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Abstract4

We present a robust and highly efficient Shannon wavelet pricing method for plain-vanilla5

foreign exchange European options under the jump-extended Heston model with multi-factor CIR6

interest rate dynamics. Under a Monte Carlo and partial differential equation hybrid computational7

framework, the option price can be expressed as an expectation, conditional on the variance factor,8

of a convolution product that involves the densities of the time-integrated domestic and foreign9

multi-factor CIR interest rate processes. We propose an efficient treatment to this convolution10

product that effectively results in a significant dimension reduction, from two multi-factor interest11

rate processes to only a single-factor process. By means of a state-of-the-art Shannon wavelet12

inverse Fourier technique, the resulting convolution product is approximated analytically and the13

conditional expectation can be computed very efficiently. We develop sharp approximation error14

bounds for the option price and hedging parameters. Numerical experiments confirm the robustness15

and efficiency of the method.16

1 Introduction17

In the current era of wildly fluctuating exchange rates, foreign exchange (FX) financial contracts, i.e.18

derivatives, are of enormous practical importance. There has been great interest in modelling FX19

derivatives using four factor jump-diffusion models.1 See Ahlip et al. (2017); Ahlip and Rutkowski20

(2013, 2015); Cozma et al. (2018); Cozma and Reisinger (2017) among many other publications. Typ-21

ically, in these models, the spot FX rate and its variance follow a jump-extension of the Heston model22

(Heston, 1993), while the domestic and foreign interest rates follow the one-factor Hull-White or Cox-23

Ingersoll-Ross (CIR) dynamics (Cox et al., 1985a; Hull and White, 1993). From a risk management24

point of view, FX models with jumps are useful, as they permit us to explore the effects of severe25

market crashes on FX rates. This is potentially important for long-dated (maturities of 20 years26

or more) FX derivatives embedded with popular early exercise contract features, such as Bermudan27

cancelable, knock-out, and Target Redemption (Clark, 2011; Qu, 2016).28

Despite of their popularity, one-factor interest rate models suffer from a well-known limitation,29

namely their inability to accurately capture de-correlations, i.e. non-perfect correlations, between rates30

for different maturities. This issue is particularly crucial in modelling of (long-dated) FX interest rate31

derivatives, such as Power-Reverse Dual-Currency (PRDC) swaps and FX Target Redemption Notes,32

due to their strong dependence on movements in both domestic and foreign interest rates (Caps, 2007;33

Col et al., 2013; Dang et al., 2014, 2010, 2015a; Mallo, 2010; Piterbarg, 2006; Sippel and Ohkoshi,34
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2002). These derivatives have become increasingly important and are traded in large quantities in35

Over-the-Counter markets. In fact, it is suggested in the interest rate literature that, in order to36

sufficiently capture de-correlations in the rates, multi-factor interest rate dynamics should be used37

(Brigo and Mercurio, 2006; Jamshidian and Zhu, 1997; Rebonato, 1998).38

The use of multi-factor Gaussian interest rates dynamics in option pricing is recently explored39

extensively in Dang (2017); Dang et al. (2015b, 2017); Dang and Ortiz-Gracia (2018). This paper40

is a continuation of these first steps towards a more realistic modelling framework for FX derivatives41

across a wide range of maturities and/or contract features. Specifically, in this paper, we consider a42

general FX model in which interest short rates follow multi-factor CIR dynamics, whereas the spot FX43

rate and its instantaneous variance is jointly governed by a jump-extended Heston model. Typically,44

multi-factor CIR dynamics for the interest rates would allow for a closer match of skewed market45

implied distributions of interest rates in a wide range of maturities than their multi-factor Gaussian46

counterparts (Brigo and Mercurio, 2006).47

In general, for model calibration purposes, highly efficient pricing methods for plain-vanilla Eu-48

ropean options are typically required. Since a closed-form solution for plain-vanilla European FX49

options is not available for the model considered in this work, an efficient numerical pricing method50

must be developed for these derivatives. However, the mathematical and computational challenge51

posed by this model is particularly significant, because in this case we need to efficiently handle a52

convolution product that involves two unknown densities of the time-integrated domestic and foreign53

(multi-factor) CIR interest rate processes. Due to these reasons, in this paper, we primarily focus on54

the development of highly efficient numerical methods for plain-vanilla European FX options, leaving55

model calibration to future work.56

In option pricing, state-of-the-art numerical integration based methods, such as the COS method57

of Fang and Oosterlee (2008) or the Shannon Wavelet Inverse Fourier Technique (SWIFT) proposed in58

Ortiz-Gracia and Oosterlee (2016), if applicable, are significantly more efficient than Monte-Carlo or59

partial differential equation (PDE). These methods typically require knowing a closed-form expression60

for the characteristic function of the underlying stochastic process so that the corresponding density61

function can be recovered. However, for the type of general models under investigation, as well as62

for many other interesting models, such a closed-form expression for the characteristic function of the63

underlying process is difficult, perhaps impossible, to obtain.64

This paper aims to further extend the applicabilities of these state-of-the-art numerical integration65

methods to the above-mentioned general jump-diffusion FX model. We use the SWIFT method, due66

to the established robustness of Shannon wavelets in option pricing, as demonstrated in a number67

of works, such as Colldeforns-Papiol et al. (2017); Maree et al. (2017); Ortiz-Gracia and Oosterlee68

(2016). The proposed SWIFT-based method is developed within the hybrid MC-PDE computational69

framework put forward in Dang et al. (2015b, 2017). This framework generally allows to express the70

option price as the expectation of the unique solution to an associated conditional Partial Integro-71

Differential Equation (PIDE). This solution is cast in the form of a multi-dimensional convolution72

product that involves densities of the time-integrated domestic and foreign interest rate processes.73

These densities are unknown for multi-factor CIR dynamics, and hence must be approximated. This74

results in a very complex convolution product that must be handled in a highly efficient manner. Such75

substantial mathematical and computational challenge differentiates this work from previous ones on76

multi-factor Gaussian interest rates (Dang et al., 2017; Dang and Ortiz-Gracia, 2018), since in the77

latter case, the density of the time-integrated Gaussian process is known in closed form.78

The main contributions of paper can be summarized as follows.79

• By means of the SWIFT method, we propose an efficient treatment of the above-mentioned80

complex convolution product that effectively results in a significant dimension reduction from81

two multi-factor CIR interest rate processes, to only a single-factor CIR dynamics. Moreover,82

this dimension reduction is independent of the total number of interest rate factors in the model.83
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• We recover the classical FX option formulas in Garman and Kohlhagen (1983) for the solution84

of the conditional PIDE when using effective constant domestic and foreign risk-free rates.85

• The (outer) expectation can be expressed as a two-dimensional integral that involves only (i) the86

value of the variance at the terminal time, and (ii) the time-integrated variance process condi-87

tional on this value. This two-dimensional integral can be further reduced to the evaluation of88

just a single integral that involves only the density of the terminal variance value, thanks to the89

excellent approximation properties of Shannon wavelets.90

• Extensive numerical experiments confirm the robustness and significant efficiency of the proposed91

pricing technique, while the computational complexity remains independent of the number of92

stochastic factors in the model.93

The remainder of the paper is organized as follows. We start by introducing a general pricing94

model and reviewing the dimension reduction framework in Sections 2 and 3, respectively. Section 495

discusses the development of an efficient SWIFT-based numerical technique for the solution to the96

conditional PIDE. In Section 5, we present the formulas for the solution of the conditional PIDE for97

the case of call and put options. The outer expectation is treated in Section 6. Section 7 develops the98

error analysis. In Section 8, we present several numerical results to illustrate the method’s robustness,99

error bounds, and efficiency. Section 9 concludes the paper and outlines possible future work.100

2 Model101

We consider an (international) economy consisting of two markets (currencies) indexed by i ∈ {d, f},102

where “d” and “f” stand for the domestic and foreign markets, respectively. We consider a complete103

probability space (Ω, F , {Ft}t≥0,Q), with sample space Ω, sigma-algebra F , filtration {Ft}t≥0, and104

risk-neutral measure Q defined on F . We denote by E the expectation taken under Q measure. We105

denote by S(t) the spot FX rate, which is defined as the number of units of domestic currency per106

one unit of foreign currency. Let the spot FX rate S(t), its instantaneous variance ν(t), and the two107

short rates rd(t) and rf (t) be governed by the following SDEs under the measure Q:108

dS(t)

S(t−)
= (rd(t) − rf (t) − λδ) dt +

√

ν(t) dWs(t) + dJ(t) , (2.1)109

rd(t) =
pd
∑

i=1

Xi(t)110

with dXi(t) = κdi
(θdi

− Xi(t)) dt + σdi

√

Xi(t)dWdi
(t) , (2.2)111

rf (t) =

pf
∑

j=1

Yj(t),112

with dYj(t) = κfj

(

θfj
− Yj(t)

)

dt + σfj

√

Yj(t) dWfj
(t) − ρs,fj

σfj

√

ν(t) dt , (2.3)113

dν(t) = κν(ν̄ − ν(t)) dt + σν

√

ν(t) dWν(t) . (2.4)114

We work under the following assumptions for model (2.1).115

• Processes Ws(t) and Wν(t) are correlated Brownian motions (BMs) with a constant correlation116

coefficient ρ ∈ [−1, 1]. As we will illustrate in a later section, the assumption on a constant117

correlation ρ is indeed crucial to the method. Processes Ws(t) and Wν(t) are independent118

of processes Wdi
(t), i = 1, . . . , pd, as well as of processes Wfj

(t), j = 1, . . . , pf . Processes119

Wdi
(t), i = 1, . . . , pd, and Wfj

(t), j = 1, . . . , pf , are pairwise independent. As we will argue in120

what follows, this assumption is also crucial for analyticity of the method. We note that the121
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independence assumption between factors of a multi-factor CIR interest rate process appears to122

be a standard assumption in the literature on the subject (see, e.g. Chen and Scott (1992, 2003);123

Nawalkha et al. (2007)).124

• The process J(t) =
∑π(t)

j=1(xj − 1) is a compound Poisson process. Specifically, π(t) is a Poisson125

process with a constant finite jump intensity λ > 0, and xj, j = 1, 2, . . ., are independent and126

identically distributed (i.i.d.) positive random variables representing the jump amplitude, and127

having the density χ(·). Several popular cases for χ(·) are (i) the log-normal distribution given128

in Merton (1976), and (ii) the log-double-exponential distribution given in Kou (2002). When129

a jump occurs at time t, we have S(t) = xS(t−), where t− is the instant of time just before the130

time t. In (2.1), δ = E[x − 1] represents the expected percentage change in the spot FX rate.131

• The Poisson process π(t), and the sequence of random variables {xj}∞
j=1 are mutually indepen-132

dent, as well as independent of the BMs Ws(t), Wdi
(t), i = 1, . . . , n, Wfi

(t), i = 1, . . . , l, and133

Wν(t).134

• The quantities κdi
, σdi

, i = 1, . . . , pd, pd ≥ 1, κfj
, and σfj

, j = 1, . . . , pf , pf ≥ 1, are strictly135

positive constants.136

For use later in the paper, we write

(

Ws

Wν

)

