
 
 
 

 
 

 
 

 
 
 
 

 
 
 

Information Transfer and Dynamics of Nucleic Acids 
studied by Theoretical Approaches 

 
Alexandra Balaceanu 

 
 
 
 
 
 

 

 
 

 

 

 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) 
ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a 
disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta 
tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado 
indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the TDX 
(www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual 
property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing 
its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those 
rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis 
it’s obliged to indicate the name of the author. 



!
!
!
!
!
!
!
!
!
!
!
!
!
!

Information Transfer and 
Dynamics of Nucleic Acids 

studied by Theoretical 
Approaches 

 
!"#$%&'(%)*%"%+#%&,) )



UNIVERSITAT DE BARCELONA 
 

FACULTAT DE QUIMICA 
 

QUIMICA TEÒRICA I MODELIZATCIÓ COMPUTACIONAL 
 
 
 
 
 

Information Transfer and 
Dynamics of Nucleic Acids 

studied by Theoretical 
Approaches 

	
	
	
	
	
	
	
	
	
	

 DIRECTOR                    TUTOR                 DOCTORAND 
MODESTO OROZCO       JUAN NOVOA             ALEXANDRA 
          LOPEZ1,2                  VIDE3                    BALACEANU 
 
	
	
	
1	 Institute	 for	 Research	 in	 Biomedicine	 (IRB	Barcelona),	 The	Barcelona	 Institute	 of	 Science	
and	Technology	(BIST),	08028	Barcelona,	Spain.	
2	Department	of	Biochemistry	and	Biomedicine,	University	of	Barcelona,	Barcelona,	Spain.	
3	Faculty	of	Quemistry,	University	of	Barcelona,	Spain.	
	



	
	
	
	
	 	



UNIVERSITAT DE BARCELONA 
 

FACULTAT DE QUIMICA 
 

QUIMICA TEÒRICA I MODELIZATCIÓ COMPUTACIONAL 
 
 
 
 
 

Information Transfer and 
Dynamics of Nucleic Acids 

studied by Theoretical 
Approaches 

 
 

!"#$%&'(%)*%"%+#%&,!!
!
!
!
! !



	
	

UNIVERSITAT DE BARCELONA 
 

FACULTAT DE QUIMICA 
 

QUIMICA TEÒRICA I MODELIZATCIÓ COMPUTACIONAL 
 
 
 
 
 

Information Transfer and 
Dynamics of Nucleic Acids 

studied by Theoretical 
Approaches 

	
	
	
	

Alexandra	Balaceanu		
	

	
	
	
	
	
	
	

 DIRECTOR                     TUTOR                 SUPERVISOR 
MODESTO OROZCO        JUAN NOVOA                PABLO 
          LOPEZ                        VIDE                        DANS 
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	

 



Acknowledgements 
 

Firstly, I am extremely grateful for the mentorship of my thesis director Prof. 

Modesto Orozoco, who made all my efforts take the shape of scientific 

research and from whom I have learnt so much in the course of my PhD. 

 

A very special gratitude goes out to Pablo Dans, who was, as he himself put 

it, my Jedi master throughout this crazy journey: You were an inspiration and 

for that I thank you. 

 

To Prof. Eric Westhof, who challenged my thinking and accepted nothing less 

than excellence from me. 

 

To Prof. Juan Novoa, who always saw the best in me: I appreciate all the kind 

words and support. I also wish to thank Dr. Mercè Deumal, who was so very 

patient with me. 

 

My eternal “cheerleader”, Ricard Illa: I miss our interesting and long-lasting 

science chats. My great friend and genius, Diana Buitrago: You were always 

there to calm the waters when I was getting overwhelmed. To my very 

rebellious former labmate: You gave me space to vent and motivated me to 

see the bigger picture rather than the light at the end of the tunnel. 

 

With a special mention to Xenia Villalobos, Leyre Caracuel and Clara 

Caminal, and all the administration team in general. It was fantastic to have 

the opportunity to work on outreach projects with you and see another side of 

scientific efort.  

 

To my sister, who believes in me fiercely, but still affords to drag me down to 

common sense whenever I drift too far away.  Daca nu sunt altceva, sunt cap 

de atom pentru tine! My forever interested, encouraging and always 

enthusiastic mother: you were always keen to know what I was doing and 

how I was proceeding. I thank you for that. I am also grateful to my other 

family members and friends who have supported me along the way. 

 

And finally, last but by no means least, also to all the members past and 

present of the MMB group with which I had the fortune to cross paths: It was 

great sharing laboratory with all of you during the last five years. 

 

Thanks for all your encouragement!	



THESIS	ORGANIZATION	

CHAPTER	I	
1	 The	History	of	DNA	

2	 Structure	of	DNA	
2.1	 Central	Base	Pairing	and	the	double	helix	

2.2	 Rigid	base	model:	The	Helical	Parameters	

2.3	 Backbone	torsions	

2.4	 Helices		

2.5	 Major	DNA	structural	families		

3	 Short	Incursions	into	the	RNA	world	
3.1	 DNA	to	RNA	to	Protein	

3.2	 RNA	fundamentals	

3.3	 RNA	local	structure	

3.4	 RNA	motifs	

3.5	 RNA	architecture	

4	 Sequence-dependent	landscape	of	physiological	DNA		

5	 DNA	dynamics	and	polymorphism:	It’s	about	TIME	
5.1	 DNA	Conformational	Transitions		

5.2	 Importance	of	the	Solvent	Environment		

5.3	 Flexibility	Properties		

6	 Protein-DNA	interactions		
6.1	 Protein-DNA	recognition	mechanisms	

6.2	 Dynamic	aspects	of	DNA-protein	binding		

6.3	 Energetics	of	protein-DNA	binding	

7	 Theoretical	models	for	the	study	of	nucleic	acids:	A	modeling	hierarchy		
7.1	 Electronic	models		

7.2	 Classical	atomistic	models		

7.3	 Coarse-grained	models		

7.4	 Mesoscopic	models		

7.5	 Bioinformatics	approaches	

	CHAPTER	II	
1	 Molecular	Dynamics	Algorithms	
1.1	 The	model		

1.2	 Evaluation	of	Energies	and	Forces	

1.3	 Numerical	Integrators	

2	 Force	field	development	methods	

3	 Optimization	of	Force	Fields	for	Nucleic	Acids	

4	 Applications	for	MD	simulations	of	Nucleic	Acids	
4.1	 MD-Averaged	Information	

4.2	 Dynamic	Information	

	

CHAPTER	III	|	PARMBSC1	
1	 Parmbsc1:	a	refined	force	field	for	DNA	simulations.	



CHAPTER	IV	|	DNA	Sequence	Dependence	and	Polymorphisms	
1	 The	Role	of	Unconventional	Hydrogen	Bonds	in	Determining	BII	Propensities	in	
B-DNA	

2	 The	Physical	Properties	of	B-DNA	beyond	Calladine’s	rules	
	

CHAPTER	V	|	Information	Transfer	through	the	DNA	
1	 Long-Range	Effects	Modulate	Helical	Properties	of	some	DNA	Dinucleotide	
Pairs	

2	 Allosterism	and	signal	transfer	in	DNA	
 

CHAPTER	VI	|	Modeling	RNA	
1	 Modeling,	Simulations,	and	Bioinformatics	in	the	service	of	RNA	Structure	
 
DISCUSSION	AND	CONCLUSIONS	
1	 Discussion	

2	 Subproject	Conclusions	
 
RESUMEN	EN	ESPAÑOL		
1	 Introducción	

2	 Objetivos	

3	 Resumen	de	resultados	(Absractes)		
3.1	 Parmbsc1:	a	refined	force	field	for	DNA	simulations	

3.2	 The	Role	of	Unconventional	Hydrogen	Bonds	in	Determining	BII	Propensities	in	B-

DNA		

3.3	 The	Physical	Properties	of	B-DNA	beyond	Calladine’s	rules	

3.4	 Long-Range	Effects	Modulate	Helical	Properties	of	some	DNA	Dinucleotide	Pairs		

3.5	 Allosterism	and	signal	transfer	in	DNA		

3.6	 Modeling,	Simulations,	and	Bioinformatics	in	the	service	of	RNA	Structure		

4	 Discusión	y	conclusiones	
 
ANNEX	|	Supplemetary	Information	
1	 Parmbsc1:	a	refined	force	field	for	DNA	simulations	(Supplementary	Info)	

2	 The	Role	of	Unconventional	Hydrogen	Bonds	in	Determining	BII	Propensities	in	
B-DNA	(Supplementary	Info)	

3	 The	Physical	Properties	of	B-DNA	beyond	Calladine’s	rules	(Supplementary	
Info)	

4	 Long-Range	Effects	Modulate	Helical	Properties	of	some	DNA	Dinucleotide	
Pairs	(Supplementary	Info)	

5	 Allosterism	and	signal	transfer	in	DNA	(Supplementary	Info)	



 



1	

“Everything that living things do can be understood in 	
terms of the jiggling and wiggling of atoms.” (Richard Feynman) 

 
Life – what is biological life? Initially it was thought we had no chance 

of understanding life, that it contained something inexplicable and 
mysterious. We accepted this imposition, but set out to describe it in its most 
minute details and have now reached a point where we can define life 
without any need for a mysterious or miraculous force. Whether that is a 
good or a bad thing, and whether the lack of need implies a completely 
deterministic view of the world, now that is for philosophers to debate and 
probably they will never agree on one single answer. Having broken apart 
metabolism to its atomic structure does not mean that the whole is not bigger 
than the sum of its parts. Besides, the more we understand about the inner 
workings of biology, the more complex and fascinating it becomes. We are 
also ever so close to actually manipulating the genetic material at a large scale 
in different organisms and most controversially in human beings as well. 
Apart from the moral issues with such radical ideas that seem to be extracted 
from sci-fi literature (Brave New World), there is the question of whether we 
understand our own limits and are willing to acknowledge our blatant lack of 
foresight when it comes to the consequences. The fruit of knowledge is best 
served on a plate thoroughly dissected.  

In 2003 we celebrated both the 50th anniversary of the discovery of the 
structure of the DNA double helix, and the announcement of the 
determination of the sequence of the human genome. Since then, we have 
come to understand the double helix to an unsurpassed level of detail, and in 
part this is due to the huge advances in computational simulation models. 
They have provided a vital tool with which to practically expose and look 
into the atomic underpinnings of molecular biology problems and envision 
their reasons and their implications. There is, of course, an intrinsic 
assumption I am working with throughout this thesis: I ask you to take the 
same leap of faith and trust in the ensemble results of computer simulations. I 
will make an attempt to convince you of their validity, accuracy and 
pertinence for usage in studies of DNA dynamics, but I will also not show 
reluctance to express my own doubts and point out some of the shortcomings 
that might arise from this mandatory assumption. It is, to begin with, a 
disheartening decision to give up the mathematical simplicity and elegance 
that went hand in hand with analytical sophistication for the apparently 
blunt, brute force of pumping computer power into the numerical simulation 
of the dynamics of a biological system/process composed of a huge number of 
particles. Miraculously, however, it gives extremely accurate results. It might 
not provide the philosophical answer of what to do with the knowledge we 
gain, but it sure does help along on out way to attain a deeper understanding 
of life, from the bottom up.  
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made fast, if not effortlessly, with such marked discoveries as the DNA 
transcription into messenger RNA, RNA translation into protein sequences, 
DNA replication, responses to DNA damage, packaging of DNA into 
chromatin inside the cell, or regulating the expression of individual genes 
before reading/translating the encoded sequences, amongst other relevant 
processes. 

Following Watson and Crick’s great break-through, the structure of 
DNA has been intensively studied using a variety of methods including X-ray 
[6,7], NMR [8,9], and electron microscopy [10,11]. Additionally, computer-
modeling simulations have shed even more details on the complexity of DNA 
structure and dynamics [12–14]. The “classical” and maybe even the 
“romantic” eras of nucleic acids study have long passed, but we are now in a 
time when incredibly powerful tools to manipulate life and to answer 
fundamental questions about chickens, eggs and what makes us tick are 
available for so many of us, giving us not only tantalizing promises of great 
discoveries, but also the burden of huge ethical issues related with the 
possibility to manipulate the essence of life.   
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2.1 Central	Base	Pairing	and	the	double	helix		
Since its discovery, DNA has been celebrated as a very elegant molecule, 

with a simplicity to its shape and composition that truly leaves the mind 
wandering how nature has written the entire language of life using just four 
chemical letters: guanine (G), cytosine (C), adenine (A) and thymine (T). 
Collectively denominated as "nucleobases", these chemical entities are planar 
aromatic heterocyclic molecules and are divided into two groups – the 
pyrimidine bases, C and T, and the purine bases, A and G.  

Did our genetic code settle on this limited repertoire for a reason, or is it 
just lack of evolutionary imagination? As we understand better the precise 
molecular details of how DNA works, we uncover the high standard of 
prerequisites for a “good nucleotide” [15–17].  

Isostericity of base pairing. The most obvious of these prerequisites is of 
course selective base pairing, by specific planar hydrogen bonds. In the 
standard base-pairing scheme, also called Watson-Crick pairing, adenine 
pairs with thymine and guanine pairs with cytosine. The A·T and G·C base 
pairs have different strengths (G·C base pair is around 1.5 kcal/mol more 
stable than A·T [18]), but they are isosteric and preserve the symmetry of the 
double helix and can stack in any combination without producing significant 
distortions in the structure.  NMR experiments and theoretical studies [19–21] 
have shown that the double helix is able to accommodate for alternative base 
pairing, where purine bases could flip their normal conformations and form a 
new set of hydrogen bonds with their partners (see Figure 1.2).  

Backbone accommodation of base pairing. Dispersion interactions and 
hydrophobic forces favor the stacking of the bases of DNA stabilizing regular 
polymers at physiological conditions. Stacking preferences and the physical 
properties of the sugar-phosphate backbone gives each step a slight twist 
(around 36°) with bases placed nearly parallel each other (inter-plane distance 
around 3.4 Å) and perpendicular to the helix axis.   

Functional base derivatives. Chemical modifications of the nucleobases 
are possible, but happen always at the post-transcriptional level and are 
controlled by a complex network of regulatory enzymes. Modified 
nucleobases (especially cytosine derivatives) play a major role in DNA 
compaction and in the control of gene expression [22–25]. This fact further 
supports the idea that the chemistry of nucleobases has been fine-tuned by 
evolution to perfectly integrate with and respond to the different cellular 
metabolic processes. 

 

2.2 Rigid	base	model:	The	Helical	Parameters	
 The canonical model for the DNA structure implies a regular double 

helical arrangement of the two strands, each composed of a sequence of 
complementary nucleotide units (see Figure 1.2). However, in reality DNA is 
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(a) Buckle is the relative torsion of base planes around their x-axis, 
propeller twist is the torsion between base planes around their y-axis, while 
opening is the torsion between bases around the helix, z-axis. 

(b) Shear, stretch and stagger are relative displacements of bases along 
their x-axis, their y-axis and the helix axis, respectively. 

The spatial orientation of a base pair modeled as a rigid body can be 
characterized with ten coordinates, six of which are relative to the previous 
base pair (3 rotational and 3 translational). They are defined in the dimer 
reference frame (see Figure 1.3-B) and are called inter-base-pair parameters:  

(a) Twist is the angle between successive base pairs about the helix z-
axis. More practically, it is measured as the change in orientation of the C1’-
C1’ vectors on going from one base pair to the next. Similarly, roll is the 
dihedral angle for rotation of one base pair with respect to the other, about 
the y-axis of the base pair. Its positive value opens a base pair step towards 
the minor groove. Tilt is the corresponding dihedral angle along the x-axis of 
the base pair. 

(b) Rise is the relative displacement of one base pair compared to 
another in the direction of the helix axis. Slide is the displacement of one base 
pair from its neighbor in the direction of the y-axis of the base pair, measured 
between the midpoints of each C6-C8 vector. Similarly, shift is defined as the 
relative displacement of a base pair from another in the direction of the base 
pair x-axis. 

The remaining 4 coordinates describe an individual rigid base pair with 
respect to a local helical axis: 

(a) Inclination is the angle between the y-axis of a base pair and a plane 
perpendicular to the helix axis and is defined as positive for a right-handed 
rotation about a vector from the helix axis towards the major groove. Tip is 
the angle between the x- axis of the base pair and a plane perpendicular to the 
helix axis and takes positive values for a right-handed rotation about the y-
axis of the base pair. 

(b) X-displacement and y-displacement define translations, along the x- 
or the y-axes, respectively, of a base pair mean plane from the helix axis. 
Positive X displacement is towards the major groove; positive Y displacement 
is towards the first nucleic acid strand of the duplex. 

Together, the inter-base-pair parameters fully characterize the structure 
of the molecule as a stacked helix of rigid planar base pairs. The six intra-
base-pair degrees of freedom defined above must be additionally introduced 
only if the relative orientation of bases in each base pair is to be considered. 
Therefore, a dinucleotide unit (2 consecutive base pairs, or a base pair step) 
would be fully characterized by a set of 18 helical parameters in the reference 
coordinate systems attached to its constituent base pairs. (see Figure 1.4). 
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Figure	4	Rigid	base	and	base	pair	model:	helical	parameters	definition	for	base	pair	and	base	pair	
step.	Taken	from	[32]	 

The helical parameters representation provides a good, complete and 
intuitive description of the helix at base resolution level, but completely 
ignores the backbone geometry, which plays a central role in defining, for 
example, the DNA recognition properties.  

 

2.3 Backbone	torsions.	
The backbone of the DNA imposes a conformational landscape that can 

best be understood when considering its torsional degrees of freedom. The 
backbone geometry is thusly controlled by torsions around six main chain, five 
sugar and one glycosidic bonds (Figure 1.5). 
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between the four ring carbon atoms. The main chain torsions display highly 
correlated motions and tend to occupy one or at most two of three major 
discrete ranges. In addition, the restraints imposed by the Watson-Crick base 
pairing further reduce the number of possible low-energy conformations of 
the nucleotide unit. 

 The glycosidic torsion. Rotation of the base relative to the sugar is 
described by the torsion angle χ (O4’-C1’-N9-C4 in purines and O4’-C1’- N1-
C2 in pyrimidines) around the glycosidic bond (in β-stereochemistry). This 
means that the base is always above the plane of the sugar in a transversal 
view, pointing towards the 5’ hydroxyl substituent and opposite the 3’ 
substituent. Two main ranges (anti and syn) and a minor one (high anti) are 
defined to describe the possible orientations adopted by the base, analogous 
to sugar moiety ranges. From sterical considerations alone, theory predicts the 
preferred domains of χ to be: syn- – between 30° and 90° and anti- – between 
180° and 300°, with values around 270° ascribed to high-anti. The anti- 
conformation has the Watson-Crick hydrogen bonding groups directed away 
from the sugar ring, while in syn- conformations these groups are oriented 
towards the sugar. Pyrimidines occupy a narrow range of anti- 
conformations, whereas purines are found in a wider range of anti- 
conformations that can even extend into the high-anti range (Figure 1.5-C). 
The more compact syn- conformation is susceptible to steric clashes, which 
are rare in the extended anti- form. Although purine rings are generally 
larger, they have the smaller five-membered ring, as opposed to the six-
membered ring of pyrimidines, attached directly to the sugar, so they will 
more readily adopt the compact syn- conformation than pyrimidines. The O5’ 
sugar atom has a marked contribution to this differential propensity, making 
the syn- orientation to be disfavored by pyrimidine bases, due to electrostatic 
repulsion towards the base oxygen O2 atom. On the contrary, purine bases 
have been found in a number of crystal structures to form a stabilizing 
hydrogen bond between the N3 base nitrogen atom and the O5’ of the sugar 
[35,36].  Nuclear magnetic resonance, CD and X-ray analyses all show that 
guanine prefers the syn- glycoside in mono-nucleotides and in some specific 
double helical structures [37]. Theoretical calculations suggest that this effect 
is due to favorable electrostatic interactions between the N2 amino group of 
guanine and the 5’ phosphate atom. For adenosine bases, the anti- 
conformation is still slightly preferred to the syn-. In double helical DNA 
structures, syn- conformations of the glycosidic torsion are almost never 
observed, since canonical Watson-Crick base pairing requires nucleotides to 
adopt an anti- orientation. There are cases however where an anti-to-syn 
transition can in fact promote alternative base-pairing modes (such as 
Hoogsteen base pairing). These conformations have mainly been observed as 
transient structures during certain DNA-repair mechanisms [38–41], but they 
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also can play a significant role in some exotic DNA structures, such as 
quadruplexes or the triplex DNAs [42–45]. 

Sugar torsions. The five-membered furanose ring of the DNA is forced 
to deviate from planarity, leading to pucker conformations, which can be 
described by the five endocyclic torsion angles (ν0, ν1, ν2, ν3 and ν4), but can 
be qualitatively interpreted in terms of the atoms deviating from ring 
coplanarity. Several distinct deoxyribose ring pucker geometries have been 
observed experimentally [35]. The direction of atomic displacement from the 
plane is important. If the major displacement is on the same side as the base 
and C4’- C5’ bond, then the ring pucker involved is termed endo. If it is on the 
opposite side, it is called exo. If only one atom deviates from the ring plane the 
pucker is referred to as envelope and if there are equal displacements of either 
side, the pucker is termed twist conformations.  

As noted above, he five-membered ring conformational can be described 
reduced to an elegant representation of two parameters: the pseudorotation 
phase angle P, and the puckering amplitude tm [33,34]. The value of P, the 
phase angle of pseudorotation, indicates the type of pucker and is calculated 
as: 

 tan! = !! + !! − !! + !!
2 ∙ !! ∙ sin 36°+ sin 72°

 (1.1) 

 

The standard conformation for nucleic acids is by definition 
characterized by a maximally positive C1’–C2’–C3’–C4’ (ν2) torsion angle, 
where P is equal to 0 by convention. The puckering amplitude tm describes the 
maximum out-of-plane pucker and is given by: 

 

 !! = !!
cos! (1.2) 

   

The C2’-endo family of puckers have P values in the range 140° to 185°. 
The C3’-endo domain has P values in the range –10° to +40°. Sugar pucker 
states are named after cardinal directions, where C3’-endo is called North, 
O4’-endo is called East, C2’-endo is called South and O4’-exo is called West 
(see Figure 1.5 D). High-level quantum mechanical two-dimensional energy 
scans in gas phase have shown energy profiles of the DNA nucleosides to 
contain two minima: a global minimum C2′-endo conformation and a C3′-
endo local minimum, which is on average 3.00 ± 0.18 kcal/mol higher in 
energy [46]. The transition pathway for the DNA is usually through the East 
conformation as the barrier between the two (East conformers can be partially 
populated in some DNA structures), while West is the energetically highly 
unfavorable. South conformations have been prevalently found also in DNA 
structures, while North conformations are more common in RNA structures 
[47–50]. 
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Sugar rings are the flexible link between the nucleic acid nucleobase and 
phosphate backbone, with different puckering modes influencing their 
relative orientation. On one side, there are pronounced correlations between 
sugar pucker and glycosidic angle, which reflect the changes in non-bonded 
clashes produced by C2’-endo versus C3’-endo puckers. Thus, syn- glycosidic 
angles are not found with C3’-endo puckers due to steric clashes between the 
base and the H3’ atom, which points toward the base in this pucker mode. On 
the other side, the sugar pucker is bound to influence or at least show strong 
correlations to the main chain torsions, which will be presented below. Each 
major sugar pucker, C2’-endo and C3’-endo, leads to very different relative 
positions of phosphate groups at the C5’ and O3’ ends of the sugar ring 
(Figure 1.5 C), with consequences for the overall architecture of the resulting 
helical conformation. 

Main chain torsions. The phosphodiester backbone of a nucleotide has 
six variable torsion angles (see Figure 1.5 A), designated α, β, γ, δ, ε, ζ. These 
torsions each have precise ranges for the values they can adopt, on the basis 
of steric constraints, correlated motions due to energy minima distribution of 
nonbonded interactions, as well as restraints imposed by the Watson-Crick 
base-pairing in the double helix.  

A common convention for describing these backbone angles is to define 
three major ranges as gauche+(g+) around 60°, gauche− (g−) around 300° and 
trans (t) around 180°. The β torsion displays a rather wide but unimodal 
distribution in the trans region. Therefore, the orientation of the phosphate 
group to the furanose in the same nucleotide unit is controlled mainly by 
angles α (about the P–O5’ bond) and γ (the exocyclic angle about the C4’–C5’ 
bond), which are strongly correlated. Both torsions can adopt any of the g+, 
g−, or t conformations, but for example, in B-DNA double helix the canonical 
conformation of the α/γ torsional couple is g-/g+ [51–53]. In the B-form the 
α/γ rotamers may be flipped from their canonical g-/g+ values to the g+/g- 
values or some other rare conformation, which appear almost exclusively due 
to interactions with proteins [54,55]. 

The torsion angle δ around the C4’–C3’ bond adopts values that relate to 
the pucker of the sugar ring, since the internal ring torsion angle ν3 is defined 
around the same bond. It has a narrow peak in its distribution around 135° 
(specific for B-DNA and correlated to C2’-endo) and a sparsely populated 
minimum at lower values of around 80° (observed on A-DNA and correlated 
with C3’-endo puckers) [53]. 

Another torsional couple is ε/ζ, torsions around oxygen O3’. Their 
concerted rotation gives rise to two major domains of backbone conformation 
and one of the best studied backbone transitions, namely the BI and BII states 
(see Figure 1.5 B). The two states are characterized by the ranges of ε and ξ or 
by the torsion difference (ε - ξ). The local changes in the two dihedrals are 
coupled with the motion of O3’ atom and the phosphate group from the 
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following nucleotide unit (on the 3’ side). In the double helical B-DNA the 
canonical state is BI corresponding to a combination of ε and ξ torsions of 
120°-210° (trans) and 235°-295° (gauche-), respectively. Transitions to the BII 
state push the phosphate group towards the minor groove, narrowing it and 
correspond to ε = 210°-300° (gauche-), and ξ = 150°-210° (trans) [56,57]. The 
angle difference (ε - ξ) is close to -90° for BI and +90° for BII phosphates. 
Moreover, the BI and BII states are suggested to be functionally relevant, and 
are in fact visible in some high-resolution crystal structures [58] and in 31P 
NMR experiments [59,60]. 

Overall, the local DNA structure is the result of the interplay between 
optimal base pair helical parameters, sugar conformations and preferred 
backbone dihedrals.  

 

2.4 Helices.	
The local nucleotide, base pair (bp) and base pair step (bps) degrees of 

freedom can be complemented with a number of parameters that define the 
helix as a whole [61,62]. For example, helix sense refers to the helical rotation of 
the double helix. Residues per turn refers to the number of base pairs in one 
helical turn of DNA, that is, the number of bases needed to complete one 360° 
rotation. The ideal structure described by Watson and Crick, "textbook B-
form" DNA, contains 10 bp per turn. Helix pitch is the length of one complete 
helical turn of DNA. In textbook B-form DNA, one helical turn of 10 bp is 
completed in 34 Å. Diameter of the helix refers to the width across the helix. 
B-DNA has a diameter of 20 Å. DNA curvature is a measure on of the three 
dimensional bending of the helix and can be computed globally, per helical 
turn or more locally at a base pair level to describe acute kinks in the DNA 
structure. It can be described mathematically in terms of roll, tilt and twist 
helical parameters [63–65].  

A dominant feature of a DNA helix is that the sugar groups attach to the 
same side of a base pair and define two types of indentations: a major groove, 
delineated by N7 of the purine and the C6 of the pyrimidine, and a minor 
groove with purine N3 and pyrimidine O2 (Figure 1.6).  The nomenclature is 
made in reference to the more common B-DNA, where the empty volume 
provided by the major groove is larger than that of the minor, but it is kept for 
other DNA forms for consistency. Grooves are characterized by two 
parameters, groove width, defined as the perpendicular distance between 
phosphate groups on opposite strands with respect to the helix axis, and 
groove depth, defined as the difference in polar radii between phosphorus 
and N2 guanine or N6 adenine atoms, for minor and major grooves 
respectively. The grooves provide access to the nucleobase surfaces and can 
serve as a binding site for different molecules such as proteins, in case of 
major groove, or smaller ligands, in case of minor groove. Different functional 
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torsion. That is the classic, right-handed double helical structure we have been 
discussing up to this point.  

A shorter and more compact right-handed duplex (the A-form) can form 
from B-DNA under dehydrating conditions, obtained for example by adding 
alcohol to the buffer. The A-form has also been described for RNA-DNA 
duplexes and is the major form of RNA-RNA duplexes [66,67]. The 
compaction of A-DNA means that each helical turn contains over 11 base 
pairs, with smaller distance between them. A-DNA has an axial hole at its 
center and the base pairs are inclined relative to the helical axis. It has a deep, 
narrow major groove and a wide, shallow minor groove, with a C3’ sugar 
pucker, but maintaining an anti- glycoside.  

A more unfamiliar form of the double helix is the Z-DNA, which is a left-
handed double helical nucleic acid conformation, in which purines are 
disposed in the syn conformation, resulting in a “zig-zag” arrangement of 
phosphate groups. The pyrimidines are in the anti- glycoside and thus in 
order to preserve base pairing, the helix in Z-DNA has to accommodate the 
distortion of its purines in the syn conformation. As noted above, Z-DNA 
conformation can be formed by sequences of alternating purines and 
pyrimidines at high salt concentration [68–70]. It has a more or less flat major 
groove and a deep narrow minor groove and has the sugar in the C3' endo 
conformation for purines and C2’ endo for pyrimidines. The main structural 
characteristics of these three most common families of DNA are summarized 
in Table 1.1 and their ideal conformations are depicted in Figure 1.8. 

 
Table	1	Geometrical	features	of	the	3	major	DNA	helix	families	(Neidle	2008)	

Geometry attribute A-DNA B-DNA Z-DNA 

Helix sense right-handed right-handed left-handed 

Repeat unit 1 bp 1 bp 2 bp 

Helical twist 32.7° 36.0° C/G: -49.3°/-10.3° 

Roll 0° 0° C/G: 5.6°/-5.6° 

bp/turn 11 10 6 

Inclination 22.6° 2.8° 0.1° 

Rise 2.54 Å 3.38 Å 7.25 Å 

Pitch 28.2 Å 33.2 Å 45.6 Å 

Propeller twist -10.5° -15.1° 8.3° 

Glycosyl angle anti anti C/G: anti/syn 

Sugar pucker C3’-endo C2’-endo C/G: C2’-endo/C2’-exo 
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Diameter 23 Å 20 Å 18 Å 

Major groove 
Width 2.2 Å 11.6 Å 8.8 Å 

Depth 13.0 Å 8.5 Å 3.7 Å 

Minor groove 
Width 11.1 Å 6.0 Å 2.0 Å 

Depth 2.6 Å 8.2 Å 13.8 Å 

 

	
Figure	7	The	three	major	forms	of	DNA	double	helix. 

On larger scale, DNA, similarly to proteins, has a quaternary structure, 
referring to higher-level of organization of nucleic acids that define the 
chromatin. DNA compaction into chromatin is achieved through recruitment 
of ions and proteins, despite the DNA being one of the stiffest natural 
polymers. DNA interaction with the small proteins, called histones, leads to 
formation of nucleosomes, which are compacted further forming nucleosome 
clusters (perhaps superhelices), topological associated domains (TADs), 
globular territories and at the mitotic phase the packed chromosome [71] (see 
Figure 1.8). Many features of the DNA double helix contribute to its high 
stiffness, including the mechanical properties of the sugar-phosphate 
backbone, electrostatic repulsion between phosphates (DNA bears on average 
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one elementary negative charge per each 0.17 nm of the double helix), 
stacking interactions between the bases of each individual strand, and inter-
strand interactions. 

