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Abstract

In this work, we propose an efficient and robust valuation of discretely monitored arithmetic
Asian options based on Shannon wavelets. We employ the so-called SWIFT method, a Fourier
inversion numerical technique with several important advantages with respect to the existing
related methods. Particularly interesting is that SWIFT provides mechanisms to determine all
the free-parameters in the method, based on a prescribed precision in the density approximation.
The method is applied to two general classes of dynamics: exponential Lévy models and square-
root diffusions. Through the numerical experiments, we show that SWIFT outperforms state-of-
the-art methods in terms of accuracy and robustness, and shows an impressive speed in execution
time.
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1. Introduction

In Asian derivatives, the option payoff function relies on some average of the underlying
values at a prescribed monitoring dates. This fact implies that the final value is less volatile
and the option price cheaper. In this work, we will primarily focus on the arithmetic average,
i.e. the so-called arithmetic Asian options, due to its financial importance and, as we will see,5

challenging numerical treatment.
In the recent literature of arithmetic Asian valuation, multiple dynamics have been consid-

ered, of which two broad classes are addressed here: exponential Lévy models and square-root
diffusions. Exponential Lévy processes have gained popularity in the last decades. Their spe-
cial definition facilitates the mathematical treatment, usually based on the availability of the10

characteristic function, i.e. the Fourier transform of the density function, and the use of a
Fourier inversion technique. The methods relying on Fourier inversion are highly appreciated,
particularly for calibration purposes, since they are extremely fast, very accurate and easy to
implement. The main drawback attributed to these type of methods is the lack of control in the
free-parameter’s setting (see [1], for example, and the references therein). The Fourier inversion15

approaches to price arithmetic Asian products are typically based on the work of Carverhill and
Clewlow in [2], where a generic analytical algorithm was introduced. Benhamou in [3] proposed
an improved version of Carverhill and Clewlow algorithm applied to arithmetic Asian options
via fast Fourier transform. In [4] the probability density function of the logarithm of the sum of
asset prices is obtained by a series of recursive quadratures. The strategy considered in [5] shows20

how the characteristic function of the logarithm of the sum of asset prices is obtained numerically
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by means of a Fourier cosine expansion. The work in [6] follows the same approach, although
the cosine expansion is replaced by B-splines. A key aspect about the efficiency of those meth-
ods is the numerical computation of certain integrals appearing in the procedure of recovering
the characteristic function. While in [5] a Clenshaw-Curtis quadrature is used, a Newton-Cotes25

quadrature is preferred in [6]. The number of points selected to carry out the quadrature in [5]
is tightly related to the number of terms in the cosine expansion (which is unknown a priori)
and the valuation of the option may be a matter of trial and error. Moreover, the truncation
interval choice appears to be an issue in both cases. Some other approaches have been recently
proposed in the literature, based on backward convolution [7], maturity randomization [8] or30

backward induction [1].
Other important types of asset dynamics are the square-root diffusions. These models are

typically found in commodity or interest rate markets, where their properties are very appreci-
ated by the practitioners. In [9], the authors developed a recursive algorithm to obtain the mo-
ment generating function of the joint distribution of the asset price and its weighted (arithmetic)35

average for various square-root dynamics, including time-dependent processes. As a numerical
inversion technique, Carr-Madan method [10] was adopted. In [11], a Malliavin-calculus-based
asymptotic expansion for the discretely-monitored Asian option pricing is proposed that can
be applied to several diffusion models, but with important practical restrictions in the imple-
mentation. Recently, Cai et al. introduce in [12] a general framework for Asian valuation40

based on that any one-dimensional Markov process can be transformed in a continuous-time
Markov chain and then solve the resulting pricing problem under this context. However, this
methodology constitutes an approximation in which the errors can be arbitrarily big.

In this work, we employ the wavelets-based SWIFT method [13] for pricing arithmetic
Asian options under both exponential Lévy models and square-root diffusions. We focus on45

the derivation of the characteristic function of the associated transitional density appearing
in the option pricing problem. Then, the characteristic function is used to recover the series
expansion coefficients of the density. SWIFT has already been successfully applied to European
options with one and two underlying assets in [13] and [14] respectively, as well as to early-
exercise and discrete barrier options in [15]. It has been shown that among the strengths of50

SWIFT method is the a priori knowledge of the scale of approximation and equivalently the
number of terms in the expansion. Thus, the method provides a great robustness in terms of
the free-parameters configuration, given closed-form expressions to determine them based on
the level of approximation desired. This constitutes the major advantage of the SWIFT method
with respect to other competitor methods, overcoming the parameter selection issue. According55

to [1], this is precisely the main disadvantage of the techniques in [5] and [6]. Furthermore,
the method is extremely fast and accurate, showing exponential convergence for most of the
interesting processes in finance.

In the context of Lévy processes, our approach is conceptually similar to the one in [5]
and [6], but the use of wavelets results in a remarkable improvement. Thanks to the Shannon60

wavelets properties, we circumvent the numerical computation of the aforementioned integrals
(Clenshaw-Curtis in [5] and Newton-Cotes in [6]), avoiding quadrature rules during the recovery
of the density function and making the task of pricing Asian options simple in its implementation,
very accurate when comparing with benchmark solutions from the literature and extremely fast
in its computation. Moreover, the integrals are evaluated in the whole domain, instead of the65

truncated one like in [5] and [6], avoiding this way truncation errors.
For the square-root diffusions, we take advantage of the Fusai et al. work [9] and the close

relation between the moment generating function and the characteristic function. Again, the
use of the SWIFT method in this framework constitutes a significant gain in both precision
and efficiency, with respect to the existing methods. The control in the free-parameter choice70

allows us to avoid numerical errors that can appear in difficult/extreme situations when the
“rule-of-thumb” recommendations can fail. In addition, the use of SWIFT allows us to define
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closed-form formulas for many types of payoff functions, even the ones appearing in interest rate
markets. This is a novelty for the techniques based on Fourier inversion.

Furthermore, in this work we develop not only efficient solutions for arithmetic Asian option75

price but also similar expressions for the option sensitivities, the so-called Greeks, the partial
derivatives of the option price with respect to a model parameter. The Greeks computation
is not a trivial task and of crucial importance in managing the financial risk, which generally
implies an extra computational cost or the use of other advanced techniques. SWIFT, however,
enables us to straightforwardly obtain the option price and the option sensitivities at once and80

in a very simple manner.
The paper is organized as follows. Next Subsection 1.1 formulates the Asian pricing problem

and sets the notation used throughout the paper. We introduce the basis of the SWIFT method
in Section 2. The application of SWIFT to the valuation of arithmetic Asian options under ex-
ponential Lévy models and square-root diffusions are described in Sections 3 and 4, respectively.85

Accordingly, we present the conducted numerical experiments in Section 5. Finally, we conclude
in Section 6.

1.1. Problem formulation

Lets consider N + 1 intermediate monitoring dates ti ∈ [0, T ], i = 0, . . . , N between today,
t0 = 0 and the maturity of the option contract, tN = T , where underlying price, S(t), is
observed. We assume here that the initial state of the price process is known, S(0) = S0 and
the monitoring dates are equally spaced, i.e. ∆t := ti+1 − ti, i = 0, . . . , N − 1. The averaged
price can be defined according to different metrics. Here we consider a usual arithmetic average,
AN := 1

N+1

∑N
i=0 S(ti), and a more generic weighted average, CN :=

∑N
i=0 ωiS(ti), where ωi are

a predefined weights such that
∑N

i=0 ωi = 1. A range of payoff functions can be adopted. Let
HN ∈ {AN , CN}, the payoff of the European-style Asian option is defined as follows

v(S, T ) =

{
(HN −K)+ for a call,

(K −HN )+ for a put.
(1)

When not only the average but also the final state of the underlying price is considered, we
have the so-called floating-strike Asian option

v(S, T ) =

{
(θ (S(T )−HN )−K)+ for a call,

(K − θ (S(T )−HN ))+ for a put,
(2)

where θ ∈ {−1,+1}. The price of floating-strike contracts can also be computed by using the
equivalence relationship with the fixed -strike European-style instruments, presented in [16], valid90

only in the framework of general Lévy processes.
Finally, we also consider some special Asian-like payoffs typically appearing in interest rate

markets. An interesting particularity is that, in this case, the average quantity shows up twice,
as the discounted factor also depends on the average and needs to be included within the payoff
function. Among them, we can find regular Asian caps, cash Binary Asian caps and rate Binary
Asian caps (see [17, 18]), whose payoff is

v(S, T ) = e−HNT (HN −K)+ ,

v(S, T ) = e−HNT1{HN>K}, and

v(S, T ) = HNT e−HNT1{HN>K},

(3)

respectively. The equivalent floor contracts can be similarly formulated, but we do not reproduce
them here for sake of brevity.

3



2. The SWIFT method

In this section we give a brief review on the SWIFT method [13], originally developed for95

pricing European options. In Sections 3 and 4, we will extend the method to Asian options. For
sake of completeness we devote a section to the basic theory on Shannon wavelets.

2.1. Multi-resolution analysis and Shannon wavelets

Consider the space of square-integrable functions, denoted by L2(R). A general structure for
wavelets in L2(R) is called a multi-resolution analysis. We start with a family of closed nested
subspaces in L2(R),

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,
⋂
m∈Z
Vm = {0} ,

⋃
m∈Z
Vm = L2(R),

where
f(x) ∈ Vm ⇐⇒ f(2x) ∈ Vm+1.