=

(
√

1 − ρ2 ρ

0 1

)(

W1

W2

)

, where W1 and W2 are137

independent Brownian motions, and ρ is the constant correlation between Ws and Wν . We denote by138

V (S(t), t, ·) ≡ V (S(t), t, rd(t), rf (t), ν(t)) the price at time t of a plain-vanilla European option under139

the model (2.1) with payoff Φ(S(T )). We further assume that the payoff Φ(x) is a continuous function140

of its argument having at most polynomial (sub-exponential) growth. This condition is satisfied in the141

case of call and put options, where Φ(S(T )) = max(S(T ) − K, 0) and Φ(S(T )) = max(K − S(T ), 0),142

respectively. Here, K is the strike of the option.143

While model calibration to existing market data is not a focus of this paper, we briefly discuss144

how this can be done, without going into detail. The constant correlation ρ can be obtained from145

historical data. The calibration procedure can be performed in two stages. In the first stage, the146

parameters for the multi-factor short rate processes are determined, independently of the FX part147

(Brigo and Mercurio, 2006). In the second stage, the calibrated short rate processes are included in148

the Heston model, and the remaining parameters are determined. In this stage, the calibration can be149

expressed as a nonlinear least-squares problem. We refer the reader to Cui et al. (2017) for a summary150

of existing numerical optimization methods to solve this problem. We emphasize that highly efficient151

pricing methods, which is the focus of the present paper, are crucial for the second stage.152

3 A hybrid MC-PDE/PIDE approach153

3.1 General framework154

In the first step of the proposed approach, we follow the hybrid MC-PDE/PIDE approach in Dang et al.155

(2015b, 2017). Below, we briefly summarize the main steps of this framework. The reader is referred156

to Dang et al. (2015b, 2017) for detailed discussions and relevant proofs.157

Using standard arbitrage theory (Delbaen and Schachermayer, 1994), and the “tower property” of158

the conditional expectation, the option price under the general model (2.1) can be expressed as the159

two-level nested expectation160

V (S(0), 0, ·) = E

[

e−
∫ T

0
rd(t) dtΦ(S(T ))

]

= E

[

E

[

e−
∫ T

0
rd(t) dtΦ(S(T ))

∣

∣

∣

∣

{W2(τ)}
]]

. (3.1)161

Here, {W2(τ)} ≡ {W2(τ ; 0 ≤ τ ≤ T )} denotes the filtration generated by the corresponding BM. Under162

certain regularity conditions, which are satisfied in the present case, by the Feynman-Kac theorem for163
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jump-diffusion processes (Cont and Tankov, 2004), the inner expectation of (3.1) can be shown to be164

equal to the unique solution to an associated (conditional) PIDE (Dang et al., 2017)165

To solve the conditional PIDE, we first transform it into the Fourier space to obtain an ordinary166

differential equation in terms of a transformed option price. This ordinary differential equation can167

then be easily solved in closed-form from maturity t = T to time t = 0 to obtain the transformed168

solution of the conditional PIDE at time t = 0. Let169

z = ln(x), φ(z) = Φ(ez), v(z, t, ·) = V (x, t, ·), (3.2)170

and we denote by f̂(ξ) the Fourier transform of a generic function f , i.e. f̂(ξ) =
1√
2π

∫

R
e−iξxf(x) dx.171

It can be shown that (Dang et al., 2015b, 2017)172

v̂(0, ξ) = E

[

φ̂(ξ)e−Gξ2+iξF −λT +λT Γ(ξ)+(iξ−1)
∫ T

0
rd(t)dt−iξ

∫ T

0
rf (t)dt

]

, (3.3)173

where174

G =
1 − ρ2

2

∫ T

0
ν(t)dt, F = −1

2

∫ T

0
ν(t)dt + ρ

∫ T

0

√

ν(t)dW2(s) − λδT, (3.4)175

and Γ(ξ) is the characteristic function of ln(y), i.e. the log of the jump amplitude y. We emphasize176

that, while G and F are stochastic, they depend only on the variance factor ν(t). Furthermore, the177

characteristic function Γ(ξ) is known for popular jump models, such as when ln(y) follows a normal178

(Merton, 1976) or a double-exponential distribution (Kou, 2002).179

The last step is to invert (3.3). First, we apply iterated conditional expectation to obtain180

v̂(0, ξ) = E

[

E

[

φ̂(ξ)e−Gξ2+iξF −λT +λT Γ(ξ)+(iξ−1)
∫ T

0
rd(t)dt−iξ

∫ T

0
rf (t)dt

∣

∣

∣

∣

{W2(τ)}
]]

181

= E

[

φ̂(ξ)e−Gξ2+iξF −λT +λT Γ(ξ)E

[

e(iξ−1)
∫ T

0
rd(t)dt

]

E

[

e−iξ
∫ T

0
rf (t)dt

]]

182

= E
[

φ̂(ξ)e−Gξ2+iξF −λT +λT Γ(ξ)Ψd(ξ + i)Ψf (−ξ)
]

, (3.5)183

where Ψd(·) and Ψf (·) respectively are the characteristic functions of the time-integrated domestic184

and foreign interest rate processes. The second equality in (3.5) is the result of the independency185

between the domestic, as well as foreign, rate and the variance. Furthermore, Ψd(·) and Ψf (·) can be186

obtained in closed-form using an expression for the characteristic function of the time-integrated CIR187

process available in Dufresne (2001). Specifically, we have188

Ψd(ξ) = E

[

eiξ
∫ T

0
rd(t)dt

]

= E

[

e
iξ
∑pd

j=1

∫ T

0
Xj(t)dt

]

=
pd
∏

j=1

E

[

eiξ
∫ T

0
Xj(t)dt

]

=
pd
∏

j=1

Ψdj
(ξ) (3.6)189

=
pd
∏

j=1









e
κdj

T

2

cosh

(

γdj
(ξ)T

2

)

+
κdj

γdj
(ξ) sinh

(

γdj
(ξ)T

2

)









2κdj
θdj

σ2
dj

exp









2iξXj(0) sinh

(

γdj
(ξ)T

2

)

γdj
(ξ) cosh

(

γdj
(ξ)T

2

)

+ κdj
sinh

(

γdj
(ξ)T

2

)









,190

where γdj
(ξ) =

√

κ2
dj

− 2iσ2
dj

ξ, and the third equality comes from the independence of the interest191

rate factors. Here, we note that E

[

eiξ
∫ T

0
Xj(t)dt

]

= Ψdj
(ξ) is the characteristic function of the time-192

integrated CIR process and its closed-form expression is available in Dufresne (2001). A similar193

expression can be found for Ψf (ξ).194

We emphasize that it would not have been possible to obtain the simple expression (3.6) for Ψd(ξ)195

(resp. Ψf (ξ)), if the factors of the domestic (resp. foreign) interest rate dynamics are not independent.196
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We note that, as mentioned earlier in Section 2, this independence assumption appears to be a standard197

assumption in the literature on multi-factor CIR interest rate processes (see, e.g. Chen and Scott (1992,198

2003); Nawalkha et al. (2007)). Furthermore, if the correlation between S and rd (or between S and199

rf ) is non-zero, in (3.3), we would have had quantities of the form e
iξ
∫ T

0

√
ν(t)dWdj

(t)
, j = 1, . . . , pd (or200

e
iξ
∫ T

0

√
ν(t)dWfj

(t)
, j = 1, . . . , pf ) , and hence the iterated conditional expectation used in (3.5) would201

not have resulted in E

[

e(iξ−1)
∫ T

0
rd(t)dt

]

and E

[

e−iξ
∫ T

0
rf (t)dt

]

being factored out.202

3.2 Two treatments of Ψd(ξ + i)Ψf(−ξ)203

To obtain the option price, we need to apply the inverse Fourier transform to (3.5). We now propose204

two different treatments for the term Ψd(ξ + i)Ψf (−ξ) in (3.5). In the first treatment, we handle205

Ψd(ξ + i) and Ψf (−ξ) separately when the inverse Fourier transform is applied. This will result206

in a convolution product of two densities for the time-integrated domestic and foreign interest rate207

processes, and each density needs to be recovered separately using numerical methods. We refer to this208

treatment as the “two-density” one. The other treatment is motivated by the independence between209

the domestic and foreign interest rates. Specifically, we treat Ψd(ξ + i)Ψf (−ξ) as a single function of ξ210

when the inverse Fourier transform is applied. This will result in only one function to be recovered by211

numerical methods in the next step. We hereafter refer to this treatment as the “combined-density”212

one.213

We denote by F−1(·) the inverse Fourier transform operator. With respect to the “two-density”214

treatment, by applying the inverse Fourier transform, on (3.5), together with the convolution theorem215

and Fubini’s theorem, we obtain216

v(0, z) = E
[

φ ∗ F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

∗ F−1(ξ 7→ Ψd(ξ + i)) ∗ F−1(ξ 7→ Ψf (−ξ))
]

(z)217

= E
[

φ ∗ F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

∗
(

t 7→ etF−1Ψd(t)
)

∗ F−1Ψf (t)
]

(z)218

= 2πE
[

φ ∗ F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

∗ etfd(−t) ∗ ff (t)
]

(z), (3.7)219

where * denotes the convolution product, and fd(·) and ff (·) respectively are the densities of the220

time-integrated domestic and foreign interest rate processes. Here, the second equality comes from221

the shifting theorems of Fourier transforms, and the third equality comes from the fact that the222

characteristic function of any random variable can be expressed as an inverse Fourier transform of the223

density function of that variable.224

With respect to the “combined-density” treatment, we first define225

Ψc(ξ) = Ψd(ξ + i)Ψf (−ξ). (3.8)226

Then, following the same inverse Fourier transform technique as above, we have227

v(0, z) = E
[

φ ∗ F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

∗ F−1Ψc

]

(z)228

= E
[

φ ∗ F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

∗ (t 7→ fc(−t))
]

(z), (3.9)229

where230

fc =
1√
2π

F−1Ψc =
√

2π
(

t 7→ e−tfd(t)
)

∗ (t 7→ ff (−t)).231

Therefore, fc(·) can be interpreted as a convolution product between the densities of the time-232

integrated domestic rate and the time-integrated foreign rate (symetrised).233

We note that fd(·), ff (·), and fc(·), are not known in closed form, and hence numerical methods234

must be used to approximate them. This is the focus of the next section. In the remainder of this235

section, we will focus on F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

. For illustration purposes, we assume that236
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the log of the jump amplitude ln(y) ∼ Normal(µ̃, σ̃2) (Merton, 1976). That is, the characteristic237

function Γ(ξ) is Γ(ξ) = eiµ̃ξ− 1
2

σ̃2ξ2
. To deal with this term, we expand the term eλT Γ(ξ) in a Taylor238

series. Simple algebra shows that239

F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

(z) =
1√
2π

∞
∑

n=0

(λT )n

n!