	
Figure	8	DNA	compaction	in	eukariotic	cells. 

  



!*"

C 2#*+)%I743+('*7(%'7)*%)#$%@/0%J*+9=%
!

H(#+!+%0*#-3!)**%9;*+!*-!/#>%!)!+#9;.%!)00-53*!-$!'()*!ZEB!#+!9)6%!-$<!
2*! #3*7-650%+!*(%!3)9%+!)36!3-9%30.)*57%!0-99-3.4!5+%6!*-!6%+07#,%!ZEB!
9-.%05.%+!)36!;7->#6%+!)!+9)..!+)9;.%!-$! *(%!0-9;.%:#*4!-$! *(#+! $)+0#3)*#3/!
,#-;-.49%7<!

!

C5! ./0%)*%@/0%)*%;+*)$'7%
MEB!+*-7%+!,#-.-/#0).! #3$-79)*#-38!9%)3#3/!*()*!'#*(#3! #*+!+%G5%30%! #*!

0-3*)#3+!)..!3%0%++)74!#3+*750*#-3+!$-7!6#0*)*#3/!*(%!9%*),-.#0!;7-0%++%+!#3!*(%!
0%..<! !@-'%>%78! #3!-76%7! $-7! *(#+! #3$-79)*#-3!*-!,%! #3*%7;7%*%6!)36!;5*! *-! #*+!
;7-;%7!5+%8!*(%7%!#+!3%%6!$-7!)!3%'!0.)++!-$!b)6);*-7c!9-.%05.%+8!'(#0(!()>%!
,%%3! (4;-*(%+#]%6! ,4! U7)30#+! X7#0?! ,%$-7%! )34! +(7%6! -$! %:;%7#9%3*).!
%>#6%30%! $-7! *(%#7! %:#+*%30%! R`IT<! l30%! *(%! %:#+*%30%! -$! ZEB! ()6! ,%%3!
6%9-3+*7)*%68! X7#0?! $-795.)*%6! 5)-$ (-'50&2$ 41/%&$ 1+$ %12-(.2&0$ D"121/3! R`KT!
DU#/57%!S<WF8!'(#0(!6%+07#,%+!*(%!3-79).!$.-'!-$!,#-.-/#0).!#3$-79)*#-3<!H(5+8!
#3$-79)*#-3! *7)3+$%7! #+! ;-++#,.%! $7-9!MEB! *-!MEB! DE9F$ 0-62"(&5"1'F8! $7-9!
MEB! *-!ZEB! D50&'!(0"65"1'F8! $7-9!ZEB! *-!MEB! D"',-0!-$ 50&'!(0"65"1'F8! $7-9!
ZEB! *-! ZEB! DA9F$ 0-62"(&5"1'F! )36! $7-9! ZEB! *-! ;7-*%#3! D50&'!2&5"1'F8! ,5*!
3%>%7!$7-9!;7-*%#3!*-!350.%#0!)0#6<!!

"
!"#$%&'W'E&2/%41'8-#,4'-.'3-1&*$14%'5"-1-#6!

H(%!9)f-7!#9;.#0)*#-3!-$!*(%!0%3*7).!6-/9)!#+!*()*!/%3%*#0!#3$-79)*#-3!#+!
*7)3+$%77%6! $7-9! *(%! MEB! #3*-! ;7-*%#38! ,5*! 3-*! ,)0?! -5*<! k7-*%#3+! 6-! 3-*!
0()3/%! /%3%*#0+8! )*! .%)+*! 3-*! 6#7%0*.48! )! 0-30.5+#-3! *()*! ()+! (%.6! 5;!



20	 	
	

remarkably well over the years. This guideline is not based on any physical 
law (in principle, all reactions involved in translation are reversible) but 
rather on a fundamental “biological law” that probably stems from the design 
of the translation system and is deeply rooted in the molecular setup of the 
information flow in all cells. 

Even more interesting, the RNA, first hypothesized for the single 
specific task of transcription, is actually an incredibly versatile molecule, with 
a large number of types and functions [74]. The RNAs involved in protein 
synthesis include the abundant ribosomal RNA (rRNA), messenger RNA 
(mRNA), transfer RNA (tRNA) and signal recognition particle RNA (7SL 
RNA); however, there are many other types of RNAs with various roles, from 
enzymatic activity, to regulatory or post-transcriptional modification 
functions. The ability of RNA to both store genetic information and perform 
different regulatory and enzymatic functions has made very attractive the 
idea of the so-called RNA world, where life would have its origins in pre-
cellular self-replicating RNAs. However, the difficulty of synthesizing RNA 
from abiotic molecules and other unanswered questions leave the dispute 
open. In any case, RNA is certainly a crucial part of biological life as we know 
it, and its bewildering variety and multitude of roles are only now starting to 
be uncovered and understood. 

  

3.2 RNA	fundamentals	
Similar to the DNA, RNA is an oligopolymer with a phosphate 

backbone, its basic units (called a ribonucleotides) are also composed of a 
sugar and a nitrogenous base, but differ from the DNA nucleotides in two key 
chemical aspects.  

Firstly, the ribose sugar groups of RNA have a hydroxyl group attached 
at the 2’ position, which is not present in the DNA deoxyribose sugars. The 
effect of the extra hydroxyl group is profound, making RNA sugars are much 
more rigid than DNA ones, and sterically forcing them into a C3’-endo pucker 
(Figure 1.10). The 2’ hydroxyl group also contributes to the capacity of the 
RNA to interact in versatile ways with itself and a variety of ligands, or to be 
readily hydrolyzed and cleaved.  

The second difference is that the DNA thymine bases are replaced by 
uracils (also depicted in Figure 1.10) that employ the same base-pairing mode, 
but are missing the methyl group at the 5’ position. Since uracil is one product 
of hydroxylation of cytosine, its presence makes RNA more susceptible to 
mutations than DNA. 

The overall double-edged consequence of this chemical change in the 
ribose is that RNA molecules are in the same time more versatile, being able 
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such pairs in a RNA sequence, either in single- or double-stranded RNA, will 
form a helix (or a stem, as it is sometimes referred to). The C3’-endo pucker of 
the ribose means the RNA helix will assemble into the A-form with 11 
bp/turn, a deep narrow major groove, and a relatively shallow minor groove. 
At an intermediate level of analysis, denominated its secondary structure (SS), 
the fundamental structural element of sequence of RNA is the double helix. 
Once helices are specified, the unpaired regions between them can be 
classified into several types of structural elements, collectively termed loops. 
Loops can be internal, between two helix stems (a one-sided internal loop is 
called a bulge), or hairpin loops, consisting of several unpaired bases that are 
bounded on each side by the same helix, or multi-branched loops at the 
intersection of three or more helix stems (see Figure 1.11). 

	
Figure	11	Representation	of	the	most	common	secondary	structure	elements	in	RNA. 

These nondescriptive secondary structure elements (SSE) can and do in 
fact come together and form tertiary interactions between separate regions of 
the SS. This is possible mainly because in RNA base interactions can occur 
regularly through the Hoogsteen edge or the sugar edge (see Figure 1.12). 
Taking into account that the glycosidic bonds can be oriented either in cis- or 
trans-, 12 principal geometric types are possible with at least two hydrogen 
bonds connecting the bases (Figure 1.12) [79]. This ability of the RNA bases to 
form hydrogen bonds in a multitude of combinations, sometimes involving 
more than two bases, is largely responsible for its formidable structural 
variability. 
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Figure	12	Summary	of	Leontis/Westhof	base	pairing	classification	in	RNA	(taken	from	[79]) 

 

3.4 RNA	motifs	
Interestingly, even with access to a large number of possibilities in 

which the SSEs can interact with each other, RNAs were shown to be able to 
adopt complicated and yet precise structures [80–82], not unlike proteins. The 
commonly reoccurring types of small tertiary structure entities, which are 
frequently used in different combinations (like building blocks) to generate a 
rich variety of molecular shapes, are collectively names RNA motifs.  

Some of the recurrent RNA motifs, formed through interactions between 
secondary structural motifs are depicted in Figure 1.13 [83,84]. For example, 
he K-turn introduces a tight kink into the helical axis, bringing together the 
minor groove sides of its two supporting helices. Another common RNA 
motif is the pseudoknot, where a single stranded region of a hairpin loop base 
pairs with an upstream or a downstream sequences within the same RNA 
strand. Technically, the pseudoknot is a SSE, but according to some 
definitions (and typically employed in SS prediction algorithms), SS does not 
include intercalated helices. The kissing loops motif forms when the single-
stranded loop regions of two hairpins base pair with eachother. Finally, a 
very important small fold RNA motif is the three-way junction (the most 
ubiquitous type of multi-branched loop), a structural scaffold in which three 
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helical stems, linked by at most three single-stranded segments, converge. 
This element can also be represented in the secondary structure, where it 
appears as open and unpaired, but in reality it is the tertiary structure of this 
motif, established by non-canonical base interactions, that determines its 
characteristic topology [85–87]. RNA junctions serve an essential role due to 
their ability to orient and bring together different segments of RNA. They also 
play crucial functional roles in a wide variety of biochemical processes. 

	
Figure	13	Main	tertiary	structure	motifs	in	RNA. 

 

3.5 RNA	architecture	
RNA is very similar to DNA in the chemical. However, the small 

differences that do exist have a very profound effect, giving the RNA a 
conformational richness similar to that of proteins. The size of RNA molecules 
can vary significantly, from a few tens of ribonucleotides as in the case of 
most tRNAs to several thousands in ribosomal RNAs and other types. 
However, RNA does not accomplish lengths similar to the chromatin DNA, 
because of its higher instability, but adopts specific (although flexible) 3-
dimensional architectures, which are crucial to understand the moonlighting 
properties of RNA (carrier of information, catalyst or even controller of gene 
expression [76,88]. 
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Even though direct experimental observation of global structural 
properties at atomic level is still not even close to offering a comprehensive 
view (and will most probably forever lag behind sequence determination), 
some general observations have been made over the years that can serve to 
bring some order to this complex fresco. First there was the realization that 
RNA structural features are much better conserved than sequence during 
evolution [89–91], similar to the protein case. Then a second principle 
developed that the complex three-dimensional architecture of an RNA 
molecule can be understood as hierarchically determined from stable SSEs 
that come together to form different RNA motifs through tertiary contacts, 
which in turn assemble in different combinations that impose the overall fold 
[92–95]. 

These two facts have implications that significantly ease the efforts of an 
exhaustive RNA structural characterization, by allowing the use of high-
resolution 3D information about one molecule in analyzing the sequences of 
another molecule, whether or not the molecules are homologous. 
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4 Sequence-dependent	landscape	of	physiological	DNA.	
 

The existing library of solved DNA crystal structures [96] reveals 
sequence-dependent irregularities in the conformational space of different 
double helices. Evidence of sequence-dependent variation of helical 
parameters within the B- family came with the original Dickerson–Drew 
structure [27], and since then there have been a large number of studies that 
have examined the underlying structural basis of local conformational 
heterogeneity. Taking the base pair step as the structural unit of a DNA 
sequence (the Nearest-Neighbour (NN) model), some significant observations 
have been made [97,98]: 

• The local helical twist varies by up to 15° (the mean twist 
angle in the crystal structures is 36°,), with pyrimidine-purine 
(YpR) steps having lower than average values and purine-
pyrimidine (RpY) steps having higher than average ones.  

• Propeller twists are significantly greater for A•T base 
pairs than for G•C ones, by an average of 5–7° (The average value 
of Propeller in A- and B-DNA crystal structures is around –11º) 

• Roll angles for YpR steps tend have positive values and 
open up toward the minor groove, whereas RpY steps have 
negative roll angles with major groove opening 

• Backbone torsions also show considerable variability 
with respect to sequence (values spread over >45°) 

• The RpY and AA•TT steps bend predominantly into the 
minor groove, whereas the YpR and GG•CC base steps bend 
more frequently toward the major groove 

The sequence-dependent changes in helical and propeller twist, roll, and 
slide were initially rationalized on the basis of steric clashes between 
substituent atoms on individual bases – the Calladine Rules [99]. Essentially, 
Calladine proposes a model where the avoidance of steric clashes is 
accomplished through changes in base orientation, leading to changes in 
twist, roll, and slide: 

• Minor-groove clashes are avoided by a decrease in local 
twist, 

• The roll angle increases towards the groove that might 
have clashes, 

• The slide of successive purines is increased to increase the 
spatial separation between them, 

• A decrease in propeller twist will allow for higher base pair 
overlap.  

Additional studies analysing increasingly larger databases of 
experimental structures [100] have shown that changes in slide result in 
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alterations in the backbone angle δ, which thus has a higher value for purine 
compared to pyrimidine nucleosides. High propeller twist has been related to 
high twist as a way to reduce water exposure of the hydrophobic bases when 
they are forced to twist. Other correlations have been established between 
twist and roll, slide and roll, between slide, shift and backbone state and 
between propeller twist and slide [101].  

As the amount of data increases more evidence exist that the helix 
parameters associated with a particular dinucleotide may vary depending on 
flanking base sequence. As a consequence, the nearest-neighbour model, 
which was the dominant one for decades, should be abandoned in favour of a 
tetramer level description (there are 136 unique 4-bp sequences) of structural 
DNA features (see Results section). 
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5 DNA	dynamics	and	polymorphism:	It’s	about	TIME	
 

Understanding the basic structural features of DNA and putting forth a 
set of rules that govern them has been a significant achievement since the 
discovery of the double helix over half a century ago. However, with 
simultaneous advances in experimental [7,9] and theoretical methods [12–14], 
as well as a growing understanding of molecular cell biology beyond the 
central dogma [102], it has become imperative to additionally take into 
account the dynamics and flexibility of DNA. The dynamic changes of DNA 
happen in a huge range of time scales, form the yearly time-scale (108–1010 s) 
of aging-related metamorphosis, to the daily time-scale of chromatin 
reorganization along cell cycle, onto the millisecond scale (10-3 s) of local 
nucleobase breathing, all the way to the sub-femtosecond time-scale (<10-15 s) 
of electronic rearrangements. I shall focus here on up-to-the-millisecond time 
scale, where local structural anharmonicity can be captured, but also other 
significant events such as small ligand and protein binding, ion equilibrium 
and even large-scale conformational transitions.  

 

5.1 DNA	Conformational	Transitions.		
Ever since the fifties there had been clues about the highly heterogenic 

nature of DNA structure, as researchers realized that changes in the solvent 
composition could result in very different X-ray diffraction patterns, implying 
medium-dependent conformational transitions in DNA [3,4]. Thus, 
depending on the fluidity of the environment, the pressure, the temperature 
or the salinity, thermal fluctuations will allow the DNA to visit and populate 
several different combinations of substates, giving rise to the major 
conformations (A, B, Z, etc) and several sub-variants (A, A’, C, D, T, BI/BII, 
ZI/ZII, etc). Furthermore, other oligomeric states of DNA, such as the triplex 
or quadruplex can be populated [42,67,70] (see Figure 1.14). However, it is 
only in the last decade that the availability of high resolution X-ray and 
accurate NMR data have revealed DNA polymorphism at the molecular level 
going well beyond the usual image of DNA architecture and strongly 
dependent on sequence contexts. Polymorphic behaviors at the backbone level 
[103,104], but also at the base level [105] were observed through both 
experimental and theoretical techniques. Thus, for B-DNA a specific 
combination of ε and ζ backbone torsions gives raise to a fundamental 
structural polymorphism at the junction of a given base pair step (bps) level 
called BI and BII substates. In general, under physiological conditions the BI 
substate is the thermodynamically preferred one, and was labeled by the 
community as the “canonical” substate present in B-DNA, while the existence 
of the BII conformation depends on the sequence context and perhaps on the 
distortion induced by an external molecule after binding to DNA. BI/BII 
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5.2 Importance	of	the	Solvent	Environment.		
The solvent hull around DNA has long been recognized as an integral 

part of the double helix with sequence-specific and conformation-specific 
interactions that are correlated with changes in the helix structure. The shift 
from the initial view of a sequence-independent delocalized cloud of counter 
ions surrounding the DNA [110] has been triggered by the pioneering work of 
[110] that gave insights from molecular dynamics (MD) simulations. Thus, 
MD simulations have been extensively employed over the years [31,111,112] 
in the study of ion coordination in the grooves or along the backbone of DNA. 
With the increase of high performance computer resources, storage capacity 
and the development of more efficient force fields, simulations achieved 
gradually increasing timescales and provided more complex understanding 
of salt-dependant DNA properties [113,114]. Sequence specificity of ion 
binding appears to go beyond base pair or base pair step levels and to 
contribute significantly to the heterogeneity of the DNA structure (see Figure 
1.15).  

Many of the structural features of the double helix are sensitive to 
sequence specific interactions with cations. Ion penetration in the minor 
groove was shown to modulate the groove width [115]. Dynamic correlations 
between bending events and ion proximity were found [111]. It was proposed 
that conformational transitions are driven by ionic distribution [101] and clear 
evidence of temporal correlation unraveled the key role of cation binding in 
triggering transitions of the backbone structure [31,106].  
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sequence-dependent, atomic resolution flexibility properties beyond the 
nearest neighbor model and the harmonic regime have yet to be documented 
in a comprehensive way.  

Experimental methods – such as circularization experiments, atomic 
force microscopy, optical or magnetic tweezers, and permeation in nanopores 
– generally face a large number of limitations [117] in the determination of 
flexibility and can only obtain low resolutions information.  

An alternative approach to evaluate flexibility is to generate an 
ensemble of structures and use the inverse of the covariance matrix (either in 
Cartesian or helical space) to calculated force constants associated with the 
elastic deformation modes [100]. Data inferred from ensembles of X-Ray or 
NMR determined structures, sorted by the different base pair steps of DNA, 
makes the assumption that variations of the helical properties in the crystals 
correspond to the amplitudes of thermal fluctuations in solution. It is hard to 
justify this assumption. Furthermore, it also relies on the assumption of the 
normal distribution of these properties and that known structures provide a 
dense enough sampling of the accessible conformational space. As discussed 
below, none of these two additional requirements is fulfilled. In this context, 
molecular dynamics simulation can become a source of flexibility parameters 
[118]. 

In particular, the efforts of the Ascona B-DNA (ABC) consortium have 
been very useful in providing information on the conformational properties 
of the 136 unique tetranucleotide sequences [119,120]. What emerges 
unquestionably from systematic database analysis and state-of-the-art 
molecular simulations is that sequence strongly influences the equilibrium 
conformation of DNA through a complex choreography of structural and 
energetic factors, involving often water and counterions (Figure 1.15). 
Average information obtained for the different tetramers can help to project 
the linear sequence of genetic information into a spatial code that governs the 
global organization of the double helix and unravels the functional 
implications of sequence-dependent conformational variability. 

MD simulations have been able to address properly the sequence 
coverage problem, but with results showing that equilibrium distributions of 
helical parameters have severe deviations from normality, it is clear that the 
harmonic approximation implicit to elastic models is inaccurate. Several 
groups have already made significant progress in addressing these problems. 
For instance, Maddocks's group [121] has suggested the use of an alternative 
coordinate system consisting of rigid bases instead of rigid base pairs. 
Moreover, they have reported a new, elegant method to compute local 
stiffness parameters based on fitting the global (rather than local) flexibility. 
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6 Protein-DNA	interactions.	
 

The interaction of regulatory proteins with DNA is essential for the 
faithful completion of a large number of biological transactions ranging from 
gene expression regulation, to DNA replication, repair and packaging. For 
example, certain genes must be expressed at a precise time during 
development in a particular type of cell, or perhaps at one particular time 
during the cell cycle. Other genes must be expressed continually. Regulatory 
proteins must have the ability to bind a short unique base sequence out of the 
maybe billions of bases in the genome. Other proteins involved in major 
reorganization of DNA structure, such as histones or polymerases, must bind 
DNA in a sequence-independent fashion. The recognition of the DNA 
sequence is a very complex process, and it is not possible to articulate a 
simple code to define DNA sequence recognition [108], but there are some 
patterns that have been observed and some general conclusions that have 
been drawn based on both structure-determination experiments and MD 
studies.  

Although still far from complete, the database of protein-DNA 
structures is growing considerably, and it is strongly backed-up by 
increasingly reliable theoretical models (As of March 2018, the NDB had 3434 
protein-DNA structures, whereas only ~20 years before that, in 1997, there 
were just 241 structures). As a first division, the recognition of a DNA 
molecule by a small molecule or protein can be either highly specific, solely 
recognizing a defined sequence within a gene or even a genome, or 
nonspecific, without significant preferential binding to a particular nucleotide 
sequence.  

 

6.1 Protein-DNA	recognition	mechanisms	
Nonspecific protein-DNA binding has been shown to be widespread 

across genomes of different organisms [122]. The notion of nonspecific 
protein-DNA binding can be broadly described by two key, related 
mechanisms [123]: (i) the overall electrostatic attraction between protein 
binders and DNA, and (ii) the overall geometry of DNA . The first mechanism 
implies the binding of cationic residues of the protein to either the phosphates 
or the broad negative electrostatic potential inside the grooves, while the 
second implies that the overall helical arrangement of DNA generates a 
template for unspecific recognition of proteins displaying a complementary 
helical arrangement. 
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Proteins recognize specific DNA sequences by two strategies commonly 
referred to as a ‘‘direct’’ and ‘‘indirect’’ readout. In a direct readout the DNA 
sequence is read through specific contacts between amino acid side-chains 
and base functional groups exposed at the protein–DNA interface. In an 
indirect readout, proteins recognize DNA sequences through sequence-
dependent variations in flexibility and structural parameters such as the 
groove width, the twist between base pairs, or the backbone conformation.  

Direct read-out. Direct reading of a DNA sequence generally occurs via 
the hydrogen-bonding edges of the bases [124], either by small molecules that 
can insert themselves in the accessible volume or by proteins presenting 
features that enable them to form contacts through either major or minor 
grooves. The unique arrangement of hydrogen bond donor and acceptor sites 
for each dinucleotide within the grooves provide the specificity utilized by 
proteins to discriminate specific DNA sequences and are inherently 
directional. There are two hydrogen bond acceptors and one donor groups on 
the major groove surface of all four dinucleotide pairs (A·T, T·A, G·C, C·G; 
Figure 1.16). In addition, there is a methyl group at the C5 position of thymine 
that can participate in van der Waals interactions. These features of the B-
DNA major groove make it both richer in potential contacts and in its ability 
to facilitate discrimination between different DNA sequences, which is 
essential for specific protein binding. Discrimination is achieved on the basis 
of differences in hydrogen bonding pattern between base pairs. C·G Watson-
Crick base pair has a distinct pattern from that for the reversed G·C base pair. 
The A·T and T·A base pairs have identical major groove donor/acceptor 
patterns, but the presence of the methyl group on thymine introduces an 
asymmetry in the groove that can enable effective discrimination between 
these two base-pair sequences. Thus the major groove is generally the 
preferred site of direct information readout. On the contrary, patterns of 
hydrogen bonding in the minor grooves of each pair of sequences are 
symmetric (the N2 atom of G provides a hydrogen bond donor at the center 
of the minor groove for both C·G and G·C dinucleotide pairs), so 
discrimination on this basis alone by molecules entering the minor groove is 
not straightforward. Nonetheless, the minor groove is an important target for 
some regulatory and structural proteins, especially those that are able to 
deform DNA, expanding the minor groove.  

Sequence selectivity can also occur at the dinucleotide level, by the so-
called bidentate hydrogen-bonding pattern recognition [124] of two 
consecutive bases on the same strand. This feature is important, since it 
surpasses a one-to-one recognition code for protein-DNA direct readout 
interactions. Finally, it is worth to note that recognition is not restricted to the 
Watson-Crick base edges. There are several structures of complexes [20,40] 
where protein binding occurs with the transition of bases to a syn- 
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conformation, and therefore a Hoogsteen base-pairing mode, exposing new 
functional groups to protein interaction. 

	
Figure	16	Base	readout	in	the	major	and	minor	groove:	Functional	groups	of	the	DNA	base	pairs	in	
the	major	 and	minor	DNA	 groove.	 .	Hydrogen	bond	donors	 in	 blue,	 acceptors	 in	 red	 and	 thymine	
methyl	group	in	green	(taken	from	[125]) 

Indirect read-out. Indirect sequence readout by definition involves 
interaction with structural elements of DNA other than the base-pair 
hydrogen bonds, and is related to the ability of the DNA to adopt the 
“bioactive conformation” required to interact with the target protein. One 
major feature that proteins are able to recognize, and thus display sequence 
selectivity towards, is the size of the DNA grooves. So in this case accessibility 
is a consequence of groove-width variations, which are themselves sequence-
dependent in both static and dynamic ways (see Figure 1.17-A). It has been 
established from the large number of oligonucleotide crystal structures that 
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A/T-rich minor grooves tend to be narrower than average; their widths 
depend both on the length and the nature of the A/T sequence (ApT versus 
TpA, for example). However, these trends are by no means absolute. A more 
realistic view is that A/T regions are more flexible than G/C ones, and that 
particular features such as a highly ordered spine of hydration and 
preferential ion binding, often result in narrowed minor grooves in A-tracts 
[108,114,115,124]. Several sequence-dependent structural features of the 
grooves are sensed by proteins through a negative indirect readout process. 
These include the shallow minor groove in a G/C rich region, caused by the 
bulky exocyclic amino group at the 2-position of guanine or the methyl group 
of thymine in the major groove, both of which destabilize protein binding by 
steric clashes. As a result, proteins will then bind more readily to other 
regions. 



$("

"
!"#$%&'(V'_1&*/%-?/4/"*'Q-/&2/"41'?$%.4*&?'.-%'P:C'&4*+'<4?&'@4"%'/6@&'42;'P5C'"2'/+&',"2-%'42;',4S-%'
#%--0&?'-.':Z'42;'NZ/%4*/?A!

H(%! ,)0?,-3%! ;7->#6%+! +%>%7).! 9%0()3#+9+! $-7! #36#7%0*! 7%)6-5*8!
#3>-.>#3/!>%74!-$*%3!)!$#3%C*53#3/!-$!*(%!/7-->%!6#9%3+#-3+!*()*!).*%7!/%3%7).!
;7-*%#3CMEB! ,#36#3/! .)36+0);%! RSJK8SI_T<! H(%7%! )7%! ).+-! +#/3#$#0)3*!
6#$$%7%30%+! #3!%.%0*7-3#0!0()7)0*%7!,%*'%%3!BhH!)36!ehX!,)+%!;)#7+8!'#*(! *(%!
.)**%7!,%#3/!9-7%!%.%0*7-3C7#0(!DU#/57%!S<S`CAF<!l3!-3%!()368!*(#+!0)5+%+!*()*!
*(%! >)7#-5+! 6#350.%-*#6%+! ()>%! 6#$$%7%3*! +*)0?#3/! +*7%3/*(+! D'#*(! )! /%3%7).!
*%36%304!-$!.%++!+*)0?#3/!,%*'%%3!n;Z!+*%;+!*()3!Z;n!-3%+!RWW8SI`TF8!'(#0(!
0)3!9-65.)*%! *(%! )00%++#,#.#*4! )36! )$$#3#*4! -$! ;.)3)7! #3*%70).)*-7! 9-.%05.)7!
/7-5;+<! l3! *(%! -*(%7! ()368! 6#$$%7%3*! +%G5%30%+! ;7-650%! )! 0()7)0*%7#+*#0!
%.%0*7#0! $#%.6! )36! ;-*%3*#).! #3! *(%#7! >#0#3#*4! RSIaT8! '(#0(! #9;)0*! 9)#3.4! *(%!
/7-->%! /%3%7)*#3/! )! +*750*57%C6%;%36%3*! #3*%7)0*#-3! $#3/%7;7#3*! *()*! #+!



38	 	
	

recognized by proteins (Figure 1.17).  

Despite the existence of cases where binding can be unequivocally 
assigned to the direct or indirect paradigms, in the majority of cases both 
direct and indirect readouts work in a complementary way for specific 
protein binding [129]. Most DNA binding proteins are designed to recognize 
a particular shape or flexibility of the double helix in addition to a direct 
readout of individual bases in the recognition site.  

 

6.2 Dynamic	aspects	of	DNA-protein	binding.	
Dynamic aspects of protein-DNA interactions can be broadly separated 

in two types: the dynamics of the binding process itself and the dynamics of 
the complex after its formation.  

The binding process. Experimental and theoretical evidences support 
the same model for the DNA recognition process, where the protein first 
binds non-specifically to DNA, and then it diffuses along the double helix, 
rapidly searching its sequence for the presence of binding sites [130]. The 
search process has been mainly ascribed to the formation of transient salt 
bridges between charged functional groups of amino acids and backbone 
atoms in the DNA. The protein typically first recognizes the local DNA shape 
and flexibility of its binding site, and only afterwards forms direct stable 
contacts to base or backbone atoms. Among factors governing conformational 
recognition in the first step, there have been reported differences in the 
propensity of the DNA structure to occupy BI or BII substates, specific groove 
widths, bending of the helical axis and other sequence-dependent helical 
parameters [23,100,103,108]. These effects can take place in a sequential way, 
with faster time scales for recognition of backbone states, followed by changes 
in helical parameters, then groove widening and bending. 

Once it reaches its actual binding site, the protein has to be stabilized 
into the complex form with significantly higher affinity than at similar 
sequences. One hypothesis is that proteins preferentially bind to their 
recognition sites because of the specific deformability properties that make 
accessible the structure of the protein-bound form [131,132]. The concept of 
proteins taking advantage of the sequence-specific flexibility pattern of their 
DNA binding motifs is called structural adaption, which explains the large 
conformational strains that some proteins have been experimentally observed 
to impose on their DNA binding partners [100].  

Complex Dynamics. After binding, it turns out that the protein-DNA 
complex is also not a collapsed configurational ensemble. As opposed to 
crystallographic studies, novel solution state NMR experiments can capture 
fast motions of flexible residues and several studies have shown that within 
specific complexes direct interactions are regularly broken and remade 
[133,134]. Several novel MD simulation studies on the microsecond timescale 
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have confirmed this result, depicting a protein-DNA interface that undergoes 
significant dynamics [135–137]. Amino acid side chains often flip between 
hydrogen bonding partners, generating a number of different conformational 
substates that until now have probably been disregarded because of being 
averaged out in experimental data. 

 

6.3 Energetics	of	protein-DNA	binding	
Separating the free energy into its enthalpic and entropic terms and 

comparing between a number of theoretical studies [138,139], it becomes clear 
that their relationship is compensatory in nature, and both proportion and 
sign can vary among complexes. Breaking down further the components of 
the free energy of protein binding, it might be useful to look separately at 
relative contributions of electrostatics (intramolecular and intermolecular), 
energetics of shape complementarity (packing) as reflected in van der Waals 
energies, solvent release, and reorganization on complex formation including 
the hydrophobic effect, deformation expense and internal entropies.  

Electrostatics has a direct contribution due to the protein interacting 
with DNA, but an indirect contribution due to the relative effects of solvent 
interaction in the initial and final-state species. The net electrostatic 
contribution is therefore case-specific, as compensations between direct 
electrostatic interactions (typically favorable) and desolvation electrostatics 
(typically unfavorable) occur in all cases. 

Similarly, van der Waals terms can be split into direct interactions 
between the protein and the DNA, which is always favorable, and the van der 
Waals component of desolvation, which is unfavorable. Ion effects are also 
double edged, with the decrease in interaction strength of the bound ions due 
to screening effects, being compensated at varying degrees by the entropic 
contributions of ion release. There is a general agreement that water release is 
found to favor binding. Entropy effects of protein and DNA deformation, 
resulting from the loss of translational, rotational, and vibrational internal 
degrees of freedom upon complex formation, are generally considered to be 
unfavorable to binding. Evidently, protein/DNA deformation incurs penalties 
to the enthalpic energy terms as well when distortions are large. 