If these conditions are met, then there exists a function ϕ ∈ V0 that generates an orthonormal
basis, denoted by {ϕm,k}k∈Z, for each Vm subspace, ϕm,k(x) = 2m/2ϕ(2mx − k). The function100

ϕ is usually referred to as the scaling function or father wavelet.
For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by Pm : L2(R) → Vm, is

defined by means of

Pmf(x) =
∑
k∈Z

cm,kϕm,k(x), with cm,k = 〈f, ϕm,k〉 , (4)

where < f, g >:=
∫
R f(x)ḡ(x)dx denotes the inner product in L2 (R), with ḡ being the complex

conjugate of g. Considering higher m values (i.e. when more terms are used), the truncated series
representation of the function f improves. As opposed to Fourier series, a key fact regarding the
use of wavelets is that wavelets can be moved (by means of the k value), stretched or compressed105

(by means of the m value) to accurately represent the local properties of a function. A basic
reference on wavelets is [19].

In this paper, we employ Shannon wavelets [20]. A set of Shannon scaling functions ϕm,k in
the subspace Vm is defined as,

ϕm,k(x) = 2m/2
sin(π(2mx− k))

π(2mx− k)
= 2m/2ϕ(2mx− k), k ∈ Z, (5)

where

ϕ(z) = sinc(z) =


sin(πz)

πz
if z 6= 0,

1 if z = 0,

is the scaling function, also called cardinal sine function.

Remark 1. Wavelets are a recent development in the Fourier option pricing context. Alterna-
tively to Shannon wavelets, there is an important research line in methods focusing on local bases,110

i.e with compact support (see [21, 22], for example). Although these methods generally do not
admit the multi-resolution framework, a dual-basis approach (biorthogonality) can be employed
to recover the projection coefficients.
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2.2. SWIFT method

Given a function f ∈ L2 (R), we consider its expansion in terms of Shannon scaling functions
at the level of resolution m. Our aim is to recover the coefficients cm,k of this approximation

from the Fourier transform of the function f , denoted by f̂ , which is assumed to be known in
closed-form. Here,

f̂(ξ) =

∫
R

e−iξxf(x)dx, (6)

where i is the imaginary unit.115

Following wavelets theory, a function f ∈ L2 (R) can be approximated at the level of resolu-
tion m by,

f(x) ≈ Pmf(x) =
∑
k∈Z

cm,kϕm,k(x), (7)

where Pmf converges to f in L2 (R), i.e. ‖f−Pmf‖2 → 0, when m→ +∞. Here, the coefficients
cm,k and the scaling functions ϕm,k are defined in Equations (4) and (5), respectively.

The infinite series in Equation (7) is well-approximated (see Lemma 1 of [13] for details) by
a finite summation without loss of considerable density mass,

Pmf(x) ≈ fm(x) :=

k2∑
k=k1

cm,kϕm,k(x), (8)

for certain accurately chosen values k1 and k2.
The next step is the computation of the coefficients in Equation (8). Recalling Equations

(4) and (5), we have that,

cm,k = 〈f, ϕm,k〉 =

∫
R
f(x)ϕ̄m,k(x)dx = 2m/2

∫
R
f(x)ϕ(2mx− k)dx.

Using the classical Vieta’s formula truncated with 2J−1 terms, the cosine product-to-sum
identity and the definition of the characteristic function in Equation (6), and after some algebraic
manipulations (see [13] for details), the density coefficients, cm,k, can be accurately approximated
by

cm,k ≈
2m/2

2J−1

2J−1∑
j=1

<
[
f̂

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

]
. (9)

Putting everything together gives the following approximation of f

f(x) ≈
k2∑

k=k1

cm,kϕm,k(x), (10)

where ϕm,k and cm,k are defined in Equations (5) and (9), respectively.

Remark 2. Equation (9) can be conveniently rearranged to compute the coefficients with the120

use of the fast Fourier transform (FFT). For a detailed explanation we refer the reader to [13].

2.3. Option valuation formulas with SWIFT

The starting point to solve an option pricing problem is the risk-neutral option valuation
formula, where the value of an option at time t and state x, v(x, t), is an expectation under the
risk neutral pricing measure, i.e.,

v(x, t) = e−r(T−t)E [v(y, T )|x] = e−r(T−t)
∫
R
v(y, T )f(y|x)dy, (11)
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with r the risk-free rate, T the maturity time, f(y|x) the transitional density and v(y, T ) rep-
resents the option value at maturity time, being the payoff function. The density function f is
typically unknown, even for the case of European option pricing where the value of the vari-
able y depends solely on the state at maturity T . In order to compute the value of the option
v(x, t0) in Equation (11), we can truncate the integration range on [a, b] (we will show later how
to select the interval safely) and we can replace the transitional probability function f by its
approximation in Equation (10). Accordingly the SWIFT pricing formula reads

v(x, t0) ≈ e−rT
k2∑

k=k1

(
cm,k

∫ b

a
v(y, T )ϕm,k(y|x)dy

)
= e−rT

k2∑
k=k1

cm,kVm,k, (12)

with the payoff coefficients Vm,k defined as

Vm,k :=

∫ b

a
v(y, T )ϕm,k(y|x)dy.

We have reduced the computation of the option price to the dot product between the density
coefficients, cm,k, and the payoff coefficients, Vm,k. By employing the Vieta’s formula again and
interchanging summation and integration operations, we obtain that

Vm,k ≈
2m/2

2J−1

2J−1∑
j=1

∫ b

a
v(y, T ) cos

(
2j − 1

2J
π (2my − k)

)
dy. (13)

2.3.1. Option sensitivities

Under the SWIFT framework, the estimation of the option price sensitivities, the so-called
Greeks, can be efficiently performed by constructing similar series expansions. The Greeks are125

defined as the partial derivatives of the option price with respect to some market parameter.
We firstly assume that the option price depends on the parameter of interest only through

the density function. Then, the density coefficients (see Equation (9)) can be rewritten as

cm,k(ξ, ς) =
2m/2

2J−1

2J−1∑
j=1

<
[
f̂ (ξ; ς) e

ikξ
2m

]
,

where ξ = (2j−1)π2m

2J
and ς represents the parameter with respect to we wish to compute the

derivative. The corresponding “Greek” density coefficients can be therefore obtained by differ-
entiating (n times) the characteristic function, as follows

c
(n)
m,k(ξ) :=

∂ncm,k(ξ, ς)

∂ςn
=

2m/2

2J−1

2J−1∑
j=1

<

[
∂nf̂ (ξ; ς)

∂ςn
e

ikξ
2m

]
. (14)

For example, the first and second derivatives with respect to the initial state of the process,

S0, the so-called Delta, ∆, and Gamma, Γ, respectively, can be computed by plugging the c
(n)
m,k

into Equation (12),

∆ := e−rT
k2∑

k=k1

c
(1)
m,kVm,k, Γ := e−rT

k2∑
k=k1

c
(2)
m,kVm,k. (15)

The partial derivative of the characteristic function and, hence, the c
(n)
m,k coefficients can be

analytically computed for many financial models.
A second possible situation appears when the option value depends on the parameter of

interest, ς, through the payoff coefficients, i.e., Vm,k(ς). Thus, the “Greek” payoff coefficients
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need to be determined by differentiating Vm,k with respect to ς. Particularly, the solution for
the Greeks ∆ and Γ would be

∆ := e−rT
k2∑

k=k1

cm,kV
(1)
m,k(ς), Γ := e−rT

k2∑
k=k1

cm,kV
(2)
m,k(ς), (16)

where now the cm,k are kept invariant and V
(n)
m,k represents the n-th derivative of Vm,k. The

analytical availability of the V
(n)
m,k depends on the payoff definition. In the context of Fourier130

inversion techniques, closed-form solutions for these coefficients can be usually derived. The
case of the arithmetic Asian payoff will be addressed in the next section.

Remark 3. The pricing problems studied in this work fall into one of the situations described
above. To the best of our knowledge, the option value will never depend on ς through both density
and payoff coefficients. Whenever this case occurs, it would need to be treated as a special case.135

2.4. Optimal scale m, series truncation bounds k1 and k2, and parameter J

The quality in the approximation provided by the SWIFT method is mainly affected by the
scale m, the number of terms in the Vieta’s approximation and the series truncation limits, k1

and k2 in Equation (8). In order to optimally determine these parameters we follow the analysis
presented in [23, 15].140

Lets start with the choice of m. It can be proved (see Lemma 3 of [15]) that the error in the
projection approximation of function f in Equation (7), i.e, εp := |f(x)− Pmf(x)|, is bounded
by

εp ≤
1

2π

∫
|ξ|>2mπ

∣∣∣f̂(ξ)
∣∣∣dξ.