∫ +∞

−∞
e−Gξ2+iξ(z+F )−λT eniµ̃ξ− 1

2
nσ̃2ξ2

dξ240

=
∞
∑

n=0

(λT )n

n!

1√
2G + nσ̃2

e

(

−λT − (z+F +nµ̃)2

2(2G+nσ̃2)

)

. (3.10)241

We conclude this section by noting that when the log of the jump amplitude follows the double242

exponential model proposed in Kou (2002), it is possible to obtain an analytical expression for243

F−1
(

ξ 7→ e−Gξ2+iξF −λT +λT Γ(ξ)
)

, although the expression is much more complex (Dang et al., 2017).244

4 Shannon wavelets245

In this section, we focus on recovering the unknown densities fd(·) and ff (·) (the “two-density” treat-246

ment, as well as fc(·) (the “combined-density” treatment), via the SWIFT method developed by247

Ortiz-Gracia and Oosterlee (2016). For sake of completeness, we give below a brief introduction in248

Section 4.1 about multi-resolution analysis and Shannon wavelets.249

4.1 Multi-resolution analysis and Shannon wavelets250

Consider the space of square-integrable functions, denoted by L2(R), where251

L2(R) =

{

f :

∫ +∞

−∞
|f(x)|2dx < ∞

}

.252

A general structure for wavelets in L2(R) is called a multi-resolution analysis. We start with a family253

of closed nested subspaces in L2(R)254

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,255

where256
⋂

m∈Z

Vm = {0} ,
⋃

m∈Z

Vm = L2(R) ,257

and258

f(x) ∈ Vm ⇐⇒ f(2x) ∈ Vm+1 .259

If these conditions are met, then there exists a function ϕ ∈ V0 that generates an orthonormal basis,260

denoted by {ϕm,k}k∈Z, for each Vm subspace, where261

ϕm,k(x) = 2m/2ϕ(2mx − k) .262

The function ϕ(·) is usually referred to as the scaling function or father wavelet.263

For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by Pm : L2(R) → Vm, is defined264

by means of265

Pmf(x) =
∑

k∈Z

cm,kϕm,k(x) . (4.1)266

Here,267

cm,k = 〈f, ϕm,k〉 , (4.2)268

where < f, g >=
∫

R f(x)g(x) dx denotes the inner product in L2(R), with g(·) being the complex269

conjugation of g(·), and Pmf converges to f in L2(R), i.e. ‖f − Pmf‖2 → 0, when m → +∞.270
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Considering higher m values (i.e. when more terms are used), the accuracy of the truncated series271

representation of the function f improves. As opposed to Fourier series, a key fact regarding the use272

of wavelets is that wavelets can be moved (by means of the k value), stretched or compressed (by273

means of the m value) to accurately represent the local properties of a function.274

Shannon wavelets (Cattani, 2008) represent the real part of the so-called harmonic wavelets. They275

have a slow decay in the time domain but a very sharp compact support in the frequency, i.e. Fourier,276

domain. A set of Shannon scaling functions ϕm,k(·) in the subspace Vm is defined as277

ϕm,k(x) = 2m/2 sin(π(2mx − k))

π(2mx − k)
= 2m/2ϕ(2mx − k) , k ∈ Z , (4.3)278

where279

ϕ(x) = sinc(x) =











sin(πx)

πx
if x 6= 0,

1 if x = 0,
(4.4)280

is the basic (Shannon) scaling function.281

4.2 Recovery of densities fd(·) and ff(·)282

We collectively denote fd(·) and ff (·) by fs, s ∈ {d, f}. Following the wavelets theory in Section 4.1283

fs(t) ≈ Pmsf(t) =
∑

ks∈Z

cs
ms,ks

ϕms,ks(t) . (4.5)284

Since the function fs is supported on the finite interval [as, bs] = [0, T ], s ∈ {d, f}, without loss of285

density mass, we have the following approximation286

Pmsf(t) ≈ fs,ms(t) =

⌈2ms bs⌉
∑

ks=⌊2ms as⌋
cs

ms,ks
ϕms ,ks(t) ≡

⌈2ms T ⌉
∑

ks=0

cs
ms,ks

ϕms,ks(t),287

where ⌊x⌋ denotes the greatest integer less than or equal to x, and ⌈x⌉ denotes the smallest integer288

greater than or equal to x. This function could be further approximated by289

fs,ms(t) ≈ f∗
s,ms

(t) =

⌈2ms bs⌉
∑

ks=⌊2ms as⌋
cs,∗

ms,ks
ϕms,ks(t), (4.6)290

due to the approximation (see the details in Ortiz-Gracia and Oosterlee (2016))291

cs
ms,ks

≈ cs,∗
ms,ks

=
2ms/2

2Js−1

2Js−1
∑

js=1

ℜ
{

Ψs

(

(2js − 1)π2ms

2Js

)

e
− iksπ(2js−1)

2Js

}

, (4.7)292

where Js, s ∈ {d, f}, is the truncation parameter. Substituting (4.6) into (3.7) gives293

v(0, z) = 2π

⌈2md bd⌉
∑

kd=⌊2md ad⌋

⌈2
mf bf ⌉
∑

kf =⌊2
mf af ⌋

cd,∗
md,kd

cf,∗
mf ,kf

∞
∑

n=0

(λT )n

n!
e−λT

294

EQ






φ ∗






t 7→ e

− (t+F +nµ̃)2

2(2G+nσ̃2)

√
2G + nσ̃2






∗
(

t 7→ etϕmd,kd
(−t)

)

∗
(

ϕmf ,kf

)

(z)






.(4.8)295
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Next, we focus on



t 7→ e
−

(t+F +nµ̃)2

2(2G+nσ̃2)√
2G+nσ̃2



 ∗ (t 7→ etϕmd,kd
(−t)

)

. Using the fact that ϕ is even, we have296






t 7→ e

− 1
2

(t+F +nµ̃)2

2(2G+nσ̃2)

√

2(2G + nσ̃2)






∗
(

t 7→ etϕmd,kd
(−t)

)

(x) =
2md/2

√
2π

∫

R

e
− 1

2
(x−t+F +nµ̃)2

2(2G+nσ̃2)

√

2(2G + nσ̃2)
sinc(2mdt + kd)dt (4.9)297

It turns out that, thanks to certain local approximation properties of wavelets, the expression (4.9)298

can be further simplified to a single integral by using a highly accurate approximation for the integral299

term. To this end, we recall the following theorem in Stenger (2011)300

Theorem 4.1 (Theorem 1.3.2 of Stenger (2011)). Let f be defined on R, and let its Fourier transform,301

denoted by f̂ , be such that, for some positive constant d302

|f̂(ξ)| = O
(

e−d|ξ|
)

, ξ → ±∞ . (4.10)303

Then, as a → 0 ,304

1

a

∫

R

f(y)S(k, a)(y) dy − f(ka) = O
(

e− πd
a

)

,305

where S(k, a)(y) := sinc
(y

a − k
)

.306

To apply this theorem to function f(t) = e
−

(x−t+F +nµ̃)2

2(2G+nσ̃2)√
2G+nσ̃2

, we need to check whether its Fourier307

transform satisfies the condition (4.10). Simple algebra shows that308

Ff(ξ) =
1√
2π

∫

R

e
− (x−t+F +nµ̃)2

2(2G+nσ̃2)
+t

√
2G + nσ̃2

e−iξtdt = ex+F +nµ̃+(G+ 1
2

nσ̃2)(1−ξ2)−iξ(x+F +nµ̃+2G+nσ̃2).309

Now, we notice that coefficient G in the quadratic term in the exponent of that term is strictly positive310

(see (3.4)). In addition, G and F are a also bounded, due to the boundedness of the variance process311

(Andersen and Piterbarg, 2007). It follows that, for a given n, the Fourier transform of f(·) satisfies312

the hypothesis of Theorem 4.1. Hence, we can apply Theorem 4.1 with a = 2−md and k = −kd. We313

obtain the following approximation314






t 7→ e

− (t+F +nµ̃)2

2(2G+nσ̃2)

√
2G + nσ̃2






∗
(

t 7→ etϕmd,kd
(−t)

)

(x) ≈ 1√
2π2md/2

f

(

− kd

2md

)

=
e

− (x+F +nµ̃+kd/2md )2

2(2G+nσ̃2)
−kd/2md

√
2π2md/2

√
2G + nσ̃2

.

(4.11)315

With (4.11), the quantity inside the expectation of (4.8) becomes316

e−kd/2md

√
2π2md/2

EQ






φ ∗






t 7→ e

− (t+F +nµ̃+kd/2md )2

2(2G+nσ̃2)

√
2G + nσ̃2






∗
(

ϕmf ,kf

)

(z)






.317

We repeat the same process for the convolution product with the Shannon expansion of the density318

of the time-integrated foreign interest rate process, and obtain319






t 7→ e

− (t+F +nµ̃+kd/2md )2

2(2G+nσ̃2)

√
2G + nσ̃2






∗ ϕmf ,kf

(x) =
2mf /2

√
2π

∫

R

e
− (x−t+F +nµ̃+kd/2md )2

2(2G+nσ̃2)

√
2G + nσ̃2

ϕ(2mf t − kf )dt320

Using again Theorem 4.1 with a = 2−mf , k = kf , and f(t) = e
−

(x−t+F +nµ̃+kd/2md )2

2(2G+nσ̃2)√
2G+nσ̃2

, we obtain the321
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following approximation322









t 7→ e
− (t+F +nµ̃+kd/2md )2

2(2G+nσ̃2)

√
2G + nσ̃2









∗ ϕmf ,kf
(x) ≈ 1√

2π2mf /2

e
−(x+F +nµ̃+kd/2md −kf /2

mf )
2

2(2G+nσ̃2)

√
2G + nσ̃2

323

Putting everything together into (4.8), and by letting M = md + mf , and324

Fn = F + nµ̃, Gn = G +
nσ̃2

2
, (4.12)325

where F and G are given in (3.4), we obtain the pricing formula under the “two-density” treatment326

v(0, z) =

⌈2md bd⌉
∑

kd=⌊2md ad⌋

⌈2
mf bf ⌉
∑

kf =⌊2
mf af ⌋

e−kd/2md

2M/2
cd,∗

md,kd
cf,∗

mf ,kf

∞
∑

n=0

(λT )n

n!
e−λT

327

EQ













φ ∗













t 7→ e
−

(

t+Fn+
kd

2md
−

kf

2
mf

)2

2(2Gn)

√
2Gn













(z)













. (4.13)328

Here, as = 0, bs = T , and cs,∗
ms,ks

, s = {d, f}, are given in (7.2).329

4.3 Recovery of fc(·)330

Since fs(·), s = {d, f}, is supported on [as, bs], the support of fc(·) is contained within331

