) still do not agree to 0.1%
precision on the relevant scales.

Despite these very challenging and open problems, precision
measurements of the large-scale structure of the universe remain
an interesting avenue to determine the neutrino hierarchy.
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