As the characteristic function, f̂ , is assumed to be known, we can compute m given a
prescribed tolerance εm. The integral is typically not known in closed-form so it can be approx-
imated by numerical techniques. Applying a simple quadrature rule, the error bound reads

1

2π

(∣∣∣f̂(−2mπ)
∣∣∣+
∣∣∣f̂(2mπ)

∣∣∣) ≤ εm.
This approximation is considered sufficient for our purposes. More involved numerical

quadratures have been tested, but the observed differences are negligible.
Regarding truncation limits k1 and k2, they can be computed based on the integration range

[a, b] stated in Equation (12), as

k1 := b2mac and k2 := d2mbe,

where m is the scale of approximation. Therefore we first need to choose the interval limits,
a and b, in such a way that the loss of density mass is minimized. We will provide different
alternatives to determine the integration range [a, b].145

The dependence on m turns out to be very convenient also in the selection of the interval
[a, b], facilitating its choice given an approximation scale, m. This constitutes one of the great
advantages of the SWIFT method with respect to other Fourier inversion-based techniques,
where a and b are arbitrarily selected. Thus, as we know that our approximation at scale m
satisfies the tolerance εm, the error order due to the truncation should not exceed the order of150

εm. We can therefore develop an adaptive interval selection algorithm that updates (in some
way) the truncated range [a, b] in each iteration, computes the committed error, ε (under some
measure), in the approximated density using that interval and stops when the same tolerance
condition εm is prescribed. The initial a and/or b can be chosen as suggested in [24, 5]. Under
these conditions, we can ensure that the overall error in the density is controlled by the scale155
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parameter m. As we know that the density should go to zero in both a and b, the error ε is
defined here to be the higher value of f evaluated in the interval limits, i.e. f(a) and f(b). In
Algorithm 1, we can see a schematic representation of the adaptive procedure, where % is a vector
of the parameters involved in the change of [a, b] (for example, it would be L in Equation (34)).

Algorithm 1: Adaptive interval selection.

Data: εm, %
[a, b] = interval([%]) // Set initial interval [as a function of %]
while ε > εm do

f = SWIFT(a, b) // Compute density f in [a, b] by Equation (10)
ε = max (|f(a)|, |f(b)|) // Compute the maximum error between the interval

bounds

[a, b] = interval(%) // Update the interval in function of %

return [a, b]

160

Next, the parameter J is then chosen to be constant1 based on the previously determined
quantities. Doing so, we can benefit from the use of FFT algorithm (further details in [23]).
Thus,

J := dlog (πMm)e with Mm := max
k1<k<k2

Mm,k,

where Mm,k := max (|2mA− k| , |2mA+ k|) and A := max (|a| , |b|).

3. SWIFT for arithmetic Asian options under exponential Lévy models

In this section we work with exponential Lévy models, i.e. we assume that the log-transformed
underlying price, logS(t), follows a Lévy process. A Lévy process (see [25, 26], for further de-
tails) is a stochastic process with stationary and independent increments that can be generally
written as

X(t) = µt+W (t) + J(t) + lim
ε↓0

Dε(t),

where W is a d-dimensional Brownian motion with covariance matrix Σ, drift vector µ ∈ Rd, J
is a compound Poisson process and Dε is a compensated compound Poisson process. A measure
ν on Rd is adopted, called Lévy measure. The Lévy processes are therefore fully determined by
the so-called characteristic triplet [Σ, µ, ν]. From the well-known Lévy-Khintchine formula, the
characteristic function is given by

E
[
eiξX(t)

]
= etϑ(ξ), ϑ(ξ) = iµ · ξ +

1

2
Σξ · ξ +

∫
Rd

(
eiξ·x − 1− iξ · x1|x|≤1

)
ν(dx),

where ϑ is often called the characteristic exponent.
The explicit representation of the characteristic function in the Lévy processes framework

supposes a great advantage and allows to recover the density, f , by Fourier inversion numerical165

techniques and price European options highly efficiently [10, 24, 21, 13]. The characteristic
function of exponential Lévy dynamics is often available in a tractable form. Some relevant
financial models that fall into this category are Black-Scholes, Merton, Variance Gamma (VG),
Normal Inverse Gaussian (NIG) or Carr-Geman-Madan-Yor (CGMY) models.

When dealing with arithmetic Asian options, the derivation of the corresponding characteris-
tic function is somehow more involved. We adopt here an existing approach (see [5] or [3]) based
on a recursive procedure that takes advantage of the convenient properties of the exponential
Lévy processes. Lets start by defining the return or increment process Ri,

Ri := log

(
S(ti)

S(ti−1)

)
i = 1, . . . , N.

1It could be selected as a function of k.
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The increments of a Lévy process are identically and independently distributed, i.e. Ri
d
= R,

and its characteristic function, f̂Ri = f̂R, is therefore the same for all i = 1, . . . , N . Based on
Ri, we define a new process

Yi := RN+1−i + Zi−1, i = 2, . . . , N, (17)

where Y1 = RN and Zi := log
(
1 + eYi

)
, ∀i.170

Next, we can apply the Carverhill-Clewlow-Hodges [2] factorization scheme to the newly
defined stochastic process Yi. The arithmetic average of S(t) can be then written in terms of
the process Yi as

1

N + 1

N∑
i=0

S(ti) =

(
1 + eYN

)
S0

N + 1
.

Thus, the option price in Equation (11) for arithmetic Asian contracts (at time t = 0) can
be now expressed in terms of the transitional density of the YN as

v(x, t0) = e−rT
∫
R
v(y, T )fYN (y)dy,

where x = logS0 and the payoff function is given by

v(y, T ) =


(
S0 (1 + ey)

N + 1
−K

)+

for a call,(
K − S0 (1 + ey)

N + 1

)+

for a put.

(18)

Again, the probability density function fYN is generally not known, even for Lévy processes.
However, as the process YN is defined in a recursive manner, the characteristic function of YN
can be computed iteratively as well. In Section 3.1 this procedure is described.

3.1. Characteristic function of YN

In this section an iterative derivation of the characteristic function of the YN , defined in the
previous section, is presented. Lets assume that the characteristic function of R (as defined
above) is available in closed form, as it is for a wide range of exponential Lévy processes.
According to the definition of the (backward) sequence Yi in Equation (17), the required initial
and recursive characteristic functions are given by the following expressions,

f̂Y1(ξ) = f̂RN (ξ) = f̂R(ξ),

f̂Yi(ξ) = f̂RN+1−i+Zi−1(ξ) = f̂RN+1−i(ξ) · f̂Zi−1(ξ) = f̂R(ξ) · f̂Zi−1(ξ),
(19)

where the independence between RN+1−i and Zi−1 has been employed.175

By definition, the characteristic function of Zi−1 reads

f̂Zi−1(ξ) := E
[
e−iξ log(1+eYi−1)

]
=

∫
R

(1 + ex)−iξ fYi−1(x)dx.

We can now use the wavelet approximation from Equation (8) to the probability density
function fYi−1 as follows

f̂Zi−1(ξ) =

∫
R

(1 + ex)−iξ fYi−1(x)dx ≈
∫
R

(1 + ex)−iξ
k2∑

k=k1

cm,kϕm,k(x)dx

= 2
m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx− k) dx,

(20)

9



where the cm,k coefficients can be calculated by means of the SWIFT method employing the

formula in Equation (9) and the characteristic function of Yi−1, i.e. f̂Yi−1 .
The integral on the right hand side of Equation (20) can be computed at high accuracy

by means of Theorem 1 of [27] without the need of using numerical integration. This is a key
step within the overall pricing machinery, making the method easily implementable, robust and180

very fast. Other developments from the literature consist of solving the integral by means of
quadratures (see for instance [6, 5]).

Theorem 1 (Theorem 1.3.2 of [27]). Let f be defined on R and let its Fourier transform f̂ be
such that for some positive constant d, |f̂(ω)| = O

(
e−d|ω|

)
for ω → ±∞, then as h→ 0

1

h

∫
R
f(x)Sj,h(x)dx− f(jh) = O

(
e−

πd
h

)
,

where Sj,h(x) = sinc
(
x
h − j

)
for j ∈ Z.

Theorem 1 allows us to approximate the integral in Equation (20) provided that g(x) :=
(ex + 1)−iξ satisfies the hypothesis. If we consider h = 1

2m , then it follows from Theorem 1 that∫
R
g(x)sinc (2mx− k) dx ≈ hg (kh) =

1

2m

(
e
k

2m + 1
)−iξ

. (21)

Thus, Equation (20) now reads

f̂Zi−1(ξ) ≈ 2
m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx− k) dx

≈ 2−
m
2

k2∑
k=k1

cm,k

(
e
k

2m + 1
)−iξ

.

(22)

Finally, by using Equation (19) we find

f̂Yi(ξ) = f̂R(ξ)f̂Zi−1 ≈ f̂R(ξ)2−
m
2

k2∑
k=k1

cm,k

(
e
k

2m + 1
)−iξ

,

where the density coefficients cm,k are computed as follows

cm,k ≈
2m/2

2J−1

2J−1∑
j=0

<
{
f̂Yi−1

(
(2j − 1)π2m

2J

)
e

ikπ(2j−1)

2J

}
.

It remains to prove that function g(x) = (ex + 1)−iξ satisfies |ĝ(ω)| = O
(
e−d|ω|

)
for ω → ±∞

for some positive constant d, where the Fourier transform of g is taken with respect to the real185

variable x and ξ is a real variable that remains fixed. We derive an expression for ĝ(w) in
Proposition 2 by using Corollary 1, which follows from Proposition 1.

Proposition 1 (Theorem 1 of [28]). Let z ∈ C and
(
z
n

)
= z(z−1)(z−2)···(z−n+1)

n! . Then the series∑∞
n=0

(
z
n

)
xn converges to (1 + x)z for all complex x with |x| < 1.

Corollary 1. Let z ∈ C. Then the series
∑∞

n=0

(
z
n

)
xnyz−n converges to (x+ y)z for all complex190

x, y with |x| < |y|.