Protein–DNA interactions are system-specific with regards to the 
contribution of these competing forces. Moreover, their precise balance is key 
to calibrating specificity, even in systems where the total binding free energy 
remains in a narrow interval.  
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7 Theoretical	models	for	the	study	of	nucleic	acids:	A	
modeling	hierarchy.	

The study of DNA time-dependent properties covers a broad range of 
different scales, from sub-Angstrom details of the electronic distributions of 
nucleobases, to the mechanical properties of millimeter-long chromatin fibers. 
Its very nature makes it extremely challenging for any single theoretical 
framework to address DNA study in a holistic manner, from fine details of 
the electronic distributions at a given DNA step, to large chromatin 
rearrangements occurring throughout the cell cycle. The study of each of 
these properties is the focus of independent theoretical approaches, although 
whenever possible and/or needed, integrative hybrid methods can be 
employed (Figure 1.18). In a nutshell, the theoretical methods applied to the 
study of nucleic acids include: electronic or quantum mechanical (QM) 
models, atomistic molecular dynamics (MD), coarse-grained (CG) and 
mesoscopic models. 

  

	
Figure	 18	 Techniques	 used	 to	 study	DNA	 systems	 depicted	with	 their	 representative	 system	 size,	
time	scale	and	resolution	(taken	from	[14]) 

 

7.1 Electronic	models.		
QM simulations of small chemical systems provide the highest level of 

detail and accuracy of all theoretical frameworks and are habitually being 
used in the study of biological systems. For example, QM based methods 
provide structural information in excellent agreement with experiment, match 
experimental barrier heights for chemical reactions, and provide chemically 
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accurate interaction energies for hydrogen-bonded or dispersive systems. 
However, their high computational cost limits their use to very small systems 
and introduces the necessity of using several approximations to simplify the 
complexity of calculations even for small (< 100 atoms) systems. Most 
commonly simplifications start with the Born-Oppenheimer approximation, 
disconnecting nuclei (treated as classical particles) and electron movements. 
The inter-correlation between electron movements can be represented in an 
average way, like Hartree-Fock approximation (HF), or in a more accurate 
way, such in the post-HF calculations like Moller-Plesset (commonly to the 
second order, MP2), Configuration Interaction (CI), Coupled Cluster (CC) or 
Complete Active Space Multiconfigurational SCF (CASSCF) method. More 
accurate than HF, but much less computationally demanding than the others, 
are the DFT (density functional theory) approaches, which are in fact the most 
widely used in biological applications [140–142]. 

QM methods are strictly necessary to study processes involving changes 
in electronic structure, including catalytic, photophysical or spectroscopic 
properties, but cannot be use when extensive sampling is requiredIn cases 
where QM description and extensive sampling is required one practical 
solution is to use combined quantum mechanical and efficient molecular 
mechanical methods (QM/MM). The idea was originally proposed by Warshel 
& Levitt [143] and later adopted by many other authors. It combines a QM 
description of the chemically active region with a MM representation for the 
surroundings, providing a perfect theoretical framework for systems where 
the region requiring QM level of theory can be precisely localized. 

Both QM and QM/MM methods have already had a major impact on the 
study of biological systems, by providing invaluable information at the 
electronic level, which can further be used to parametrize force field 
representations of biological macromolecules [144,145], but are not efficient to 
study global properties of DNA in physiological environments, where 
electronic effects requiring QM description are rare and large sampling are 
required.  

 

7.2 Classical	atomistic	models.		
Classical MD simulations can be employed for problems where the 

electronic degrees of freedom can be ignored and the molecule can be 
represented by an additive energy term of atomic interactions, which 
integrated through Newton’s laws of motion gives the time evolution of the 
system. Energy terms consist of harmonic potentials for bonded terms, and 
one or more expression (commonly Lennard–Jones and Coulomb potentials) 
to reproduce non-bonded interactions [146]. The different terms of the 
potential energy are dependent on empirical parameters, adjusted to 
reproduce experimental observables or high-level QM calculations. This 
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severe simplification allows dramatic acceleration in the calculations which 
can be now done on systems containing even millions of atoms, and therefore 
increasing their similarity to real processes.    

It took however a fair amount of time until classical approaches were 
successfully applied and then widely used in theoretical studies of DNA, 
compared to their use in protein studies for example, which has generated a 
gap between the protein- and the DNA- MD simulation worlds. Thus, the first 
atomistic-level simulations of a DNA duplex were reported in 1983 by Levitt’s 
[147] and Karplus’s [148] groups and involved short trajectories (less than 100 
ps), while similar simulations for proteins appeared in 1976. Clearly, the 
heavily charged polymer of DNA is much more difficult to simulate than 
globular proteins. 

Since the middle nineties, the development of new force-fields and 
especially the implementation of efficient methods to treat long-range 
electrostatic effects opened a new era where MD simulations were capable to 
explore reliable conformational states of nucleic acids in a time scale (10-100 
ns) which approached the range of biological importance. Nowadays, routine 
simulations of DNA in physiological conditions go beyond the microsecond 
time scale [12,13] and it has been hypothesized that that motions in the 1µs to 
1ms range are effectively absent [149], which implies that MD simulations can 
at the moment capture all biological processes of DNA up to the millisecond.  

Evidently, apart from the issue of efficient software and advancing 
computer capabilities, the core issue of improving MD simulations accuracy is 
the force field. As efforts in software and hardware development allowed the 
extension of the size of the simulated models and the length of the 
trajectories, errors in the different generations of force fields have been 
gradually detected. Force fields are thus constantly either being refined to 
include more terms (such as polarization [150,151]) or corrected to better fit 
known quantities [152,153]. Overall, with an impressive tapestry of aspects of 
nucleic acid structure, dynamics and interactions to characterize and various 
approaches, atomistic simulations have had an important impact on our 
understanding of biological processes involving DNA. More details on MD 
simulations, as well as the state-of-the-art force field developments and their 
application for nucleic acids will be given in the following chapter. 

 

7.3 Coarse-grained	models.		
It is often desirable to further reduce the complexity of the system in 

order to achieve even longer time scales and to model for example chromatin-
level dynamics. Coarse grain (CG) is an ambiguous term used to label a family 
of models, which allow such a reduction in complexity by simplifying the 
representation of the model and/or the complexity of the potential energy 
functional. This can be done by representing chemical groups or even entire 
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residues as single interacting centers (beads or grains), which decreases the 
number of pairwise interactions in the calculations of the potential energies or 
forces. Additionally, the high frequency vibrations are removed from the 
system, smoothing the potential energy surface, and allowing one to use a 
larger simulation time step. Therefore, the CG procedure should be 
appropriate to simulate the nucleic acid dynamical problems that occur on 
large timescales and/or in large size systems (thousands of base-pairs). For 
DNA, depending on the length scale of interest, quite different resolutions of 
CG modeling can be applied [14,154–156]. In models that aim to preserve base 
pairing interactions, the number of beads per nucleotide varies from 3 to as 
much as 8 beads (particle-based CG models), whereas other methods work in 
internal helical coordinates and use a rigid base representation, where the 
ground state and the stiffness matrixes are taken from MD simulations. When 
particle-based CG models are used, the beads are chosen in such a way as to 
reproduce the position and connectivity existing between the backbone, the 
sugar puckering and the base, as well as hydrogen bonds between bases. The 
force fields employed in these models can be analogous to those of MD 
simulations, or simplified by introducing statistical biases.  

Regardless of the approach used to derive the force-field, one of the 
difficulties specific to the DNA coarse graining is the correct handling of long-
range electrostatics, something that is crucial to correctly represent the 
densely packed electronegative charges of DNA [157]. Most models 
incorporate electrostatics implicitly, using Langevin dynamics for example 
and treat the solvent as a continuum, but some assign partial charges to the 
DNA beads and formalize their interaction with the ionic environment in a 
Debye–Hückel approach [157]. Moreover, some explicit models for water and 
ions have been developed to work specifically with CG models [158].  

 

7.4 Mesoscopic	models.		
CG methods allow us to study long DNA segments, but are unable to 

cross the gap in time scales between DNA fiber dynamics and chromatin 
organization. Given the DNA’s polymeric nature it is very attractive to study 
large scale DNA dynamics occurring in long DNA fragments through 
mathematical models that take advantage of the restraints imposed by the 
helical fiber. 

The early mesoscopic models of DNA typically ignored the sequence-
dependent structure of the double helix and fine structural details, such as 
bending anisotropy or the correlation between bending and twisting. The 
elastic rod model [159], based on Kirchhoff elastic rod model, represents DNA 
by its average macroscopic properties. The model has been used in many 
studies involving long sequences of DNA, such as DNA loops [160], 
supercoiled DNAs [161] or DNA mini-circles [162]. However, it only holds for 
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sequences shorter than the persistence length (around 156 bp). For semi-
flexible polymers of lengths several orders of magnitude higher than their 
persistence length, the worm-like chain model [163,164] has been developed 
and traditionally used to characterize the average elastic properties of long 
sequences of DNA [165]. 

More recently, with the development of highly accurate atomistic 
simulation methods as well as the advances made in a number of 
experimental techniques, the mesoscopic models have adopted one of two 
methodologies for their refinement: either bottom-up or top-down (although 
many times a mix of the two is the more reliable approach). Bottom-up 
models generally rely upon atomistic MD simulations on small duplexes from 
which DNA properties are extracted and applied to the study of entire 
chromosomes. In the top-down models the chromatin structure is derived by 
implementing experimental restraints coming from chromosome 
conformation capture techniques (such as Hi-C) into a simple model of the 
chromatin fiber. Each of the methods has its advantages and limitations and 
are used depending on the interest and bimolecular system. For better view 
on broad scale of computational methods, the reader is advised to look into 
[14,156,166]. 

 

7.5 Bioinformatics	approaches	
In the case or RNA, where experimental structure determination proves 

to be strenuous and time-consuming, not to mention the fact that high-
resolution methods tend to bias the database towards similar and highly 
ordered structures [96], non ab-initio modeling methods cannot be employed 
before an accurate determination of a close-to-equilibrium starting structure, 
which can be extremely valuable for understanding the molecular 
mechanisms behind function [167,168].  

The past decade has seen remarkable advances in the development of a 
new generation of RNA folding theories and models, but we are still far from 
a consensus scalable model. The prediction accuracy drops significantly for 
medium (50–100 nucleotides) to large (longer than 100 nucleotides) 
structures, even with the input from experimental data (101). After almost 
two decades of advances in computer models for RNA folding, we are now at 
the cusp of reliable predictions of large RNA 3D structures [169,170]. The 
biggest challenges to accurate prediction are structures with multi-branched 
loops, noncanonical interactions, and long-range tertiary contacts. There are 
several notable approaches to the de-novo RNA folding problem (see Figure 
1.19). 

Comparative or homology modeling is based on the empirical observation 
that evolutionarily related macromolecules usually retain similar 3D structure 
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generating 3D RNA architectures from secondary structure elements has been 
approached in several different ways [174–176]. It is worth-emphasizing that 
the hierarchical folding approaches allow very easily the implementation of 
'cheap' experimental data such as SHAPE, DMS and others (see review by 
[177]), which will be the real first step in obtaining comparable results with X-
Ray, NMR or Cryo-EM techniques. 

An altogether different school of thought has emerged separately and its 
motivation was to facilitate the unbiased simulation of the dynamics of an 
RNA molecule, which was rendered impossible by the discretization of the 
conformational space in fragment assembly methods. The tools developed for 
this purpose rely on very local structural features (from 1 to 3 nucleotides) to 
build a huge ensemble of possible conformations and then find the lowest 
energy conformation for a given RNA sequence. The energy function can 
have several forms and if designed properly can give very accurate results, 
but at the moment the high complexity and dimensionality of these models 
restricts them to rather small RNA structures. They still need to rely on 
knowledge-based terms for the potential, but these are made highly versatile 
by modeling the interdependency between the local conformations of only 
two or three adjacent nucleotides. Although these methods solve the 
uncertainty of accurate coverage of structural fragments in the solved RNA 
structure database, which currently contains only a limited number of non-
redundant structures, their performance is still hindered by the need to 
sample a huge conformational space, even with the locally imposed 
restrictions. 
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OBJECTIVES  
 
The main objective of this thesis is to offer a comprehensive and 

consensual view of the structural and dynamic properties of DNA under 
physiological conditions. The works presented here have gradually built on 
one another, with results slowly gathering up to form a truly convoluted 
fresco of interdependent mechanisms. The order in which the results are 
presented is not always chronological. In the process of a PhD thesis there are 
many situations when one is stuck or cannot see the forest for the trees, but in 
retrospective, analyzing the final outcome, it is easy to build a succession of 
gradual achievements. Below I present the logical build-up of objectives, as 
seen in the aftermath of a PhD thesis. 

 
o Benchmarking of the parmbsc1 state-of-the-art DNA force field by 

testing it on a large variety of DNA systems under various conditions. 
This is clearly a prerequisite for using MD simulations in the study of 
B-DNA with confidence. Trajectories have to be proven to sample the 
B-DNA conformational basin thoroughly and extensively.  

o Explaining B-DNA polymorphisms is likely to be the key for 
elucidating the puzzle of its intricate sequence-dependent mechanical 
properties that ultimately govern most of the biologically relevant 
functions of the double helix.    

o Developing an exhaustive set of rules that govern B-DNA sequence-
effects at the tetranucleotide level. We combine the new parmBSC1 
force-field and the latest knowledge in the area of polymorphisms in 
the helical space, to bring a complete description and explanation at 
the tetranucleotide level of the different base, base pair, and base pair 
step polymorphisms, and their interconnections. 

o Deciphering the higher-than-tetramer effects on the conformational 
landscape of the B-DNA, in order to be aware of their contribution to 
DNA dynamics. We aim to figure out the strength, relevance and 
ultimately the mechanisms of long-range conformational modulation 
by specific sequence patterns. 

o Applying knowledge of intrinsic DNA properties to the study of 
protein-DNA recognition and cooperative protein binding to the 
DNA. We finally set out to uncover how long-range communication 
through the DNA, as demonstrated from sequence effects, impact on 
its role in protein-DNA interactions. 
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o Sketching out a compendium of computational approaches for the 

modeling of RNA, which forces researchers nowadays to look beyond 
common classical or quantum simulation schemes. We aim to 
summarize scope and challenge of the most recent approaches created 
to characterize the large conformational landscape of RNA, which 
should help guide the development of a new generation of methods 
able to make quantitative predictions on the structure and physical 
properties of RNA. 
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CHAPTER II | Classical Atomistic Methods in Computer Simulations 
of Nucleic Acids 

 

1 Molecular	Dynamics	Algorithms	
 

Scientific investigation involves both observation and comprehension, 
where observation amounts to setting up an experiment to obtain information 
regarding a specifically formulated question and comprehension is usually 
achieved by developing theoretical models to describe the observed 
behaviors. Computer simulation is a third way of doing science, different 
from both experiment and theory. It is in fact a numerical experiment being 
run in the virtual laboratory of a computer’s processing unit. It can provide in 
the same time new observational data, facilitate understanding of the 
contributing factors for the ensemble properties and it additionally has 
predictive power in a large number of problems. Simulation is, as a 
consequence, part of a feedback loop, and interpretation of its results has 
value only in a context where a theoretically plausible basic model has been 
successfully employed to reproduce and predict experimental observation. 

 Understanding matter at the microscopic level can be reduced to a 
classical many-body problem that can be treated, at least conceptually, within 
the framework of statistical mechanics. This approach provides a formal 
description – based on the partition function – of a system in equilibrium. 
However, with a few notable exceptions, there are no quantitative answers 
unless severe approximations are introduced in sampling, in the definition of 
the Hamiltonian and in the size of the system. Calculating the partition 
function and associated thermodynamic and equilibrium properties for a 
general many-body potential that includes nonlinear interactions becomes an 
insurmountable task if only analytical techniques are employed. Molecular 
dynamics (MD) simulations are an attempt to avoid much of the 
approximation normally associated with analytical theory, replacing it by a 
numerical solution.  

There are three principal aspects to a MD calculation: 1) the model 
describing molecular interactions; 2) the calculation of energies and forces 
from the model, which should be done accurately and efficiently; 3) the 
algorithm used to integrate the equations of motion. In the simplest form of 
MD, the trajectories of atoms and molecules are determined by numerically 
solving Newton's equations of motion for a system of interacting particles [1–
3]. By default equilibrium MD corresponds to the microcanonical ensemble of 
statistical mechanics (constant total energy), but by coupling the system with 
an external heat or pressure environment (i.e. by coupling simulations to 
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• bond stretching The standard way to approximate the potential energy 
for a covalent bond in a molecule is to use a Hooke's law term, thus 
representing the bond as a spring linking the two atoms. The energy potential 
well is parabolic in this approximation, so it only holds for small fluctuations 
around the equilibrium value: 

 !!"#$ = !! ∙ ! − !! !

!"#$%
 (2.1) 

which states that the force acting between particles is proportional to the 
force constant kr and the square relative distance (r-r_0 )^2, from the 
equilibrium position r_0. 

• bond angle bending is the fluctuation of the angle between two 
consecutive bonds (defined by three atoms). As bond angles are found 
(experimentally and theoretically) to vary around a single value it is sufficient 
in most applications to use a harmonic representation (in a similar manner to 
the bond potential) using Hooke’s law as: 

 !!"!"# = !! ∙ ! − !! !

!"#$%
 (2.2) 

where !! is the force constant acting on the relative angle ! − !! with a 
given equilibrium value !!.  

The equilibrium values and force constants (for both bond and angle 
terms) can be obtained from vibrational analysis of the molecule 
(experimental or theoretical). 

• torsion angle twisting around a bond of a dihedral ω (defined by four 
adjacent atoms) cannot be described by a harmonic term, because of its 
periodicity and low internal rotation barriers. The form of the torsional 
potential term is also extremely versatile, depending on the atoms forming it, 
and the chosen functional has to reflect this fact.  It is most common to model 
the torsional interaction using a Fourier series: 

 !!"! =
!!"!
2 ∙ 1− cos ! ∙ ! − !

!

!!!!"!!"#$%&
 (2.3) 

where !!"! represents the torsional barrier, n the periodicity (when 
modeling organic compounds between 1 and 4 terms are generally used in 
the series) and ! the phase angle. Closely related to the torsional interaction 
are the out-of-plane distortions, or improper dihedral angles. They can be 
accounted for in force fields in one of two main ways, either treated 
harmonically in a similar way to bending terms or using a two-fold Fourier 
term. 

Non-bonded interactions act practically between all pairs of atoms in the 
system, both intra- and inter-molecular. Force fields usually divide non-
bonded interactions in two contributions: 
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• The electrostatic interaction arises due to distribution of charge in a 
molecule, which can be modeled by placing point charges on each particle 
and evaluating the interaction between each pair of atoms i and j by a 
Coulomb potential: 

 !!"!# =
1
4!"

!,!
∙ !!!!!!"

 (2.4) 

where ε is the dielectric constant of the medium and !!" the distance 
between two charges !! and !!, associated to particles i and j. 

• The van der Waals interaction consists of the residual attractive and 
repulsive forces that count for dispersion interaction and Pauli repulsion. A 
good approximation of van der Waals interactions is Lennard-Jones potential: 

 !!"# = !∗ !!
!!"

!"
− !!

!!"

!

!,!
 (2.5) 

where ε* is the depth of the potential well, !! is the distance at which the 
potential it’s minimum for the given pair i and j and !!"  is the distance 
between particle i and j. In the Lennard-Jones potential the r-12 term accounts 
for the short distance repulsion, while r-6 term is used to represent dispersion 
interactions. The r-6 dependence of the attractive term arises from induced 
dipole-induced dipole dispersive attraction,  averaged this over all 
orientations. There are no physical arguments for choosing the repulsive term 
to vary as r-12: this arises due to computational expediency. In fact, alternative 
algorithms using exponential functions of other polynomial expansions have 
been suggested in the literature [4–6].  

The nonbonded terms of the ubiquitous fixed-charge model 
approximations do not explicitly include polarizability, the process by which 
the charge distribution in an atom or molecule changes in response to its 
environment. Polarization can be introduced at the classical level by using 
induced dipoles, fluctuating charges, or Drude oscilators, but in most cases it 
is included implicitly by assigning partial atomic charges that overestimate 
molecular dipoles [7,8], simulating then the increase in dipole interactions 
produced by polarization. 

 

1.2 Evaluation	of	Energies	and	Forces.		
The stretching bending and torsion terms are straightforward and 

computationally inexpensive to evaluate. By far, the most expensive part of 
the calculation is evaluating the nonbonded (nb) forces and energies given by 
the Lennard-Jones and Coulomb terms. Because of the non-local nature of 
non-bonded interactions, they involve all particles in the system, i.e. the cost 
of calculation increases with the second power of the number of particles. The 
problem is magnified as periodic boundary conditions are used to simulate an 
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1.3 Numerical	Integrators.		
The Verlet Integrator (or variants of it such as Leap-Frog or velocity 

Verlet), introduced by in 1967 [9], is still the most popular algorithm for 
solving Newton’s equations of motions of a simulated system. Verlet and any 
other numerical methods for integration are symplectic and time-reversible. 
Sympletic means that when the methods are guaranteed to conserve total 
energy (more correctly, the Hamiltonian) in conservative simulation 
problems. Time-reversibility is a fundamental symmetry of Hamilton’s 
equations that should be preserved by a numerical integrator.  

Starting from a given form of the potential energy together with a set of 
initial conditions (including atomic positions and velocities), the time 
evolution of the system can be obtained by iterative numerical integration. 
First, the forces acting on each particle can be computed as the negative 
gradient of its potential energy U: 

 ! ! = −∇! !  (2.6) 

Next, making use of Newton’s equations of motion  

 ! ! = !! ! = ! !!!
!!!  (2.7) 

and expressing a particle’s position iteratively in increments of time step 
Δt, the position at time t+Δt is obtained using a Taylor series expansion in 
terms of its position, velocity, and acceleration at time t according to: 

 ! ! + ∆! = ! ! + ! ! ∆! + ! !
2! ∆!! + !

!!
!!!

∆!!
3! + ∅ ∆!!  (2.8) 

where the expansion goes up to the second order derivative in Δt. The 
Verlet algorithm can then generate atomic positions for an arbitrary length of 
time at each time step with: 

 ! ! + ∆! = 2! ! − ! ! − ∆! + ! !
! ∆!! + ∅ ∆!!  (2.9) 

If needed, the velocities can be constructed at any point in the trajectory 
via 

 ! ! = ! !!∆! !! !!∆!
!∆! + ∅ ∆!!  (2.10) 

More elegantly, the velocity Verlet algorithm explicitly evolves the 
velocities along with the positions, thus fully defining each time point in the 
phase space.  

 ! ! + ∆! = ! ! + ! ! ∆! + ! !
!! ∆! (2.11) 

   

 ! ! + ∆! = ! ! + ! ! + ∆! + ! !
2!2∆! ∆! (2.12) 

Similarly, the ‘Leap-Frog’ algorithm generates phase space vectors 
(composed of both positions and velocities) at discrete times, but coordinates 
and velocities are evaluated at different times, a detail that gave it its name. 
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So how important is the initial state for an iterative numeric integrator? 
Theoretically, it is of no importance whatsoever as, given an infinite amount 
of time, the system would be able to visit all configurations on the constant 
energy hypersurface (ergodicity), and accordingly the results of a simulation 
of adequate duration are insensitive to the initial state, so that any convenient 
initial state is allowed. However, in real systems this is not usually the case 
and local barriers in potential energy often appear, even when the total 
energy is conserved, which means that when using finite sampling times, 
original coordinates are important to guarantee that our simulation is 
sampling reliable regions of the conformational space. For complex systems 
such as biological macromolecules, it is usually necessary to obtain initial 
coordinates from an experimental X-ray or NMR structure. Once initial 
coordinates are specified, the initial velocities are typically assigned randomly 
from the Maxwell-Boltzmann distribution, taking care to ensure that they are 
consistent with any constraints imposed on the system (such as temperature). 

The integration time step (∆t) is chosen to be smaller than the fastest 
motion in the system, which for biological system is the bond stretching of a 
hydrogen atom, happening on below the femtosecond timescale. Increasing 
the time step beyond this number potentially makes the simulation unstable. 
However, in order to speed up calculations, methods for removing or slowing 
down the highest-frequency motions of the macromolecule under study have 
been developed, that can therefore afford a longer time step. The use of such 
methods introduces, apart from simulation stability issues, also some formal 
issues of preserving an integration scheme that gives exact solutions, which 
are addressed within these algorithms.  

The most common of these constraining methods consist of the freezing 
of bonds involving hydrogen by means of special algorithms, most notably 
SHAKE [11] (used in AMBER simulation packages), LINCS [12] (used in 
GROMACS package) or RATTLE [12] (used in NAMD package), which allow 
the increase of integration steps by up to a factor of 2 (2 femtoseconds). This is 
done by imposing a set of holonomic constraints, that is, constraints that 
depend only on the positions of the particles involved. The 2-fs limit is due to 
limitations in the algorithms themselves. The constraint conditions have to be 
exactly satisfied within a particular numerical integration scheme, a feat 
formally achieved by computing at each step a set of Lagrange multipliers for 
enforcing the constraints.  

A different approach involves slowing down the high frequency 
vibrations by repartitioning the mass of heavy atoms into the bonded 
hydrogens, a method called hydrogen mass repartitioning (HMR). The idea of 
changing atomic masses in order to speed up MD simulations can be traced 
back to the 1970s [12], but has only more recently been implemented in 
popular MD simulation software (GROMACS, NAMD, AMBER or ACEMD)  
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[13]. The main idea behind the method is that equilibrium thermodynamic 
averages of observables are not dependent on the exact mass distribution of 
the system. This is due to the fact that in classical MD force fields without 
magnetic terms, the Hamiltonian is separable in position and momentum. 
Importantly, the total mass of the system should be kept constant when 
repartitioning, in order to achieve a true speed up of the simulation, as shown 
in the Feenstra et al. seminal study [14]. Some authors have used this type of 
methods to perform simulations with a 4 fs time scale, increasing the 
throughput of MD calculations. 

Finally, some simulation packages (notably NAMD, but also AMBER) 
have implemented multiple time scale (MTS) methods that divide the 
computation into “slow” and “fast” portions, assigning appropriate time 
steps to each segment. Most commonly, the scheme is distance-based and 
partitions between bonded, short-range nonbonded and long-range 
electrostatic interactions. Here too is it important to ensure that the 
integration scheme gives an exact solution to Hamilton’s equations, remains 
reversible and evolves in a symplectic manner. A very powerful 
implementation of the MTS method is through the reversible reference system 
propagator algorithm (r-RESPA) [14], derived from the Trotter factorization 
of the Liouville propagator. 

As mentioned before, MD simulations rely on integrating the classical 
equations of motion for a molecular system and thus, sample a 
microcanonical ensemble by default, where the number of particles N, the 
volume V and the total energy E are conserved (NVE ensemble). However, 
for compatibility with experiment, it is often desirable to sample 
configurations with constant temperature and/or pressure. Thus, conditions 
more similar to experimental ones (other ensembles) can be obtained by 
applying specific modifications to the system Hamiltonian or equations of 
motion. A modification of the basic MD scheme with the purpose of 
maintaining the average temperature constant (NVT ensemble) is called a 
thermostat algorithm. Popular techniques to control temperature include 
velocity rescaling [15], the Andersen thermostat [15], the Nosé–Hoover 
thermostat [16,17], Nosé–Hoover chains, the Berendsen thermostat [18] and 
Langevin dynamics [19,20]. But most experimental observations are 
performed at constant temperature and pressure, so it is desirable to run MD 
simulations in the isothermal-isobaric (NPT) ensemble. Similarly to the 
temperature coupling schemes, an extra term is added to the equations of 
motion that additionally effects a pressure change (barostat algorithms). 
Notable examples are the Berendsen barostat, Nose-Hoover bath, or 
Parrinello-Rahman barostat [21,22]. Generally, stochastic models have the 
drawback of non-reproducibility of the trajectory and lack of a conserved 
quantity. Deterministic algorithms can equilibrate very slowly depending on 
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the scheme and even worse, tend to lose ergodicity. Langevin dynamics, 
although very efficient, are extremely sensitive to the choice of friction 
coefficient and might also be slow to equilibrate. Knowing the advantages 
and disadvantages of each coupling method is important for designing a 
simulation problem.  

Solvent-induced effects are extremely important for the 
thermodynamics and conformational properties of biomolecules, since have 
evolved to function in an environment of water and ions. Solvent can be 
represented either implicitly, as a continuous medium, by approximating the 
mean force exerted by the media on the solute, or explicitly, by inclusion of 
water molecules and ions. Implicit water models can be considerably faster to 
compute, because the implicit solvent contributes no or few degrees of 
freedom to the simulation. However, they neglect specific important features 
such as hydrogen bond fluctuations at the solute surface, water dipole 
reorientation in response to conformational changes and bridging water 
molecules. Therefore, up to certain system sizes, it is common to use explicit 
solvents, composed of a water model in combination with an ion 
parametrization. Water models that represent a good compromise between 
accuracy and computational cost are the TIP3P, TIP4P [23],  or SPC/E [24]. 
More elaborate models introducing extra centers are still not much employed 
in the DNA field, but those retuning of current 3- or 4- point models are 
starting to be used [25]. 
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2 Force	field	development	methods.		
 

The algorithmic advances discussed in the previous Section, such as the 
extended and rigorous representation of the potential energy function, 
together with appropriate boundary methods and suitable integrators have 
greatly increased the quality of force fields for biological macromolecules 
over the years. However, the algorithmic set-up is not a force field without 
the assignment of parameters and atom types that ultimately dictate its 
quality and applicability. The general potential function 
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needs properly adjusted parameters for each functional to yield an 
accurate representation of a biomolecule conformational space and 
thermodynamics. In eq. 2.13, b is the bond length, θ is the valence angle, ω is 
the dihedral or torsion angle, φ is the improper angle, and !!" is the distance 
between atoms i and j. Parameters, the terms that represent the actual force 
field, include force constants and equilibrium values for distances, valence 
angles and improper dihedrals, the torsional force constants, multiplicities 
and phase angles for the dihedral rotations potential. Collectively, these 
represent the bonded parameters. Nonbonded parameters between atoms i 
and j include the partial atomic charges for the Coulomb potential, and the LJ 
well-depth and minimum interaction radius used to treat the van der Waals 
(vdW) interactions. Different parameters need to be set for different atom 
types. Atom types assignment depends on the functional group that the atom 
is part of (molecular environment) and/or hybridization state. The dielectric 
constant, ε, is typically set to 1, corresponding to the permittivity of vacuum, 
in calculations that incorporate explicit solvent representations. An overview 
of the common assumptions and methodologies employed to determine both 
bonded and nonbonded parameters is given below. 

Bonded parameter determination.  

The equilibrium bond and angles can be derived from experimental 
spectroscopic measures (X-Ray, neutron diffraction, IR and Raman spectra), 
while stretching and bending constant can be obtained from analysis of IR 
and Ramn spectra. Alternatively, both equilibrium and force constants can be 
obtained by fitting to high-level QM calculations.  
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For torsion parameters the dihedral parameters can be fitted in some 
cases to reproduce NMR J-couplings, but in most cases torsional terms are 
derived by fitting to QM conformational energy profiles of rotation about 
selected bonds to Potential of Mean Force (PMF) simulations with gradually 
adjusted parameters. Exact reproduction of gas-phase QM data may yield 
geometries not appropriate for condensed phase MD simulations, therefore it 
is important to either use solvent corrections in the QM calculations directly, 
or to further optimize parameters taking experimental data into account. 
Experimental observables obtained from X-Ray (structural data stored in the 
protein or nucleic acids database) or NMR data are often used to assess 
accuracy of the parameters.  