[ac, bc] = [ad − bf , bd − af ]. (4.14)332

As indicated in the previous section, ad = af = 0 and bd = bf = T , we have that ac = −T and bc = T .333

Following the same steps as in the previous sections gives334

fc,mc(t) ≈ f∗
c,mc

(t) =

⌈2mc bc⌉
∑

kc=⌊2mc ac⌋
c∗

mc,kc
ϕmc,kc(t), (4.15)335

where336

c∗
mc,kc

=
2mc/2

2Jc−1

2Jc−1
∑

j=1

ℜ
{

Ψc

(

(2j − 1)π2mc

2Jc

)

e
− ikcπ(2j−1)

2Jc

}

, (4.16)337

from which, we obtain the following pricing formula under the “combined-density” treatment:338

v(0, z) =

⌈2mc bc⌉
∑

kc=⌊2mc ac⌋

1

2mc/2
c∗

mc,kc

∞
∑

n=0

(λT )n

n!
e−λTEQ









φ ∗









t 7→ e
−(t+Fn+

kc
2mc )

2

2(2Gn)

√
2Gn









(z)









. (4.17)339

Remark 4.1. We note that the “two-density” treatment involves recovering, using Shannon wavelets,340

two different densities. This results in a double summation for the coefficients of the two interest rates341

in the pricing formula (4.13). On the other hand, the “combined-density” treatment results in a pricing342

formula that involves only one summation for the coefficients of both interest rates, see (4.17). As343

a result, it is expected that the “combined-density” treatment is more efficient than the “two-density”344

treatment. We will demonstrate this through numerical experiments in Section 8.345
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5 Application to plain-vanilla European options346

To illustrate the method, we consider a standard call and a put option with the payoff functions347

φ(z) =







ez − K call option ,

K − ez put option ,
348

where K is the strike price. We have the following results.349

Theorem 5.1 (“two-density” treatment). Under model (2.1) and with the “two-density” treatment,350

the prices of plain-vanilla European call and put options are respectively given by351

V call(0, S(0)) ≈ 1

2M/2

⌈2md bd⌉
∑

kd=⌊2md ad⌋

⌈2
mf bf ⌉
∑

kf =⌊2
mf af ⌋

cd,∗
md,kd

cf,∗
mf ,kf

352

∞
∑

n=0

(λT )n

n!
e−λTEQ

[

S(0)e
Fn+Gn− kf

2
mf N (d+,n) − Ke− kd

2md N (d−,n)

]

353

V put(0, S(0)) ≈ 1

2M/2

⌈2md bd⌉
∑

kd=⌊2md ad⌋

⌈2
mf bf ⌉
∑

kf =⌊2
mf af ⌋

cd,∗
md,kd

cf,∗
mf ,kf

(5.1)354

∞
∑

n=0

(λT )n

n!
e−λTEQ

[

Ke− kd
2md N (−d−,n) − S(0)e

Fn+Gn− kf

2
mf N (−d+,n)

]

,355

where as = 0, bs = T , with s = {d, f}, M = md + mf , and356

d+,n =
log
(

S(0)
K

)

+ kd
2md −

(

kf

2
mf − Fn − Gn

)

√
2Gn

+
√

2Gn, d−,n = d+,n −
√

2Gn, (5.2)357

and Fn and Gn are given in (4.12).358

Proof. For a call option, φ(t) = (et − K)+. Thus, noting (4.13) and by convolution theorem, we have359

φ ∗


t 7→ 1√
2Gn

e
− 1

2(2Gn)

(

t+Fn+
kd

2md
− kf

2
mf

)2


 =
1√

4πGn

∫ +∞

log(K)
(et − K)e

− 1
2(2Gn)

(

x−t+Fn+
kd

2md
− kf

2
mf

)2

dt.360

The change of variable u =
t−x−Fn− kd

2md
+

kf

2
mf√

2Gn
, noting the definition of d+,n and d−,n in (5.2), together361

with some algebra, yields362

φ ∗


t 7→ 1√
2Gn

e
− 1

2(2Gn)

(

t+Fn+
kd

2md
− kf

2
mf

)2


 =
1√
2π

∫ +∞

−d−,n

(e
√

2Gnu+x+Fn+
kd

2md
− kf

2
mf − K)e− u2

2 du363

=
1√
2π

(

e
x+Fn+Gn+

kd
2md

− kf

2
mf

∫ d+,n

−∞
e− v2

2 dv − K

∫ d−,n

−∞
e− u2

2 du

)

.364

Substituting this into (4.13) with further algebra yields V call(0, S(0)) in (5.1). For a put option,365

φ(t) = (K − et)+, and performing similar integration steps yields the desired result.366

For the “combined-density” treatment, the results are given in the following theorem, which can367

be proved following the same steps as those in the proof for Theorem 5.1.368
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Theorem 5.2 (“combined-density”treatment). Under model (2.1) and with the “combined-density”369

treatment, the prices of plain-vanilla European call and put options are respectively given by370

V call(0, S(0)) ≈ 1

2mc/2

⌈2mc bc⌉
∑

kc=⌊2mc ac⌋
c∗

mc,kc

∞
∑

n=0

(λT )n

n!
e−λT

371

EQ
[

S(0)eFn+Gn+ kc
2mc N

(

d̂+,n

)

− KN
(

d̂−,n

)]

372

V put(0, S(0)) ≈ 1

2mc/2

⌈2mc bc⌉
∑

kc=⌊2mc ac⌋
c∗

mc,kc

∞
∑

n=0

(λT )n

n!
e−λT (5.3)373

EQ
[

KN
(

−d̂−,n

)

− S(0)eFn+Gn+ kc
2mc N

(

−d̂+,n

)]

,374

where ac = −T , bc = T , and375

d̂+,n =
log
(

S(0)
K

)

+ Fn + kc
2mc√

2Gn
+
√

2Gn, d̂−,n = d̂+,n −
√

2Gn, (5.4)376

and Fn and Gn are given in (4.12).377

We now make a few interesting observations about the quantity inside the expectation EQ(·) in378

the formulas in Theorem 5.1. This quantity exactly resembles the closed-form solution of foreign379

exchange call/put options under the Garman-Kohlhagen model (Garman and Kohlhagen, 1983) in380

which the interest rates and the variance are assumed to be constant. In particular, this quantity381

can be obtained by substituting into the closed-form formulas of Garman and Kohlhagen (1983) the382

(conditionally) constant domestic and foreign interest rates
kd

2md

T
and

kf

2
mf − Fn − Gn

T
, respectively, and383

the (conditionally) constant variance
2Gn

T
. We note that these domestic and foreign interest rates, as384

well as the variance, are conditional on the ν path and on having n-jumps in the foreign exchange rate385

S during the life of the option, and hence are (conditionally) constant. In some sense, the quantity386

kd
2md

T
can be viewed as the contribution of the kd-th wavelet in the wavelet decomposition of the387

“effective average” domestic interest rate, namely

∫ T

0
rd(t)dt

T . The quantity

kf

2
mf − Fn − Gn

T
can also be388

viewed as containing a component representing the contribution of the kf -th wavelet with respect to389

the decomposition of

∫ T

0
rf (t)dt

T , and another component due to presence of jumps in S. With respect390

to the “combined-density” treatment (Theorem 5.2), one can obtain the formulas of the quantity391

inside the expectation by substituting into the Garman-Kohlhagen formulas the constant domestic392

rate equal to zero, the (conditionally) constant foreign interest rate equal to
− kc

2mc − Fn − Gn

T
, and393

the (conditionally) constant variance equal to
2Gn

T
.394

6 Efficient computation of EQ[·] via Shannon wavelets.395

The focus of this section is efficient computation of the expectation EQ[·] in the formulas (5.1)-(5.3)396

presented in Theorems 5.1 and 5.2 by a Shannon wavelets method.397
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6.1 Recovery of
∫ T

0 ν(t)dt|ν(T )398

Examination of (3.4) shows that G depends only on
∫ T

0 ν(t)dt, while F depends on both
∫ T

0 ν(t)dt399

and
∫ T

0 ν(t)dWν(t). From (2.4), we note that400

∫ T

0

√

ν(t)dWν(t) =
ν(T ) − ν0 − κν ν̄T + κν

∫ T
0 ν(t)dt

σν
.401

Therefore, F can be expressed in terms of
∫ T

0 ν(t)dt and the terminal value ν(T ) of the variance. For402

presentation purposes, we write the formulas in (5.1) and (5.3) in the following generic form:403

V (0, S(0)) =
∑

ℓ∈L
cℓ

∑

n∈N

dnE
Q

[

gℓ,n

(

∫ T

0
ν(t)dt, ν(t)

)]

. (6.1)404

Here, L is a finite set, {cℓ}ℓ∈L, and {dn}n∈N, are real constants and {gℓ,n}(ℓ,n)∈L×N, are real functions405

given by the quantity inside the expectation EQ[·] in formulas (5.1)-(5.3). By conditioning on ν(T ),406

we have407

EQ

[

gℓ,n

(

∫ T

0
ν(t)dt, ν(T )

)]

= EQ

[

EQ

[

gℓ,n

(

∫ T

0
ν(t)dt, ν(t)

) ∣

∣

∣

∣

∣

ν(T )

]]

. (6.2)408

This form allows us to take advantage of the known characteristic function of the time-integrated CIR409

process conditional on the terminal value.410

Let f(· | y) the density of the time-integrated variance process conditional on the terminal value411

ν(T ) = y, where y ∈ [0, y0] for a y0 > 0. We can assume that f(· | y) is supported on the interval412

[0, T ]. From (6.1) and (6.2), the option can be represented by413

V (0, S(0)) =
∑

ℓ∈L
cℓ

∑

n∈N

dn

∫ y0

0

[

∫ T

0
gℓ,n(x, y)f(x | y)dx

]

w(y)dy. (6.3)414

Here, w(·) is the density of the terminal value of the CIR process given by (Cox et al., 1985a)415

w(y) := ζe−ζ(ν(0)e−κν T +y) ·
(

y

ν(0)e−κν T

)
q
2 · Iq

(

2ζe− 1
2

κνT
√

ν(0)y

)

, (6.4)416

where q := 2κν ν̄
σ2

ν
− 1, ζ := 2κν

(1−e−κν T )σ2
ν

and Iq(x) is the modified Bessel function of the first kind with417

order q.418

To evaluate the integral (6.3), the conditional density f(·|y), y ∈ [0, y0], first needs to be approxi-419

mated, since it is not known in closed-form. Following the same methodology as in Section 4, noting420

that the function f(· | y) is supported on the interval [0, T ], we can approximate this function by its421

Shannon wavelets expansion as follows422

f∗(x | y) ≈
⌈2mν T ⌉
∑

kν=0

cν,∗
mν ,kν

(y)ϕmν ,kν (x), (6.5)423

where cν,∗
mν ,kν

are given by424

cν,∗
mν ,kν

=
2mν /2

2Jν−1

2Jν −1
∑

j=1

ℜ
{

ΨC
(

(2j − 1)π2mν

2Jν

∣

∣

∣

∣

y

)

e
−i

kν π(2j−1)