Proof. The proof follows from Proposition 1 by taking into account that (x+y)z =
(
y
[
x
y + 1

])z
.

10



Proposition 2. Let g(x) = (ex + 1)z, where z = −iξ and x, ξ ∈ R. Then,

ĝ(ω) =
∞∑
n=0

(
z

n

)
2n− z

(n− iω)(n+ i(ω + ξ))
, ω ∈ R.

Proof. By definition,

ĝ(ω) =

∫
R

e−iωxg(x)dx.

We split the integral in two parts,

ĝ(ω) =

∫ 0

−∞
e−iωxg(x)dx+

∫ ∞
0

e−iωxg(x)dx, (23)

and observe that, by Corollary 1,

(ex + 1)z =
∞∑
n=0

(
z

n

)
enx, for x < 0, (24)

and,

(ex + 1)z =

∞∑
n=0

(
z

n

)
e(z−n)x, for x > 0. (25)

If we replace g(x) in Equation (23) by expressions in Equations (24) and (25), and interchange
the integral and the sum, then we obtain,

ĝ(ω) =
∞∑
n=0

(
z

n

)∫ 0

−∞
e−iωxenxdx+

∞∑
n=0

(
z

n

)∫ ∞
0

e−iωxe(z−n)xdx. (26)

Finally, if we compute the integrals in Equation (26) gives us,

ĝ(ω) =
∞∑
n=0

(
z

n

)
1

n− iω
+
∞∑
n=0

(
z

n

)
1

n+ i(ω + ξ)
=
∞∑
n=0

(
z

n

)
2n− z

(n− iω)(n+ i(ω + ξ))
. (27)

Expression in Equation (27) reveals that it is rather complicated to get a closed-form solution
for the modulus of ĝ(ω). We therefore employ Wolfram Mathematica 11.2 to sum the series in
Equation (27), and we obtain,

ĝ(ω) =
ξ

2ω + ξ

[
e−πω (B−1 (−iω, 1 + z) + 2B−1 (1− iω, z)) +

+ Γ (iω − z)
(

2(iω − z) 2F̃1 (1− z, 1 + iω − z; 2 + iω − z;−1)− 2F̃1 (−z, iω − z; 1 + iω − z;−1)
)]
,

(28)

where 2F̃1(a, b; c; ν) is the regularized hypergeometric function, defined as,

2F̃1(a, b; c; ν) :=
2F1(a, b; c; ν)

Γ(c)
, 2F1(a, b; c; ν) :=

∞∑
n=0

(a)n(b)n
(c)n

νn

n!
,

and (q)n the rising Pochhammer symbol, given by,

(q)n =

{
0, n = 0,

q(q + 1) · · · (q + n− 1), n > 0.

11
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Figure 1: Modulus of ĝ(ω).

Finally, the special functions gamma, Γ, and beta, B, are defined as

Γ(u) :=

∫ ∞
0

tu−1e−tdt, Bη(a, b) :=

∫ η

0
ta−1(1− t)b−1dt.

The modulus of ĝ(ω) for a particular value of ξ by using expression in Equation (28) is195

presented in logarithmic scale in Figure 1. We note that the shape of |ĝ(ω)| does not depend
on the value given to ξ, since a different ξ just originates a shift of the same function. The two
peaks observed in the plot correspond to the poles of ĝ(ω) located at ω = 0 and ω = −ξ. These
two poles are clearly identified looking at the first term of the series in Equation (27). Moreover,
function ĝ(ω) presents a symmetry at ω = −ξ/2 since, from Equation (27), it is straightforward200

to see that ĝ(ω − ξ/2) = ĝ(−ω − ξ/2).
For the aforementioned reasons, we focus our attention on the right tail of |ĝ(ω)| and observe

that its decay appears to be of the same order as ξ
2ω+ξ e−πω when ω → +∞ (this term is part

of the expression in Equation (28) and is represented in Figure 1). We therefore conclude that
Theorem 1 can be applied to function g(x) with d = π.205

The following theorem generalises the results stated in Theorem 1, showing this way that
expression in Equation (21) can be applied under weaker conditions on the decay of the modulus
of the Fourier transform.

Theorem 2. Let f be defined on R and let f̂ be its Fourier transform. Then,∣∣∣∣1h
∫
R
f(x)Sj,h(x)dx− f(jh)

∣∣∣∣ ≤ 1

2π

∫
|w|>π

h

∣∣∣f̂(ω)
∣∣∣ dw,

where Sj,h(x) = sinc
(
x
h − j

)
for j ∈ Z.

Proof. As mentioned in Section 2.4, Lemma 3 of [15] shows that the approximation error |f(x)−
Pmf(x)| is uniformly bounded for all x ∈ R,

|f(x)− Pmf(x)| ≤ 1

2π

∫
|ω|>2mπ

∣∣∣f̂(ω)
∣∣∣ dω, (29)

where Pmf(x) =
∑

k∈Z cm,kϕm,k(x). In particular, expression in Equation (29) is valid for
x = jh with h = 1/2m,

|f(jh)− Pmf(jh)| ≤ 1

2π

∫
|ω|>2mπ

∣∣∣f̂(ω)
∣∣∣dω.

12



We observe that Pmf(jh) =
∑

k∈Z cm,kϕm,k(jh) =
∑

k∈Z cm,k2
m/2ϕ(j−k), where ϕ(j−k) =

δjk, and δjk is the Kronecker delta and then Pmf(jh) = 2m/2cm,j . Finally, if we take into
account expression in Equation (4), cm,j =

∫
R f(x)ϕm,j(x)dx. Thus,

Pmf(jh) = 2m/2 · 2m/2
∫
R
f(x)ϕ(2mx− j)dx = 2m

∫
R
f(x)sinc(2mx− j)dx,

and this concludes the proof since 2m = 1/h.210

Remark 4. Note that Theorem 1 follows straightforwardly from Theorem 2 when f(x) satisfies
|f̂(ω)| = O

(
e−d|ω|

)
.

Finally, we establish a bound on the error generated when we approximate the integral in
Equation (22), giving this way an estimation of the accuracy at which f̂Zi−1(ξ) is computed.215

Proposition 3. Let FZi−1(ξ), GZi−1(ξ) and E(ξ) be defined as follows,

FZi−1(ξ) = 2
m
2

k2∑
k=k1

cm,k

∫
R

(ex + 1)−iξ sinc (2mx− k) dx,

GZi−1(ξ) = 2−
m
2

k2∑
k=k1

cm,k

(
e
k

2m + 1
)−iξ

,

E(ξ) = FZi−1(ξ)−GZi−1(ξ). Then, |E(ξ)| is uniformly bounded by |E(ξ)| ≤ C(k2−k1 + 1)e−π
22m,

where C is a constant.

Proof. We observe that,

E(ξ) = 2−
m
2

k2∑
k=k1

cm,k

[
2m
∫
R

(ex + 1)−iξ sinc (2mx− k) dx−
(

e
k

2m + 1
)−iξ

]
.

Then, by Theorem 1 with d = π,

|E(ξ)| ≤ 2−
m
2 C

k2∑
k=k1

|cm,k|e−π
22m ,

for a certain constant C. The proposition holds by taking into account that,

|cm,k| ≤
∫
R
f(x)|ϕm,k(x)|dx ≤ 2

m
2 ,

where the last inequality is satisfied since f is a density function and |ϕm,k(x)| ≤ 2
m
2 .

3.2. Payoff coefficients

In order to complete the SWIFT pricing formula in Equation (12) for the case of arithmetic
Asian options of Lévy processes, the computation of the corresponding payoff coefficients, Vm,k,
needs to be carried out. Lets first plug the arithmetic Asian payoff function in Equation (18)
into Equation (13). Then we have

Vm,k =



2m/2

2J−1

2J−1∑
j=1

∫ b

a

(
S0 (1 + ey)

N + 1
−K

)+

cos

(
2j − 1

2J
π (2my − k)

)
dy for a call,

2m/2

2J−1

2J−1∑
j=1

∫ b

a

(
K − S0 (1 + ey)

N + 1

)+

cos

(
2j − 1

2J
π (2my − k)

)
dy for a put.
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By rearranging the terms, the arithmetic Asian payoff coefficients under Lévy dynamics are
given by

Vm,k =



2m/2

2J−1

2J−1∑
j=1

[
S0

N + 1

(
Ij,k2 (x̃, b) + Ij,k0 (x̃, b)

)
−KIj,k0 (x̃, b)

]
for a call,

2m/2

2J−1

2J−1∑
j=1

[
KIj,k0 (a, x̃)− S0

N + 1

(
Ij,k2 (a, x̃) + Ij,k0 (a, x̃)

)]
for a put,

(30)

where x̃ = log
(
K(N+1)

S0
− 1
)

and the functions Ij,k0 and Ij,k2 are defined by the following integrals

Ij,k0 (x1, x2) :=

∫ x2

x1

cos (Cj (2my − k)) dy,

Ij,k2 (x1, x2) :=

∫ x2

x1

ey cos (Cj (2my − k)) dy,

(31)

with Cj = 2j−1
2J

π. The solution of these integrals is known analytically (see AppendixA).220

3.3. Greeks

As stated before, series expansions that approximate the option sensitivities or Greeks can
also be obtained under the SWIFT method. Here, we have specifically considered ∆ and Γ,
which are the derivatives with respect to the spot price, S0. In the context of Asian options
under Lévy processes, only the payoff coefficients, Vm,k are affected by S0 (see Equation (30)).
Thus, by differentiating Vm,k with respect to S0, we obtain

V
(1)
m,k =



2m/2

2J−1

2J−1∑
j=1

Ij,k2 (x̃, b) + Ij,k0 (x̃, b)

N + 1
+
S0

(
∂Ij,k

2 (x̃,b)
∂S0

+
∂Ij,k

0 (x̃,b)
∂S0

)
N + 1

−K∂Ij,k0 (x̃, b)

∂S0

 for a call,

2m/2

2J−1

2J−1∑
j=1

K∂Ij,k0 (a, x̃)

∂S0
− Ij,k2 (a, x̃) + Ij,k0 (a, x̃)

N + 1
−
S0

(
∂Ij,k

2 (a,x̃)
∂S0

+
∂Ij,k

0 (a,x̃)
∂S0

)
N + 1

 for a put.