Non-bonded parameter optimization. Proper optimization of 
nonbonded parameters is both essential and more complicated than that of 
their bonded counterparts. For simple liquids and simple systems a 
parametrization scheme developed by Jorgensen and others is the 
simultaneous fitting of electrostatic and van der Waals terms in an iterative 
process where force-fields are adjusted to guarantee that the simulation 
reproduces a set of experimental observables of the system (density, 
compressibility, permittivity, radial distribution functions, heat of 
vaporization and many others). Alternatively, for more complex systems, 
independent parametrization of electrostatic and van der Waals terms is 
required. For the later transferability is assumed and atomic parameters 
(hardness and radii) are transferred from crystal lattice measures: while 
electrostatic parameters (charges) are derived from QM calculations.  

Two main strategies have emerged to fit charges: namely the 
Electrostatic Potential (ESP) fitting methods and supramolecular approaches. 
ESP-based methods optimize atomic charges to reproduce a QM determined 
ESP mapped onto a grid surrounding a model compound [26,27]. Typically it 
requires the use of restraints during fitting in order to properly determine 
charges of “buried” atom (RESP fitting). In supramolecular approaches the 
charges are optimized to reproduce QM determined energies and geometries 
of interacting pairs of molecules, usually the model compound with 
individual water molecules [28]. This approach is quite laborious and 
therefore less popular, but in some situations it might be preferable as 
guarantee a good coupling of the molecular and water force-fields. Both the 
ESP and supramolecular approaches tend to overestimate dipole moments 
[29] and interaction energies, but such overestimations are desirable for 
additive force fields, as they lead to partial charge distributions that include 
the implicit polarization required for condensed phase simulations.  

Interdependence of force field parameters. Finally, it should be 
emphasized that the parameters within a force field are, to various degrees, 
correlated to eachother. The most significant interdependence is between 
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vdW parameters and the partial atomic charges, which implies that 
consistence between the two sets of parameters should be evaluated before 
adopting a force-field. Additionally, some of the internal bond parameters are 
dependent on the nonbonded parameters. This is most obvious in the so-
called 1,4 interactions, between atoms three bonds away from eachother, 
where the energy surface of rotation about a bond will be determined not 
only by the dominant dihedral term, but will also contain contributions from 
the electrostatic and LJ terms [29]. Actually, the nonbonded terms sometimes 
need to be scaled down in such configurations, in order not to significantly 
alter the shape of the potential surface after direct fitting to QM profiles. In 1,2 
(covalently bonded atoms) and 1,3 interactions (atoms separated by two 
bonds), the nonbonded terms are usually completely removed. Such 
correlations make it generally inadvisable to combine parameters from 
different force fields, since there is no guarantee to still maintain the proper 
balance of the intra- and intermolecular forces. Finally, the importance of 
using the correct water model with a given force field must be mentioned, 
since the nonbonded parameters in a force field are optimized to be 
compatible with a specific water model.  
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3 Optimization	of	Force	Fields	for	Nucleic	Acids.	
 

In the particular case of NA simulations, force field optimization, and 
thus parameter adjustment, can rely not only on a subset of atom types from 
small systems that are then assembled to describe the macromolecule, but the 
four types of nucleotide units can be parametrized independently, taking 
advantage of the simple oligomeric nature of the double helix. However, the 
polyanionic nature of NAs has posed a great challenge for empirical force 
field development, requiring accurate treatment of interactions with the 
solvent environment and great care to the balance between stability and 
proper sampling of conformational landscape. As a result, early force fields 
for DNA had very little success in producing stable MD simulations. Intuitive 
tricks were used in order to improve stability, such as removing the charges 
on the phosphates, the inclusion of “solvated” sodium ions and the use of a 
distance dependent dielectric constant to mimic the solvent environment [30–
33]. Particularly, early force field attempts to perform simulations of DNA 
with an explicit representation of the solvent (thus trying to mimic 
physiological conditions), have been consistently unsuccessful.  

Significant progress in DNA simulations occurred in the mid 1990s with 
the development of the “second generation” force fields for nucleic acids, 
facilitated by the development of Ewald methods to treat long range 
electrostatic interactions, and the use of periodic boundary conditions [10]. 
These force fields included the Cornell et al AMBER (PARM94) [34] and 
CHARMM all-atom [35] force fields, both of which produced stable 
simulations in the nanosecond scale, but still had critical systematic problems. 
With CHARMM22 there was a strong tendency towards A-form duplex DNA 
structures, even at low ion concentration [36], while AMBER PARM94 had 
problems with sugar puckering and under-twisting of duplexes [37]. Once 
these deficiencies started to emerge, developers of both force fields made 
attempts at improving their parameter set, with CHARMM going through a 
full reoptimization process, while AMBER focused on the glycosidic and 
torsion parameters. Although changes in dihedral parameters were found to 
influence other parameters and lead to structural inconsistencies, and high-
level QM calculation were not yet available to be used as reference, these 
force-fields produced equilibrated trajectories up to 10 ns that sampled 
conformations of DNA not far from the experimental ones. CHARMM27 still 
had problems with B to A-form transitions as a function of salt concentration; 
but real problems with the AMBER ff99 were only detected once 
improvement in computer capabilities allowed for somewhat longer time 
scales of 50-100 ns  [38–40], where big distortions in the structure emerge. 
Analysis of the trajectories determined that these distortions were related to a 
disproportionate α/γ populations of the gauche+/trans geometry, in detriment 
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of the canonical gauche-/gauche+ state in AMBER f99, producing “ladder-
like” structures of DNA duplexes and unnatural widening of the minor 
grooves in CHARMM27. The most notable improvement at that time came in 
the form of a force field correction to AMBER ff9: the PARMBSC0 
parameterization [38][, which allowed the simulation of stable DNAs in the 
multi-nanosecond regime. For a decade, parmbsc0 was the “gold standard” of 
nucleic acids force fields, extensively used to simulate a variety of nucleic 
acids in the sub-microsecond timescale [41], producing almost 1500 citations 
up to date and significant contributions to the general understanding of DNA 
structure and dynamics [42,43].  

Gradually, as multi-microsecond simulations became available, several 
errors in the parmbsc0 parametrization emerged and required to be 
addressed [44–50]. Among the noted inaccuracies was an underestimation of 
average twist values compared to NMR and X-Ray data that can build up to 
significant structural error in long oligos. The BI-BII equilibrium, which has 
been shown to be connected to the bimodality of twist distributions, 
especially in RpY step [45,50] was also misrepresented, with a bias towards 
the canonical BI state [46]. The puckering was still not up to par with an 
abnormal East population, and low flexibility of the glycosidic torsion [47] 
meant applications to non-canonical structures of DNA were unreliable 
[44,48,49]. Terminal base fraying was too large, giving unrealistic 
configurations at the ends of the duplex [45].    

As expected, corrections to the parmbsc0 force field prompted new 
developments, either addressing particular cases of exotic DNA forms, or 
trying to come up with a new standard for DNA simulations. Worth noting 
are the OL1 [51] parameter set, created to improve ε/ζ representation for a 
better consensus of BI/BII population, or the OL4 [49] patch that aimed to 
correct the χ angle distribution, followed by the novel OL15, which 
incorporated all the previous OL corrections for DNA and included 
additional adjustments of the β torsion [52]. Other approaches meant 
imposing harmonic restraints derived from NMR measures to guarantee a 
good representation of the BI/BII equilibrium [46].  

The proposed modifications and corrections to parmbsc0 mentioned 
above have proved useful to correct some, but not all the problems of DNA 
simulations, making it necessary to develop a new general-purpose AMBER 
force-filed for DNA simulations. Our own contribution to this effort in the 
form of the parmBSC1 force field will be presented and discussed in the 
Results section (Chapter III). 

In parallel with DNA force-field efforts several groups have focused on 
developing force field corrections specifically for RNA, especially by means of 
reparametrization of the backbone and glycosidic torsion parameters [53], on 
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the basis of QM calculations. While native states could generally be correctly 
described by these force fields, significant imbalances arose from several key 
issues, such as the overestimation of nucleobase stacking and 
underestimation of base pairing strength, could only be addressed by 
modifying electrostatic and van der Waals (vdW) parameters [54,55]. Chen 
and García [56] scaled down vdW interactions of nucleobase atoms to weaken 
stacking and strengthen base pairing. The Shaw group have implemented a 
variety of corrections, modifying electrostatic, vdW, and torsional parameters 
of the AMBER ff14 RNA force field [57] to more accurately reproduce the 
energetics of nucleobase stacking, base pairing, and key torsional conformers 
obtained from ab-initio and empirical methods. The overstacking is not 
exclusively an effect in RNAs [54,55], therefore these modifications developed 
for RNAs can in some cases be applied to study exotic forms of DNA 
structures [58]. 
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4 Applications	for	MD	simulations	of	Nucleic	Acids	
 

From an extensive sampling of an equilibrium conformation, both time-
averaged and dynamic properties can be extracted. The information of 
interest needs to be carefully revealed from noisy data, such that in many 
cases the limiting step of conducting in-silico molecular experiments is not the 
generation of the trajectory, but its analysis. 

 

4.1 MD-Averaged	Information	
	

A trajectory is a time-dependent sampling of the global conformational 
space of a molecular system, where an important class of ensemble properties 
corresponds to time-averaged structural descriptors. The average 
conformations are expected to represent global minima and can be both 
directly compared to experimental observables and used to check the 
convergence of the trajectory. Convergence is usually evaluated by comparing 
average structural parameters calculated for the first or second part of the 
trajectory with those calculated over the full trajectory. Typically, for DNA 
there are two major types of conformational representations: those based on 
Cartesian coordinates and those based on the internal helical coordinates. In 
either case, the first step of extracting MD-averaged structures is the root-
mean square fitting of the snapshots to define a common reference system, 
which is necessary either to compute average Cartesian coordinates or to 
build the average helical axis. 

Analysis in Cartesian Space.  

A common measure in Cartesian space is the root-mean-square deviation 
(RMSd), which quantifies the minimum deviation of atomic positions of a 
given structure from those of a reference structure. 

 !"#$ = !"# !! − !! !!
!!!  (2.14) 

where vi and wi are the coordinates of each of the N equivalent atoms in 
the structure of interest and the reference structure. It is often used to perform 
translations and rotations of one structure with respect to another, which 
minimize the RMSd with a simple least squares fitting algorithm, in order to 
superimpose the two.  It can also be used as a quantitative measure of the 
similarity between simulation data and experimentally obtained structures, or 
to track the stability along a trajectory compared to a reference conformation, 
typically the average or starting one.  

Alternatively, when a dynamical system fluctuates about some well-
defined average position, the root-mean-squared fluctuations (RMSf) can be 
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computed instead. In contrary to RMSd, RMSf gives the average fluctuations 
over time for each atom i: 

 !"#!! = !
! !! ! − !! !!

!!!  (2.15) 

where T is the overall trajectory time, t is the selected time frame, !! is the 
position of atom i after superposition on the reference structure, and  !!   is 
the average reference position over time T. Usually RMSf is measured 
separately for each residue, as DNA terminal residues tend to fluctuate more 
than others. 

The Cartesian space average structure can be also used to analyze 
properties of DNAs using GRID-based approaches [59,60], such as the non-
bonded interaction energy between the DNA and different probes placed in 
thousands of points around the molecule. 

In many cases, a trajectory represents transitions between a number of 
different states, instead of sampling small fluctuations around a single 
conformation of minimum energy. Clearly, averaging of such ensembles will 
provide a “transition state-like” structure, which will be not realistic of the 
most prevalent regions of the conformational space. In Cartesian coordinates, 
a solution is to divide the configurational space into several clusters of 
structures that can define reference states. This information can be obtained 
from two-dimensional cross-RMSd plots, which computes the RMSd 
deviation of each snapshot with respect to the remaining ones. Once a 
restricted number of different states have been identified by clustering 
techniques [61,62], the configurational space can be seen as a combination of 
those MD-averaged reference states. 

 !! ≈ !!!!!!"!  (2.16) 

where !! ! stands for the global configurational space sampled along 
the trajectory for time t, !!!"  stands for the MD-averaged conformation 
obtained from snapshots pertaining to cluster k, and !!! is the time-population 
of cluster k. 

Analysis in Helical Space.  

Nevertheless, the use of Cartesian coordinates can produce structures with 
distorted internal geometries. This problem can be alleviated by performing 
the averaging in a set of internal coordinates, which is especially feasible for 
standard nucleic acids, where the internal coordinates chosen are the helical 
parameters. Replacing atomic positions with rigid body translational and 
rotational parameters additionally allows a dramatic reduction in the degrees 
of freedom of the system. These parameters have been standardized by 
definitions set in the Tsukuba convention [63] and generally direct 
comparisons can be made between analyses performed by the different 
excellent programs such as Curves, 3DNA or NewHelix. Throughout this 
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work we use the internal coordinate set as defined by the Curves+ software 
[64], which provides information on the helical parameters, the helical groove 
geometry and backbone conformation (described in terms of bond torsions 
and pseudorotational parameters).  

A reference frame as defined in the Tsukuba convention [63] is attached 
to each base starting from the atoms involved in the glycosidic bond, defining 
the base plane by three atoms, N9, C1’ and C4 for purines and N1, C1’ and C2 
for pyrimidines. Base pair reference frames and mid-frames of a base pair 
step are also constructed following the same scheme. Once the reference 
frames are constructed, the intra- and inter-base pair helical parameters are 
obtained by calculating rigid body transformations that map one reference 
frame into another, separated further into rotations and translations (three 
rotational parameters and three translational parameters, both intra- and 
inter-base pair – See Chapter 1 for details). The helical axis is calculated from 
the screw axes, which link successive base pair reference frames, and 
therefore can be curvilinear. Groove width measurements are based on 
distance between spline curves through the phosphorus atoms, reduced by 2 
× 2.9 A ̊ to allow for the size of the phosphate groups. Groove depths involve 
the long axis of the base pairs and are reduced by 3.5 A ̊ to allow for the half-
width of the base pairs. 

4.2 Dynamic	Information	
DNA Dynamics.  

A properly sampled MD trajectory of adequate length allows the 
extraction of both time-dependent and time-independent dynamic 
information. Time-independent dynamical information includes equilibrium 
distributions of helical parameters in one or more dimensions, together with 
their first and second moments (means and covariances), flexibility 
properties, principal component analysis and essential dynamics. Time-
dependent information can consist of transition rates and residence times, 
correlations and causation between different transition motions.  

In a first approximation, extracting average values and standard 
deviations of helical parameters will give a sense of the sequence-dependent 
conformational space available for specific DNA structures. MD simulations 
can be used to provide equilibrium samplings from which means and 
covariance matrices in helical space can be determined. Further, from the 
DNA representation in reduced helical coordinates, stiffness constants 
associated to deformation in helical space can be derived, as first proposed by 
Olson and Lankas groups [65–67]. In this representation, the inversion of 
covariance matrices provides the corresponding harmonic stiffness matrices 
for helical DNA deformations. This allows for a description of the dynamics 



	79	

of long DNA fragments with a potential based on elastic deformation energies 
from stiffness matrices: 

 ! = !"!!! (2.17) 

where C is the stiffness matrix with elements Kij. 

 !!"# = !!!
!! !! − !!! ! + !!"

! !! − !!! !! − !!!!!!  (2.18) 

where Kij are force-constant and Xi and Xi0 are helical coordinates and 
their equilibrium values. Thus, DNA dynamic behavior can be modeled in the 
harmonic approximation, assuming small fluctuation around helicoidal 
coordinates minima. . Early elastic models rely on the use of a nearest 
neighbors representation of DNA, which was proven to not be accurate 
enough, forcing the use of tetramer-adjusted parameters [42,43,68–71]. Recent 
studies have also raised concerns on the use of harmonic approach 
[45,50,72,73], as DNA samples different conformational substates. Careful 
characterization of these substates at the tetramer level has been extensively 
performed in the present thesis. 

Solvent Dynamics. 

Analysis of ion distribution around DNA demonstrated that dependable 
sequence specific coordination studies should be based on simulations in the 
microsecond time scale, since ion convergence and ergodicity is only achieved 
after hundreds of nanoseconds [73,74]. It is therefore only recently that 
routine simulations can capture converged ion distributions. Another major 
milestone in the theoretical analysis of ion-DNA interactions was the 
development of an unambiguous method for the analysis of ion distributions 
in the curvilinear helicoidal frame given by the DNA axis [74]. The method 
uses the natural coordinate system for DNA, namely its helical axis and the 
curvilinear helicoidal coordinates (CHC) to determine the positions of solvent 
molecules around DNA. This allows the calculation of average ion 
populations that do not suffer from the DNA conformational fluctuations and 
removes the need for atomic references when investigating time-dependent 
information such as residence times (See Figure 2.3). 
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Figure	3	Schematic	view	of	 the	curvilinear	helicoidal	coordinates	 (CHC)	and	phosphorus	positions	
calculated	 in	 the	 CHC	 and	mapped	back	 into	 Cartesian	 space	using	 the	 average	helical	 axis	 of	 the	
oligomer. 

Essential Dynamics. 

An extremely powerful approach to describe global DNA flexibility is 
through its Essential Dynamics (ED) [75,76]. Following the principal 
component analysis (PCA) method, the approach determines the natural 
motions of a structure, that is, those motions that explain most of the variance 
detected during the trajectory. Practically, the method implies extracting the 
ensemble of conformations from an MD simulation, calculating the 
covariance matrix of the atomic movements, which is then diagonalized to 
yield a set of 3N-6 eigenvectors and their associated set of 3N-6 eigenvalues. 
The eigenvectors represent the nature of the essential motions, while the 
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eigenvalues represent the percentage of variance explained by each 
eigenvector. Harmonic deformation constants along the essential modes can 
easily be derived from the eigenvalues (λi) with: 

 !! =
!!!
!!

 (2.19) 

where the index i stands for an essential movement, kB is Boltzmann 
factor, T is the absolute temperature and λ is the eigenvalue associated to 
deformation i in distance2 units. The eigenvalues represent the amount of 
displacement along a mode expected at a given temperature. Note that once 
the force constant is known, the deformation energy along the essential mode 
i can be easily determined from eq 2. 

 ! = !!!
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where ∆Xi is a Cartesian deformation along the eigenvector i. 

An ED representation permits to reduce the flexibility of the DNA to a 
set of harmonic potentials applied on essential deformation modes. This 
opens the possibility to use essential deformation movements to perform MC 
or MD simulations on these essential modes. This approach is not expected to 
yield conformations very different to those sampled during the atomistic 
trajectory from which essential movements were determined, so a mere re-
run of a simulation in reciprocal space is not very helpful. However, in a 
properly designed approach, this massive amount of information can be used 
to predict the dynamics of related sequences, or those of large DNA polymers 
of different sequences without the need to perform thousands of additional 
simulations. 

Entropy Estimation. 

Entropic factors are arguably the most difficult quatitity to estimate from 
molecular dynamics simulations, since they do not appear explicitly in the 
formulation of the force field. However, it has been shown [77–80] that they 
can be very important in determining affinity and selectivity of binding 
events. Interactions can modify the DNA freedom and accordingly its 
intramolecular entropy, but in most cases the largest entropic term in most 
cases relates to the reorganisation of solvent that accompanies the binding 
process. The expulsion of ordered water molecules from the binding interface 
are entropically highly favorable processes.  

The intramolecular entropy change related to binding can be 
decomposed in two terms: the loss of rotational and translational degrees of 
freedom that accompany binding, ΔSr+t, and the configurational entropy of the 
molecules’ internal degrees of freedom, ΔSconf. The calculation of ΔSconf can be 
done directly from MD data, as proposed by Schlitter [81] (eqn. 3) and then by 
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Andricioaei and Karplus [82] (eqn. 4). Both require the calculation of the 
eigenvalues, ω, of the mass-weighted coordinate covariance matrix from the 
simulation: 

 ! ≈ 1
2! !" 1+ !!
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 (2.21) 
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where                                !! =
ℏ!!
!"  (2.23) 

   

and the sum is over all non-trivial vibrations. Although there are slight 
differences in the derivation of these two methods, in practice they give very 
similar results.  

In order for the diagonalisation procedure to generate (3N-6) ‘true’ 
eigenvalues – after the removal of the translational and rotational degrees of 
freedom – it theoretically requires that the covariance matrix be constructed 
from the analysis of at least (3N-6) independent snapshots. The definition of 
the time step between two independent snapshot is not always 
straightforward and depends on the system of interest, but what is generally 
observed is that the calculated entropy rises with trajectory length until it 
stabilizes at a system-dependent time scale. This makes sense intuitively, as 
any system will keep accessing unsampled areas of the configurational space 
with longer simulation time, until it samples it completely. The empirical 
relationship for this dependency has been formulated by Harris’ group [83], 
as:  

 ! ! = !!"# − ! ∙ !!! (2.24) 

where Sinf is the entropy for a simulation of infinite length, and α and n 
are fitting parameters.  

In summary, a full understanding of what drives biological processes, 
such as molecular recognition, requires modelling methods that can probe 
both the enthalpic and entropic components of the system. The relationship 
between structure and enthalpy is quite straightforward to grasp (although 
high accuracy absolute values are only achieved at significant computational 
cost), but the relationship between entropy and dynamics can be less obvious 
and requires high-quality simulation data for quantitation.  
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CHAPTER III | ParmBSC1 
 
 
 
Our group has established their expertise in deciphering the physical 
properties of nucleic acids with the use of MD simulations over more than a 
decade, with significant contributions to this field [1–11]. Part of their notable 
efforts was the development of parmbsc0 [11], a force field for nucleic acids 
that, until rather recently, had provided the gold standard in MD simulations 
of DNA. 

 At the beginning of this thesis, as the sampling problem and thus 
convergence were being steadily improved [5,6,9,12,13], a number of 
inconsistencies in the equilibrium conformations obtained with parmbsc0 had 
started to be reported, both from within the group and outside [14–20]. 
Notable among them were slight but significant deviations of helical 
parameter averages from experimental values (especially in twist and roll),  
coming from the underestimation of BI/BII equilibrium (stemming from ε/ζ 
coupled distribution) [15,20], excessive terminal base fraying [15] and 
difficulties in accessing exotic DNA structures which was related to a stiff χ 
torsion [17].  

I experienced such biases myself, and decided to join the already on-going 
effort in the group of reparameterizing the parmbsc0 force field with regard 
to the sugar puckering, ε/ζ and χ torsions, using high-level QM calculations 
both in gas phase and solution. The final version of this reparametrization 
was named parmBSC1. 

In the meantime, specific-purpose corrections to the parmbsc0 were already 
starting to appear, mainly from the Zgarbová et al. [21,19,22], with 
modifications targeting the χ distribution (χOL4 – for simulation of DNA 
quadruplexes), the ε/ζ representation (ε/ζOL1) and finally the β profile as 
well (βOL1 – for improved Z-DNA structures). The last generation of these 
force fields incorporated all the previous OL corrections for DNA (OL15) and 
was developed in parallel to the parmBSC1 force-field.	
By now, several review papers [23,24] have assessed the accuracy of 
parmBSC1 against other proposed force fields and have concluded that, along 
with the similarly performing OL15, it should be the new standard in DNA 
simulations  (see Figure 3.1). 

Our own extensive testing of the new parameter set was done over the course 
of four years before publication. We aimed to thoroughly validate not only 
the correct reproduction of experimental structures, but also against 
experimental observables, such as NOEs and RDCs from NMR experiments, 
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Editorial	summary:	
Parmbsc1,	a	force-field	for	DNA	simulations,	is	presented.	It	has	been	
broadly	tested	on	nearly	100	DNA	systems	and	overcomes	simulation	
artifacts	that	affect	previous	force-fields.	 	
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We	present	parmbsc1,	a	force-field	for	DNA	atomistic	simulation,	which	has	been	

parameterized	from	high-level	quantum	mechanical	data	and	tested	for	nearly	100	

systems	 (representing	 a	 total	 simulation	 time	of	 ~140	µs)	 covering	most	 of	DNA	

structural	 space.	 Parmbsc1	 provides	 high	 quality	 results	 in	 diverse	 systems.	

Parameters	 and	 trajectories	 are	 available	 at	

http://mmb.irbbarcelona.org/ParmBSC1/.	

	
The	 Force-field,	 the	 energy	 functional	 used	 to	 describe	 the	 dependence	 between	

system	 conformation	 and	 energy,	 is	 the	 core	 of	 any	 classical	 simulation	 including	

molecular	dynamics	(MD).	 Its	development	 is	tightly	connected	to	the	extension	of	

simulation	time	scales.	As	MD	trajectories	are	extended	to	longer	timescales,	errors	

previously	undetected	in	short	simulations	emerge,	creating	the	need	to	improve	the	

force-fields1.	For	example,	AMBER	(Assisted	Model	Building	with	Energy	Refinement)	

parm94-99	was	the	most	used	force-field	in	DNA	simulations	until	multi-nanosecond	

simulations	revealed	severe	artifacts2,3,	thus	fueling	the	development	of	parmbsc04,	

which,	in	turn,	started	to	show	deviations	from	experimental	data	in	the	µsec	regime	

(for	example	an	underestimation	of	the	twist,	deviations	in	sugar	puckering,	biases	in	

ε	and	ζ	torsions,	excessive	terminal	 fraying2,5,	and	severe	problems	 in	representing	

certain	 non-canonical	 DNAs1,6).	 Various	 force-field	 modifications	 have	 been	

proposed	to	address	these	problems,	such	as	the	Olomouc	(OL)-ones5,6	designed	to	

reproduce	 specific	 forms	of	DNA.	While	 these	and	other	 tailor-made	modifications	

are	useful,	there	is	an	urgent	need	for	a	new	general-purpose	AMBER	force-field	for	

DNA	 simulations	 to	 complement	 recent	 advances	 in	 the	 CHARMM	 (Chemistry	 at	

HARvard	Macromolecular	 Mechanics)	 family	 of	 force-fields	 (Online	Methods).	 We	

designed	theparmbsc1	force-field	presented	here	to	solve	these	needs,	with	the	aim	

of	 creating	 a	 general-purpose	 force-field	 for	DNA	 simulations.	We	demonstrate	 its	

performance	 by	 testing	 its	 ability	 to	 simulate	 a	 wide	 variety	 of	 DNA	 systems	

(Supplementary	Table	1).	

	

Parmbsc1	shows	good	ability	to	fit	quantum	mechanical	(QM)	data	(QM	data	fitting	

section	 in	 Supplementary	 Discussion),	 improving	 on	 previous	 force-field	 results	

(Online	Methods,	Supplementary	Table	2).	We	first	tested	QM-derived	parameters	
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on	the	Drew-Dickerson	dodecamer	(DDD),	a	well-studied	DNA	structure2,7,	 typically	

used	 as	 benchmark	 in	 force-field	 developments.Parmbsc1	 trajectories	 sampled	 a	

stable	B-type	duplex	that	remained	close	to	the	experimental	structures	(Fig.	1	and	

Supplementary	 Table	 2),	 preserving	 hydrogen	 bonds	 and	 helical	 characteristics,	

even	 at	 the	 terminal	 base	 pairs,	 where	 fraying	 artifacts	 are	 common	 using	 other	

force-fields2,8	 (see	 Online	 Methods	 and	 Supplementary	 Discussion).	 The	 average	

sequence-dependent	helical	 parameters	 (Fig.	 1	 and	Supplementary	 Figs.	 1	 and	2),	

and	BI/BII	conformational	preferences	(Supplementary	Table	2	and	Supplementary	

Fig.	 3)	matched	experimental	values	 (for	 the	comparisons	with	estimates	obtained	

with	 other	 force-fields	 see	 Online	 Methods).	 Furthermore,	 parmbsc1	 reproduced	

residual	dipolar	couplings	(Q-factor	=	0.3)	and	NOEs	(Nuclear	Overhauser	Effect;	only	

two	 violations),	 yielding	 success	 metrics	 similar	 to	 those	 obtained	 in	 the	 NMR	

(Nuclear	Magnetic	Resonance)-refined	structures	(Supplementary	Table	3).	

	

We	 next	 evaluated	 the	 ability	 of	 parmbsc1	 to	 represent	 sequence-dependent	

structural	 features	 from	 simulations	 on	 28	 B-DNA	 duplexes	 (Supplementary	 Table	

4).	 The	 agreement	 between	 simulation	 and	 experiment	was	 excellent	 (Root	Mean	

Square	deviation	 (RMSd)	per	base	pair	of	0.1	or	0.2	Å).	Almost	no	artifacts	 arising	

from	terminal	 fraying	were	present,	and	 the	average	helical	parameters	 (twist	and	

roll	 from	 simulations:	 33.9	 º	 and	 2.5	 º	 respectively),	 matched	 values	 from	 the	

analysis	of	the	PDB	(33.6	º	and	2.9	º)9.	Moreover,	parmbsc1	was	able	to	reproduce	

the	unique	properties	of	A-tract	sequences10	(Supplementary	Figs.	4–6),	and	capture	

sequence-dependent	 structural	 variability	 (Supplementary	 Fig.	 7).	We	also	 studied	

longer	duplexes	(up	to	56	bp)	to	ensure	that	a	possible	accumulation	of	small	errors	

given	 by	 the	 force-field	 did	 not	 compromise	 the	 description	 of	 the	 DNA,	 finding	

excellent	 results	 (Supplementary	 Table	 5).	 	 The	 expected	 spontaneous	 curvature	

was	 clearly	 visible	 in	 both	 static	 and	 dynamical	 descriptors,	 demonstrating	 that	

parmbsc1	 trajectories	 were	 able	 to	 capture	 complex	 polymeric	 effects	

(Supplementary	Table	5).	

	

We	 also	 explored	 the	 ability	 of	 parmbsc1	 to	 represent	 unusual	 DNAs,	 such	 as	 a	

Holliday	junction,	a	complex	duplex-quadruplex	structure	which	was	fully	preserved	
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in	µsec-long	trajectories	(Supplementary	Figs.	8	and	9);	or	the	Z-DNA,		a	levo	duplex	

containing	 nucleotides	 in	 syn,	 for	 which	 parmbsc1	 not	 only	 provided	 stable	

trajectories	 (Fig.	 2a),	 but	 also	 reproduced	 the	 experimentally	 known	 salt	

dependence,	 confirming	 that	 the	 conformation	 is	 stable	 only	 at	 high	 (4	 M)	 salt	

concentration11.	For	Hoogsteen-DNA	(H-DNA),	simulations	with	parmbsc1	showed	a	

stable	 duplex	 for	 more	 than	 150	 ns	 (Fig.	 2b),	 and	 severe	 distortions	 in	 longer	

simulation	 periods	 (Supplementary	 Fig.	 10),	 as	 expected	 from	 its	 metastable	

nature12.	 We	 obtained	 equivalent	 results	 for	 another	 metastable	 structure,	 the	

parallel	 poly-d(AT)	 DNA	 (Supplementary	 Fig.	 11)13.	 Parmbsc1	 simulations	 not	 only	

reproduced	 the	 known	 structure	 of	 parallel	 d(T-A·T)	 and	 d(G-G·C)	 triplexes	 (Figs.	

2c,d),	 but	 also	 showed	 correctly	 that	 the	 equivalent	 antiparallel	 structures	 are	

unstable	 in	 normal	 conditions	 (Fig.	 2e)14.	 Finally,	 parmbsc1	was	 able	 to	 reproduce	

experimental	 structures	 of	 both	 parallel	 and	 antiparallel	 DNA	 quadruplexes	 with	

RMSd	<	2	Å	(Figs.	2f,g).		