2Jν

}

. (6.6)425
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Here, ΨC(ξ|ν(T )) is known in closed-form (Broadie and Kaya, 2006)426

ΨC(ξ|y) =
Iq

(

√

ν(T )ν(0) 4γ(ξ)e− 1
2

γ(ξ)T

σ2
ν(1−e−γ(ξ)T )

)

Iq

(

√

ν(T )ν(0) 4κνe− 1
2

κν T

σ2
ν(1−e−κν T )

) × γ(ξ)e− 1
2

(γ(ξ)−κν )T (1 − e−κνT )

κν(1 − e−γ(ξ)T )
(6.7)427

× exp

(

ν(0) + ν(T )

σ2
ν

[

κν(1 + e−κνT )

1 − e−κνT
− γ(ξ)(1 + e−γ(ξ)T )

1 − e−γ(ξ)T

])

, .428

with γ(ξ) :=
√

κ2
ν − 2iσ2

νξ. We note that, if a time-dependent correlation function ρt were used, we429

would need to know the characteristic function of
∫ T

0 ρtνtdWt conditional on νT , which does not appear430

to be readily available for a general ρt.431

6.2 Approximation formulas to V (0, S(0))432

Following the same methodology as in Dang and Ortiz-Gracia (2018), for a fixed level of resolution433

mν and a fixed truncation parameter Jν , replacing the conditional density function f(· | y) in (6.3) by434

the finite approximation (6.5) gives us the approximation V1(0, S(0)) to the option price V (0, S(0))435

V (0, S(0)) ≈ V1(0, S(0)) =
∑

ℓ∈L
cℓ

∑

n∈N

dn

∫ y0

0





⌈2mν T ⌉
∑

kν=0

cν,∗
mν ,kν

(y)

∫ T

0
gℓ,n(x, y)ϕmν ,kν (x)dx



w(y)dy436

Applying Theorem 4.1 with a = 1
2mν /2 to function gℓ,n(·, ·) in the above integral gives437

∫ T

0
gℓ,n(x, y)φmν ,kν (x)dx ≈ 1

2mν/2
gℓ,n

(

kν

2mν
, y

)

.438

Thus, we arrive at the approximation V2(0, S(0)) of V1(0, S(0))439

V1(0, S(0)) ≈ V2(0, S(0)) =
1

2mν/2

∑

ℓ∈L
cℓ

∑

n∈N

dn

∫ y0

0





⌈2mν T ⌉
∑

kν=0

cν,∗
mν ,kν

(y)gℓ,n

(

kν

2mν
, y

)



w(y)dy,(6.8)440

where cν,∗
mν ,kν

(y) are defined in (6.6). Finally, the integral in (6.8) can be approximated by means of441

the composite trapezoidal rule.442

When the Feller condition for the variance process is not satisfied, i.e. 2κν ν̄ < σ2
ν , which is common443

in practice, the accuracy of the composite trapezoidal rule applied to (6.8) may be affected. Following444

Fang and Oosterlee (2011), we use the change of variable v = ln(y) in (6.8), and this gives445

V2(S(0), 0, ·) =
1

2mν /2

∑

ℓ∈L
cℓ

∑

n∈N

dn

∫ ln(y0)

−∞





⌈2mν T ⌉
∑

kν=0

cν ,∗
mν ,kν

(ev) gℓ,n

(

kν

2mν
, ev
)



w̄(v) dv , (6.9)446

where447

w̄(v) = evw̃(v), with w̃(v) := ζe−ζ(ν(0)e−κν T +ev) ·
(

ev

ν(0)e−κνT

)
q
2 · Iq

(

2ζe− 1
2

κνT
√

ν(0)ev

)

. (6.10)448

6.3 Implementation449

We first briefly describe an iterative procedure to determine an appropriate truncated integration450

domain, denoted by [av , bv], for the log-variance density w̄(v), according to a pre-defined tolerance451

ǫtol. We denote by [a
(j)
v , b

(j)
v ], j = 0, 1, . . ., the interval at the j-th iteration. Given an initial guess452

[a
(0)
v , b

(0)
v ], we iteratively modify the interval until the condition w̄(v) < ǫtol for v ∈ D is met, where453

14



D = (−∞, a
(j)
v ) ∪ (b

(j)
v , ln(y0)), for some j, after which the truncated integration domain is taken to454

be [a
(j)
v , b

(j)
v ].455

Using a first-order Taylor expansion of ln(ν(T )), we have the approximations456

E[ln(ν(T ))] ≈ ln(E[ν(T )]), V[ln(ν(T ))] ≈ V[ν(T )]

E[ν(T )]2
. (6.11)457

Then, taking into account that the left tail of the density of the log-variance density w̄(v) decays458

slower than the right tail, we consider the following initial interval w̄(v)459

[a(0)
v , b(0)

v ] =

[

ln(E[ν(T )]) − 7
V[ν(T )]

E[ν(T )]2
, ln(E[ν(T )]) + 3

V[ν(T )]

E[ν(T )]2

]

,460

where, as given in Cox et al. (1985b),461

E[ν(T )] = ν(0)e−κνT + ν̄
(

1 − e−κνT
)

,

V[ν(T )] = ν(0)
σ2

ν

κν
e−κνT − e−2κνT + ν̄

σ2
ν

2κν

(

1 − e−κνT
)2

.
(6.12)462

Now, given [a
(0)
v , b

(0)
v ], we propose two methods for finding the final interval [a

(j)
v , b

(j)
v ]. The first one463

involves the Newton iteration, for which we need the derivative of w̃(v)464

w̃′(v) := ζe−u−ζev+v
(

ζev

u

)
q
2

·
[

(−ζev + q + 1) · Iq

(

2
√

ζevu
)

+ ζ
√

ν(0)ev−κν T · Iq+1

(

2
√

ζevu
)

]

,

(6.13)465

where u := ζν(0)e−κνT . We suggest to use this method when the Feller condition for the variance466

process is not satisfied. In the second method, we just update the interval [a
(j)
v , b

(j)
v ] by subtracting467

and adding the approximated value for the variance in (6.11) to a
(j)
v and b

(j)
v , respectively. We suggest468

to use this method when the Feller condition for the variance process is satisfied.469

Once the truncated integration domain [aν , bν ] has been identified via the above steps, then470

V2(0, S(0)) can be approximated as follows471

V2(0, S(0)) ≈ V3(0, S(0)) =
1

2mν /2

∑

ℓ∈L
cℓ

∑

n∈N

dn

∫ bν

aν





⌈2mν T ⌉
∑

kν=0

cν,∗
mν ,kν

(ev)gℓ,n

(

kν

2mν
, ev
)



w̄(v)dv.472

Then, we consider a partition of the integration interval [aν , bν ] into NI subintervals, and by the473

composite trapezoidal rule, we obtain the approximation V4(0, S(0)) to V (0, S(0))474

V3(0, S(0)) ≈ V4(0, S(0)) =
∑

ℓ∈L
cℓ

∑

n∈N

dn
h

2

NI−1
∑

l=0

(

Sℓ,n
mν

(vl) + Sℓ,n
mν

(vl+1)
)

,475

where476

Sℓ,n
mν

(v) =
1

2mν/2





⌈2mν T ⌉
∑

kν=0

cν,∗
mν ,kν

(ev)gℓ,n

(

kν

2mν
, ev
)



w̄(v), (6.14)477

and h = bv−av
NI

and vl = av + lh, l = 0, . . . , NI . Finally, taking NJ terms in the infinite series due to478

jumps, and putting everything together, we have, for the “two-density” treatment,479

V5(0, S(0)) ≈ V4(0, S(0)) =
∑

ℓ∈L
cℓ

NJ
∑

n=0

dn
h

2

NI−1
∑

l=0

(Sℓ,n
mν

(vl) + Sℓ,n
mν

(vl+1)), (6.15)480
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=
e−λT

2M/2

⌈2md bd⌉
∑

kd=⌊2md ad⌋

⌈2
mf bf ⌉
∑

kf =⌊2
mf af ⌋

cd,∗
md,kd

cf,∗
mf ,kf

NJ
∑

n=0

(λT )n

n!

h

2

NI−1
∑

l=0

(

Sℓ,n
mν

(vl) + Sℓ,n
mν

(vl+1)
)

,481

where Sℓ,n
mν

(·) is defined in (6.14), M = md + mf , as = 0, bs = T , cs,∗
ms,ks

, s = {d, f}, are given in (7.2).482

With the “combined-density” treatment, proceeding in a similar fashion, we obtain483

V5(0, S(0)) ≈ V4(0, S(0)) =
e−λT

2mc/2

⌈2mc bc⌉
∑

kc=⌊2mc ac⌋
c∗

mc,kc

NJ
∑

n=0

(λT )n

n!

h

2

NI−1
∑

l=0

(

Sℓ,n
mν

(vl) + Sℓ,n
mν

(vl+1)
)

,484

where c∗
mc,kc

are defined in (4.16), and ac = −T and bc = T .485

7 Error analysis and choice of relevant parameters486

The error arising from the numerical method proposed in this work can be basically divided into two487

parts. The first part is the approximation carried out for solving the expectations in (3.7) and (3.9)488

for the “two-density” treatment and the “combined-density” treatment, respectively. The second part489

concerns the computation of EQ[·] described in Section 6. We will focus on the first source of the490

overall error, since the second has been studied in detail in Dang and Ortiz-Gracia (2018).491

The most relevant part in the error analysis when we compute the expectations (3.7) and (3.9) is492

the recovery of the densities fd(·), ff (·) and fc(·) detailed in Section 4.2 and 4.3 by means of SWIFT493

method. The error on the recovery of a density from its characteristic function has been extensively494

studied in Maree et al. (2017) and Dang and Ortiz-Gracia (2018). For sake of completeness, we give a495

review on this analysis, since it is important for the choice of two relevant parameters of the numerical496

method.497

Let us assume that a certain density function f is well approximated at scale of resolution m in498

a finite interval [a, b] ⊂ R. We define k1 := ⌊2ma⌋ and k2 := ⌈2mb⌉. Generally speaking, we aim at499

approximating f by the following combination of Shannon wavelets500

f(x) ≈ f∗
m(x) :=

k2
∑

k=k1

c∗
m,kϕm,k(x), (7.1)501

where502

c∗
m,k =

2m/2

2J−1

2J−1
∑

j=1

ℜ
{

Ψ

(

(2j − 1)π2m

2J

)

e
− ikπ(2j−1)

2J

}

, (7.2)503

and Ψ(·) is the characteristic function associated to f . Observe that [a, b] = [0, T ] in Section 4.2 and504

[a, b] = [−T, T ] in Section 4.3. We define the projection error, denoted by ǫp, as505

ǫp := |f(x) − Pmf(x)| = |f(x) −
∑

k∈Z

cm,kϕm,k(x)| . (7.3)506

We also define the truncation error, denoted by ǫt, as

ǫt := |Pmf(x) − fm(x)| = |
∑

k /∈{k1,...,k2}
cm,kϕm,k(x)| .