(32)

Applying the chain rule, the partial derivatives of Ij,ku , u ∈ {0, 2} can be calculated by

∂Ij,ku (x̃, b)

∂S0
=
∂Ij,ku (x̃, b)

∂x̃

∂x̃

∂S0
,

∂Ij,ku (a, x̃)

∂S0
=
∂Ij,ku (a, x̃)

∂x̃

∂x̃

∂S0
,

where
∂x̃

∂S0
= − K(N + 1)

S0K(N + 1)− S2
0

,

and the partial derivatives ∂Ij,ku (x̃,b)
∂x̃ and ∂Ij,ku (a,x̃)

∂x̃ have analytic solution, which can be calcu-
lated from the expressions obtained in AppendixA. Following the same procedure, a closed-form

solution can be similarly derived for the second derivative of Vm,k. Thus, V
(2)
m,k reads

V
(2)
m,k =



2m/2

2J−1

2J−1∑
j=1

2
(

∂Ij,k
2 (x̃,b)
∂S0

+
∂Ij,k

0 (x̃,b)
∂S0

)
N + 1

+
S0

(
∂2Ij,k

2 (x̃,b)

∂S2
0

+
∂2Ij,k

0 (x̃,b)

∂S2
0

)
N + 1

−K∂2Ij,k0 (x̃, b)

∂S2
0

 for a call,

2m/2

2J−1

2J−1∑
j=1

K∂2Ij,k0 (a, x̃)

∂S2
0

−
2
(

∂Ij,k
2 (a,x̃)
∂S0

+
∂Ij,k

0 (a,x̃)
∂S0

)
N + 1

−
S0

(
∂2Ij,k

2 (a,x̃)

∂S2
0

+
∂2Ij,k

0 (a,x̃)

∂S2
0

)
N + 1

 for a put,

(33)
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where now the second partial derivatives can be expanded as

∂2Ij,ku (x̃, b)

∂S2
0

=
∂2Ij,ku (x̃, b)

∂x̃2

(
∂x̃

∂S0

)2

+
∂Ij,ku (x̃, b)

∂x̃

∂2x̃

∂S2
0

,

∂Ij,ku (a, x̃)

∂S0
=
∂2Ij,ku (a, x̃)

∂x̃2

(
∂x̃

∂S0

)2

+
∂Ij,ku (a, x̃)

∂x̃

∂2x̃

∂S2
0

,

with
∂2x̃

∂S2
0

= −K(N + 1)(2S0 −K(N + 1))

S2
0(S0 −K(N + 1))2

,

and, as before, ∂2Ij,ku (x̃,b)
∂x̃2 and ∂2Ij,ku (a,x̃)

∂x̃2 are analytically available.

We can now employ V
(1)
m,k and V

(2)
m,k within Equation (16) to estimate ∆ and Γ, respectively,

in the arithmetic Asian option valuation framework under exponential Lévy dynamics.

3.4. Interval selection225

Here, we follow an effective cumulant-based approach originally described in [24]. Thus, the
integration range can be determined relying on the cumulants as follows

[a, b] :=

[
κ1(Y )− L

√
κ2(Y ) +

√
κ4(Y ), κ1(Y ) + L

√
κ2(Y ) +

√
κ4(Y )

]
, (34)

with κn(Y ) representing the n-th cumulant2 of the random variable Y and L a constant conve-
niently chosen.

The selection based on cumulants in Equation (34) has been adapted to the process Yj in [5].
The approach only requires the cumulants of the logarithmic return process R, κn(R). These
cumulants typically are known since the derivative of the characteristic function of R is usually
available. By denoting

ai := log(i) + κ1(R)− L
√
iκ2(R) +

√
κ4(R),

bi := log(i) + jκ1(R) + L

√
iκ2(R) +

√
κ4(R),

the interval is selected as

[a, b] :=

[
min

i=1,...,N
ai, max

i=1,...,N
bi,

]
.

The interval selection can be now plugged into Algorithm 1, passing an increasing constant L
to each iteration of the adaptive procedure presented in Section 2.4 (i.e. % = L3). The parameter
L can be selected from a small range of integers, typically L ∈ {6− 12}.230

4. SWIFT for arithmetic Asian options under square-root diffusions

As a second class of processes, we consider the square-root processes, including the usual
extensions like mean-reversion or time dependency. The importance of these processes is widely
evidenced as they are typically used in fields like commodity and interest rate markets (see
[29, 30], for example). A well known representative is the so-called Cox-Ingersoll-Ross (CIR)235

process [31].
We again base our approach on the availability of the characteristic function related to the

necessary transitional density. In a recent work of Fusai et al. [9], the authors developed an

2Defined from the cumulant-generating function, K(τ), as κn = K(n)(0).
3In this work, we employ an initial value L = 4 and change rule L = L+ 2.
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iterative methodology to compute the moment generating function, denoted here by M, of the
joint distribution of the final state of the underlying, S(T ), and the weighted cumulative price,
CN =

∑N
i=0 ωiS(ti). It has been shown that this expression can be directly applied to price

discretely monitored arithmetic Asian derivatives under square-root dynamics. Here we take
advantage of the fact that the characteristic function is related with the moment generating
function by

f̂(ξ) =M(iξ).

In the following, we adapt some of the most important results in [9] and show how to employ
the SWIFT method in this context.

4.1. Characteristic function of CN

We start by assuming that the moment generating function of a generic square-root process
S(t) at time ti given the information at time ti−1 is available and can be written in the form

MS(γ) = E
[
e−γS(ti)|x = S(ti−1)

]
= e−(ψ(∆t;γ)x+φ(∆t;γ)), (35)

where ψ and φ are known functions and recall that ∆t = ti − ti−1. This formulation falls into240

the broad class of affine diffusions [32], whose moment generating function (or characteristic
function) has exponential-affine dependence on the state variable. The square-root dynamics
treated here fits in the affine diffusions category.

By definition, the moment generating function of the joint distribution of S(T ) and CN ,
given the information at time t = 0 is

MS,CN (γ, λ) := E
[
e−(γS(T )+λ

∑N
i=0 ωiS(ti))|x = S0

]
. (36)

Based on the expression of the moment generating function of S(ti)|S(ti−1) in Equation

(35), the moment generating function of the pair
(
S(T ),

∑N
i=0 ωiS(ti)

)
in Equation (36) can be

computed by

MS,CN (γ, λ) = e−(Λ0(γ,λ)x+
∑N−1
i=0 φ(∆t;Λi+1(∆t;γ,λ))),

where the function Λi (∆t; γ, λ) is constructed recursively as follows

ΛN (∆t; γ, λ) = γ + λωN ,

Λi (∆t; γ, λ) = ψ (∆t,Λi+1 (∆t; γ, λ)) + λωi, for i = N − 1, . . . , 0,
(37)

with ψ and φ as in Equation (35). This iterative formulation is obtained by simply applying
the definition of moment generating function, the tower law of probabilities and some algebraic245

manipulations. We refer to Fusai et al. [9] for more details.
Next, it is easy to see that the moment generating function of CN reads

MCN (λ) :=MS,CN (0, λ). (38)

As stated above, the characteristic function of the variable CN evaluated in ξ is obtained
from the moment generating function

f̂CN (ξ) =MCN (iξ). (39)

For floating strike Asian contracts (with payoff function as in Equation (2)), we would need
the joint characteristic function

f̂S,CN (ξ) =MS,CN (−iξ, iξ). (40)

Note that CN = AN when ωi = 1
N+1 ,∀i.
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4.2. Payoff coefficients

At this point we recall the SWIFT valuation formula in Equation (12) where, once the
density coefficients are obtained by using the previously developed characteristic function, the
remaining part is the computation of the payoff coefficients, Vm,k. Contrary to the Lévy processes
where we employ a logarithmic transformation, for the square-root dynamics we set y = CN
or y = θ (S(T )− CN ) for European-style (also known as fixed-strike) or floating-strike options,
respectively. In equity and commodity markets with payoff functions as in Equations (1) or (2),
the Vm,k for arithmetic Asian options are calculated by

Vm,k =



2m/2

2J−1

2J−1∑
j=1

[
Ij,k1 (x̃, b)−KIj,k0 (x̃, b)

]
for a call,

2m/2

2J−1

2J−1∑
j=1

[
KIj,k0 (a, x̃)− Ij,k1 (a, x̃)

]
for a put,

with x̃ = K, function Ij,k0 as in Equation (31) and function Ij,k1 defined as follows

Ij,k1 (x1, x2) :=

∫ x2

x1

y cos (Cj (2my − k)) dy.