	

We	explored	also	the	ability	of	parmbsc1	to	reproduce	the	complex	conformation	of	

hairpins	 and	 loops,	 exceptionally	 challenging	 structures	 for	 force-fields15.	 We	

performed	µs	simulations	of	the	d(GCGAAGC)	hairpin	(PDB:	1PQT),	the	4T-tetraloop	

in	Oxytricha	nova	quadruplex	d(G4T4G4)2	(OxyQ;	PDB:	1JRN),	and	the	junction	loops	

in	the	human	telomeric	quadruplex	(HTQ;	PDB:	1KF1).	Parmbsc1	provided	excellent	

representations	(RMSd	around	1	Å)	of	the	d(GCGAAGC)	hairpin	(Fig.	2h),	and	of	the	

OxyQ	 quadruplex	 (Fig.	 2i).	 For	 the	 very	 challenging	 HTQ	 structure,	 parmbsc1	

maintained	 the	 stem	structure	20	 times	 longer	 than	 in	previous	 simulations15,	 and	

recognized	 the	 large	 flexibility	 of	 the	 loops	 in	 the	 absence	 of	 the	 lattice-contacts	

(Supplementary	Fig.	12),	showing	that,	as	predicted16,	not	only	the	crystal,	but	also	

other	loop	conformations	were	sampled	(Fig.	2j).	

	

As	an	additional	 critical	 test	of	 the	new	 force-field	we	predicted	NMR	observables	

from	parmbsc1	trajectories	(Online	Methods).	We	obtained	equivalent	NOE	violation	

statistics	to	those	determined	from	NMR-derived	ensembles	(Supplementary	Tables	

6	 and	7,	 and	 Supplementary	 Fig.	 13).	 This	 agreement	was	maintained	 in	de	 novo	

predictions,	i.e.	in	those	cases	where	NMR	observables	were	collected	in	one	of	our	
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laboratories	 after	 parmbsc1	 development	 (Supplementary	 Table	 8).	 Finally,	 it	 is	

worth	noting	that	parmbsc1	trajectories	reproduced	the	structure	of	DNA	in	crystal	

environments,	yielding	a	RMSd	between	the	simulated	and	crystal	structures	of	only	

0.7	 Å,	 and	 average	 twist	 differences	 below	 one	 degree,	 improving	 on	 previous	

calculations	(Online	Methods	and	Supplementary	Figs.	14	and	15).	

	

In	 our	 final	 structural	 test	 we	 explored	 the	 ability	 of	 parmbsc1	 to	 reproduce	 the	

conformation	 of	 DNA	 in	 complex	 with	 other	 molecules.	 We	 studied	 four	 diverse	

protein	 DNA	 complexes	 (PDB:	 1TRO,	 2DGC,	 3JXC	 and	 1KX5),	 and	 two	 prototypical	

drug	 DNA	 complexes.	 In	 all	 cases,	 we	 found	 excellent	 agreement	 (RMSd	 for	 DNA	

around	2–3	Å	 in	 protein-DNA	 complexes,	 and	 1–2	Å	 in	 drug-DNA	 complexes)	with	

experiments	(Fig.	3	and	Supplementary	Figs.	16	and	17).		

	

A	force-field	should	not	only	reproduce	the	structure	of	DNA,	but	also	its	mechanical	

properties1.	To	evaluate	 the	performance	of	parmbsc1	we	 firstly	evaluated	 the	µs-

scale	 dynamics	 of	 the	 central	 10	 base	 pairs	 of	 the	 DDD.	 The	 agreement	 between	

parmbsc0	and	parmbsc1	normal	modes	and	entropy	estimates	(Online	Methods	and	

Supplementary	 Table	 9)	 demonstrated	 that	 parmbsc1	 does	 not	 “freeze”	 the	 DNA	

structure,	 a	 risk	 for	 a	 force-field	 reproducing	 well	 average	 properties.	 This	 was	

further	 confirmed	 by	 the	 ability	 of	 parmbsc1	 to	 reproduce	 the	 DNA	 dielectric	

constant	 (8.0	 ±	 0.3	 for	 DDD	 versus	 the	 experimental	 estimate	 of	 8.5	 ±	 1.4;	 see	

Supplementary	Fig.	18),	and	also	the	cooperative	binding	(around	0.7	kcal	mol–1)	of	

Hoechst	33258	to	DNA.	We	then	computed	the	helical	stiffness	matrices	for	the	ten	

unique	base	pair	steps17,18.	Parmbsc1	values	were	 intermediate	between	parmbsc0	

and	 CHARMM27	 stiffness	 parameters18,	 and	 substantially	 smaller	 than	 those	

suggested	by	Olson	and	coworkers17	 (Supplementary	Table	10	and	Supplementary	

Fig.	 19);	 the	dependence	of	 the	stiffness	parameters	on	sequence	were	similar	 for	

parmbsc1	and	parmbsc017.	

	

The	 persistence	 length,	 the	 torsional,	 and	 the	 stretching	 modules	 were	 obtained	

from	 simulations	 of	 long	 (up	 to	 56	 bp)	 duplexes	 (Online	 Methods).	 Parmbsc1	

predicted	persistence	lengths	in	the	range	of	40–57	nm	(Supplementary	Table	11),	
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close	 to	 the	 generally	 accepted	 value	 of	 50	 nm.	 The	 computed	 static	 persistence	

length,	stretch	and	twist	torsion	modules	were	around	500	nm,	1,100–1,500	pN,	and	

50–100	 nm	 respectively,	 also	 in	 agreement	 with	 experimental	 values	

(Supplementary	Table	11).	Finally,	we	explored	the	ability	of	parmbsc1	to	describe	

relaxed	and	stressed	DNA	minicircles.	We	performed	three	100	ns	simulations	of	a	

106-bp	 minicircle	 with	 ten	 turns	 (106t10),	 which	 should	 have	 zero	 superhelical	

density	 (σ	 =0)	 and	 therefore	 no	 denatured	 regions19,20	 (Supplementary	 Fig.	 20).	 A	

kink	was	observed	only	in	a	single	replica	for	one	of	the	register	angles,	while	in	the	

remaining	 simulations	 the	 DNA	 remained	 intact	 (Supplementary	 Fig.	 20).	 On	 the	

contrary,	negatively	supercoiled	100-bp	(100t9;	σ	=	–0.05)	and	106-bp	(106t9,	σ	=	–

0.10)	 minicircles	 formed	 distortions	 due	 to	 the	 superhelical	 stress,	 as	 previously	

reported	experimentally	using	enzymes	that	digest	single	stranded	DNA19,20.	

	

Having	demonstrated	the	ability	of	parmbsc1	to	describe	stable	and	metastable	DNA	

structures	 and	 DNA	 flexibility,	 we	 finally	 studied	 conformational	 transitions.	

Parmbsc1	reproduced	the	spontaneous	A	to	B-form	DNA	transition	in	water,	and	the	

A	form	was	found,	as	expected,	to	be	stable	in	200	ns	control	simulations	in	a	85%	

ethanol	and	15%	water	mixture	(Supplementary	Fig.	21).	Parmbsc1	also	reproduced	

the	unfolding	of	DNA	d(GGCGGC)2	in	a	4	Molar	pyridine	solution	(Supplementary	Fig.	

21),	 and	 the	 effective	 folding	 of	 d(GCGAAGC)	 in	 water	 (Supplementary	 Fig.	 22),	

suggesting	the	ability	to	capture	long-scale	conformational	changes	in	DNA.	

	

Based	on	 the	wide	 series	of	 tests	we	 report,	we	 conclude	 that	parmbsc1	provides	

good	 representations	 of	 the	 static	 and	 dynamic	 properties	 of	 DNA.	We	 anticipate	

that	parmbsc1	will	be	a	valuable	reference	force-field	for	atomistic	DNA	simulations	

under	a	diverse	range	of	conditions.	

	

METHODS	

	

Methods	and	associated	references	are	available	in	the	online	version	of	the	paper.		
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FIGURE	LEGENDS	

	

Figure1|Analysis	 of	 the	Drew-Dickerson	 dodecamer.	 (a)	Visual	 comparison	of	MD	

average	structure	 (brown)	and	NMR	structure	 (PDB	 id:	1NAJ)	 (light	blue)	and	X-ray	

structure	 (PDB	 id:	 1BNA)	 (green).	 (b)	 RMSd	 of	 1.2	 µs	 trajectory	 of	 DDD	 compared	

with	B-DNA	 (blue)	and	A-DNA	 (green)	 form	 (coming	 from	 the	standard	geometries	

derived	 from	 fiber	 diffraction,	 see	 Online	 Methods	 section	 Validation	 of	 MD	

simulations).	 (c)	 RMSd	 compared	 to	 experimental	 structures	 (with	 (dark)	 and	

without	 (light)	 ending	 base-pairs):	 X-ray	 (green)	 and	 NMR	 (blue).	 Linear	 fits	 of	 all	

RMSd	curves	are	plotted	on	 top.	 (d)	 Evolution	of	 total	number	of	hydrogen	bonds	

formed	 between	 base	 pairs	 in	 the	whole	 duplex.	 (e)	 Helical	 rotational	 parameters	
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(twist,	 roll,	 and	 tilt)	 comparison	 of	 average	 values	 per	 base-pair	 step	 (standard	

deviations	are	shown	by	error	bars)	coming	from	NMR	(cyan),	X-ray	(dark	green),	1	

µs	parmbsc0	trajectory2	(black)	and	1.2	µs	parmbsc1	trajectory	(violet).	

	

Figure2|Analysis	 of	 non-canonical	DNA	 structures.	 (a)	Comparison	of	Z-DNA	 (PDB	

id:	1I0T)	simulations	 in	neutralized	conditions	(green)	and	 in	4	M	solution	of	Na+Cl-	

(blue).	 Structural	 comparisons	 at	 given	 time	 points	 are	 shown	 above	 the	 RMSd	

curves.	(b)	Simulation	of	anti-parallel	H-DNA	(PDB	id:	2AF1)	showing	deviation	of	the	

structure	over	time	(highlighted	 in	red).	RMSd	of	(c)	parallel	d(T-A•T)10,	 (d)	parallel	

d(G-G•C)10,and	(e)	antiparallel	d(G-G•C)10	triplexes.	(f)	Parallel	(PDB	id:	352D)	and	(g)	

anti-parallel	 (PDB	 id:	 156D)	 quadruplex	 showing	 stable	 structures	 over	 time.	 (h)	

Structural	 stability	of	d(GCGAAGC)	hairpin	 (PDB	 id:	1PQT)	and	 (i)	OxyQ	quadruplex	

(PDB	id:	1JRN)	with	ions,	over	time.	(j)	Human	Telomeric	Quadruplex	(PDB	id:	1KF1)	

with	highlighted	loops.	RMSd	of	HTQ	backbone,	loop	1,	loop	2	and	loop	3	regions	are	

shown	below.	In	all	panels,	parmbsc1	(final,	averaged	or	at	a	given	trajectory	point)	

structures	 (light	 blue;	 also	 green	 for	 Z-DNA)	 are	 overlapped	 over	 experimental	

structure	(grey)	for	comparison.	See	Supplementary	Table	1	for	information	on	the	

PDB	structures.	

	

Figure3|Analysis	 of	 DNA-protein	 complexes.	 Structural	 details	 of	 microsecond	

trajectories	of	four	complexes	with	PDB	id:	1TRO	(a),	2DGC	(b),	3JXC	(c)	and	1KX5	(d)	

(500	ns	trajectory).	Each	plot	shows	overlap	of	the	MD	starting	(red)	and	final	(blue)	

structures,	time	dependent	mass-weighted	root	mean	square	deviation	(RMSD	in	Å)	

of	 all	DNA	 (red)	 and	protein	 (cyan)	heavy	 atoms,	 and	 comparison	of	 the	 values	of	

rotational	helical	parameter	roll	(in	degrees)	at	each	base	pair	step	calculated	from	

the	 X-ray	 crystal	 structure	 (cyan)	 and	 averaged	 along	 the	MD	 simulation	 (red	 line	

with	the	standard	deviation	envelope	in	light	red).	For	clarity,	in	the	1KX5	plot	of	the	

roll	value,	the	base	pair	steps	are	defined	by	the	number	of	the	position	along	the	

DNA	strand	and	not	by	the	base	pair	step	name.	

	

ONLINE	METHODS	
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General	parameterization	strategy.	

AMBER	charges	and	van	der	Waals	parameters	for	DNA	are	able	to	reproduce	high-

level	QM	data21–23	and	hydration	free	energies24–26,	as	well	as	producing	reasonable	

hydrogen	 bond	 stabilities2,	 21–23,	 27	 and	 complex	 properties	 such	 as	 sequence-

dependent	 stabilities	 of	 duplex	 DNA2,	 28,	 29.	 Thus,	 we	 decided	 to	 keep	 the	 non-

bonded	parameters	unaltered	in	this	force-field	revision,	and	focus	our	efforts	in	the	

parameterization	of	 the	 backbone	degrees	 of	 freedom:	 sugar	 puckering,	 glycosidic	

torsion,	and	ε	and	ζ	rotations	(taking	the	recently	re-parameterized	α	and	γ	torsions	

from	parmbsc04).	Parameterization	of	 the	different	 torsion	angles	 (see	below)	was	

done	from	high-level	QM	calculations	using	the	refined	gas	phase	fitted	parameters	

as	 initial	 guesses	 for	 the	 refinement	 of	 parameters	 in	 solution	 taken	 now	 as	

reference	high	 level	Self-Consistent	Reaction	Field	 (SCRF)-QM	data.	 In	cases	where	

fitting	of	one	force-field	parameter	requires	the	knowledge	of	another	parameter	for	

the	 optimization,	 an	 iterative	 procedure	 using	 parmbsc0	 parameters	 in	 the	 first	

iteration	was	employed.		

	

Quantum	mechanical	calculations.	

Model	 compounds,	 shown	 in	 Supplementary	 Fig.	 23,	 were	 first	 geometrically	

optimized	at	the	B3LYP/6-31++G(d,p)	 level30	 from	which	single-point	energies	were	

calculated	 at	 the	 MP2/aug-cc-pVDZ	 level31.	 To	 reduce	 errors	 in	 the	 fitting,	

optimizations	were	 done	while	 selected	 backbone	 and	 sugar	 dihedral	 angles	were	

constrained	to	typical	values	obtained	from	a	survey	of	DNA	crystal	structures9.	We	

obtained	both	vacuum	and	solvent	profiles	for	all	structures	calculated.	3D	profiles	

of	ε	and	ζ	were	sampled	with	10	º	increment	in	the	region	of	interest	(ε	=	[175	º,	275	

º],	ζ	=	[220	º,	330	º]),	and	with	40	º	increment	in	the	rest	of	the	profile.	Profiles	of	χ	

were	sampled	with	15	º	increment	and	profiles	of	sugar	pucker	by	10	º	in	the	range	

of	phase	angles	from	0	º	to	180	º,	and	considering	the	four	nucleosides.	To	increase	

the	 accuracy	 of	 the	 profiles,	 we	 performed	 CCSD(T)/complete	 basis	 set	 (CBS)	
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calculations32,	33	on	key	point	along	 the	Potential	Energy	Surface	 (for	ε	and	 ζ	 these	

points	 were	 BI,	 BTRANS	 and	 BII	 states;	 for	 χ	 minima	 of	 anti	 and	 syn	 regions,	 and	

maximum	between	 them;	and	minima	of	North,	East	 and	South	 conformations	 for	

the	 sugar	 pucker).	 These	 calculations	were	 performed	 first	 by	 optimization	 at	 the	

MP2/aug-cc-pVDZ	 level,	 followed	 by	 single-point	 calculations	 at	 the	 MP2/aug-cc-

pVXZ	 (X	 =	 Triplex	 and	 Quadruplex)	 levels.	 CBS	 energies	 were	 obtained	 by	

extrapolating	to	infinite	basis	set,	from	the	scheme	of	Halkier	et	al.32,	and	adding	the	

correction	 term	of	 the	difference	 from	CCSD(T)	 and	MP2	with	 the	6-31+G(d)	basis	

set.	 These	 high	 level	 points	were	 introduced	with	 increased	weights	 in	 the	 global	

fitting	 (see	 below).	 All	 QM	 calculations	 were	 performed	 with	 Gaussian09	

(http://www.gaussian.com).	

	

Solvation	corrections	in	QM	calculations.	

The	solvent	calculations	were	done	at	the	single-point	level	using	our	version	of	the	

polarizable	 continuum	model	 (PCM)	 from	Miertus,	 Scrocco	 and	 Tomasi	 (MST)34–40.	

For	 comparison,	 test	 calculations	 were	 performed	 using	 Cramer	 and	 Truhlar	 SMD	

(Solvent	 Model	 based	 on	 Density)	 model41,	 and	 the	 standard	 Integral	 Equation	

Formalism	 (IEF)-PCM36	 as	 implemented	 in	 the	Gaussian09	 package,	 obtaining	 very	

similar	 results	 (data	not	 shown).	 Consequently,	 only	MST	 values	were	used	 in	 this	

work.	

	

Molecular	mechanics	and	Potential	of	Mean	Force	calculations.	

Molecular	mechanics	(MM)	reference	calculations	of	the	QM-optimized	structures	in	

vacuo	were	obtained	from	MM	single-point	energy	calculations	using	the	AMBER	11	

package	 (http://ww.ambermd.org).	 MM	 profiles	 in	 solution	 were	 recovered	 from	

potential	 of	mean	 force	 (PMF)	 calculations	 created	with	 umbrella	 sampling	 (US)42	

procedures	 in	explicit	 solvent	conditions	 (no	restraints	were	used	on	any	dihedrals	

out	 of	 the	 reaction	 coordinate	 in	 these	 calculations).	 US	 calculations	were	 carried	

out	with	a	weak	biasing	harmonic	potential	of	0.018	kcal	mol–1	deg–2.	The	resulting	

populations	 were	 integrated	 using	 the	 Weighted	 Histogram	 Analysis	 Method	

(WHAM,	 http://membrane.urmc.rochester.edu/content/wham).US	 calculations	

typically	 involve	 40–100	 windows,	 each	 consisting	 of	 2–5	 ns	 of	 equilibration	 and	
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sampling	 times	 in	 the	 order	 of	 1–2	 ns.	 Simulation	 details	 in	 PMF-US	 calculations	

were	the	same	as	those	outlined	below	in	the	validation	of	MD	simulations	section.	

	

Force-field	fitting.	

The	 procedure	 of	 force-field	 fitting	 was	 similar	 to	 parmbsc0	 parameterization	

process4.	In	order	to	avoid	altering	other	torsional	parameters	of	the	general	force-

field,	we	 introduced	new	atom	 types	depending	on	 the	parameterization.	 For	 ε,	 ζ,		

and	sugar	pucker	parameterization	we	assigned	the	atom	type	CE	to	C3’	atom.	For	χ	

parameterization	we	assigned	C1	to	the	C8	atom	of	adenine	and	C2	to	the	C6	atom	

of	 thymine,	 while	 keeping	 unchanged	 the	 atom	 types	 CK	 for	 guanine	 and	 CM	 for	

cytosine.	Charges	 for	model	 systems	used	 in	 the	parameterization	were	calculated	

from	 standard	 RESP	methods	mimicking	 the	 original	 amber	 parameterization.	We	

used	 the	 standard	 torsions	 definition,	 i.e.	 ε	 =	 C4’-C3’-O3’-P,	 ζ	 =	 C3’-O3’-P-O5’,	 χ	 =	

O4’-C1’-N9-C8	 (for	 dA	 and	 dG)	 and	 χ	 =	 O4’-C1’-N1-C6	 (for	 dC	 and	 dT).	 For	 sugar	

pucker	 parameterization	 we	 chose	 ν1=O4’-C1’-C2’-C3’,	 the	 δ	 backbone	 and	 the	

ν2=C1’-C2’-C3’-C4’	dihedrals,	since	they	connect	the	two	corrections:	ε/ζ	and	χ43–45.	

	

As	 in	 the	 parmbsc0	 parameterization,	 we	 used	 a	 Monte	 Carlo	 method	 for	 fitting	

residual	energy,	or	QM-MM	difference	(Eq.	I),	to	a	Fourier	series	limited	to	the	third	

order	to	maintain	the	AMBER	force-field	philosophy	(Eq.	II).	The	rotational	barrier	Vn	

and	 the	 phase	 angle	 α	 of	 each	 periodicity	 (n	 =	 1,	 2,	 3)	 were	 fitted	 to	 obtain	 the	

minimal	error	in:	

	

!!"!,! = !!" − !!!"#$! !!! 	 (I)	

	

where	x	 stands	 for	a	specific	 torsion	or	a	combination	of	 torsions	 (in	 the	case	of	ε	

and	ζ)	and	 ffbsc0(x=0)	 refers	 to	 the	standard	parameters	and	the	specific	x	 torsion	

set	to	zero	(that	used	in	reference	MM	or	US	calculations	noted	above).	The	dihedral	

term	is	defined	as:	

	

!!"! = !!
2 1 + cos !" − !3

!!"#$%"&$   (II)	
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where	torsions	denotes	a	torsion,	n	stands	for	the	periodicity	of	the	torsion,	Vn	is	the	

rotational	barrier,φ	is	the	torsion	angle,	and	α	is	the	phase	angle.	

	

Our	 flexible	Metropolis	Monte	Carlo	algorithm	allows	 the	 introduction	of	different	

weights	 in	 the	 fitting	 for	 each	 point	 of	 the	 profile,	 as	well	 as	weighting	 of	 energy	

slopes	 to	guarantee	 smooth	 transitions,	or	even	mixing	 information	 from	different	

profiles	obtained	in	different	conditions	or	with	different	levels	of	QM	data.	Fittings	

were	done	taking	all	the	data	in	consideration,	but	with	increased	weighting	at	the	

profile	 minima	 (typically	 five	 times	 more	 than	 others)	 specially	 at	 the	 key	 points	

computed	 through	 the	 most	 accurate	 CCSD(T)/CBS	 approach	 (typically	 weighted	

nine	 times	more	 than	 others).	 For	 certain	 cases	 like	 the	 sugar	 puckering,	 detailed	

attention	 was	 needed	 to	 properly	 reproduce	 the	 transition	 region,	 which	 was	

achieved	 by	 increasing	 the	 importance	 of	 the	 energy	 maximum	 and	 by	 also	

introducing	weights	 to	 the	slopes	 in	 the	calculations.	As	described	before4,	around	

5–10	acceptable	solutions	of	the	Monte	Carlo	refinement	were	tested	on	short	MD	

simulations	 (around	 50–100	 ns)	 for	 one	 small	 duplex	 d(CGATCG)2	 rejecting	 those	

leading	 to	 distorted	 structures.	 The	 optimum	 parameter	 set	 (see	 Supplementary	

Discussion	 and	 Supplementary	 Table	 12),	 without	 additional	 refinement	 was	

extensively	 tested	 against	 experimental	 data.	 Note	 that	 the	 way	 in	 which	 the	

parameters	were	derived	does	not	guarantee	their	validity	for	RNA	simulations,	for	

which	the	use	of	others	already	validated	RNA	force-fields	are	recommended45.	

	

	

Validation	of	MD	simulations.	

We	 performed	MD	 simulations	with	 the	 PMEMD	 code	 from	 the	 programs	AMBER	

11-12	 (http://www.ambermd.org),	 or	 with	 GROMACS46,	 depending	 on	 the	 given	

simulation.	 As	 shown	 in	 Supplementary	 Fig.	 24,	 results	 are	 insensitive	 to	 the	

simulation	engine	or	 to	 the	use	of	CPU	or	GPU-adapted	 codes47.	Unless	otherwise	

noted	NPT	conditions	with	default	 temperature	and	pressure	setting,	at	300	K	and	

pressure	of	1	atm,	where	used.	Calculations	employed	an	integration	step	of	2	fs	in	

conjunction	 with	 SHAKE48	 (or	 LINCS49	 in	 the	 case	 of	 GROMACS),	 to	 constrain	 X-H	
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bonds	with	the	default	values.	The	TIP3P50	or	SPCE51	water	models	were	used,	with	a	

minimum	 buffer	 of	 10	 Å	 solvation	 layer	 beyond	 the	 solute,	 and	 the	 negatively	

charged	DNA	was	neutralized	with	Na+or	K+	ions52.	Test	simulations	with	added	salt	

(Na+Cl-)	 showed	 that	DNA	helical	 conformations	were	not	much	dependent	on	 the	

surrounding	 ionic	strength	 in	the	0	to	0.5	M	range	(Supplementary	Discussion	and	

Supplementary	Fig.	25).	Long	range	electrostatic	interactions	were	calculated	using	

the	particle	mesh	Ewald	method	(PME)53	with	default	grid	settings	and	tolerance.	All	

structures	were	first	optimized,	thermalized	and	pre-equilibrated	for	1	ns	using	our	

standard	 protocol8	 and	 were	 subsequently	 equilibrated	 for	 an	 additional	 10	 ns	

period.	 Conformational	 snapshots	 were	 saved	 every	 1,	 10,	 20,	 or	 even	 100	 ps	

depending	 on	 the	 system	 size,	 the	 objective	 of	 the	 simulation,	 and	 its	 length.	

Simulations	 mimicking	 crystal	 environments	 were	 carried	 out	 as	 described	

elsewhere54	 for	d(CGATCGATCG)2	 (PDB:	1D23)	using	2	µsec	simulation	with	12	unit	

cells	 (or	32	duplexes)	 in	the	simulation	periodic	box	(Supplementary	Fig.	 14),	 for	a	

total	of	64	µsec	of	duplex	simulation.	

	

For	annotation	of	conformational	regions	at	the	nucleotide	 level	we	used	standard	

criteria.	Sugar	puckering	(C3’-endo	for	P	between	0	º	and	36	º	(canonical	North)	C4'-

exo	for	P	between	36	º	and	72	º,	O4’-endo	for	P	between	72	º	and	108	º	(canonical	

East),	C1’-exo	for	P	between	108	º	and	144	º,	C2'-endo	for	P	between	144	º	and	180	

º	(canonical	South),	C3'-exo	for	P	between	180	º	and	216	º,	C4'-endo	for	P	between	

216	º	and	252	º,	O4'-exo	for	P	between	252	º	and	288	º	(canonical	West),	C1'-endo	

for	 P	 between	 288	 º	 and	 324	 º,	 and	 C2'-exo	 for	 P	 between	 324	 º	 and	 360	 º),	

glycosidic	torsion	(anti	for	90º	to	180	º	or	-60	º	to	-180	º,	and	syn	for	-60	º	to	90	º).	BI	

(ε	 trans,	 ζ	 gauche-)	 and	 BII	 (ε	 gauche-,	 ζ	 trans).	 An	 H-bond	 is	 annotated	 using	

standard	GROMACS	rules	and	was	considered	broken	when	donor-acceptor	distance	

was	greater	 than	3.5	Å	 for	at	 least	 ten	 consecutive	picoseconds.	Reference	A-DNA	

and	 B-DNA	 fiber	 conformations	 were	 taken	 from	 Arnott’s	 values55.	 Whenever	

possible,	 the	 simulations	 were	 validated	 against	 experimental	 data	 obtained	 in	

solution.	
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A	variety	of	analyses	were	performed	to	characterize	 the	mechanical	properties	of	

DNA	 based	 on	 MD	 simulations.	 Flexibility	 analysis	 was	 performed	 using	 essential	

dynamics	 algorithms56–58,	 base	 step	 stiffness	 analysis17,	 59,	 60,	 and	 quasi-harmonic	

entropies	computed	by	using	either	Andricioaei-Karplus61	or	Schlitter62	procedures.	

Similarities	 between	 essential	 deformation	 movements	 were	 determined	 using	

standard	Hess’s	metrics63	as	well	as	energy-corrected	Hess-metrics59.	The	calculation	

of	 polymer	 deformation	 parameters	 (persistence	 length,	 stretch	 and	 twist	 torsion	

modules)	 was	 done	 following	 different	 approaches	 to	 reduce	 errors	 associated	 to	

the	 use	 of	 a	 single	 method	 to	 move	 from	 atomistic	 simulations	 to	 macroscopic	

descriptors:	i)	extrapolation	of	base	step	translations	and	rotations17,	59,	ii)	analysis	of	

the	 correlations	 in	 the	 conformations	 and	 fluctuations	 of	 the	 DNA	 at	 different	

lengths64,	 and	 iii)	 an	 implementation	 of	 Olson’s	 hybrid	 approach,	 which	 requires	

additional	Monte	Carlo	simulations	using	MD-derived	stiffness	matrices65.	Dielectric	

constants	of	DNA	were	computed	using	Pettit’s	procedure66,	67.	

	

The	 trajectories	 were	 analyzed	 using	 AMBERTOOLS	 (http://www.ambermd.org),	

GROMACS46,	 MDWeb68,	 NAFlex69,	 and	 Curves+70,	 as	 well	 as	 with	 in-house	 scripts	

(http://mmb.irbbarcelona.org/www/tools).	

	

	

NMR	analysis.	

Analysis	 of	 the	 ability	 of	 MD	 trajectories	 to	 reproduce	 NMR	 observables	 (NOE-

derived	interatomic	distances	and	residual	dipolar	couplings)	was	done	using	the	last	

950	ns	of	microsecond	trajectories.	We	used	the	Single	Value	Decomposition	(SVD)	

method	implemented	 in	the	program	PALES71	to	obtain	the	orientation	tensor	that	

best	fitted	the	calculated	and	observed	RDC	values.	Violations	of	the	NOE	data	were	

computed	using	the	tool	g_disre,	included	in	the	GROMACS	package,	using	distance	

restraints	 derived	 from	 the	 deposited	 BioMagResBank	 database72,	 or	 as	 described	

below	when	NOEs	were	collected	de	novo	using	full	relaxation	matrix	experiments.	

	

The	novo	NMR	experiments.	
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Samples	(3	mM	oligonucleotide	concentration)	were	suspended	in	500	µL	of	either	

D2O	 or	 H2O/D2O	 9:1	 in	 25	mM	 sodium	 phosphate	 buffer,	 125	mM	Na+Cl-,	 pH	 7.	

NMR	 spectra	 were	 acquired	 in	 Bruker	 spectrometers	 operating	 at	 800	 MHz,	 and	

processed	with	Topspin	 software.	DQF-COSY	 (Double	Quantum	Filter	 –	Correlation	

spectroscopy),	 TOCSY	 (Total	 Correlation	 spectroscopy),	 and	 NOESY	 (Nuclear	

Overhauser	effect	spectroscopy)	experiments	were	recorded	 in	D2O	and	H2O/D2O	

9:1.	The	NOESY	 spectra	were	acquired	with	mixing	 times	of	75,	100,	200,	and	300	

ms,	 and	 the	 TOCSY	 spectra	 were	 recorded	 with	 standard	 MLEV	 17	 spin	 lock	

sequence,	and	80	ms	mixing	time.	NOESY	spectra	were	recorded	at	5	and	25	ºC.		

	

The	 spectral	 analysis	 program	Sparky	 (https://www.cgl.ucsf.edu/home/sparky)	was	

used	 for	 semi-automatic	 assignment	 of	 the	 NOESY	 cross-peaks	 and	 quantitative	

evaluation	of	 the	NOE	 intensities.	Quantitative	distance	 constraints	were	obtained	

from	 NOE	 intensities	 by	 using	 a	 complete	 relaxation	 matrix	 analysis	 with	 the	

program	MARDIGRAS73.	Error	bounds	in	the	inter-protonic	distances	were	estimated	

by	carrying	out	several	MARDIGRAS	calculations	with	different	initial	models,	mixing	

times	and	correlation	times	(2.0,	4.0	and	6.0	ns).	Final	constraints	were	obtained	by	

averaging	the	upper	and	lower	distance	bounds	in	all	the	MARDIGRAS	runs.	

	

Availability	of	force-field	parameters	and	porting	to	different	MD	codes.	