We denote by ǫc the error arising from using c∗
m,k instead of the exact ones cm,k. We have,507

ǫc := |fm(x) − f∗
m(x)| = |

k2
∑

k=k1

(cm,k − c∗
m,k)ϕm,k(x)|.508
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Then, we have,509

|f(x) − f∗
m(x)| ≤ ǫp + ǫt + ǫc , (7.4)510

First, we consider ǫp. The projection Pmf can be written as (Maree et al., 2017)511

Pmf(x) =
1

2π

∫ 2mπ

−2mπ
f̃(ξ)eiξxdξ =

1

2π

∫ 2mπ

−2mπ
Ψ(ξ)e−iξxdξ , (7.5)512

where513

f̃(ξ) :=

∫

R

f(x)e−iξxdx. (7.6)514

By definition of the inverse of f̃ , we have515

f(x) =
1

2π

∫

R

f̃(ξ)eiξxdξ =
1

2π

∫

R

Ψ(ξ)e−iξxdξ . (7.7)516

Let517

K(v) =
1

2π

∫

|ξ|>v
|Ψ(ξ)|dξ , (7.8)518

then519

ǫp ≤ K(2mπ) . (7.9)520

Next, we consider the truncation error ǫt. We observe that521

ǫt = |Pmf(x) − fm(x)| ≤ 2m/2
∑

k /∈{k1,...,k2}
|cm,k| , (7.10)522

since |ϕm,k(x)| ≤ 2m/2. If we take into account the definition of cm,k in (4.2) and the fact that within523

the present work f is compactly supported in [a, b], then the truncation error can be neglected.524

Finally, we consider ǫc. The numerical error can be estimated as525

ǫc ≤
k2
∑

k=k1

|cm,k − c∗
m,k||ϕm,k(x)| ≤ 2m/2

k2
∑

k=k1

|cm,k − c∗
m,k| . (7.11)526

The coefficients approximation error is studied in Theorem 1 of Ortiz-Gracia and Oosterlee (2016) and527

we recall here as follows.528

Theorem 7.1 (Theorem 1 of Ortiz-Gracia and Oosterlee (2016)). Let F (x) be the distribution func-529

tion of a random variable X and define H(x) := F (−x) + 1 − F (x). Let A > 0 be a constant such530

that H(A) < ǫ, for ǫ > 0. Define Mm,k := max(|2mA − k|, |2mA + k|) and consider J ≥ log2(πMm,k).531

Then532

|cm,k − c∗
m,k| ≤ 2m/2

(

2ǫ +
√

2A‖f‖2
(πMm,k)2

22(J+1) − (πMm,k)2

)

, (7.12)533

and limJ→+∞ c∗
m,k = cm,k.534

Within the present work, F represents the distribution function of the compactly supported density535

f and then, if we define A := max(|a|, |b|), we have H(A) = 0. We can apply Theorem 7.1 with536

J ≥ log2(πMm), where Mm := maxk1<k<k2 Mm,k. Finally537

ǫc ≤ 2m/2
k2
∑

k=k1

|cm,k − c∗
m,k| ≤ 2m(k2 − k1 + 1)

√
2A‖f‖2

(πMm)2

22(+1) − (πMm)2 . (7.13)538

From (7.2), we note that the two parameters, namely the level of resolution m and the truncation539

parameter J , need to be determined before this inversion. In this section, we discuss how to select540

m and J . From the above paragraph we know that we can pick J ≥ log2(πMm) once an appropriate541
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value for m has been selected, so we first discuss how to select an appropriate value for m. We proceed542

by finding m such that the projection error ǫp, defined in (7.3), is below a pre-determined tolerance543

tol. We denote by ǫ
(m)
p an approximation to ǫp, given the level of resolution m. From the bound544

(7.9), together with (7.8), we approximate ǫ
(m)
p by the rough but easy to compute expression545

ǫ(m)
p :=

1

2π
(|Ψ(−2mπ)| + |Ψ(2mπ)|) . (7.14)546

We can find the level of resolution m by iteratively computing the first m such that ǫ
(m)
p ≤ tol. When547

the parameter m has been selected by the above-described procedure, we consider J = log2(πMm).548

Finally, it is worth remarking that once the relevant parameters m and J have been selected, we549

can compute very fast the coefficients in (7.2) by following an FFT algorithm. An algorithm to550

approximate V (S(0), 0, ·) using the proposed Shannon wavelet method is given in Algorithm 7.1. For551

simplicity, we only show the “combined-density” treatment.

Algorithm 7.1 Algorithm to approximate V (S(0), 0, ·) via the “combined-density” treatment .

1: set Ψc(ξ) ≡ Ψd(ξ + i)Ψf (−ξ), as given in (3.8);

2: compute the first mc such that ǫ
(m)
p ≤ tol by iteratively using (7.14) with Ψ(ξ) = Ψc(ξ);

3: set Jc = ⌈log2(⌈2mc bc⌉π)⌉, where bc is given in 4.14;
4: compute coefficients c∗

mc,kc
via (4.16) using FFT, where Ψc(ξ) is given in Line 1;

5: compute the interval [av , bv] as explained in Sub-section 6.3;

6: compute the first mv such that ǫ
(m)
p ≤ tol by iteratively using (7.14);

7: set Jv = ⌈log2(⌈2mv T ⌉π)⌉;
8: for each vℓ compute coefficients c∗

mv ,kv
(evℓ), kv = 0, . . . , ⌈2mv T ⌉, by FFT using (6.6), where ΨC(·|)

is given in (6.7);
9: compute V5(S(0), 0, ·) using (6.16);

10: return V (S(0), 0, ·) ≈ V5(S(0), 0, ·);
552

8 Numerical experiments553

In this section, we present selected numerical results to illustrate the performance of the proposed554

method. We consider both the pure-diffusion and jump-extended versions of the four-factor model in555

which both the domestic and foreign interest rates follow the one-factor CIR dynamics. These two556

versions are hereafter referred to as Heston-1CIR and jump-extended Heston-1CIR. We also consider557

a six-factor model in which both the interest rates follow two-factor CIR dynamics, the pure-diffusion558

and jump-extended versions of which hereafter are respectively referred to as Heston-2CIR and jump-559

extended Heston-2CIR.560

In determining the truncated integration interval [av , bv] for the log-variance density, we consider561

ǫtol = 10−6, and follow the procedure explained in Section 6, where a Newton search is used when the562

Feller condition is not satisfied, and the alternative method otherwise.563

To obtain benchmark solutions in the case of no jumps, we use the antithetic multi-level MC564

method, developed in Giles and Szpruch (2014). We hereafter refer to this method as anti-mlMC. To565

simulate the CIR processes, namely the interest rates and the variance, we use the Lamperti-Backward-566

Euler timestepping method that preserves the positivity of the original dynamics (2.4), and has a good567

strong convergence property, recently established in Neuenkirch and Szpruch (2014). The anti-mlMC568

method can achieve the overall complexity O(ǫ−2) for a root-mean-square error (RMSE) of ǫ without569

simulating iterated Itô integrals, also known as Lévy areas, which is usually very slow. To handle the570

jumps, we extend the anti-mlMC method by noting that, since the option is not path-dependent, the571

overall jump effects on the spot FX rate can be evaluated separately at time T , and be taken into572

account at that time.573
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All results in this paper were obtained using MATLAB 2017. Comparable optimized code in574

C/C++ would likely run significantly faster. Nonetheless, the presented timing results presented575

below already indicate the significant efficiency of the proposed Shannon wavelet method.576

8.1 Estimating technique for the supports of fs(·), s = {d, f}577

0 0.02 0.04 0.06 0.08 0.1
-0.02

0.02

0.06

0.10

0.12
data
m = 7, J = 15
m = 8, J = 15
m = 9, J = 15

Figure 8.1: Recovered densities of the time-integrated
CIR processes for different levels of resolution m.

As discussed in Cozma and Reisinger (2017),578

calibrated parameters of CIR interest rate pro-579

cesses typically satisfy the Feller condition,580

namely 2κ(·)θ(·) > σ2
(·). However, this con-581

dition may not be satisfied for the variance582

process. For illustrating purposes, we include583

Table 8.1 (Table 2 from Cozma and Reisinger584

(2017)) that contains calibrated interest rate585

CIR parameters from different sources of real586

market data. Specifically, the sources of data587

are: 3-month US Treasury bill yield between588

January 1964 - December 1998 (Driffill et al.,589

2003), US Treasury bill yield between Octo-590

ber 1982 - April 2011 (Erismann, 2011), to591

the Euro ATM caps volatility curve on 17 January 2000 (Brigo and Mercurio, 2006), Euro OverNight592

Index Average between 1 January 2008 - 6 October 2008 (Lafférs, 2009), and historical data for Euro593

between 1 January 2001 - 1 September 2011 (Amin, 2012).

κ(·) θ(·) σ(·)
Driffill et al. (2003) 0.0684 0.0161 0.0177
Erismann (2011) 0.1104 0.0509 0.0498
Brigo and Mercurio (2006) 0.3945 0.2713 0.0545
Lafférs (2009) 0.2820 0.0411 0.0058
Amin (2012) 0.1990 0.0497 0.0354

Table 8.1: Typical calibrated domestic and foreign interest rate CIR parameters from different sources.
The Feller condition 2κ(·)θ(·) > σ2

(·) is satisfied.