Again, the integral Ij,k1 has analytic solution (see AppendixA).
Furthermore, the SWIFT method can also be efficiently applied when we are dealing with

more complex payoff functions like the ones appearing in interest rate derivatives with Asian-like
features (see [18], for example, and the references therein). In this context, the option pricing
problem needs to be adapted since now the underlying is the interest rate itself. Hence, the
valuation formula in interest rate markets holds

v(x, t) = E [v(y, T )|x] =

∫
R
v(y, T )f(y|x)dy,

where the payoff function is in the form v(y, t) = e−y(T−t)h(y, t). In this work, we assume
y = CN . Thus, the Vm,k payoff coefficients corresponding to the payoff functions in Equation
(3) read

Vm,k =
2m/2

2J−1

2J−1∑
j=1

[
Ij,k4 (x̃, b, T )−KIj,k3 (x̃, b, T )

]
, for Asian caps,

Vm,k =
2m/2

2J−1

2J−1∑
j=1

[
Ij,k3 (x̃, b, T )

]
, for cash Binary Asian caps,

Vm,k =
2m/2

2J−1

2J−1∑
j=1

[
TIj,k4 (x̃, b, T )

]
, for rate Binary Asian caps,

respectively, with x̃ = K and

Ij,k3 (x1, x2, t) :=

∫ x2

x1

e−yt cos (Cj (2my − k)) dy,

Ij,k4 (x1, x2, t) :=

∫ x2

x1

ye−yt cos (Cj (2my − k)) dy,

solvable again in analytic form (expressions in AppendixA).250
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4.3. Greeks

Regarding the Greeks, the SWIFT method also allows a straightforward computation of ∆
and Γ under square-root dynamics. Equation (15) is suitable in this framework since the option
value depends on x = S0 through the density coefficients. Combining Equation (40) (or (39) for
the special case of fixed-strike contracts) with Equation (36) and differentiating the resulting
characteristic function, it turns out that, for the first derivative, we have

∂f̂S,CN (ξ)

∂x
=
∂MS,CN (−iξ, iξ)

∂x
= −Λ0 (−iξ, iξ) e−(Λ0(−iξ,iξ)x+

∑N−1
i=0 φ(∆t;Λi+1(∆t;−iξ,iξ))), (41)

and, for the second derivative

∂2f̂S,CN (ξ)

∂x2
=
∂2MS,CN (−iξ, iξ)

∂x2
= (Λ0 (−iξ, iξ))2 e−(Λ0(−iξ,iξ)x+

∑N−1
i=0 φ(∆t;Λi+1(∆t;−iξ,iξ))), (42)

where Λi is as in Equation (37). As mentioned, the same expression can be employed for the
European-style case, by setting γ = 0, i.e. MS,CN (0, iξ).

By using the expressions above, we can now compute the coefficients c
(1)
m,k and c

(2)
m,k via

Equation (14) and, therefore obtain the Greeks ∆ and Γ by Equation (15).255

4.4. Interval selection

Again, a key aspect in the computational performance of the SWIFT method is the choice
of the truncated interval. Its smart selection is crucial to reduce the execution time keeping a
prescribed accuracy.

As mentioned before, we can follow the cumulant-based approach as in Equation (34). By
definition the cumulant generating function can be expressed in terms of the moment generating
function as

K(τ) = logM(τ),

and the cumulants can be obtained from the cumulant generating function by simply differenti-
ating it with respect to the function variable, τ . Next, the n-th cumulant, κn, is calculated by
evaluating the n-th derivative of K(τ) at zero, i.e.

κn = (−1)nK(n)(0).

In our context, we are particularly interested in the cumulants of CN . In this case

κn(CN ) = (−1)nK(n)
CN

(0)

= −(−1)n

(
Λ

(n)
0 (∆t; 0, λ)x+

N−1∑
i=0

φ(n) (∆t; Λi+1 (∆t; 0, λ)) Λ
(n)
i+1 (∆t; 0, λ)

)∣∣∣
λ=0

.

The derivatives Λ
(n)
i (∆t; 0, λ) with respect to the parameter λ can be computed again in

recursive way applying the chain rule. Thus, for example, the first derivative would be

Λ′N (∆t; 0, λ) = ωN ,

Λ′i (∆t; 0, λ) = ψ′ (∆t,Λi+1 (∆t; 0, λ)) Λ′i+1 (∆t; 0, λ) + ωi, for i = N − 1, . . . , 0.

Similarly, an iterative sequence can be defined to obtain higher derivatives. Once the cu-260

mulants are available, they can be used together with Equation (34) in the interval selection
procedure described in Algorithm 1.
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4.4.1. Cumulants approximation

In order to avoid the differentiation of a function formulated recursively, we propose an
approximated expression for the cumulant generating function of CN , KCN . For that, we first
assume that E[log(·)] is a good proxy of logE[·], i.e. E[log(·)] ≈ logE[·]. Applying this log-
interchange in combination with Equations (38) and(36), the cumulant generating function of
CN is approximated as follows

KCN (λ) ≈ K̂CN (λ) := E
[
log
(

e−λ
∑N
i=0 ωiS(ti)

)]
= E

[
−λ

N∑
i=0

ωiS(ti)

]
= −λ

N∑
i=0

ωiE [S(ti)] ,

where ωi the arithmetic weights. By Jensen’s inequality, this approximation implies an upper
bound (since the function log(·) is concave). We have constructed an approximated cumulant265

generating function, K̂CN that depends only on expectations of the underlying process, often
available. However, that restricts the use of K̂CN to compute only the first cumulant, κ̂1(CN ) ≈
κ1(CN ), since the second and higher derivatives are always zero. The use of only one cumulant
may be justified in some special situations. For example, when we deal with European-style
interest rate Asian derivatives, the lower bound a can be safely set to zero, a = 0, since the270

arithmetic average of the underlying cannot be negative but it is typically close to zero. The
upper bound of the interval, b, can be determined by simply setting it equal to the approximated
first cumulant, i.e. b = κ̂1(CN ), and increasing it in each iteration of the adaptive interval
selection explained in Algorithm 1 of Section 2.4.

A great advantage is that, in some cases, this approximation results in a closed-form ex-
pression which facilitates the interval selection based on cumulants. For example, when the
basic square-root process (Equation (43)) is considered and ωi = ω,∀i, the previous expression
becomes

K̂CN (λ) = −λ
N∑
i=0

ωE [S(ti)] = −λ
N∑
i=0

ωS0erti = −S0λω

N∑
i=0

erti = −S0λω
1− er(N+1)∆t

1− er∆t
.

5. Numerical results275

In this section, we present the performance of the SWIFT method against the state-of-the-art
methods existing in the recent literature. In the framework of exponential Lévy models, we will
consider the well-known COS method, particularly the COS variant for arithmetic Asian option,
called ASCOS method [5]. To the best of our knowledge, the ASCOS method provides the best
balance between accuracy and efficiency in arithmetic Asian pricing under Lévy processes. For280

the case of square-root dynamics, we employ the well-known Carr-Madan method, as it was the
author’s choice in [9], where the algorithm followed in this work for square-root processes was
originally presented. This allows a fair comparison in the numerical tests. All the experiments
have been conducted in a computer system with the following characteristics: CPU Intel Core i7-
4720HQ 2.6GHz and memory of 16GB RAM. The employed software package is Matlab R2017b.285

5.1. Results under Lévy process

In the context of arithmetic Asian options under exponential Lévy models, the first issue
arises from the unavailability of reliable reference prices, even in the simplest case of Black-
Scholes model. In order to overcome this inconvenience, our first experiment consists of de-
termining reference values that are sufficiently consistent. In [5], the authors considered an290

extreme configuration of the ASCOS method as a reference. We follow here a similar approach,
but employing two different methods. We use increasingly “extreme” settings for the ASCOS
method and our SWIFT method aiming to find a prescribed number of coincident decimals in
the solution. The procedure is stopped when each method’s converging value starts to diverge.
The ASCOS method includes a numerical quadrature (Clenshaw-Curtis) where, the number of295
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points in the quadrature, nq, has an unknown relation with the number of COS expansion terms
Nc. We follow here the “rule-of-thumb” suggested by the authors in [5], i.e. nq = d100Nc/64e.
Note however that, as this is an empirical rule, ASCOS can suffer from instabilities. In contrast,
SWIFT employs only one parameter, the scale of approximation m, whose value ranges in a very
small set of integers, typically m ∈ {4 − 8}, and can be determined given a required tolerance.300

This provides a great advantage with respect to ASCOS, where the number of coefficients, Nc

(and therefore the quadrature points, nq), are chosen by a “trial-and-error” procedure.
The number of decimals in the references highly depends on the option payoff function and

underlying model. Here, an arithmetic Asian valuation is considered, with varying number of
monitoring dates, N = 12 (monthly), N = 50 (weekly) and N = 250 (daily), and assuming305

conceptually different underlying Lévy dynamics: GBM (Black-Scholes) and NIG [33]. In Table
1, we can see that, under GBM, we find up to ten coincident digits between ASCOS and SWIFT
methods. However, when employing NIG model (see Table 2), we are not able to ensure more
than four concordant decimals in the reference solution. In the subsequent experiments, this
fact needs to be taken into consideration to fairly evaluate the numerical results.310

# Decimals Method N = 12 N = 50 N = 250

6
ASCOS Nc = 144, nq = 225 Nc = 384, nq = 600 Nc = 384, nq = 600
SWIFT m = 5 m = 6 m = 7

8
ASCOS Nc = 192, nq = 300 Nc = 384, nq = 600 Nc = 768, nq = 1200
SWIFT m = 5 m = 6 m = 8

10
ASCOS Nc = 256, nq = 400 Nc = 512, nq = 800 Nc = 5120, nq = 8000
SWIFT m = 6 m = 7 m = 8

Table 1: GBM. The reference values are 11.9049157487 (N = 12), 11.9329382045 (N = 50) and 11.9405631571
(N = 250).