The	refined	parameters	are	 incorporated	 in	amber-format	 libraries	accessible	 from	

http://mmb.irbbarcelona.org/ParmBSC1/.	 Porting	 to	 GROMACS	 format	 was	 done	

from	 amber	 topology	 files	 using	 external	 utilities	 (amb2gmx74	 and	 acpype75	 tools	

accessible	 at	https://simtk.org/home/mmtools	 and	

https://github.com/choderalab/mmtools).	 Porting	 to	 NAMD	

(http://www.ks.uiuc.edu/Research/namd)	 is	 not	 required	 since	 direct	 reading	 of	

AMBER	topology	files	is	possible.	

	

Data	Management.	

Trajectories	 and	 the	 analysis	 performed	 were	 placed	 in	 a	 novel	 dual	 database	

framework	 for	 nucleic	 acid	 simulations	 using	 Apache’s	 Cassandra	 to	 manage	

trajectory	data,	and	MongoDB	to	manage	trajectory	metadata	and	analysis.	Results	
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are	available	at	http://mmb.irbbarcelona.org/ParmBSC1/.	Details	on	the	Barcelona’s	

nucleic	acids	database	will	be	presented	elsewhere.	
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CHAPTER IV | DNA Sequence Dependence and Polymorphisms 

 

The sampling problem for duplex B-DNA seems to have been overcome 
– at least when neglecting slow motions (> ms), such as internal base pair 
opening. Even over the duration of this thesis, the time scales for small 
oligomer simulations has quadrupled, with current lengths routinely 
exceeding the µs limit. With extended sampling time assuring converged 
ensembles [1,2], highly accurate force fields, like parmbsc1, and novel analysis 
tools, our understanding of the DNA conformational space has evolved 
significantly in recent years. The type of B-DNA motions for which we can 
obtain reliable statistics from µs long trajectories include sampling of different 
backbone conformational states (most notably BI-BII transitions), rapid 
fluctuations in the groove widths, sugar repuckering, bending, twisting and 
sampling of a wide variety of helicoidal parameter distributions, as well as 
terminal base pair opening [3]. 

Several groups, including our own [4–7] reported that many of these 
internal degrees of freedom sample distributions that stray from normality, 
indicating that the conformational space of DNA is intrinsically polymorphic. 
These conclusions have recently started to be seriously backed up by 
experimental evidence [5,8–10], and there is consensus that specific 
combinations of internal degrees of freedom animated by thermal fluctuations 
thusly give rise to the different conformational substates. 

One of the most intensely studied structural polymorphism of B-DNA in 
the sub-µs time scale is the BI-BII equilibrium, which has been shown to have 
implications in protein-DNA binding through the so-called indirect readout 
mechanism. Many experimental and theoretical studies have established the 
sequence-dependence of the BII state propensity and its connection to 
changes in groove width and depth [11]. However, some key aspects of the 
thermodynamic and kinetic details allowing and driving the BI/BII transitions 
were still not understood. This motivated us to try to complete the picture.  

In a first work on this topic, we addressed the problem of sequence-
dependent BI/BII propensities and their stabilizing factors. Previous studies 
from the group and also in collaboration with the Ascona B-DNA Consortium 
(ABC) reported that the formation of a C8H8-O3’ contact in RpR and YpR 
steps was highly correlated to the BII conformation, with BII populations 
varying as a function of different 3’- and 5’- neighbors [6]. It remained to be 
clarified what modulates the BII populations in the other two base-pair step 
types (RpY and YpY). Access to a cohesive set of simulation data where all 
136 unique tetranucleotides were represented with statistical significance 
from the ABC (µABC dataset) allowed the exploration of this question in a 
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systematic way, such that next-to-nearest-neighbor effects were investigated. 
We so observed a C6H6-O3’ contact – identified as an h-bond type dipole-
dipole interaction – was able to explain the BI/BII propensities in RpY and 
YpY steps, which until then had precluded a comprehensive model in 
accordance with experimental values. These intra-molecular h-bonds are not 
only important because they thermodynamically allow the BII substate to 
exist for certain bps, but also because (i) they connect a structural 
polymorphism occurring in the backbone with movements in the bases, and 
(ii) their presence defines the tetranucleotide as the minimum unit necessary 
to characterize and analyze the sequence dependent BI/BII propensities. These 
results are presented in the work entitled The Role of Unconventional Hydrogen 
Bonds in Determining BII Propensities in B-DNA (page ##). 

Another well-documented polymorphism at the time, with an important 
link to the backbone equilibrium, was the twist bimodality, seen particularly 
in CpG steps [6,7,12]. However, other non-Gaussian and multi-peaked helical 
parameters distributions had also been obtained in MD simulations for 
certain base pair steps. As these results were obtained with the parmbsc0 
force field the question of a well-represented sequence-dependent 
equilibrium distribution was still open. This prompted us to perform a new 
set of simulations with the state-of-the-art parmbsc1 force field [13], covering 
the sequence space to the same extent as the µABC [12,14–16]. In the second 
work presented in this Chapter, The Physical Properties of B-DNA beyond 
Calladine’s rules, we use this new set of multi-microsecond MD simulations 
(miniABC dataset) with parmbsc1 to deliver a global view of the polymorphic 
landscape of each B-DNA tetranucleotide, unifying experimental and 
theoretical results in a consensus view. Polymorphisms for shift, slide and 
twist, BI-BII transitions, the formation of the C-H···O h-bonds, and the 
correlations between all these elements, have been dissected and have 
allowed us to reformulate Calladine’s rules at the tetramer level.  

 

1 The	Role	of	Unconventional	Hydrogen	Bonds	in	
Determining	BII	Propensities	in	B-DNA.	

This article came as a necessary final piece to complete the puzzle of 
BI/BII state populations in the different B-DNA tetranucleotides. We first 
observed in the extensive MD trajectories of µABC the formation of a C6H6-
O3’ contact in RpY steps, an interaction analogous to the C8H8-O3’ contact of 
RpR steps. Our analysis clearly related the presence of this interaction in the 
backbone of the junction between two bases to the backbone transition to BII 
at the same junction (R2 > 0.9) and the contact was found to stabilize this state. 
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We therefore set up to provide an exhaustive picture of the mechanism 
driving the sequence-dependent BI/BII backbone transitions. We show that 
almost all BI � BII backbone transitions involve the instantaneous formation 
of the hydrogen bond. We point out that this is accomplished in specific ways 
for the different bps types. Although the bond formation is in all cases 
extremely well correlated with the backbone state, the more complex 
choreography of the transitions is quite different depending on the sequence. 
The h-bond of different bps involves a combination of changes in helical 
parameters at the same step and in neighboring steps that is sequence 
dependent. Along with the transition to BII, water occupancy at the O3’ group 
decreases dramatically from that in the BI state. 

Furthermore, we carried out ab-initio MP2 calculations on representative 
snapshots, which allowed us to quantify the relative strength of these 
interactions and speculate on the implications to tetramer-level backbone 
stabilities. The C6−H6···O3’ bonds of RpY steps, although slightly lower than   
the C8−H8···O3’ interactions reported for RpR bps, are within the expected 
range of values for canonical hydrogen bond interactions. Our conclusions 
were supported by analysis of high-resolution experimental structures of 
unbound DNA, where we she a bimodal distribution of C6···O3’ distances 
that is also clearly correlated with the BI/BII state in the backbone, in 
agreement with simulations. 

   

Publication: 

• Alexandra Balaceanu, Marco Pasi, Pablo D. Dans, Adam Hospital, 
Richard Lavery, Modesto Orozco; The Role of Unconventional Hydrogen 
Bonds in Determining BII Propensities in B-DNA. J. Phys. Chem. Lett., 8, 21-
28, 2017. 
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ABSTRACT	
	
An	 accurate	 understanding	 of	 DNA	 backbone	 transitions	 is	 likely	 to	 be	 the	 key	 for	
elucidating	 the	puzzle	of	 the	 intricate	 sequence-dependent	mechanical	properties	 that	
govern	 most	 of	 the	 biologically	 relevant	 functions	 of	 the	 double	 helix.	 One	 factor	
believed	 to	 be	 important	 in	 indirect	 recognition	within	 protein-DNA	 complexes	 is	 the	
combined	 effect	 of	 two	DNA	 backbone	 torsions	 (ε	 and	 ζ)	which	 give	 rise	 to	 the	well-
known	 BI/BII	 conformational	 equilibrium.	 In	 this	 work	 we	 explain	 the	 sequence	
dependent	 BII	 propensity	 observed	 in	 RpY	 steps	 (R	 =	 purine;	 Y	 =	 pyrimidine)	 at	 the	
tetranucleotide	 level	with	the	help	of	a	previously	undetected	C-H···O	contact	between	
atoms	 belonging	 to	 adjacent	 bases.	 Our	 results	 are	 supported	 by	 extensive	 multi-
microsecond	molecular	dynamics	simulations	from	the	Ascona	B-DNA	Consortium,	high-
level	quantum	mechanical	calculations,	and	data	mining	of	the	experimental	structures	
deposited	in	the	Protein	Data	Bank.	
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INTRODUCTION	

	
The	 fact	 that	 DNA’s	 overall	 conformation	 is	 associated	 with	 changes	 in	 backbone	
geometry	 became	 apparent	 from	 the	 analysis	 of	 the	 first	 generation	 of	 successfully	
resolved	diffraction	patterns1,2.	One	of	the	major	backbone	structural	polymorphisms	in	
B-DNA	arises	 from	its	ability	 to	populate	 two	distinct	conformations,	known	as	BI	and	
BII3	 (see	 scheme	 in	 Figure	 1A).	Within	 each	DNA	 strand,	 the	 phosphodiester	 junction	
between	 two	 consecutive	 bases	 undergoes	 fast	 inter-conversions	 between	 two	 states	
defined	 by	 specific	 combinations	 of	 rotations	 around	 the	 ε	 and	 ζ	 dihedrals.	 The	
canonical	 state,	 referred	 to	 as	 BI,	 features	 ε/ζ	 in	 a	 trans/gauche-	 (t/g-)	 conformation,	
while	the	other	state,	BII,	has	ε/ζ	in	g-/t	conformation.	To	determine	BI/BII	equilibrium	
in	 B-DNA,	 proton	 and	 Phosphate	 NMR	 experiments4-7,	 Molecular	 Dynamics	 (MD)	
simulations8-10,	 and	 data	 mining	 of	 crystal	 structures	 from	 databases11-13	 have	 being	
historically	 used	 as	 the	 preferred	 methods.	 Following	 initial	 observations	 based	 on	
crystal	structures	showing	that	BI/BII	transitions	were	associated	with	base	destacking	
and	 minor	 groove	 widening14,15,	 computer	 MD	 simulations	 have	 shed	 light	 on	 the	
influence	of	water	and	ion	dynamics	on	the	propensity	of	BI/BII	states8,9,16,17.	Destacking	
of	 two	 successive	 bases	 along	 one	 strand	 and	 water	 migration	 were	 found	 to	 be	
necessary,	 but	 not	 sufficient,	 conditions	 for	 the	 adoption	 of	 the	 BII	 conformation16,18.	
Also	based	on	crystal	structures,	successive	nucleotide	in	one	strand	have	been	shown	
to	 have	 anti-correlated	 backbone	 conformational	 states11,13.	 From	 the	 very	 beginning,	
31P-NMR	 experiments	 were	 crucial	 to	 identified	 sequence	 dependence	 as	 a	 key	
modulator	 of	 BI/BII	 transitions,	 capable	 of	 fine-tuning	 the	 population	 of	 states.	
Hartmann’s	 group	 has	 been	 particularly	 active	 in	 this	 field,	 providing	 a	 sequence	
dependent	 view	 of	 BI/BII	 at	 the	 dinucleotide	 level	 (and	 even	 tetranucleotide	
level)4,7,19,20,	 but	 also	 putting	 into	 perspective	 NMR	 results	with	 values	 obtained	 from	
crystal	 structures	 or	 MD	 simulations21.	 Moreover,	 recent	 MD	 studies	 have	 also	
shown10,22,23	 that	 the	 impact	 of	 sequence	 in	 BI/BII	 equilibrium	 is	more	 complex	 than	
anticipated,	supporting	the	importance	of	the	tetranucleotide	environment.	
	

The	 transition	 between	 backbone	 substates	 can	 only	 be	 accurately	 captured	 in	 its	
entirety	 from	 a	 cohesive	 set	 of	 data	 where	 all	 136	 unique	 tetranucleotides	 are	
represented	 with	 statistical	 significance,	 which	 precludes	 the	 use	 of	 experimental	
information	deposited	in	structural	databases22,	having	to	rely	on	the	use	of	information	
gained	from	atomistic	Molecular	Dynamics	(MD)	simulations.	To	this	end,	we	performed	
part	of	 the	present	analysis	on	trajectories	obtained	by	the	Ascona	B-DNA	Consortium	
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(ABC,	 bisi.ibcp.fr/ABC/Welcome.html)	 who	 created	 a	 database	 of	 simulations,	 called	
µABC,	containing	multi-microsecond	MD	of	DNA	oligomers	containing	multiple	copies	of	
all	 the	 136	 distinct	 tetranucleotides9,10.	 An	 impressive	 amount	 of	 information	 was	
already	 extracted	 from	 this	 collection	 of	 simulations,	 extending	 our	 vision	 of	 the	
conformational	 landscape	 of	 B-DNA	 at	 the	 tetranucleotide	 level10	and	 leading	 to	 some	
interesting	observations,	 including	the	 fact	 that	YpR	and	YpY	dinucleotide	steps	rarely	
populate	the	BII	state,	and	also	that	the	base	pairs	flanking	a	given	step	can	significantly	
modulate	 the	 BI/BII	 equilibrium	 in	 RpR	 and	 RpY	 steps.	 Interestingly,	 a	 previously	
uncharacterized	 C-H···O	 hydrogen	 bond	 (H-bond)	 between	 the	 C8-H8	 atoms	 of	 the	 R	
base	and	the	O3’	atom	of	the	corresponding	5’	phosphate	turned	out	to	be	a	key	player	
in	the	stabilization	of	BII	states	at	steps	featuring	a	purine	in	the	3’-position	(i.e.	RpR	and	
YpR)10,23.	It	follows	that	the	C8-H8···O3’	H-bond	is	not	expected	to	have	any	role	in	the	
stabilization	 of	 the	 BII	 state	 in	 RpY	 and	 YpY	 steps,	 where	 it	 cannot	 be	 formed.	 Our	
analysis	 of	 RpY	 steps	 from	 the	 µABC	 set	 has	 revealed	 that	 a	 similar	 contact	 can	 be	
formed	between	 the	same	O3’	oxygen	 in	 the	backbone	phosphate	and	C6-H6	atoms	of	
pyrimidines.	 In	 this	 work,	 we	 characterize	 in	 detail	 the	 nature	 of	 this	 previously	
undetected	contact,	 first	as	captured	by	the	classical	potentials	of	MD	simulations,	and	
second,	 by	 carrying	 out	 Quantum	 Mechanics	 (QM)	 calculations	 at	 the	 MP2	 level	 on	
several	 representative	 structures	 of	 RpY	 steps	 taken	 from	 the	 MD	 trajectories.	 The	
electron	 density	 obtained	 was	 a	 posteriori	 analyzed	 using	 the	 Atoms	 in	 Molecules24	
(AIM)	approach	in	order	to	determine	the	stabilizing	nature	of	this	interaction.	Finally,	
we	extracted	all	the	RpY	steps	from	the	high-resolution	X-ray	structures	of	isolated	DNA	
deposited	 in	 the	Protein	Data	Bank	 (PDB).	As	 suggested	by	our	 atomistic	 simulations,	
RpY	steps	in	PDB	found	in	the	BII	state	showed	a	distance	between	the	O3’	and	C6	atoms	
compatible	with	 the	 presence	 of	 the	 stabilizing	 C6-H6···O3’	 H-bond.	 	 Our	 results	 also	
demonstrate	 that	 the	 occurrence	 of	 this	 interaction	 is	 highly	 time-correlated	with	 the	
backbone	 BI	�	 BII	 transitions	 and	 establish	 it	 as	 a	 stabilizing	 factor	 of	 the	 BII	 state,	
providing	a	complete	view	of	the	BI/BII	equilibrium.	
	

RESULTS	AND	DISCUSSION	

	
We	 started	by	 analyzing	 two	of	 the	µABC	 simulations10,	 namely	 those	 referring	 to	 the	
CAAG	 (5’-GCAGCAAGCAAGCAAGGC-3’)	 and	 TAAG	 (5’-GCAGTAAGTAAGTAAGGC-3’)	
sequences,	consisting	of	3.5	repeats	of	each	of	these	two	tetranucleotides	with	GpC	base	
pairs	 capping	 each	 end.	 We	 focused	 our	 analysis	 on	 the	 centermost	 G8pC9	 (Watson	
strand)	and	G24pC25	(Crick	strand)	steps	 from	the	CAAG	oligomer,	along	with	G8pT9	
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(Watson)	and	A24pC25	(Crick)	steps	of	the	TAAG	sequence.	These	were	chosen	because	
GpY	 and	 ApC	 steps	 show	 the	 highest	 BII	 propensities	 among	 RpY	 steps	 from	 MD	
simulations	(75%	and	60%	BII	respectively,	see	Figure	1B).		The	reader	should	be	aware	
that	 when	 comparing	 NMR,	 MD	 simulations,	 and	 X-ray	 structures,	 differences	 exist	
between	the	specific	BII	percentages	assigned	to	some	base	pairs	steps12,21.	The	sources	
of	 uncertainties	 from	 crystal	 structures	 have	 being	 discussed	 several	 times	 and	 are	
clearly	 related	 to	 low	 resolution	 (frequently	 insufficient	 to	 define	 backbone’s	 states),	
lack	 of	 dynamics,	 and	 lattice	 restraints13,25,26.	 In	 the	 same	 way,	 changes	 in	 NMR’s	
refinement	protocols	or	annealing	procedures	from	one	experiment	to	another27,28,	the	
usually	 low	 number	 of	 restraints	 due	 to	 the	 low	 density	 of	 protons	 in	 DNA,	 and	 the	
frequent	overlap	of	several	NOE	peaks20,	are	the	main	sources	of	uncertainties,	being	the	
average	standard	deviation	 in	 the	prediction	of	BII	percentages	±821.	 In	addition,	both	
experimental	 sources	 of	 BII	 values	 suffer	 from	 a	 sequence	 bias	 due	 to	 the	 limited	
number	of	tetranucleotide	represented	in	the	limited	set	of	sequence	available20,22,29.	For	
its	part,	the	parmBSC030	force	field	for	MD	simulations	of	DNA,	the	gold	standard	for	the	
last	 decade	 used	 to	 produce	 the	 µABC	 dataset,	 is	 known	 to	 produce	 an	 overall	
underestimation	 of	 Twist	 and	 a	 clear	 underestimation	 of	 BII	 populations28,31,	 in	
particular	 for	 YpR	 steps.	 Despite	 these	 considerations,	 the	 stabilizing	 C-H···O	 contacts	
are	 postulated	 to	 exist	 beyond	 the	 apparent	 discrepancies	 reported	 between	 the	
different	 methods	 or	 the	 specific	 value	 assigned	 to	 a	 specific	 base	 pair	 step.	
Nevertheless,	we	decided	to	support	our	conclusions	on	the	role	of	the	C-H···O	H-bonds,	
simulating	again	the	CAAG	and	TAAG	sequences,	following	the	same	protocol10,	but	with	
the	latest	force	field	for	DNA	parmBSC131	which	is	known	to	fix	the	Twist	and	BII	issues.	
These	 new	 simulations	 validate	 our	 results,	 and	 ensure	 that	 our	 conclusions	 goes	
beyond	the	use	of	a	specific	force	field	(results	obtained	with	parmBSC1	are	presented	
in	the	Supporting	Data	but	discussed	throughout	the	text).		
	
To	 correctly	 capture	 the	 fast	 inter-conversion	 between	 backbone	 states10,23	 or	 related	
twist/slide	states23,	we	extracted	information	from	the	simulations	every	1	ps	leading	to	
conformational	 ensembles	 comprising	 more	 than	 106	 structures	 for	 each	 of	 the	 two	
sequences.	From	the	ensemble	of	collected	conformations,	we	identified	the	existence	of	
an	 interaction	 between	 the	O3’	 atom	of	 the	 backbone	 phosphate	 of	 the	GpC,	 GpT	 and	
ApC	 junctions	and	 the	C6-H6	atoms	of	 the	pyrimidine	 (see	scheme	 in	Figure	2A).	This	
contact	 is	 structurally	 equivalent	 to	 the	 C8-H8···O3’	 H-bond	 identified	 in	 RpR	 or	 YpR	
steps10,23,	where	it	has	been	shown	to	play	a	fundamental	role	in	stabilizing	the	BII	state.	
This	 equivalence	 suggests	 that	 this	 new	 interaction	 can	 explain	 the	 BII	 propensity	
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observed	 for	 the	 two	 remaining	 classes	 of	 steps,	 namely	 RpY	 and	 YpY.	 To	 evaluate	
whether	 this	 is	 the	 case,	we	 turned	 to	 the	 complete	μABC	dataset,	 and	 found	 that	 the	
occurrence	of	 the	C6-H6···O3’	hydrogen	bond	is	 indeed	in	perfect	sequence-dependent	
correlation	with	the	BII	state	population	of	RpY	and	YpY	steps	(compare	figures	1B	with	
2B,	and	see	the	correlation	in	Figure	2C).	This	interaction	can	reasonably	be	termed	a	H-
bond	since	 the	partial	 charges	assigned	 in	 the	 force-field	 (obtained	by	QM	 fitting32)	 to	
the	 C6-H6	 atoms	 in	 thymine	 or	 cytosine	 generate	 a	 significant	 bond	 dipole	 (Table	 1).	
Furthermore,	the	geometrical	features	of	the	three	atoms,	whenever	this	contact	occurs,	
are	consistent	with	the	partial	covalent	nature	of	hydrogen	bonding33	as	assessed	from	
angle	and	distance	distributions	within	the	ensemble	of	MD	structures	(Figure	3A	shows	
the	 angle	 distribution	 of	 structures	with	H6···O3’	 distances	 below	2.5	 Å).	We	 validate	
this	 geometrical	 arrangement	 by	 obtaining	 results	 totally	 equivalent	 with	 the	 last	
generation	force	field	for	DNA31	(Figure	S1).	
	
To	further	confirm	our	interpretation	we	carried	out	ab	initio	MP2	calculations	on	seven	
different	snapshots	from	each	of	the	two	simulations	(see	Methods).	Five	representative	
structures	were	taken	from	the	most	populated	state	 in	the	C6-H6···O3’	angle/C6···O3’	
distance	 space,	 while	 two	 other	 structures	 belonged	 to	 the	 marginal	 bins	 of	 the	
distributions	depicted	in	Figure	3A	with	angles	above	170˚	coupled	with	donor-acceptor	
distances	below	3.35	Å.	The	electron	densities	obtained	in	this	way	were	analyzed	using	
the	AIM	approach24	to	determine	the	stationary	points	and	the	gradient	paths	(obtained	
from	 the	 first	 derivative	 of	 the	 electron	 density)	 connecting	 them.	 In	 particular,	 we	
focused	 on	 the	 bond	 critical	 points	 (bcp)	 generated	 between	 hydrogen	 and	 acceptor	
group,	 as	previous	 studies	have	demonstrated	 that	 canonical	H-bonds	 (X-H···Z;	with	X	
and	Z	being	electronegative	atoms)	are	associated	with	electron	densities	at	the	bcp	that	
vary	in	the	range	from	0.002	to	0.034	atomic	units	(a.u.)34.	Bond	critical	points	and	bond	
paths	 between	 the	 H6	 and	 O3’	 atoms	 were	 found	 in	 all	 the	 21	 electron	 densities	
analyzed	 (see	 Figure	 3B	 for	 a	 representative	 scheme,	 and	 Table	 1	 for	 numerical	
description)	supporting	the	existence	of	H-bonds.	On	average,	the	electron	densities	at	
the	 bcp	 were	 found	 to	 be	 around	 0.011	 a.u.,	 within	 the	 expected	 range	 of	 values	 for	
canonical	 interactions	(see	Table	1	and	reference	34),	even	though	slightly	 lower	 than	
those	 reported	 for	 the	 C8-H8···O3’	 H-bond	 in	 RpR	 steps	 (two	 cases	 are	 shown	 for	
comparison).	 The	 positive	 value	 of	 the	 Laplacian	 (second	 derivative	 of	 the	 electron	
density)	 at	 the	 bcp	 indicates	 a	 depletion	 of	 electron	 density	 towards	 the	 interacting	
nuclei	 from	 a	 density	 maximum,	 another	 feature	 consistent	 with	 the	 formation	 of	
hydrogen	bonds24.	We	calculated	the	gas	phase	stabilization	provided	by	the	specific	C6-
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H6···O3’	 contact	 in	 all	 cases,	 by	 estimating	 the	 interaction	 energy	 from	 the	 linear	
relation	 described	 by	 Cubero	 et	 al35.	 We	 found	 that	 each	 C6-H6···O3’	 hydrogen	 bond	
stabilizes	the	BII	state	by	more	than	3	kcal	mol-1,	a	value	only	slightly	lower	compared	
with	the	equivalent	C-H···O	bond	described	for	RpR	steps	(Table	1)23.	It	is	worth	noting	
that	a	3	kcal	mol-1	stabilizing	effect	should	completely	drive	the	equilibrium	to	BII,	but	
part	 of	 this	 stabilization	 will	 be	 compensated	 by	 hydration	 effects,	 since	 water	
occupancy	at	the	O3’	group	decreases	dramatically	from	36%	in	the	BI	state	(when	the	
C-H···O	bond	is	not	formed)	to	only	1.4%	in	BII	(data	from	the	analysis	of	105	structures	
taken	from	the	last	100	ns	of	trajectory	filtered	according	to	the	BI/BII	state,	confirmed	
by	both	force	fields).	

	
A	 more	 detailed	 analysis	 of	 the	 MD	 time	 series	 shows	 that	 the	 C6-H6···O3’	 contact	
occurs	simultaneously	with	the	formation	of	BII	states:	our	results	indicate	that	almost	
all	BI	�	BII	backbone	transitions	involve	the	instantaneous	formation	of	the	hydrogen	
bond	(Figure	4A).	This	sheds	new	light	on	the	question	of	whether	the	hydrogen	bond	
forms	prior	to	the	transition,	driving	the	backbone	into	a	BII	state	slowly,	allowing	for	a	
period	 of	 structural	 frustration.	 Our	 results	 suggest	 that	 this	 interaction	 is	more	 of	 a	
stabilizing	force	than	a	driving	element.	This	is	in	agreement	with	the	observed	average	
lifetime	of	hydrogen	bond	formation	(25.6	ps	for	GpC	and	16.5	ps	for	GpT),	compared	to	
the	average	lifetimes	of	the	corresponding	BII	states	(23.6	ps	and	15.8	ps	respectively).	
These	 results	were	 confirmed	by	 analyzing	 the	 time	 series	obtained	with	parmBSC131	
force	 field.	 Although	 the	 percentage	 occurrence	 of	 the	 BII	 state	 and	 C6-H6···O3’	
hydrogen	 bond	 at	 GpC	 and	 ApC	 steps	 varies	 slightly	 (by	 less	 than	 10%)	 when	 using	
parmBSC1,	 the	 extent	 to	 which	 the	 two	 events	 are	 time-correlated	 is	 substantially	
unchanged	(compare	the	time	series	and	distributions	of	Figures	4A	and	S2).		
	
From	a	mechanical	point	of	view,	the	formation	of	the	C8-H8···O3’	H-bond	in	RpR	steps	
has	 been	 shown	 to	 be	 coupled	 to	 slide	 polymorphism	 at	 the	 base	 level	 in	 the	 same	
junction10,23.	On	the	contrary,	no	helical	parameter	or	torsion	angle	showed	a	two-state	
distribution	 coupled	 to	 the	 formation	 of	 the	 C6-H6···O3’	 hydrogen	 bond	 in	 RpY	 steps	
(again	confirmed	by	both	 force	 fields).	 It	 seems	 that	 the	mechanical	 coupling	between	
slide	and	the	backbone	with	a	purine	in	the	3’	position	(which	helps	to	bring	closer	the	
C8-H8	atoms	to	the	backbone),	is	not	necessary	in	the	case	of	pyrimidines	in	3’.	We	also	
did	not	find	any	coupled	role	of	cations	in	these	transitions	(in	contrast	to	that	reported	
for	CpG	steps23),	while	the	hydration	change	around	the	backbone	atoms,	synchronized	
with	 the	 BI/BII	 transition,	 and	 the	 formation	 of	 the	 intra-molecular	 C-H···O	 hydrogen	
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bond,	 produced	 a	 local	 water	 migration	 in	 agreement	 with	 that	 reported	
experimentally18.	
	
To	confirm	our	results	we	performed	two	‘proof	of	concept’	simulations,	with	the	same	
sequences	reported	above,	labeled	TAAG(H6-)	and	CAAG(H6-),	where	the	H6	atom	from	
the	pyrimidine	base	was	 removed	and	 its	 charge	was	 transferred	 to	 the	C6	atom	 (see	
Methods	 and	 reference	 23).	 This	 "alchemical"	 base	 is	 useful	 in	 testing	 the	
conformational	 impact	of	the	C6-H6···O3’	H-bond.	As	expected,	 in	these	simulations	C6	
and	O3’	 no	 longer	 come	 into	 close	 contact	 and	 the	 backbone	 of	 RpY	 steps	 undergoes	
significantly	 fewer	 transitions	 to	 the	BII	state	(up	to	69%	less	BII	 for	GpC),	suggesting	
that	without	 the	C-H···O	stabilizing	 interaction	the	backbone	cannot	 last	 in	 time	 in	 the	
BII	state	(its	average	lifetime	is	decreased	to	10.6	ps	for	GpC	and	8.8	ps	for	GpT,	half	its	
normal	value),	or	easily	access	a	g-/t	state	of	the	ε/ζ	torsions	(Figure	4B	and	Figure	S3).		
	