594

Motivated by these observations, we will now investigate the densities of the time-integrated one-595

factor CIR processes recovered by SWIFT method. We take κ(·) = 0.0684, θ(·) = 0.0161, and σ(·) =596

0.0177 from the Table 8.1. We also show a histogram of the Monte-Carlo generated time-integrated597

interest rates for these parameters. In this Monte-Carlo simulation, 104 timesteps and 106 samples598

are used. We observe from Figure 8.1 that the right tail of the density of the time-integrated interest599

rate processes appears to decay to zero rapidly. As such, given a right level of resolution m, instead of600

using [as, bs] = [0, T ] for the support of the fs(·), s = {d, f}, a carefully estimated smaller support of601

the form [0, bs], bs < T , that has negligible loss of density mass could be employed so that the efficiency602

of the Shannon wavelet method could be increased (i.e. significantly reduce the computational time603

without affecting the accuracy of the numerical solutions). Once bs, s = {d, f}, has been found, an604

estimated support for fc(·) can then be computed using formula (4.14).605

Motivated by this, we will investigate the following problem: given the level of resolution m,606

estimate the support of fs(·), s = {d, f}, so that the loss of density mass is less than some small607

tolerance. Specifically, given ms, we find bs ∈ (0, T ], such that608

1 −
∫ bs

0
f̂∗

s,ms
(t)dt = tolerance,609
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where f̂∗
s,ms

is given by610

f̂∗
s,ms

(t) =

⌈2ms ×bs⌉
∑

ks=0

ĉs,∗
ms,ks

ϕms,ks(t). (8.1)611

Here,612

ĉs,∗
ms,ks

=
2ms/2

2Ĵs−1

2Ĵs−1
∑

js=1

ℜ
{

Ψs

(

(2js − 1)π2ms

2Ĵs

)

e
− iksπ(2js−1)

2Ĵs

}

, (8.2)613

with Ĵs = ⌈log2(⌈2mbs⌉π)⌉, and Ψs is the known characteristic function in (3.6). We note that614

Equations (8.1) and (8.2) come from (4.6) and (7.2), respectively. This problem can be solved using a615

root finding technique, such as a Newton method or the bisection method. In our experiments, very616

quick convergence can be achieved in a small number of iterations with the bisection method.617

8.2 Heston-1CIR models618

For experiments in this subsection, the parameters are presented in Table 8.2. We note that the619

parameters of the interest rates and the variance are taken from Cozma and Reisinger (2017). For the620

jump-extended case, the parameters for the normal jump amplitude are taken from Dang (2017).

X1(0) κd1 θd1 σd1 Y1(0) κf1 θf1 σf1

rd 0.0524 1.8341 0.0475 0.0352 rf 0.0291 0.32 0.0248 0.0317

ν(0) κν ν̄ σν λ µ̃ σ̃
ν 0.0275 1.70 0.0232 0.1500 jump 0.2 -0.08 0.3

S(0) K ρS,ν

others 100 100 -0.1

Table 8.2: Parameters for experiments with the Heston-1CIR models.

621

8.2.1 Heston-1CIR model622

In this test, we consider a European call option under the Heston-CIR dynamics for different maturities,623

namely T = {0.25, 1, 3}. We will also compare the efficiency between the “two-density” and and the624

“combined-density” treatments, as discussed in Subsection 4.3. But first, we study the effects of625

the levels of resolution md (time-integrated domestic rate density), mf (time-integrated foreign rate626

density), mc (combined-density), and mν (conditional time-integrated variance density), as well as the627

number of subintervals NI for the composite trapezoidal rule on the computed prices of the option.628

For simplicity, we choose md = mf = mc = mν = m. For each value of m, we also report the629

corresponding projection error, generically denoted by ǫ
(m)
p , defined in Section 7 (note that ǫ

(m)
p is630

independent of NI). In the case of interest rates (domestic, foreign, and combined), we approximate631

the projection error by the following formula:632

ǫ(m)
p :=

1

2π
(|Ψ(−2mπ)| + |Ψ(2mπ)|) . (8.3)633

For the variance factor, we use634

ǫ(m)
p :=

1

2π
max

v
(|Ψ(−2mπ|ev)| + |Ψ(2mπ|ev)|), (8.4)635

where v = ln(ν(T )).636

Table 8.3 presents selected numerical results when the “combined-density” treatment is used, i.e.637

Ψc(·) = Ψd(·)Ψf (·). We note that the benchmark option prices are obtained by the anti-mlMC with638
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T = 0.25 T = 1 T = 3

NI m ǫ
(m)
p abs. time ǫ

(m)
p abs. time ǫ

(m)
p abs. time

r ν error (sec.) r ν error (sec.) r ν error (sec.)

7 3.0e-01 3.1e-01 9.2e-02 0.07 3.6e-02 1.0e-01 1.5e-02 0.14 4.1e-14 3.2e-04 1.5e-04 0.53
15 8 2.7e-01 2.9e-01 8.9e-02 0.09 8.0e-05 1.1e-02 5.0e-04 0.28 7.5e-31 5.7e-07 1.5e-04 1.92

9 1.7e-01 2.3e-01 4.7e-03 0.12 1.9e-14 2.1e-04 4.8e-04 0.85 2.1e-51 2.9e-11 1.6e-04 7.79
10 2.8e-02 7.8e-02 6.8e-04 0.25 1.9e-14 4.7e-07 4.8e-04 3.03 5.0e-78 1.2e-17 1.6e-04 27.54

7 9.2e-02 0.10 1.5e-02 0.16 1.5e-04 0.85
25 8 8.9e-02 0.14 4.4e-04 0.40 1.5e-04 3.21

9 4.9e-03 0.16 4.8e-04 1.43 1.6e-04 11.38
10 6.7e-04 0.45 4.9e-04 4.84 1.6e-04 42.96

Table 8.3: European call option under the Heston-1CIR model with different maturities using param-
eters in Table 8.2. The “combined-density” treatment is used. For this test, mc = mν = m, and the
supports respectively are [−T, T ] and [0, T ] for fc(·) and f(·|y). The benchmark solutions obtained by
the anti-mlMC method (RMSE = 10−3) are: 3.50363381 (std. dev. ≈ 7.1e-04) for T = 0.25; 7.21360895
(std. dev. ≈ 7.1e-04) for T = 1; and 12.93507573 (std. dev. ≈ 7.1e-04) for T = 3.

the RSME set to 10−3, and hence, the standard deviations in the benchmark option prices all are639

≤ 10−3√
2

≈ 7.1 × 10−04, as expected from analysis of multi-level MC methods (Giles, 2008). We make640

the following observations.641

• Across different values of NI , for a given m, an increase in NI does not appear to improve the642

accuracy. This seems to hold true for all maturities. For example, for m = 7 and T = 0.25 the643

absolute errors are 9.2e-02 across all levels of NI ; for m = 8 and T = 3, the absolute errors are644

approximately 1.6e-4 for all levels of NI .645

• With the above observation in mind, we now focus on the effects of m on the accuracy when646

NI = 15. We observe that, for the short maturity case, namely T = 0.25, the absolute error647

decreases when the level of resolution m increases (e.g. from 9.2e-2 when m = 7 down to 6.8e-4648

when m = 10, at which the projection errors are 2.8e-02 and 7.8e-02 for the “combined-density”649

r and the variance ν, respectively.650

For longer maturities T = {1, 3}, the absolute errors stay approximately the same when m is651

sufficiently large. In particular, for T = 1, the error is 1.5e-02 when m = 7, but decreases rapidly652

to around 5.0e-04 for m = 8, 9, 10. For T = 3, the absolute error stays around 1.6e-04 for all653

levels of resolution m considered. Moreover, compared to the benchmark solutions, the price654

computed by the Shannon wavelet method is already accurate with m = 8 for the case T = 1655

(with the error being 5.0e-04), and with m = 7 for the case T = 3 (with the error being 1.6e-04).656

We also note that the corresponding projection errors for these two longer maturities are much657

smaller compared to the case T = 0.25.658

Based on these results, with the “combined-density” treatment, we will use NI = 15 and the tol =659

10−02 in estimating the level resolution m, i.e. find the first level of resolution m such that for660

ǫ
(m)
p ≤ tol, as discussed in Section 7. We emphasize that with this choice of m and NI = 15,661

the prices under the Heston-1CIR model are obtained very quickly. Specifically, it took 0.25 seconds662

for T = 0.25 (m = 10), 0.28 seconds for T = 1 (m = 8), and 0.53 seconds for T = 3 (m = 7). For the663

reader’s convenience, these results are grayed out in Table 8.3.664

Efficiency comparison: “two-density” vs. “combined-density” treatments665

Next, we compare the efficiency between the “two-density” and the “combined-density” treatments.666

In Table 8.4, we present selected numerical results of these two treatments, with absolute errors and667
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timing results for the “combined-density” treatment being copied from Table 8.3 for the reader’s668

convenience. Note that we do not report the projection errors for the time-integrated variance process669

under the “two-density” treatment, as they are the same with those when the “combined-density”670

treatment is used (see Table 8.3). We observe from Table 8.4 that the “combined-density” treatment

T = 1 T = 3
two combined two combined

density density density density

NI m ǫ
(m)
p abs. time abs. time ǫ

(m)
p abs. time abs. time

rd rf error (sec.) error (sec.) rd rf error (sec.) error (sec.)

7 7.1e-02 1.7e-01 1.3e-01 3.06 1.5e-02 0.14 2.6e-10 5.2e-05 2.1e-04 93.72 1.5e-04 0.53
15 8 9.4e-04 2.8e-02 6.3e-03 21.32 5.0e-04 0.28 8.7e-21 2.7e-11 1.8e-04 >1000 1.5e-04 1.92

Table 8.4: Efficiency comparison between the “two-density” and the “combined-density” treatments.
European call option under the Heston-1CIR model using parameters in Table 8.2. The results of the
“combined-density” treatment are copied from Table 8.3. For the two-density treatment, md = mf =
mν = m, and the support [0, T ] is used for fd(·), ff(·), and f(·|y). The benchmark solutions obtained
by the anti-mlMC (RMSE = 10−3), are: 7.21360895 (std. dev. ≈ 7.1e-04) for T = 1; and 12.93507573
(std. dev. ≈ 7.1e-04) for T = 3.

671

is significantly more efficient than the “two-density” one. For example, when T = 1, the combined-672

density treatment can achieve an absolute error of 5.0e-04 in only 0.28 seconds, while, even with 21.32673

seconds, the “two-density” treatment can only achieve an absolute error of 6.3e-03. This means the674

“combined-density” treatment offers approximately two to three orders of magnitude improvement675

in computational efficiency over the “two-density” in this case. When T = 3, the improvement in676

computational efficiency offered by the “combined-density” treatment is also between two and three677

orders. Such superiority of the “combined-density” treatment over the “two-density” treatment is678

expected, as previously noted in Remark 4.1. As such, for the rest of the experiments in the paper,679

we will only present numerical results of the “combined-density” treatment, but we emphasize that a680

significantly better efficiency of the “combined-density” treatment is observed in all test cases.681

Estimation of support of fc(·)682

Finally, we investigate the effects on the computational efficiency of the estimating technique683

discussed in Subsection 8.1 of the support of fc(·) (“combined-density” treatment).684

In Table 8.5 (a), we show selected numerical results of the same European call options for the685

experiment reported in Table 8.3, but this time, instead of using the full support [−T, T ] for fc(·), we686

use the support estimated by the technique described in Subsection 8.1, with the tolerance being 10−02.687

We observe that with this technique, we can achieve virtually the same prices with approximately one-688

fourth of the computational times (0.13/0.53 ≈ 1/4 while the absolute change is about 1.0e-06).689

To further investigate possible computational savings that this technique could offer, we experiment690

with relatively longer maturities. In Table 8.5 (b), we report selected numerical results when pricing691

a European put option with maturities T = {5, 8, 10}. We first note that the prices produced by the692

Shannon wavelet method with the estimated support or full support (e.g. [−T, T ]) are (i) virtually693

the same, and (ii) in excellent agreement with the benchmark prices obtained by the anti-mlMC694

method (with RMSE = 3 × 10−3). (The standard deviations in the benchmark option prices all are695