# Decimals Method N = 12 N = 50 N = 250

2
ASCOS Nc = 128, nq = 200 Nc = 128, nq = 200 Nc = 192, nq = 300
SWIFT m = 6 m = 5 m = 5

3
ASCOS Nc = 128, nq = 200 Nc = 192, nq = 300 Nc = 192, nq = 300
SWIFT m = 6 m = 5 m = 7

4
ASCOS Nc = 256, nq = 400 Nc = 256, nq = 400 Nc = 512, nq = 800
SWIFT m = 7 m = 8 m = 9

Table 2: NIG. The reference values are 1.0135 (N = 12), 1.0377 (N = 50) and 1.0444 (N = 250).

Next, we employ the previously determined reference values (see Tables 1 and 2) to conduct
a full pricing experiment. We then assess not only the accuracy in the solution but also the
computational performance of two methods: the ASCOS method and the SWIFT method. The
measure of the error is the absolute difference. When all the digits in the reference are coincident,
(error below 10−10 or 10−4 for GBM or NIG models, respectively), the solution is considered315

exact (=). We can observe in Tables 3 and 4 that both methods provide satisfactory results
for the evaluated models. It is worth highlighting that, given a certain precision, SWIFT is, in
general, competitive with ASCOS, outperforming it specially when few monitoring dates and
high accuracy is prescribed. In this situation, the impact on the computational cost of the
numerical quadrature4 employed in ASCOS is relatively more important. By using the SWIFT320

method we avoid any quadrature by using Theorem 1, which significantly reduces the cost of
evaluating the integral in Equation (20).

4Here, an improved version of the quadrature implementation has been used to be fair in the comparison. This
implies that the computational cost of ASCOS is much lower than that reported in [5].
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GBM N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Error 3.75× 10−4 8.34× 10−4 7.17× 10−3

Time (sec.) 0.03 0.02 0.01

Nc = 128, nq = 200
Error 8.37× 10−7 7.43× 10−6 3.82× 10−5

Time (sec.) 0.03 0.02 0.02

Nc = 256, nq = 400
Error = 5.33× 10−7 1.58× 10−7

Time (sec.) 0.16 0.12 0.11

Nc = 512, nq = 800
Error = = 3.04× 10−8

Time (sec.) 1.96 1.80 1.85

Nc = 1024, nq = 1600
Error = = =

Time (sec.) 13.99 13.99 14.25

SWIFT

m = 4
Error 2.70× 10−4 1.27× 10−2 3.82× 10−2

Time (sec.) 0.01 0.01 0.03

m = 5
Error 7.47× 10−9 9.78× 10−5 4.01× 10−3

Time (sec.) 0.01 0.02 0.06

m = 6
Error = 3.55× 10−10 6.96× 10−4

Time (sec.) 0.02 0.10 0.40

m = 7
Error = = 1.21× 10−8

Time (sec.) 0.08 0.34 1.37

m = 8
Error = = =

Time (sec.) 0.33 1.31 5.11

Table 3: SWIFT vs. ASCOS. Absolute error and execution time for the arithmetic Asian call option. Setting
([5]): GBM, S0 = 100, r = 0.0367, σ = 0.17801, T = 1 and K = 90. The “=” sign means that the result matches
all the decimal digits of the reference value.

5.2. Results under square-root diffusions

We now wish to test the SWIFT method applied to square-root processes, applying the
methodology explained in Section 4. Let us first consider the most basic square-root price
dynamics

dS(t) = µS(t)dt+ σ
√
S(t)dW (t), (43)

where µ and σ are constants and W is a Brownian motion. This formulation falls into the
category presented in Section 4. Furthermore, the functions ψ and φ in Equation (35) are
analytically available,

ψ(∆t; γ) =
γeµ∆t

1 + 1
2σ

2γ eµ∆t−1
µ

,

φ(∆t; γ) = 0.

We compare the results reported by Fusai et al. in [9], based on the Carr-Madan method,
and those obtained by the SWIFT method presented here. We are able to reproduce exactly325

the same option prices with different configurations of strikes and monitoring dates for both
European-style and floating-strike options. However, what we wish to highlight in this test is
the computational efficiency of the SWIFT method with respect to Carr-Madan. Note that the
number of terms in the expansion (Ncm) and the dampening factor used in this experiment were
not specified in the paper. Thus, after setting the dampening factor5 to 0.05, an increasing Ncm is330

5We have not observed a significant impact of this parameter in the results when it is chosen among the usual
values.
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NIG N = 12 N = 50 N = 250

ASCOS

Nc = 64, nq = 100
Abs error 7.78× 10−3 1.71× 10−1 8.75× 10−2

CPU time 0.03 0.03 0.02

Nc = 128, nq = 200
Abs error 2.60× 10−4 5.89× 10−3 1.49× 10−2

CPU time 0.03 0.03 0.03

Nc = 256, nq = 400
Abs error = = 1.42× 10−4

CPU time 0.19 0.17 0.15

Nc = 512, nq = 800
Abs error = = =
CPU time 1.98 1.96 2.02

Nc = 1024, nq = 1600
Abs error = = =
CPU time 14.38 14.22 14.71

SWIFT

m = 4
Abs error 9.72× 10−2 9.27× 10−2 4.01× 10−2

CPU time 0.02 0.02 0.04

m = 5
Abs error 5.69× 10−3 6.92× 10−4 4.50× 10−3

CPU time 0.02 0.03 0.08

m = 6
Abs error 2.13× 10−4 9.12× 10−4 9.11× 10−4

CPU time 0.02 0.12 0.48

m = 7
Abs error = = =
CPU time 0.13 0.47 1.52

m = 8
Abs error = = =
CPU time 0.39 1.46 5.85

Table 4: SWIFT vs. ASCOS. Absolute error and execution time for the arithmetic Asian call option. Setting
([5]): NIG, S0 = 100, r = 0.0367, σ = 0.0, α = 6.1882, β = −3.8941, δ = 0.1622, T = 1 and K = 110. The “=”
sign means that the result matches all the decimal digits of the reference value.

employed. In Table 5 we show the execution time required to achieve a certain precision (number
of coincident digits) for both techniques. As shown, when mid-high precision is demanded,
SWIFT method performs significantly faster than Carr-Madan, reaching up to 40 times reduction
of the computational cost for eight decimal digits precision.

Secondly, we introduce a time-dependency in the model parameters, which are no longer
constants but functions of the time, i.e. µ(t) and σ(t). Lets assume that we have a number of
market quotes of the forward prices, F (t), observed at time t = 0. This is commonly the case
in commodity and interest rate markets. Under these premises, closed-form expression for ψ (φ
is again zero, φ(∆t; γ) = 0) can be derived as well (see [9] for further details),

ψ(∆t; γ) =
γe

∫ t+∆t
t µ(s)ds

1 + 1
2γ
∫ t+∆t
t σ2(s)e

∫ t+∆t
s µ(u)duds

=
γ F (t+∆t)

F (t)

1 + 1
2γF (t+ ∆t)

∫ t+∆t
t

σ2(s)
F (s) ds

,

where we use the matching condition F (t) = E[S(t)] := S0e
∫ t
0 µ(s)ds.335

We consider now a floating-strike arithmetic Asian option pricing problem. In Table 6 the
prices reported by Fusai et al. in [9], and the ones computed by SWIFT are shown. As we can
observe, there is a relatively large divergence from the second decimal digit. A Monte Carlo
confidence (95%) interval is therefore included as a reference. We can observe that, while Fusai
et al. results tend to slightly overestimate the option value, SWIFT method performs more340

accurately with all the produced prices within the Monte Carlo (MC) confidence interval. This
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# Decimals Method N = 12 N = 50 N = 250

4
Carr-Madan 0.01 (Ncm = 214) 0.03 (Ncm = 214) 0.09 (Ncm = 214)

SWIFT 0.05 (m = 3) 0.05 (m = 3) 0.05 (m = 2)
Speedup ×0.33 ×0.50 ×1.68

6
Carr-Madan 0.03 (Ncm = 216) 0.09 (Ncm = 216) 0.32 (Ncm = 216)

SWIFT 0.05 (m = 4) 0.06 (m = 4) 0.07 (m = 4)
Speedup ×0.58 ×1.47 ×4.39

8
Carr-Madan 3.68 (Ncm = 223) 1.21 (Ncm = 220) 5.04 (Ncm = 220)

SWIFT 0.07 (m = 5) 0.08 (m = 5) 0.11 (m = 5)
Speedup ×47.98 ×15.00 ×42.73

Table 5: SWIFT vs. Carr-Madan. Execution time and speedup for the arithmetic Asian call option. Setting
([9]): Basic square-root, S0 = 1, r = 0.04, σ = 0.7 and T = 1.

can occur because the time dependency in the dynamics results in a transitional density with
a heavy left tail and high negative skewness. In Figure 2, we depict the recovered densities
with and without time-dependency where the mentioned effect is clearly observed. Heavy-tailed
distributions are typically harder to recover for the classical Fourier inversion-based techniques345

like Carr-Madan, where several free-parameters need to be arbitrarily chosen without any prior
knowledge or optimal selection procedure. In the case of the Carr-Madan method, the number
of terms in the expansion and the dampening constant need to be set. A wrong choice of these
parameters can cause, like in this experiment, inaccurate results. In contrast, due to the control
of the density approximation error by the scale of approximation m and its locality properties350

(by construction), SWIFT is able to efficiently recover the density function in this situation,
capturing its singularities and providing therefore an accurate and fast option valuation.