Finally,	we	performed	an	analysis	of	high-resolution	experimental	structures	of	isolated	
DNA	to	find	experimental	support	for	our	hypothesis.	For	this	purpose,	we	extracted	all	
high-resolution	X-ray	structures	of	isolated	dsDNA	oligomers	deposited	in	PDB	(R	<2.5	
Å,	see	Table	S1);	the	resulting	554	experimental	structures	contain	information	on	3,991	
RpY	 dinucleotides	 (37%	GpC,	 18%	GpT,	 19%	ApC,	 and	 26%	ApT).	We	 found	 that	 the	
distribution	of	C6···O3’	distances	is	bimodal,	in	agreement	with	simulations,	and	clearly	
correlated	with	the	BI/BII	state	in	the	backbone	(Figure	S4).	For	the	GpC	case,	for	which	
we	have	better	statistics,	the	C6···O3’	distance	decreases	in	average	from	5.03	to	3.48	Å	
(with	 a	 s.d.	 of	 0.4	 Å),	when	moving	 from	BI	 to	 BII	 state	 in	 the	 crystal	 structures.	We	
repeated	 the	analysis	 for	RpR	steps	(484	structures	analyzed,	see	Table	S1	and	Figure	
S4),	 finding,	analogously,	a	shortening	of	the	C8···O3’	distance	from	5.20	(BI)	to	3.80	Å	
(BII).		Equivalent	results	were	obtained	for	YpR	and	YpY	steps	(Table	S2	and	Figure	S4).	
It	should	be	noted	that	 in	spite	of	the	extended	set	of	structures	used	in	this	work,	BII	
propensities	 from	 crystal	 structures	 still	 seems	 underestimated	when	 compared	with	
NMR	 and	 MD	 results	 (Table	 S2)4-6,12,20,21.	 The	 reasons	 for	 the	 apparent	 discrepancies	
between	the	methods,	which	are	beyond	the	scope	of	the	present	work,	are	complex,	of	
diverse	sources,	and	have	been	partially	addressed	recently21.	In	summary,	despite	the	
relative	 scarcity	 of	 experimental	 structural	 data,	 the	 analysis	 of	 crystal	 structures	
provides	 quantitative	 support	 for	 the	 importance	 of	 the	 C6-H6···O3’	 interaction	
discussed	here,	as	well	as	for	the	C8-H8···O3’	H-bond	previously	reported10,23.	
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The	 observed	 sequence-dependent	 BII	 propensity	 in	 RpY	 steps,	 as	 obtained	 from	MD	
simulations,	 can	now	be	explained	by	 taking	 into	account	 the	established	hierarchy	of	
bond	 strength,	 inferred	 from	 the	 populations	 of	 H-bond	 formation	 corresponding	 to	
each	 purine-pyrimidine	 combination	 (Figure	 2B).	 Considering	 all	 possible	 steps,	 H-
bonds	in	RpR	are	the	strongest,	with	GpA	being	the	most	favorable,	while	RpG	and	RpC	
interactions	are	of	similar	strength.	RpT	and	YpR	contacts	are	rather	weaker,	but	a	H-
bond	in	YpY	steps	is	indeed	very	infrequent.	We	also	observed	the	hindering	effect	one	
H-bond	has	 on	 the	 formation	of	 a	 second	H-bond	 in	 a	 neighboring	 step,	 in	 agreement	
with	 the	 known	 anti-correlation	 between	 adjacent	 BII	 backbone	 states.	 Accordingly,	
applying	 these	 simple	 considerations	 in	 a	 tetranucleotide	 context	 would	 predict,	 for	
example,	 that	 a	 YpRpYpY	 sequence	 should	 result	 in	 the	 highest	BII	 content	 among	 all	
RpY	steps	 in	MD	simulations,	 since	 it	 is	unfavorable	 to	 form	a	H-bond	 in	either	of	 the	
flanking	 base	 steps,	while	 the	 opposite	 effect	 should	 be	 observed	within	 an	RpRpYpR	
sequence,	 where	 both	 flanking	 steps	 will	 compete	 for	 H-bond	 formation,	 leading	 to	
conformational	 frustration.	 This	 is	 an	 important	 effect	 to	 understand	 sequence-
dependent	propensities	at	 the	tetranucleotide	 level,	since	the	crankshaft	motion	of	 the	
backbone	ensure	almost	every	time	that	alternate	BI/BII/BI/BII	states	will	be	observed	
in	successive	junctions	in	the	same	strand13,	leading	to	conformational	frustration	when	
two	or	more	dinucleotides	with	high	BII	 content	are	 side-by-side.	The	confirmation	of	
these	 predictions	 (Figure	 1B),	 and	 the	 extension	 of	 our	 conclusions	 to	 RpR	 and	 YpR	
steps10,	 supported	by	 last	 generation	 force	 field,	 allows	us	 to	 conclude	 that	 the	newly	
detected	C-H···O	H-bond	makes	an	important	contribution	to	deciphering	the	sequence-
dependent	BII	propensity	within	B-DNA,	which	in	turn	has	an	important	role	to	play	in	
protein-DNA	recognition	processes.	
	

METHODS	

	

Molecular	 dynamics	 simulations.	 Sequence	 dependence	 analyses	 are	 based	 on	 the	 39	
multi	μs	simulations	collected	in	2014	by	the	Ascona	B-DNA	Consortium	that	 form	the	
µABC	 data	 set10.	 Since	 this	 analysis,	 a	 new	 version	 of	 the	 Amber	 force	 field	 for	 DNA	
named	 parmBSC131	 was	 published.	 As	 this	 force	 field	 has	 been	 shown	 to	 produce	
trajectories	 in	 even	 better	 correlation	 with	 experiment24,36,	 we	 validate	 parmBSC0-
derived	 conclusions	 by	 simulating	 again	 with	 parmBSC1	 the	 two	 double	 stranded	 B-
DNA	 oligomers	 with	 sequences	 5’-GCAGCAAGCAAGCAAGGC-3’	 (labeled	 CAAG)	 and	 5’-
GCAGTAAGTAAGTAAGGC-3’	 (labeled	 TAAG)	 used	 in	 the	 detailed	 analysis	 presented	
here.	Additionally,	simulations	(using	both	parmBSC030	and	parmBSC131)	were	carried	
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out	removing	the	H6	atom	of	either	the	thymine	or	the	two	cytosines	of	interest:	labeled	
TAAG(H6-)	and	CAAG(H6-)	 respectively.	To	maintain	 the	 total	 charge	of	 the	system	 in	
these	 model	 calculations,	 the	 H6	 charge	 was	 transferred	 to	 the	 C6	 atom23.	 All	
simulations	 were	 carried	 out	 using	 the	 protocol	 described	 in	 Pasi	 et	 al10.	 The	 results	
obtained	 with	 parmBSC1	 are	 equivalent	 to	 those	 discussed	 in	 the	main	 text,	 and	 are	
presented	in	the	Supporting	Data.		
	
Analysis	of	trajectories.	Trajectories	were	pre-processed	with	the	cpptraj	module	of	the	
AmberTools15	 package37.	 Conformational	 analysis	 was	 performed	 using	 the	 Curves+	
and	Canal	programs38,	which	provide	a	full	set	of	helical,	backbone	and	groove	geometry	
parameters,	and	further	dissection	of	these	quantities	was	done	with	the	use	of	NaFleX	
server39	 and	 in-house	 tools.	 We	 consider	 a	 H-bond	 was	 formed	 when	 the	 distance	
between	C6/C8	and	O3’	was	below	4	Å.	Trajectories	will	be	deposited	in	the	BigNASim	
database40	 of	 the	 European	 MuG	 Virtual	 Research	 Environment	
(www.multiscalegenomics.eu/MuGVRE/).	
	
Quantum	 mechanical	 calculations.	 To	 make	 a	 first	 principles	 confirmation	 of	 the	
existence	 of	 the	 C-H···O	 intra-molecular	 hydrogen-bond,	 Bader’s	 atoms	 in	 molecules	
(AIM)24	electron	 topology	analysis	was	used.	Seven	representative	snapshots	 from	the	
three	 selected	 dinucleotides	 (GpC,	 GpT	 and	 ApC)	 were	 extracted	 from	 the	 MD	
simulations	 to	 perform	 single-point	MP2	 calculations.	Waters	 and	 ions	were	 removed	
and	only	the	dinucleotide	step	was	kept	and	subjected	to	single-point	calculations	at	the	
MP2(FC)/6–31G(d,p)	 level	 of	 theory	 using	 Gaussian	 0941.	 H	 atoms	 were	 used	 to	
complete	the	valency	of	 the	5’	and	3’	oxygen	atoms.	The	electron	density,	 the	gradient	
and	its	Laplacian	at	the	bcp	were	computed	and	analyzed	using	the	program	AIM-UC42.	 	
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TABLES	
	
Table	1.	C-H···O	hydrogen	bond	parameters	(average	distance,	average	angle,	charges,	
and	 energy)	 and	 electron	 density	 at	 the	 bond	 critical	 point	 was	 computed	 at	 the	
MP2(FC)/6-31G(d,p)	level.	

Seq	/	
dinuc. 

Distance	
(Å) 

Angle	
(º) 

ρ	
(a.u.) 

∇2	

(a.u.) 
EHbonda	

(kcal/mol) 
qCb	
(e) 

qH	
(e) 

qO	
(e) 

UCoulomb	
(kcal/mol) 

AGCA	
(GpC) 

3.30	±		
0.02 139 0.011	±	

0.002 
0.037	±	
0.004 -3.51 -0.018 0.229 -0.523 -11.6 

AGTA	
(GpT) 

3.19	±	
0.06 129 0.011	±	

0.001 
0.037	±	
0.005 -3.75 -0.221 0.261 -0.523 -13.8 

TACT	
(ApC) 

3.34	±	
0.06 142 0.011	±	

0.001 
0.037	±	
0.004 -3.44 -0.018 0.229 -0.523 -11.6 

CCGG	
(GpG)c 3.2 138 0.013 0.043 -4.52 0.074 0.200 -0.523 -10.8 

TCGA	
(GpA)c 3.0	±	0.1 136 0.018	±	

0.001 
0.059	±	
0.004 -7.19 0.161 0.188 -0.523 -10.0 

A-U	bpd 3.6 --- 0.006 0.021 -0.85 0.572 0.060 -0.548 -3.0 

U-U	bpe 3.3 --- 0.016 0.047 -5.19 -0.364 0.181 -0.548 -9.7 

a	Computed	 from	 the	 Laplacian	 values	 using	 the	 linear	 regression	 from	 Cubero	 et	al35.	 b	Taken	
directly	 from	 the	 AMBER	 14	 libraries	 (as	 reported	 in	 the	 original	 parm94	 article32).	 c	Adapted	
with	 permission	 from	 Dans	 et	 al23.	 d	We	 reproduced	 the	 values	 for	 the	 C2-H2···O2	 H-bond	 as	
reported	in	the	work	of	Martin-Pintado	et	al43.	e	Idem	than	(d)	for	the	C5-H5···O2	hydrogen	bond.	
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FIGURES	
	
	

	
Figure	1.	A)	Depiction	of	B-DNA	BI	and	BII	conformers	resulting	from	rotations	around	
the	 ζ	 and	 ε	 torsions.	 B)	 Sequence	 dependence	 of	 BII	 backbone	 conformations.	 The	
percentage	 occurrence	 of	 BII	 backbone	 states	 for	 the	 phosphodiester	 junction	 at	 the	
central	base	step	of	each	of	the	256	possible	tetranucleotide	sequences	is	shown	(BII%),	
using	 the	 color	 code	 defined	 on	 the	 right	 (0%	 is	 dark	 blue,	 80%	 is	 dark	 red).	 The	
sequences	 are	 arranged	 so	 that	 each	 column	 represents	 one	 of	 16	 dinucleotide	 steps,	
and	each	 row	corresponds	 to	one	of	 the	16	possible	 flanking	 sequences;	 columns	and	
rows	are	further	grouped	on	the	basis	of	base	type	(R	=	purine	and	Y	=	pyrimidine).	
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Figure	2.	A)	Representation	of	the	C6-H6···O3’	 interaction	in	an	RpY	step	showing	the	
atoms	 involved.	B)	Sequence	dependence	of	C-H···OH-bond	 formation.	The	percentage	
occurrence	of	either	the	C6-H6···O3’	or	the	C8-H8···O3’	H-bond	at	the	central	base	step	
of	 each	 of	 the	 256	 possible	 tetranucleotide	 sequences	 is	 shown,	 using	 the	 color	 code	
defined	on	the	right	(0%	is	dark	blue,	80%	is	dark	red).	The	sequences	are	arranged	so	
that	each	column	represents	one	of	16	dinucleotide	steps,	and	each	row	corresponds	to	
one	of	the	16	possible	flanking	sequences;	columns	and	rows	are	further	grouped	on	the	
basis	 of	 base	 type	 (R	 =	 purine	 and	 Y	 =	 pyrimidine).	 	 C)	 Correlation	 between	 the	
percentage	of	BII	(%BII,	horizontal	axis)	and	of	occurrence	of	 formation	of	 the	C-H···O	
H-bonds	at	the	central	base	step	of	each	of	the	256	possible	tetranucleotide	sequences,	
color-coded	according	to	base	type	of	the	central	base	step;	the	correlation	coefficient	is	
0.998.	
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Figure	 3.	 A)	Distribution	 of	 C6-H6···O3’	 angles	 in	RpY	 steps.	 Structures	with	H6···O3’	
bond	distances	<	2.5	Å	and	C6-H6···O3’	angles	>	120°	were	selected	and	a	histogram	was	
built.	 The	 mean	 distance	 of	 the	 corresponding	 set	 is	 given	 above	 each	 bin	 bar.	 The	
equivalent	distributions	obtained	with	the	parmBSC1	force	field	are	reported	in	Figure	
S1.	 B)	Hydrogen	 bond	AIM	 analysis	 for	 the	 GpC	 dinucleotide	 in	 the	 BII	 conformation.	
The	bond	critical	point	 is	 indicated	by	a	red	dot.	The	nuclear	critical	points	(located	at	
the	 position	 of	 the	 nuclei)	 are	 indicated	 by	 green	 dots,	while	 the	 basin	 paths	 and	 the	
gradient	 field	 are	 shown	with	 grey	 lines.	 The	 bond	paths,	 defined	by	 the	 chosen	 two-
dimensional	projection	(plane),	are	shown	with	red	dotted	lines.	
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Figure	4.	A)	Left:	Time	evolution	of	C6···O3’	distance	in	two	RpY	steps	(GpC	and	ApC)	
colored	by	the	backbone	conformation	of	the	step.	Right:	Venn	diagrams	of	occurrences	
of	BII	state	and	C6-H6···O3’	hydrogen	bonds	at	the	same	RpY	steps.	An	equivalent	figure	
but	showing	the	results	obtained	with	parmBSC1	force	field	is	shown	in	Figure	S2	in	the	
Supporting	 Data.	 B)	 Same	 than	 (A)	 for	 the	 simulation	 without	 the	 H6	 atom	 in	 GpC,	
labeled	CAAG(H6-).	The	results	for	TAAG(H6-)	are	presented	in	Figure	S3.	
	
	
	
	
	
	



	138	

	
	

TOC	GRAPHIC	
	

	
	
 
  



!")&!

!

A %"#$%;#27/,0(%;4'<$4./$7%')%6=8>?%B$2'+3%C0((03/+$D7%4E($7@%
$

"#*%!=.-L! *%! /&%$1! .+! 9#$! *+51$(9#! &+&)E%*%! .0! 9#$!'*+*84\! %$D2$+;$!
)*/-&-E! 2%*+,! 9#$! +$=$%9! (&-'/%;I! 0.-;$50*)$1A!=#*;#! ;.--$;9%!'&+E! L+.=+!
;&:$&9%!.0!9#$!0.-'$-!(&-'/%;U!0.-;$50*$)1B!"#$!+$=!)*/-&-E!=&%!1$%*,+$1!9.!
.(9*'*Z$! 9#$! +2'/$-! .0! -$)&9*:$)E! %#.-9! .)*,.'$-%! +$$1$1! 9.! ;.:$-! 9#$!
;.'()$9$!9$9-&+2;)$.9*1$!%(&;$!&+1!(&-9)E!9#$!#$3&+2;)$.9*1$!%(&;$B!!

V2-!-$%2)9%!1$9$-'*+$!9#&9!#$)*;&)!(&-&'$9$-%!&-$!9-&+%0$-&/)$!>=*9#!0$=!
$3;$(9*.+%@!&9!9#$!9$9-&+2;)$.9*1$!)$:$)!&+1!$+;.2-&,$!2%!9.!'&L$!D2&)*9&9*:$!
./%$-:&9*.+%! .0! 9#$*-! :&-*&/*)*9E! &+1! *+9$-51$($+1$+;$! 9#&9! =.2)1! (-.:$!
-$)*&/)$! >%$$! e*,2-$! QBI@B! G$! 0.;2%! .+! 2+*5! :$-%2%! /*5'.1&)*9E! .0! #$)*;&)!
(&-&'$9$-%! &+1! $3()&*+! 9#$! 1*%9*+;9*.+! *+! -$)&9*.+%#*(! =*9#! %$D2$+;$A!
/&;L/.+$!%9&9$!&+1!*.+!$+:*-.+'$+9B!!

8+&)E%*%! .0! 1&9&! %#.=! 9#&9! 45678! %&'()$%! *9%! *+9$-+&)! ;..-1*+&9$%! *+! &!
;.+;$-9$1! =&EA! ,$+$-&9*+,! &! ;.'()$3! ;#.-$.,-&(#E! .0! ;.+0.-'&9*.+&)!
9-&+%*9*.+%! 9#&9! '.12)&9$%! 678! (.)E'.-(#*%'%B! "#$-$0.-$! '&+E! #$)*;&)!
(&-&'$9$-%! &+1! /&;L/.+$! 9.-%*.+%! %#.=! ;.+%*%9$+9! %$D2$+;$5%($;*0*;!

5<=>?9!:!$CD9E9!FG!HD9!IF8JEF?ID<C!86KLMC6I9!FG!#N+)"!6H!HD9!H9H?6K>C89FH<L9!89O98;!%D9!:AP!>K<Q>9!
H9H?6K>C89FH<L9M!R9?9!=?F>I9L!6CCF?L<K=!HF!I>?<K9M!S&T!6KL!IJ?<E<L<K9M!SUTV!GF?!RD<CD!FK8J!:W!
>K<Q>9!CFE7<K6H<FKM!9X<MH;(



	140	

correlation patterns among the 3 bps of a tetramer. Cations represent an 
additional player in this negotiation, having the ability to subtly modify the 
polymorphic landscape of the DNA particularly at the bps level. 
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ABSTRACT	

	
We	present	 a	multi-laboratory	 effort	 to	 describe	 the	 physical	 properties	 of	 duplex	 B-DNA	
under	 physiological	 conditions.	 By	 processing	 a	 large	 amount	 of	 data	 from	 atomistic	
molecular	 dynamics	 simulations,	 we	 determine	 the	 sequence-dependent	 structural	
properties	 of	 DNA	 as	 expressed	 in	 the	 equilibrium	 distribution	 of	 its	 stochastic	 dynamics.	
Our	analysis	includes	a	study	of	first	and	second	moments	(or	mean	and	covariance)	of	the	
equilibrium	 distribution,	 which	 can	 be	 accurately	 captured	 by	 a	 Gaussian,	 or	 harmonic,	
model,	 but	 with	 nonlocal	 sequence-dependence.	 We	 then	 further	 characterize	 the	
sequence-dependent	choreography	of	backbone	and	base	movements	modulating	the	non-
Gaussian	or	anharmonic	effects	manifested	 in	 the	higher	moments	of	 the	dynamics	of	 the	
duplex	 when	 sampling	 the	 equilibrium	 distribution.	 Contrary	 to	 prior	 assumptions,	 such	
anharmonic	deformations	are	not	rare	in	DNA	and	can	play	a	significant	role	in	determining	
DNA	conformation	within	 complexes.	Polymorphisms	 in	helical	 geometries	are	particularly	
prevalent	 for	 certain	 tetranucleotide	 sequence	 contexts,	 and	 are	 always	 coupled	 to	 a	
complex	 network	 of	 coordinated	 changes	 in	 the	 backbone,	 with	 BI/BII	 equilibria	 being	 a	
major	 determinant.	 The	 analysis	 of	 our	 simulations,	 which	 contain	 instances	 of	 all	 136	
distinct	 tetranucleotide	 sequences,	 allow	 us	 to	 reformulate	 Calladine’s	 rules,	 used	 for	
decades	to	 interpret	the	average	geometry	of	DNA	according	to	presumed	local	sequence-
dependence	and	harmonic	 fluctuations,	 in	a	more	precise	manner,	 leading	to	an	extended	
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set	 of	 rules	 with	 quantitative	 predictive	 power	 that	 encompass	 nonlocal	 sequence-
dependence	and	anharmonic	fluctuations.	
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SIGNIFICANCE	STATEMENT	
	

The	 article	 represents	 the	 latest	 effort	 of	 the	 ABC	 consortium	

(https://bisi.ibcp.fr/ABC)	 on	 the	 characterization	 of	 the	 sequence-dependent	

physical	properties	of	DNA	under	physiological	conditions.	Taking	advantage	of	our	

recently	developed	 force	 field	 (PARMBSC1),	and	 the	coordinated	effort	of	 the	ABC	

laboratories,	 we	 were	 able	 to	 derive	 general	 rules	 concerning	 the	 equilibrium	

conformation	of	B-DNA,	which	represent	a	significant	step	beyond	Calladine’s	earlier	

qualitative	 propositions.	 We	 are	 now	 able	 to	 predict	 the	 appearance	 of	 subtle	

sequence-dependent	 sub-states	 at	 the	 base	 and	 backbone	 level	 that	 arise	 as	 a	

function	 of	 tetranucleotide	 sequence	 context.	 The	 extended	 Calladine	 rules	

presented	herein	can	be	transformed	into	quantitative	predictions	of	the	structural	

features	of	any	canonical	DNA	sequence.	

	

	

INTRODUCTION	
	

DNA	 is	 a	 flexible	 and	 structurally	 polymorphic	 polymer	 whose	 overall	 equilibrium	

geometry	 strongly	 depends	 on	 its	 sequence,	 the	 solvent	 environment,	 and	 the	

presence	 of	 ligands(1,	 2).	 Conformational	 changes	 in	 DNA	 are	 mediated	 by	 a	

complex	choreography	of	backbone	rearrangements	such	as	the	BI/BII	 transition(3,	

4),	the	low-twist/high-twist	equilibrium(5,	6),	or	concerted	α/γ  rotations(7–9).	Such	

backbone	rearrangements	lead	to	local	and	global	changes	in	the	helix	geometry(9,	

10)	 impacting	on	the	ability	of	 the	DNA	to	recognize	 ligands(11),	and	consequently	

on	its	functionality.		

	

Binding-induced	conformational	changes	 in	DNA	are	 required	 for	 function,	and	are	

expected	 to	 follow	 the	 sequence-dependent	 intrinsic	 deformation	modes	 of	 DNA,	

i.e.	 are	 implicitly	 coded	 in	 the	 spontaneous	 deformability	 of	 isolated	 DNA.	 This	

suggests	that	evolution	has	refined	DNA	sequence	not	only	to	maximize	ligand-DNA	

interactions,	but	also	to	reduce	the	energetic	cost	of	moving	from	a	canonical	 to	a	

bioactive	 conformation(11,	 12).	 This	 leads	 the	 notion	 of	 “indirect	 readout”,	which	

suggests	 that	 the	ability	of	 the	DNA	to	adopt	 the	“bioactive”	conformation	plays	a	

major	 role	 in	 determining	 the	 target	 sequences	 of	 a	 given	 DNA	 ligand.	

Understanding	 the	 sequence-dependent	 physical	 properties	 of	DNA	 then	becomes	

crucial	 to	 rationalizing	 how	 ligands	 and,	 most	 notably,	 proteins,	 recognize	 and	

modulate	DNA	activity,	i.e.	the	structural	basis	of	gene	regulation.	
	

Understanding	 the	 sequence-dependent	 physical	 properties	 of	 DNA	 has	 been	

traditionally	 hampered	 by	 the	 lack	 of	 experimental	 data.	 Using	 simple	 steric	

considerations	and	geometric	constraints,	Calladine(13)	developed	a	reduced	set	of	
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empirical	 rules,	which	have	been	used	for	decades	to	gain	some	qualitative	 insight	

into	 the	 sequence-dependence	 of	 expected,	 or	 average,	 local	 helical	 geometry.	 In	

their	original	version,	the	rules	suggested	that	clashes	between	bases	are	avoided	by	

a	 combination	 of	 concerted	 changes	 in	 twist,	 roll,	 and	 slide,	 as	 the	 base	 pair	

propeller	 increases	 to	 improve	 stacking(13).	 Unfortunately,	 the	 accuracy	 and	

predictive	power	of	these	rules,	even	 in	the	most	recent	versions,	 is	 limited(1,	14).	

Attempts	 to	gain	more	quantitative	 information	were	based	on	 the	analysis	of	 the	

variability	 in	 local	 helical	 parameters	 in	 structural	 databases(15,	 16),	 but	 to	 date1,	

isolated	B-DNA	structures	 in	the	Nucleic	Acid	Databank	(NDB)	allowed	us	to	obtain	

flexibility	 data	 for	 only	 5	 of	 the	 136	 distinct	 tetranucleotides	 (only	 AATT,	 CGCG,	

CGAA,	 GCGA	 and	 ATTC	 are	 represented	 more	 than	 500	 times).	 Even	 when	 the	

database	is	extended	by	including	protein-DNA	complexes,	the	sampling	is	not	dense	

enough	to	describe	sequence-dependent	DNA	flexibility	at	the	tetranucleotide	level	

(24	out	of	the	136	tetranucleotides	are	still	represented	less	than	500	times).	In	this	

context,	atomistic	molecular	dynamics	 (MD)	simulations	are	the	only	alternative	to	

obtain	robust	and	transferable	parameters(10,	17,	18).		

	

The	first	requirement	for	deriving	physical	descriptors	of	DNA	from	MD	simulations	

is	 the	 availability	 of	 extended	 simulations	 for	 a	 library	 of	 sequence	 fragments	

containing	 all	 distinct	 tetranucleotides.	 This	 requires	 a	 significant	 computational	

effort	which	 has	 encouraged	 joint	 projects	 such	 as	 the	 Ascona	 B-DNA	 Consortium	

(ABC,	https://bisi.ibcp.fr/ABC),	which	have	been	instrumental,	not	only	in	describing	

physical	properties	of	DNA,	but	also	in	refining	simulation	protocols(10,	19–21).	The	

second	 major	 requirement	 is	 the	 availability	 of	 accurate	 force	 fields,	 such	 as	 the	

recently	developed	PARMBSC1(22),	which	has	been	shown	to	represent	DNA	with	a	

quality	 indistinguishable	 from	 experimental	 measurements(23).	 Thanks	 to	 the	

coordinated	effort	of	several	ABC	groups,	a	series	of	microsecond-scale	simulations	

on	a	 library	of	DNA	duplexes	covering	all	of	 the	136	distinct	 tetranucleotides	have	

been	 performed,	 and	 with	 a	 number	 of	 different	 simulation	 conditions	 e.g.	using	
PARMBSC0(24)	or	 PARMBSC1,	 different	 counter	 ions,	 etc.	 Consequently	 there	 is	 a	

minimum	of	six	total	simulations	of	each	independent	tetranucleotide.	The	analysis	

of	this	 large	ensemble	of	data	allows	us	to	not	only	decipher	the	rules	defining	the	

sequence-dependent	 equilibrium	 geometry	 of	 B-DNA,	 but	 also	 those	 determining	

coordinated	 backbone	 conformational	 changes,	 and	 the	 correlations	 between	

various	helical	deformations.		A	new,	extended,	and	comprehensive	reformulation	of	

																																																								
1Data	 from	 the	NDB	 (http://ndbserver.rutgers.edu/)	 on	 the	 19th	March	 2018.	We	 found	 727	 PDBs	
with	 the	 search	 string:	 “Polymer	 Type:	DNA	 Only	+	 Structural	 Features:	B	 DNA	+	 Experimental	
Method:	All”;	 and	 3434	 PDBs	 searching	 for:	 “Polymer	 Type:	Protein	 DNA	 Complexes	+	 Protein	
Function:	All	+	Structural	Features:	B	DNA	+	Experimental	Method:	All”.	After	removing	non-canonical	
and	 terminal	 bases,	 10,134	 tetranucleotides	 remained	 in	 the	 B-DNA	 ensemble,	 and	 155,316	
tetranucleotides	in	the	Prot-DNA	set.	Watson	and	Crick	strands	were	both	taken	into	account,	and	no	
filters	were	applied	to	reduce	the	known	high	redundancy	of	the	database.	
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distributions).	 Correlation	between	backbone	and	helical	parameters	was	analyzed	

by	clustering	 the	backbone	conformations	 into	discrete	states	using	standard	 rules	

as	described	 in	 Suppl.	Methods.	 The	 similarity	between	 first	 and	 second	moments	

(i.e.	 averages	 and	 covariances)	 of	 the	 helical	 parameter	 distributions	 for	 different	

simulation	 libraries	 was	 evaluated	 using	 the	 Kullback-Leibler	 (KL)	 divergence,	 as	

detailed	 in	 the	 Suppl.	 Material.	 More	 specifically	 sequence-dependent	 Gaussian	

coarse	grain	cgDNA(39–41)	model	parameters	were	computed	from	each	of	the	four	

MD	training	libraries	used	in	this	work	(i.e.	µABCBSC0-K,	miniABCBSC0-K,	miniABCBSC1-K,	

miniABCBSC1-Na)	 in	order	 to	be	able	 to	generate	associated	predictions	of	 first	 and	

second	moments	of	 the	helical	parameters	 for	 fragments	of	arbitrary	 sequence.	 In	

particular	 this	 allowed	 us	 to	 compare	 PARMBSC0	 simulations	 of	 the	 µABC	 library	

with	 the	 PARMBSC0	 simulations	 of	 the	 miniABC	 library,	 even	 though	 the	 two	

libraries	have	different	sequence	fragments.	See	the	Supporting	Methods	for	more	

details.	

	

	

RESULTS	AND	DISCUSSION	
	

Sources	of	uncertainty:	the	sequence	library	and	the	type	of	salt.	Before	going	into	
detail	 with	 a	 conformational	 analysis,	 we	 first	 considered	 the	 robustness	 of	 our	

results	to	changes	in	the	choice	of	sequence	library,	because	large	differences	would	

challenge	the	general	validity	of	our	conclusions.		Fortunately,	only	one	of	the	1,632	

distributions	analyzed	(namely	of	6	intra-	plus	6	inter-	helical	parameters	for	each	of	

the	136	distinct	tetranucleotides),	showed	significant	differences	(according	to	BIC-

Helguerro	analysis)	depending	on	the	choice	of	library	(the	previous	µABC	library,	or	

the	 current	miniABC	 library;	 see	 Suppl.	 Figure	 S1).	 Furthermore,	 no	 differences	
were	 found	 depending	 on	 the	 salt	 (see	 Table	 S2	 and	 Tables	 A1-A6	 in	 the	
Appendix),	which	suggests	 that	our	 results	are	 robust	 to	 the	choice	between	K	
and	Na	 for	 the	 counter-ion.	 To	 gain	 additional	 confidence	 in	 the	 robustness	 of	
our	 results,	we	 used	 the	 explicit	 form	 of	 Kullback-Leibler	 divergence	 available	
for	Gaussian	(i.e.	multi-variate	normal)	distributions	 to	quantify	 three	pairwise	
differences	in	cgDNA	model	predictions	(see	Methods,	and	Suppl.	Methods)	of	the	
means	and	covariances	for	each	of	the	13	miniABC	library	sequences	for	the	four	
different	parameter	sets	extracted	from	the	µABCBSC0-K,	miniABCBSC0-K,	miniABCBSC1-

K,	 and	 miniABCBSC1-Na	 simulations.	 As	 can	 be	 seen	 in	 Figure	 1,	 no	 significant	

difference	 arises	 from	 the	 change	 in	 sequence	 library,	 nor	 from	 the	 difference	

between	 K	 and	 Na	 counter	 ions.	 However,	 the	 results	 are	 quite	 sensitive	 to	 the	

change	in	force	field	from	PARMBSC0	to	PARMBSC1.	This	is	to	be	expected	since	the	

latest	PARMBSC1	force	field	leads	to	a	considerably	more	realistic	representation	of	

twist/roll	 and	 BI/BII	 distributions	 (see	 the	 analysis	 and	 discussion	 published	

elsewere(9,	 23)),	 and	 to	 straighter	 average	 configurations	 of	 duplexes	 than	 those	
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obtained	 from	 prior	 force	 fields.	 This	 can	 be	 confirmed	 by	 considering	 the	

differences	 between	 static	 and	 dynamic	 persistence	 lengths	 (as	 introduced	

elsewhere(43))	over a large ensemble of sequences (see Suppl. Figure S2).  
		