≤ 3×10−3√
2

≈ 0.0021, as expected.) Moreover, we observe that the support estimating technique offers696

significant computational savings, cutting down the computational times by a factor of approximately697

seven (for example, 1.57/0.2 ≈ 7, and 5.11/0.7 ≈ 7). With this estimating technique, the efficiency698

of the Shannon wavelet method is substantial. Compared to benchmark prices, it is able to price a699
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10-year option with a relative error of about 0.02% (e.g. (6.8345 - 6.8330)/6.8330) in about only 0.7700

seconds (see grayed out results in Table 8.5 b).

estimated support full support abs.
T m bd bf [ac, bc] price time price time change

(a) (sec.) (b) (sec.) |(a) - (b)|

from Table 8.3

0.25 10 0.015 0.008 [-0.016, 0.016] 3.5034 0.07 3.5029 0.25 ≈ 5.0e-04

1 8 0.062 0.036 [-0.062, 0.062] 7.2131 0.08 7.2131 0.28 ≈ 2.4e-05

3 7 0.204 0.114 [-0.204, 0.204] 12.9349 0.13 12.9349 0.53 ≈ 1.0e-06

(a) Call options with parameters in Table 8.2, “combined-density” treatment, NI = 15, and dynamic estimation
for supports with tolerance 10−02. The benchmark solutions for the European call option, obtained by the
anti-mlMC method (with RMSE = 10−3) are: 3.50363381 (std. dev. ≈ 7.1e-04) for T = 0.25; 7.21360895 (std.
dev. ≈ 7.1e-04) for T = 1; and 12.93507573 (std. dev. ≈ 7.1e-04) for T = 3.

estimated support full support abs.
T m bd bf [ac, bc] price time price time change

(a) (sec.) (b) (sec.) |(a) - (b)|

5 7 0.3501 0.1907 [-0.3501, 0.3501] 7.1052 0.20 7.1052 1.57 < 1.0e-06

8 7 0.5603 0.2956 [-0.5603, 0.5603] 7.0697 0.53 7.0697 3.40 < 1.0e-06

10 7 0.7004 0.3580 [-0.7004, 0.7004] 6.8345 0.70 6.8345 5.11 < 1.0e-06

(b) Put options with parameters in Table 8.2, “combined-density” treatment, NI = 15, and dynamic estimation
for supports with tolerance 10−02. The benchmark solutions obtained by the anti-mlMC method (with RMSE
= 3 × 10−3) are: 7.1061 (std. dev. ≈ 2.1e-03, 95% [7.1021, 7.1103]) for T = 5; 7.0678 (std. dev. ≈ 2.1e-03, 95%
[7.0648, 7.0730]) for T = 8; and 6.8330 (std. dev. ≈ 2.1e-03, 95% CI [6.8289, 6.8371]) for T = 10.

Table 8.5: Effects on computational efficiency of the technique estimating the support of fc(·) via the
tolerance 10−02.

701

We conclude this subsection by noting that, due to the significant computational savings of the702

“combined-density” treatment and the estimating technique for the support of fc(·), we will adopt to703

implement them in all the remaining experiments.704

8.2.2 Jump-extended Heston-1CIR model705

In Table 8.6, we present selected numerical results of pricing a European call and put options under706

the jump-extended Heston-1CIR model, respectively. In this experiment, we use NJ = 8 in (6.16),707

i.e. the first 9 terms of the series due to jumps, for which the truncation error of the series is already708

less than 10−6. Again, we note excellent agreement between the benchmark solutions obtained by the709

anti-mlMC method and those produced by the Shannon wavelet method. In addition, the performance710

of the method is also impressive.711

8.3 Heston-2CIR models712

Finally, we consider the valuation of a European option under the Heston-2CIR models. For experi-713

ments in this subsection, we use the parameters presented in Table 8.7. We note that the calibrated714

parameters of the two-factor CIR interest rate processes from (Chen and Scott, 1992, 2003). In addi-715

tion, we consider two different set of parameters for the variance716

• Set 1: ν(0) = 0.0275, κν = 1.7, ν̄ = 0.0232, σν = 0.15, which are similar to those in Table 8.2.717

For this set of parameters, the Feller’s condition is satisfied718

• Set 2: ν(0) = 0.2, κν = 0.1, ν̄ = 0.6, σν = 0.5 from Dang and Ortiz-Gracia (2018), for which719

Feller’s condition is not satisfied.720
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anti-mlMC Shannon wavelets

T m (price, std. dev. ) 95% CI price abs. rel. time
(years) error error (%) (sec.)

0.25 10 (3.9507, 7.1e-4) [3.9493, 3.9520] 3.9497 7.0e-04 ≈ 0.01 0.24
1 8 (8.5535, 7.1e-4) [8.5521, 8.5549] 8.5543 9.0e-04 ≈ 0.01 0.26
3 7 (15.5424, 7.1e-4) [15.5394, 15.5421] 15.5416 8.0e-04 ≈ 0.01 0.60

(a) Call options prices, the benchmark prices obtained by the anti-mlMC method (RMSE = 3 × 10−03)

anti-mlMC Shannon wavelets

T m (price, std. dev. ) 95% CI price abs. rel. time
(years) error error (%) (sec.)

5 7 (10.3137, 2.1e-3) [10.3097, 10.3179] 10.3151 1.2e-03 ≈ 0.01 1.05
8 7 (10.6662, 2.1e-3) [10.6594, 10.6675] 10.6647 1.5e-03 ≈ 0.01 2.88
10 7 (10.5071, 2.1e-3) [10.5031, 10.5112] 10.5055 1.6e-03 ≈ 0.02 4.38

(b) Put options prices, the benchmark prices obtained by the anti-mlMC method (RMSE = 3 × 10−03)

Table 8.6: European call and put option prices under the jump-extended Heston-1CIR dynamics with
parameters from Table 8.2, “combined-density” treatment, NJ = 9, NI = 15, and 10−02 tolerance for
estimating the support of fc(·).

The remaining parameters are similar to those in Table 8.2. In this experiment with the jump-extended721

model, we use NJ = 8 in (6.16). In these tests, similar to previous tests, the level of resolution is the722

first m such that ǫ
(m)
p < 10−02, which give m = 7.723

X1(0) κd1 θd1 σd1 X2(0) κd2 θd2 σd2

rd 0.02516 1.8341 0.05148 0.1543 0.040016 0.005212 0.03083 0.06689

Y1(0) κf1 θf1 σf1 Y2(0) κf2 θf2 σf2

rf 0.02638 1.5446 0.02638 0.08515 0.02120 0.01265 0.02120 0.04579

Set 1 ν(0) κν ν̄ σν

ν 0.0275 1.70 0.0232 0.1500
Set 2 ν(0) κν ν̄ σν

ν 0.2 0.1 0.6 0.5
λ µ̃ σ̃

jump 0.2 -0.08 0.3
S(0) K ρS,ν

others 100 100 -0.1

Table 8.7: Parameters for experiments with the Heston-2CIR models.

In Table 8.8, we present selected pricing results of a European call option. We again observe that724

all prices computed by the Shannon wavelet method lie within the 95% confidence intervals obtained725

with the anti-mlMC method. Moreover, they are in excellent agreement with the benchmark prices,726

regardless of whether or not the Feller condition is satisfied. We also note the significant efficiency of727

the Shannon wavelet method.728

We conclude this section by noting two points regarding all above experiments. Firstly, while the729

prices obtained by the proposed Shannon wavelet and the anti-mlMC methods clearly agree, the latter730

method typically requires from one to two orders of more computational times than the former does,731

with the most significant difference when the Feller’s condition is not satisfied. Secondly, although732

we do not present respective results obtained by the COS method of Fang and Oosterlee (2008), we733

note that the COS method is less robust than the SWIFT method in recovering the densities. In734

particular, for SWIFT, we have a control of the error, via the level of resolution parameter m, which735
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ν anti-mlMC Shannon wavelets
param. (price, std. dev. ) 95% CI price abs. rel. time

error error (%) (sec.)

Set 1 (14.4405, 2.1e-03) [14.4364, 14.4446] 14.4407 2.5e-04 < 0.01 0.17
Heston-CIR Set 2 (30.1924, 2.1e-03) [30.1882, 30.1965] 30.1922 2.2e-04 < 0.01 0.17

jump-ext. Set 1 (16.7533, 2.1e-03) [16.7492, 16.7575] 16.7529 3.8e-04 < 0.01 0.95
Heston-CIR Set 2 (31.2892, 2.1e-03) [31.2850, 31.2934] 31.2888 4.1e-04 < 0.01 0.92

Table 8.8: European call option prices under Heston-2CIR dynamics with T = 3 using parameters
from Table 8.7, “combined-density” treatment, NJ = 9, NI = 15, and 10−02 tolerance for estimating
the support of fc(·). For the anti-mlMC method, the RMSE is set to 3 × 10−3.

does not rely on a priori truncation of the integration domain, as opposed to trial-and-error in the736

COS method, which changes the integration domain, and hence affects its accuracy.737

9 Conclusions and future work738

In this paper, we extend the applicabilities of existing state-of-the-art numerical integration methods739

to the broad class of jump-extended Heston models with multi-factor CIR interest rate dynamics.740

While we focus on the SWIFT of Ortiz-Gracia and Oosterlee (2016), due to its established robustness,741

the results presented in this paper can be easily extended to the COS method of Fang and Oosterlee742

(2008) as well.743

Traditionally, a direct application of these integration methods require knowing a closed-form ex-744

pression for the characteristic function of the underlying process, which is not available for this general745

class of models. We show that within the Monte-Carlo and PDE hybrid computational framework put746

forward in Dang et al. (2015b, 2017), it is possible to develop a very robust and highly efficient pricing747

numerical integration technique for these models. In particular, the proposed drSWIFT method enjoys748

a significant dimension reduction, from two multi-factor interest rate processes to only a one-factor749

process. As such, the computational complexity of drSWIFT method is independent of the number750

of stochastic factors in the model. Although in this work, we primarily focus on FX options, the751

proposed model and computational method can be easily utilized or adapted to European options in752

other markets, such as equity.753

Regarding future work, we particularly emphasize the potential of the hybrid MC and PDE com-754

putational approach in general, and of the drSWIFT method in particular, for problems that require755

significant computational power. An example of such a problem is model calibration which involves756

the pricing of a wide range of options. In this case, the proposed methodology could be useful, be-757

cause of its excellent speed, accuracy, and robustness. Another example is the computation of758

valuation adjustments (xVA) for over-the-counter financial derivatives (Feng et al., 2016; Graaf et al.,759

2014; Gregory, 2012, 2015; Karlsson et al., 2016). Preliminary results indicate that the hybrid MC760

and PDE computational approach combined with Shannon wavelets result in efficient computation of761

exposure profiles for counter-party credit risk in the context of the early exercise features.762
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