Strike Method N = 12 N = 50 N = 250

K = −0.02
Fusai et al. 0.151519 0.158608 0.160253

SWIFT 0.149538 0.156629 0.158235
MC interval [0.149074, 0.150394] [0.155629, 0.156989] [0.157383, 0.158754]

K = 0.0
Fusai et al. 0.146705 0.153680 0.155301

SWIFT 0.144774 0.151750 0.153333
MC interval [0.144366, 0.145662] [0.150683, 0.152020] [0.152327, 0.153675]

K = 0.02
Fusai et al. 0.141999 0.148860 0.150458

SWIFT 0.140118 0.146978 0.148539
MC interval [(0.139050, 0.140319] [0.146085, 0.147399] [0.147667, 0.148991]

Table 6: SWIFT vs. Fusai et al. Option value for the arithmetic floating-strike Asian call option. Setting ([9]):
Time-dependent square-root, S0 = 7.1409, r = 0.0525, σ = 0.7, T = 1, θ = −1 and m = 6. Curve F is
obtained by cubic spline interpolation, using the market quotes of Natural Gas at NYMEX on March 1, 2007 (see
Table 6 in [9]).

As a third square-root diffusion, the underlying price is assumed to be driven by the classical
CIR model [31], whose definition reads

dS(t) = (ac − bcS(t)) dt+ σ
√
S(t)dW (t),

where model parameter ac introduces a mean-reverting term, while bc controls the mean-
reversion speed. Under the CIR dynamics, analytical solutions for both ψ and φ functions
in Equation (35) can be obtained (see [34], for example),

ψ(∆t; γ) =
2γbc

σ2γ (ebc∆t − 1) + 2bcebc∆t
,

φ(∆t; γ) =
−2ac
σ2

log

(
2bce

bc∆t

σ2γ (ebc∆t − 1) + 2bcebc∆t

)
.
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Figure 2: Influence of the time-dependency on the transitional density.

The CIR model is of particular importance in interest rate markets, where it appeared as an
alternative of the well-known Vasicek model to model the short rate. For that, we here employ
these dynamics to price Asian-like options appearing in the interest rate context. Specifically,355

three different Asian caps are chosen, arithmetic Asian caps, cash Binary Asian caps and rate
Binary Asian caps, according to the payoff functions described in Equation (3). In Table 7
we present the option prices computed by means of the SWIFT method. As a reference, a
Monte Carlo (MC) confidence interval is again employed. Our technique turns to be highly
precise, always falling into the confidence interval, even when it is extremely narrow. Regarding360

the computational cost, SWIFT execution time ranges around [0.08, 0.15] seconds with scale of
approximation m = 6.

N = 12 N = 50 N = 250

Asian cap

SWIFT 0.00750 0.00770 0.00776
MC interval [0.00747, 0.00752] [0.00766, 0.00771] [0.00774, 0.00778]

Cash Binary Asian cap

SWIFT 0.41225 0.41239 0.41241
MC interval [0.41070, 0.41240] [0.41182, 0.41352] [0.41181, 0.41350]

Rate Binary Asian cap

SWIFT 0.04873 0.04894 0.04900
MC interval [0.04864, 0.04885] [0.04890, 0.04911] [0.04895, 0.04915]

Table 7: Option value for several types of arithmetic Asian caps. Setting ([18]): CIR, S0 = 0.1, ac = 0.15,
bc = 1.5, σ = 0.2, T = 1, K = S0 and m = 6.

5.3. Greeks

By employing the SWIFT method, the option sensitivities with respect to the initial price,
the Greeks ∆ and Γ, can be readily computed from Equations (32) and (33) or from Equations365

(41) and (42), for exponential Lévy models or square-root diffusions, respectively. The result-
ing values are shown in Table 8, where a regular arithmetic Asian call is priced and we have
employed the same parameter configuration as in the previous experiments corresponding to
each dynamics. The reference values are computed by the data-driven COS method [35] and
Rolling Adjoints method [36], for Lévy and square-root dynamics, respectively. These Monte370

Carlo-based techniques provide stable and accurate sensitivities. Note that the computation of
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the “Greek” coefficients in SWIFT can be done at once together with the payoff (or density)
coefficients. Thus, it does not imply an increment in the computational cost. With m = 6, the
execution time remains around 0.1 seconds.

Greek Method GBM NIG Square-root Square-root, µ(t) CIR

∆
SWIFT 0.57645 0.67561 0.53930 0.87165 0.27083

Ref. 0.57036 0.67220 0.53705 0.87106 0.27111

Γ
SWIFT 0.03788 0.03639 0.97123 0.27936 5.14647

Ref. 0.03777 0.03617 0.97356 0.27556 5.14679

Table 8: Option sensitivities, Greeks ∆ and Γ. Setting: K = S0, N = 12, m = 6.

6. Conclusions375

In this paper, a new Fourier inversion-based technique has been proposed in the frame-
work of discretely monitored Asian options. We have studied the performance of the SWIFT
method on two broad classes of financial models, the exponential Lévy processes and square-
root diffusions. The application of SWIFT to the Asian pricing problem allows to overcome the
main drawbacks attributed to this type of methods, like the free-parameters control and the380

numerical integration. Furthermore, SWIFT results in a highly accurate and fast technique,
outperforming the competitors in most of the analysed experiments. We have also shown that
the method robustness avoids possible numerical errors appearing in involved situations, like
heavy tailed distributions. Under the SWIFT context, not only the option price but also the
option sensitivities can also be efficiently computed at the same time.385
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in the dual space, SIAM Journal on Financial Mathematics 9 (1) (2018) 1–27.400

[2] A. P. Carverhill, L. J. Clewlow, Flexible convolution: Valuing average rate (Asian) options,
Risk Magazine 3 (4) (1990) 25–29.

[3] E. Benhamou, Fast Fourier transform for discrete Asian options, Journal of Computational
Finance 6 (1) (2002) 49–68.

[4] G. Fusai, A. Meucci, Pricing discretely monitored Asian options under Lévy processes,405
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AppendixA. Solution of integrals Ij,k
0 , Ij,k

1 , Ij,k
2 , Ij,k

3 , Ij,k
4

The integrals appearing in the computation of the payoff coefficients Vm,k have analytic
solution,

Ij,k0 (x1, x2) =

∫ x2

x1

cos (Cj (2my − k)) dy

=
1

2mCj
(sin (Cj(2

mx2 − k))− sin (Cj(2
mx1 − k))) ,

Ij,k1 (x1, x2) =

∫ x2

x1

y cos (Cj (2my − k)) dy

=
1

(2mCj)
2 (cos (Cj(k − x22m))− cos (Cj(k − x12m)))

+
Cj2

m

(2mCj)
2 (x1 sin (Cj(k − x12m))− x2 sin (Cj(k − x22m))) ,

Ij,k2 (x1, x2) =

∫ x2

x1

ey cos (Cj (2my − k)) dy

=
1

1 + (2mCj)2
(ex2 cos (Cj(2

mx2 − k))− ex1 cos (Cj(2
mx1 − k)))

+
2mCj

1 + (2mCj)2
(ex2 sin (Cj(2

mx2 − k))− ex1 sin (Cj(2
mx1 − k))) ,

Ij,k3 (x1, x2, t) =

∫ x2

x1

e−yt cos (Cj (2my − k)) dy

=
t

(2mCj)2 + t2
(
e−x1t cos (Cj(k − 2mx1))− e−x2t cos (Cj(k − 2mx2))

)
+

2mCj
(2mCj)2 + t2

(
e−x1t sin (Cj(k − 2mx1))− e−x2t sin (Cj(k − 2mx2))

)
,

Ij,k4 (x1, x2, t) =

∫ x2

x1

ye−yt cos (Cj (2my − k)) dy

=
(2mCj)

2 − t2

((2mCj)2 + t2)2

(
e−x2t cos (Cj(k − 2mx2))− e−x1t cos (Cj(k − 2mx1))

)
+

t

(2mCj)2 + t2
(
x1e−x1t cos (Cj(k − 2mx1))− x2e−x2t cos (Cj(k − 2mx2))

)
+

t2m+1Cj

((2mCj)2 + t2)2

(
e−x1t sin (Cj(k − 2mx1))− e−x2t sin (Cj(k − 2mx2))

)
+

2mCj
(2mCj)2 + t2

(
x1e−x1t sin (Cj(k − 2mx1))− x2e−x2t sin (Cj(k − 2mx2))

)
.

where we recall that Cj = 2j−1
2J

π.
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