Strong	 anharmonic	 distortions	 do	 arise.	 One	 of	 the	 most	 important	 extreme	
deformations	of	DNA	 is	 the	disruption	of	base	pairing,	which	can	be	analyzed	in	
detail	by	aggregating	data	over	all	instances	of	G:C	and	A:T	base	pairs	.	This	allowed	

us	to	accumulate	ensembles	on	the	millisecond	time	scale.	Terminal	base	pairs	(G:C	

pairs	 in	all	 the	cases)	 showed	open	states	 (water	molecules	 in	between	H-bonding	

Watson-Crick	groups)	in	1-2%	of	the	total	simulation	time,	with	short	average	open	

life	times	(around	3	ns,	see	Table	S3)	in	agreement	with	time-resolved	Stokes	shifts	

spectroscopy(44),	but	most	probably	too	short	to	lead	to	isotope	exchange	signals	in	

NMR	 experiments(45).	 The	 opening	 of	 central	 base	 pairs	 is	 less	 likely	 to	 occur	

(between	 0.01%	 in	 G:C	 and	 0.05%	 in	 A:T	 of	 the	 simulation	 time),	 but	 when	 it	

happens,	the	open	state	can	survive	considerably	 longer	(up	to	50	ns).	Whether	or	

not	 this	 time	 is	 sufficient	 to	 allow	 proton	 interchange	with	 the	 solvent	 is	 unclear.	

Another	example	of	 a	 strong	anharmonic	deformation	arising	 in	our	 simulations	 is	

the	 temporary	 formation	 of	 a	 sharp	 kink	 (Suppl.	 Figure	 S3)	 associated	 with	
anomalous	 rise	 and	 roll(46)	 at	 an	 AA	 step	 within	 a	 TAAA	 tetranucleotide	
belonging	to	a	relatively	long	tract	of	A:T	base	pairs	(seq.	9,	see	Table	S1).	Very	
interestingly,	 this	 deformation	 has	 been	 characterized	 before	 as	 one	 of	 the	
origins	of	 bubbling	 and	kinking	 in	natural	DNA(47,	48),	 but	 to	our	knowledge,	
has	not	been	previously	observed	in	atomistic	simulations.		
	

Equilibrium	 distributions	 of	 intra	 base-pair	 deformations	 are	 close	 to	 Harmonic.	
	 A	BIC	analysis	was	carried	out	for	the	distributions	of	all	six	of	the	helical	intra	

base	pair	parameters	at	the	central	base	pair	in	all	32	possible	distinct	trinucleotide	

contexts.	 These	 distributions	were	 all	 observed	 to	 be	 rather	 close	 to	Gaussian,	 cf.	
Figure	 S4,	 with	 the	 exception	 of	 exceptional	 rare	 events,	 as	 discussed	 in	 the	 last	

paragraph.	Certainly	no	multi-peaked	distribution	was	ever	observed.	Nevertheless	

the	average	value,	or	 first	moment,	of	 each	of	 the	 six	 intra	parameters	 is	 strongly	

sequence-dependent	 to	 at	 least	 the	 trinucleotide	 sequence	 context,	 see	 Figure	 2.	

Some	 qualitative	 rules	 on	 the	 sequence-dependent	 variation	 in	 the	means	 can	 be	

observed.	 Shear	 values	 in	 G:C	 pairs,	 when	 G	 is	 followed	 by	 Y	 are	 below	 average,	

while	the	opposite	happens	for	A:T	base	pairs.	Buckle	in	G:C	shows	large	variations	

depending	 on	 the	 nature	 of	 the	 3'-base	 of	 G,	 with	 an	 R	 leading	 to	 large	 positive	

buckles,	and	a	Y	 leading	 to	 large	negative	buckles.	Propeller	 twist	also	shows	clear	

sequence	rules,	with	A:T	pairs	having	a	sizeable	negative	value	when	there	is	an	R		5'	

to	the	A,	while	propeller	is	close	to	zero	for	G:C	pairs	within	YGR	trinucleotides.			
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Equilibrium	 distributions	 of	 inter	 base-pair	 deformations	 are	 frequently	 strongly	
anharmonic.	 Bi-normality	 (i.e.	 deviation	 from	 Gaussianity)	 in	 the	 equilibrium	

distributions	 of	 the	 inter	 base-pair	 helical	 coordinates	 is	 common,	 but	 clear	

bimodality	 (i.e	 the	 appearance	 of	 distinct	 multiple	 peaks)	 is	 observed	 in	 only	 3%	

(miniABCBSC1-K+)	to	5%	(miniABCBSC1-Na+)	of	the	inter	base-pair	helical	distributions	

(Figure	3	and	Suppl.	Fig.	S5).	Bimodality	appears	systematically	only	for	slide	(several	

tetranucleotides	 containing	 a	 central	 GG	 step),	 shift	 (typically	 in	 a	 few	

tetranucleotides	containing	a	YR	central	step)	and	twist	 (mainly	 in	tetranucleotides	

containing	central	CG	or	AG	steps).	These	conclusions	are	 completely	 compatible	
with	 our	 prior	 analysis	 of	 PARMBSC0	 simulations	 (see	 the	 µABC	 work(10),	
particularly	 Figure	 8).	 There	 are	 few	 cases	 where	 bimodality	 affects	
simultaneously	 two	 or	more	 helical	 parameters,	 for	 example,	 AGGA	 and	 GGGA	
are	 bimodal	 in	 shift	 and	 slide	 (in	 agreement	with	 experimental	 data(49))	 and	
ACGG,	GCGA	and	GCGG	are	bimodal	in	shift	and	twist	in	agreement	with	results	
derived	from	the	data	mining	of	PDB	structures(5).	The	central	step	of	the	GTAA	
tetranucleotide	is	the	only	case	displaying	bimodality	in	three	helical	parameters	
(shift,	slide	and	twist)	simultaneously.	 In	general,	shift	bimodality	 is	coupled	to	
the	appearance	of	high-shift	values	(above	1	Å).	The	reverse	situation	found	for	
slide,	where	bimodality	displaces	 the	distribution	 to	 lower	values.	Finally	 twist	
bimodality	displays	more	complex	behavior,	as	in	some	cases	the	second	peak	of	
the	distribution	occurs	at	lower	than	canonical	values	(<	30°),	while	in	others	it	
is	 at	 high	 twist	 values	 (>	 40°).	 See	 Figure	 3	 and	 Suppl.	 Figures	 S6-S8	 for	 a	
detailed	analysis.	
	
While	inter-base	pair,	or	junction,	helical	coordinates	are	frequently	far	from	having	

a	 normal	 distribution,	 the	 first	 and	 second	 moments	 of	 their	 equilibrium	

distributions	 are	 still	 well	 defined,	 and	 can	 be	 approximated	 by	 evaluating	 the	

appropriate	averages	along	our	MD	simulation	time	series,	and	over	all	instances	of	

dinucleotide	 (or	 NN,	 nearest	 neighbour)	 or	 tetranucleotide	 	 (NNN,	 next	 nearest	

neighbour)	 contexts.	 Only	 a	 few	 general	 NN	 rules	 can	 be	 observed	 for	 the	 first	

moments	(or	averages):	i)	YR	base-pair	steps	typically	have	higher	than	normal	slide	

and	roll,	ii)	RY	base-pair	steps	typically	have	lower	than	normal	slide	and	roll,	and	iii)	

YY	and	RR	steps	have	lower	than	normal	tilt	values.	Any	further	rules	concerning	the	

average	values	of	helical	 inter	base-pair	 coordinates	need	 to	be	 formulated	as	 the	

averages	 for	 the	 central	 junction	 or	 step	 in	 a	 specific	 tetranucleotide	 sequence	

context	 due	 to	 strong	 nonlocal	 sequence	 dependence,	 at	 least	 in	 part	 due	 to	

tetranucleotide	dependent	anharmonic	effects	(Figure	3	and	discussion	below).		

	
Backbone	 polymorphism.	 Flexibility	 of	DNA	backbones	 is	 linked	 to	 rotations	
around	seven	torsion	angles	(α, β ,γ,  δ,	ε,	ζ  and  χ,	with	δ	in	the	present	analysis	
being	 replaced	 by	 the	 sugar	 phase	 angle	 P),	 which	 in	 some	 cases	 move	 in	 a	
concerted	way	(for	example	α/γ and	ε/ζ),  leading	to	conformational	sub-states.	
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The	 best	 studied	 of	 the	 coupled	 transitions	 is	 the	 so-called	 BI/BII	 transition,	
which	 occurs	 due	 to	 the	 concerted	 rotation	 of	 the	 ε/ζ torsions.	 BI→BII	
transitions	 are	 believed	 to	 be	 functionally	 relevant.	 They	 occur	 in	 some	 high-
resolution	 crystal	 structures(50,	 51)	 and	 are	 also	 detected	 in	 31P	 NMR	
spectra(52,	53).	Results	in	Suppl.	Figure	S9	show	that	the	BII	state	is	much	more	
frequent	than	expected	from	simulations	performed	using	previous	force	fields,	
matching	NMR	 estimates	 for	 equivalent	 sequences(54).	 Very	 interestingly	 (see	
Figure	 4,	 and	 Suppl.	 Tables	 S4	 and	 S5),	 the	 BI/BII	 equilibrium	 is	 strongly	
dependent	 on	 the	 surrounding	 base	 sequence.	 For	 example,	 RR	 backbones	
exhibit	quite	high	BII	percentages,	especially	in	the	presence	of	Y	at	the	5’	end	of	
the	corresponding	 tetranucleotide,	while	 the	YY	backbones	are	 typically	biased	
towards	 the	BI	state,	generating	a	strong	asymmetry	at	RR·YY	steps.	While	 the	
general	 trends	of	BI/BII	equilibria	are	robust	with	respect	 to	changes	 in	salt,	a	
detailed	 analysis	 indicates	 the	 existence	 of	 subtle	 differences(5),	 which	 are	
especially	 visible	 for	 RR	 and	 YR	 steps:	 in	 general,	 Na+	 increases	 the	 total	
percentage	of	 the	BII	state	 (Figure	4),	but	reduces	 its	sequence-dependence,	 in	
perfect	agreement	with	experimental	data(55).	As	previously	reported(4,	5),	we	
found	a	very	strong	correlation	between	BI→BII	transitions	and	the	formation	of	
unconventional	 hydrogen	 bonds	 of	 the	 type	 CH---O,	which	 are	 instrumental	 in	
mechanically	coupling	the	movements	detected	in	the	backbone	with	those	seen	
in	the	bases	(see	Figure	4,	Suppl.	Table	S6).	
	
In	contrast	to	BI/BII	dynamics,	the	α/γ conformational landscape	is	dominated	by	
the	 canonical	 conformation,	which,	 on	 average,	 represents	 around	 90%	 of	 the	
collected	ensembles.	Non-canonical	conformers	are	more	likely	to	appear	in	Na+	
simulations	than	with	K+	(Suppl.	Tables	S7	and	S8).	Transitions	to	non-canonical	
α/γ	 conformations	 are	 frequent,	 but	 the	 alternative	 states	 tend	 to	have	 a	 short	
life	 time	 (on	average	we	measured	~500	transitions	per	µs	per	nucleotide,	with	an	

average	 residence	 time	 ~5	 ps).	 These	 brief	 transitions	 have	 little	 impact	 on	 the	
global	 conformational	 ensemble(9).	 No	 clear	 sequence-related	 rules	 can	 be	
determined	for	α/γ	transitions,	but,	as	expected,	C	and	G	nucleotides	show	longer-
lived	 and	 more	 frequent	 α/γ transitions	 than	 A	 or	 T(8,	 9,	 56).	 Phase	 (P)	 angle	
analysis	 (Suppl.	 Figure	 S10)	 show	 South	 (C2’-endo,	 ~150°)	 conformations	 are	
dominant	 as	 expected,	 but	 East	 conformers	 are	 common,	 and	 sampling	 North	
states	 is	 not	 rare,	 especially	 for	 pyrimidines(9).	 As	 also	 expected,	 glycosidic	
torsions	(χ)	are	always	in	the	anti	region	(-180	to	-90°),	with	purines	sampling	
more	frequently	than	pyrimidines	the	high-anti	conformations	(-90	to	-30°;	see	
Suppl.	Figure	S11).	Finally,	all	nucleotides	exhibit	the	same	wide	distribution	for	
the	 β	 angle,	 spanning	 from	 120°	 to	 240°,	 with	 a	 strongly	marked	 peak	 at	 the	
canonical	value	 (180°)	and	a	marginal	population	at	~70°	 (gauche+,	 see	Suppl.	
Fig.	 S12),	 in	 good	 agreement	 with	 results	 from	 the	 data	 mining	 of	 X-ray	
structures(57).	
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The	choreography	of	correlated	motions	in	the	DNA.	The	movements	of	the	
DNA	 duplex	 often	 involves	 concerted	 changes	 in	 conformational	 degrees	 of	
freedom,	 generating	 a	 complex	 choreography.	 As	 an	 example,	 puckering	
(measured	 by	 the	 phase	 angle	 P)	 and	 glycosidic	 torsions	 (measured	 by	 the	
χ angle)	 are	 tightly	 coupled,	 and	 the	 population	 of	 East	 and	 North	 puckering	
leads	 to	 a	 marked	 displacement	 of	 χ	 to	 lower	 values	 (Suppl.	 Figure	 S13).	
Furthermore,	 χ and	 P	 torsions	 are	 coupled	 to	 the	 ε/ζ	 changes	 in	 a	 sequence-
dependent	manner	(Figure	S14).	Thus,	in	purines	the	population	of	the	BII	state	
is	 coupled	 to	 a	 displacement	 of	 puckering	 to	 the	 East	 (P)	 and	 (χ)	 high-anti	
regions,	while	 in	 pyrimidines	 the	 population	 of	 BII	 conformers	 leads	 only	 to	 a	
slight	 displacement	 to	 the	 high-anti	 region,	 without	 significant	 puckering	
changes.	
	
When	the	conformational	analysis	is	carried	out	at	the	base-pair	level,	a	pattern	
of	 sequence-dependent	 correlated	 movements	 emerges.	 All	 distinct	
trinucleotides	 show	 moderate-to-high	 correlations	 in	 shear-opening,	 shear-
stretch,	 and	 stagger-buckle.	 The	 pattern	 of	 correlation	 is	 less	 clear	 for	 the	
remaining	 intra-helical	 (base	 pair)	 parameters,	 although	 several	 trinucleotides	
show	stretch-opening	correlations	(Suppl.	Fig.	S15).	A	more	complex	sequence-
dependent	 picture	 of	 correlated	movements	 can	 be	 obtained	 by	 analyzing	 the	
inter	 base-pair	 step	 helical	 parameters	 (Suppl.	 Fig.	 S16).	 	 For	 example,	mild	to	

strong	 correlations	 are	 found	 in	 shift-tilt,	 slide-twist,	 rise-tilt,	 shift-slide,	 and	 shift-

twist	 movements	 for	 RR	 steps.	 For	 RY	 steps,	 weaker	 correlations	 can	 be	 found	

(depending	on	the	tetranucleotide	sequence-environment)	in	shift-tilt,	slide-rise	and	

roll-twist.	Finally,	YR	steps	may	exhibit	moderate	to	strong	correlations	for	shift-tilt,	

slide-twist,	 rise-twist	 and	 roll-twist	 (Suppl.	 Fig.	 S16).	 Interestingly,	 for	 all	 the	

tetranucleotides,	 shift-slide	 and	 roll-twist	 always	 show	negative	 correlations,	while	

shift-tilt	and	slide-twist	always	show	positive	correlations.	As	expected,	correlations	

also	emerge	when	combining	inter	and	intra	helical	parameters	in	the	same	analysis.	

Thus,	a	significant	number	of	tetranucleotides	show	moderate	to	strong	correlations	

of	opening	with	 shift,	buckle	with	 rise,	and	stagger	with	 tilt	 (data	not	 shown).	 It	 is	

also	worth	noting	that	the	network	of	correlations	extends	to	neighbouring	steps.	As	

an	example,	twist	in	the	central	YR	step	of		XYRR	tetranucleotides	is	highly	correlated	

with	 slide	 in	 the	 adjacent	 RR	 step(5,	 10),	 which	 again	 stresses	 the	 limitations	 of	

simple	 nearest	 neighbours	 interpretations	 of	 DNA	 conformational	 mechanics,	 and	

points	the	way	to	coarse	grain	models	such	as	cgDNA	cites,	that	encompass	 longer	

range	coupling,	with	associated	longer	range	sequence-dependence	of	the		observed	

means	and	many	non-vanishing	covariances.	
	

Lastly,	backbone	and	base	pair	conformations	are	connected	 in	a	complex	way,	
with	 ε/ζ (BI/BII)	 being	 the	 major	 determinant	 in	 the	 polymorphism.	 Very	 often,	
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tetranucleotides	 showing	 simultaneous	 sampling	 of	 BI	 and	 BII	 conformations	 are	

those	 with	 bimodality	 in	 some	 helical	 parameter	 at	 the	 central	 step	 (70%	 of	 the	

bimodal	inter-helical	parameters	occur	in	steps	with	bimodal	BI/BII	distributions,	see	

Figure	3	and	Suppl.	Table	S4	and	S5).	The	BI/BII	state	also	correlates	with	inter-base	

pair	 helical	 coordinates	 in	 neighbouring	 junctions,	 explaining	 part	 of	 the	
geometrical	 constraints	postulated	by	Calladine.	For	example,	the	increase	in	the	

percentage	of	BII	 at	 the	central	 junction	of	a	given	 tetranucleotide	 correlates	with	

larger	shift	values	for	all	sequences	(Suppl.	Figures	S17),	and	is	also	coupled	to	lower	

twist	and	slide	values.	The	BI/BII	 ratio	 at	 a	 junction	 i	 also	 correlates	with	 shift,	
twist	and	slide	values	at	base-pair	step	i+1	and	i-1	(Suppl.	Figures	S18	and	S19),	
highlighting	 the	 subtle	 mechanical	 coupling	 between	 backbone	 and	 base	
conformations	within	DNA(57).	
	
All	the	observations	made	above	can	be	unified	in	a	global	flexibility	scheme	for	B-

DNA	(Figure	5),	showing	that	all	base	pair	junctions	contain	potentially	polymorphic	

elements	(BI/BII,	shift,	slide,	or	twist)	that	can	 lead	to	bimodal	behavior	depending	

on	the	specific	tetranucleotide	environment.	The	analysis	we	have	carried	out	leads	

to	 a	 scheme	with	 strong	predictive	power	 at	 the	 tetranucleotide	 level.	 As	 a	 single	

example,	we	can	now	say	with	confidence	that	when	the	choice	of	X	and	Y	within	an	

XYRY	 tetranucleotide	 leads	 to	 bimodality,	 this	will	 be	 expressed	 in	 shift	 and	 twist,	

coupled	with	a	low-to-moderate	percentage	of	BII	in	the	Watson	strand.	In	contrast,	

when	XRRX	tetranucleotides	are	considered,	bimodality	will	show	up	in	either	shift,	

slide	 or	 twist,	 coupled	 with	 a	 moderate-to-high	 percentage	 of	 BII	 in	 the	 Watson	

strand	of	the	central	junction.		
	

	

CONCLUSIONS	
	

The	 analysis	 of	 numerous	 molecular	 dynamics	 trajectories	 obtained	 with	 an	

accurate,	 last	 generation,	 force	 field	 has	 allowed	 us	 to	 derive	 some	 general	 rules	

concerning	 the	equilibrium	conformation	distribution	of	B-DNA,	which	 represent	 a	

significant	step	beyond	Calladine’s	earlier	propositions.	Specifically,	we	are	now	able	

to	 predict	 when	 significantly	 anharmonic	 distributions	 will	 arise	 as	 a	 function	 of	

tetranucleotide	sequence	context:	

	

§ The	first	and	second	moments	(averages	and	covariances)	of	the	equilibrium	

distributions	of	helical	coordinates	for	DNA	can	only	be	understood	in	terms	

of	nonlocal	sequence-dependence	contexts,	to	at	least	the	trinucleotide	level	

for	 intra	base	pair	 coordinates,	 and	 the	 tetranucleotide	 level	 for	 inter	base	

pair	coordinates.	
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§ A	 harmonic	model	 of	 DNA	 dynamics	 will	 not	 be	 able	 to	 accurately	 predict	

third	and	higher	moments	of	the	equilibrium	distribution	because	significant	

anharmonic	 movements	 arise	 frequently.	 In	 fact,	 the	 distribution	 of	 many	

inter	base	pair	 coordinates	 is	 significantly	binormal	 and,	 in	 a	non-negligible	

number	of	 cases,	 actually	bimodal	 (i.e.	multi-peaked).	 Such	bimodality,	 and	

the	relative	population	of	corresponding	 local	minima	of	 the	 free	energy,	 is	

dependent	on	the	tetranucleotide	context.	Slide	for	GG,	twist	for	CG	and	AG,	

and	 shift	 for	 YR	 are	 the	 most	 common	 steps	 and	 helical	 coordinates	

exhibiting	 bimodality,	with	 the	 tetranucleotides	most	 commonly	 enhancing	

bimodality	being	AGGA,	GGGA,	ACGG,	GCGA,	GCGG,	and	GTAA.	

§ Backbone	 torsional	 changes	 are	 coordinated	 in	 pairs	 (α/γ,	 P/χ	 and	 ε/ζ).	

Movements	in	α/γ	lead	to	the	generation	of	short-lived	non-canonical	states,	

which	can	however	be	populated	in	the	presence	of	ligands.	Changes	in	sugar	

puckering	 to	 the	 East	 region	 leads	 to	 lower	 χ values,	 while	 coordinated	

changes	in	the	ε/ζ pair	lead	to	the	BI/BII	polymorphism	with	coupled	impacts	

on	 helical	 parameters.	 Both	 ε/ζ	 and	 P/χ	 couplings	 exhibit	 sequence	

dependence.	

§ The	 BI/BII	 conformational	 change	 is	 coupled	 to	 the	 cationic	 atmosphere	

surrounding	DNA,	 and	 to	 the	 formation	of	non-canonical	CH---O	 hydrogen	
bonds.	BI/BII	transitions	are	especially	prevalent	for	YRRX	sequences	and	
often	 are	 associated	 to	 bimodality	 in	 helical	 coordinate	 distributions	 at	
the	base	pair	step	 level.	They	are	a	major	source	of	polymorphism	in	B-
DNA.	In	general,	the	population	of	the	BII	state	is	coupled	to	large	shift,	and	
low	slide	and	twist	at	the	same	base	pair	step,	but	distant	and	more	complex	

correlations	 exist	 between	 BI/BII	 conformational	 states	 and	 the	 helical	

conformation	of	neighbouring	steps.	
§ Helical	parameters	at	a	given	base	pair	step	are	not	independent,	but	show	a	

complex	backbone-mediated	pattern	of	dependencies.	For	example,	shift-tilt	

and	roll-twist	always	show	negative	correlations,	and	the	opposite	applies	to	

shift-tilt	and	slide-twist	coupling.	On	the	contrary,	correlations	between	slide-

twist,	 shift-slide	 and	 shift-twist	 vary	 as	 a	 function	 of	 base	 sequence.	

Moreover,	helical	 coordinate	correlations	may	extend	 to	neighbouring	base	

pairs	as	a	function	of	the	local	sequence.	

§ All	 of	 these	 qualitatively	 extended	Calladine	 rules	 can	 now	be	 transformed	

into	 quantitative	 predictions	 of	 the	 structural	 features	 of	 canonical	 DNA	

sequences.	 These	 rules	 have	 been	 implemented	 on	 a	 web	 server	 that	

predicts	 the	average	conformation	of	any	B-DNA	sequence,	 in	 terms	of	 the	

average	 helical	 parameters,	 base	 and	 backbone	 polymorphisms,	 and	 P/χ	

conformations	(see	http://mmb.pcb.ub.es/webdev/slim/miniABC/public/).	

§ Furthermore,	 using	 the	 predictive	 cgDNA	 coarse-grained	 model	 (and	 its	

dinucleotide	dependent	parameter	sets		fit	to	MD	simulations),	the	nonlocal	
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sequence-dependent	 first	 (average)	 and	 second	 (covariance)	 helical	

coordinate	moments	can	be	computed	interactively	for	an	arbitrary	sequence	

on	the	cgDNAweb(58)	server	http://cgdnaweb.epfl.ch/,	 including	 interactive	

visualisation	of	the	expected	or	ground	state	conformation.		Additionally,	the	

local	 and	 global	 flexibility	 of	 arbitrary	 canonical	 B-DNA	 sequences	 can	 be	

obtained	 by	 using	 the	 rigid	 base-pair	 step	 MC_DNA	 coarse	 grain	 model,	

which	is	coupled	to	a	Monte	Carlo	algorithm	that	sample	the	conformational	

space	 (https://mmb.irbbarcelona.org/MCDNA/).	 Using	 the	 extended	

Calladine’s	 rules	 presented	 herein,	 the	 backbone	 and	 sugar	 conformational	

sub-states	are	predicted	and	rebuild	at	atomic	resolution,	based	only	on	the	

spontaneous	values	of	inter	helical	parameters.	
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FIGURES	
	

	
Figure	 1.	 Symmetric	 Kullback-Leibler	 divergence	 per	 degree	 of	 freedom	
between	Gaussian	distributions,	which	 is	a	combined	measure	of	differences	 in	
values	 of	 first	 and	 second	moments,	 for	 each	 of	 the	 thirteen	 oligomers	 in	 the	
miniABC	training	library,	but	for	cgDNA	model	parameter	sets	fit	to	different	MD	
simulation	protocols	(see	Methods	and	Suppl.	Methods).		
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Figure	 2.	 Average	 values	 of	 intra	 base-pair	 helical	 coordinates	 of	 the	 central	
base-pair	 in	 all	 32	 distinct	 trinucleotide	 sequence	 contexts.		 Results	 obtained	
from	 the	miniABCBSC1-K	simulations.	The	global	averages	are	over	all	 sequence	
contexts	 and	 standard	 deviations	 reflect	 the	 variation	 among	 trinucleotide	
contexts.	
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Figure	 3.	 Average	 values	 of	 inter	 base-pair,	 or	 junction	 or	 step,	 helical	
coordinates	 for	 the	 central	 junction	 set	 in	 all	 possible	 256	 tetranucleotide	
contexts.		Results	obtained	from	the	miniABCBSC1-K	simulations.	Tetranucleotides	
classified	 as	 bimodal	 (half-square)	 are	polymorphic	 (i.e.	 they	 sample	 two	 clear	
conformational	 sub-states).	 The	 global	 averages,	 exhibited	 at	 the	 right	 of	 each	
squared-plot,	were	computed	from	the	weighted-averages	obtained	through	BIC	
(see	 Methods	 and	 Suppl.	 Methods),	 while	 the	 standard	 deviations	 reflect	 the	
variation	along	 the	 tetranucleotide	sequences	 that	 share	 the	same	central	base	
pair	step.	
	
	 	



	161	

	
Figure	 4.	 Sequence	 dependence	 of	 BII	 backbone	 conformations	 comparing	 K+	
and	Na+.	A)	miniABCBSC1-K	BII	percentages.	B)	miniABCBSC1-Na	BII	percentages.	
C)	 Correlation	 between	 the	 percentage	 of	 BII	 (%BII,	 horizontal	 axis)	 and	 of	
occurrence	 of	 formation	 of	 the	 C–H···O	 H-bonds	 (%HB,	 vertical	 axis)	 at	 the	
central	base	step	of	each	of	the	256	possible	tetranucleotide	sequences,	colour-
coded	according	to	base	type	of	the	central	base	step.	
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Figure	 5.	 Schema	of	 the	polymorphic,	 or	multi-well,	 landscape	exhibited	by	B-
DNA	 at	 the	 tetranucleotide	 level	 expressed	 in	 the	 purine	 (R)/pyrimidine	 (Y)	
alphabet,	 for	 which	 only	 10	 distinct	 combinations	 exist,	 but	 which	 still	
distinguish	all	possible	behaviours.	The	only	helical	coordinates	that	can	exhibit	
multi-modality	 are	 shift,	 slide	 and	 twist,	 and	 each	 junction	 in	 the	 figure	 is	
marked	with	which	 coordinates	 can	 be	multi-modal	 in	 it.	 There	 is	 a	 very	 high	
correlation	 between	 the	 occurrence	 of	 multi-modality	 and	 the	 formation	 of	 a	
noncanonical	 hydrogen	 bond	 in	 either	 the	 same	 or	 a	 neighbouring	 junction,	
along	with	its	associated	BI/BII	backbone	transition	(see	text).	
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CHAPTER V | Information Transfer Through the DNA 

 

Previous chapters show that DNA sequence determines its overall 
structural properties and that sequence-dependent effects are of great 
importance, being exploited by the cell to regulate DNA function [1–7]. 
Therefore, the structural diversity of DNA needs to be described considering 
at least the first neighbor bases of each bps. Generally, the description of 
sequence effects to this level (the tetranucleotide) is sufficient, since sensitivity 
to the context diminishes rapidly with sequence length. Almost all mixed-
sequence DNA tends to B-DNA and small distortions at a bps are quickly 
corrected at adjacent steps. However, there are certain sequence elements that 
have an increased predisposition to respond to long-range sequence effects in 
a significant way. Typically, bimodality and low stability of certain steps are 
closely related to sequence context dependence. Additionally, local 
distortions of different magnitudes imposed to the DNA by the binding of 
ligands have sometimes a long range of compensatory structural responses 
that should also be quantified and clarified. 

Although some general observations can be made from inspecting the 
database of crystal and NMR DNA structures, the experimental data is 
fragmentary and inappropriate for exploring the DNA sequence space, even 
at the tetramer level, and much more so beyond it. Current, state-of-the-art 
MD simulations are particularly suitable for this task and have already been 
shown to provide a plausible description of sequence effects up to the 
tetramer level [2,8–11]. Interestingly, the results obtained in such studies, 
including our own analysis of the miniABC set (see previous Chapter 4.2), 
allow us to further pinpoint several cases of tetramers with a unusual 
behavior, such as low stability/high flexibility, predisposition to bimodality 
and high sensitivity to sequence context. These cases are the exception and 
not the rule, with only a small percentage of 3-5 % showing clear bimodal 
behavior (see Chapter 5.1), but might be important to explain local flexibility 
of certain DNA motifs.  

We decided to investigate higher-than-tetramer sequence effects in the 
particular case of the d(CpTpApG)2 tetranucleotide (from here on CTAG) a 
sequence showing unusual flexibility in simulations deposited in our 
BigNAsim database [12] and in miniABC trajectories. Initially it was unclear 
whether the unusual behavior of this sequence was an artifact of the limited 
sampling (µs) or highlighted a more complex long-range effect on the 
properties of DNA. Systematic analysis and study of many replicas of the 
same tetramer in different context convinced us that the strange behavior of 
this sequence detected in simulations was not an equilibration artifact. We 
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established non-negligible effects of hexameric and even octameric sequence 
context. Exploring the details of the intricate sequence-dependent 
mechanisms that account for this long-range sequence modulation of base-
pair dynamics, we connect it to a sequential domino effect of backbone 
equilibrium, electrostatics and solvent influence. Based on such findings, 
which have been assembled into the manuscript Long-Range Effects Modulate 
Helical Properties of some DNA Dinucleotide Pairs, we were able to envision and 
formulate a complex mechanism of information transfer across DNA through 
coordinated backbone movements. The backbone then modulates base step 
geometry affecting several helical parameters along the sequence. 

As an extension of the knowledge obtained on sequence context effects 
and long-range information transfer through the DNA, I chose to focus in a 
separate work on the cooperative protein binding on the DNA. At a 
conceptual level, this type of cooperativity means that the binding affinity of 
two different proteins is enhanced and stabilized by DNA in the ternary 
complex [3,13–16]. Needless to say, cooperativity is a key component of 
binding specificity [3], by modulating the efficiency of binding even at low 
concentrations of the protein partners.  

In most case cooperativity involves a direct interaction between the two 
proteins, but there are cases where interacting proteins are too far to establish 
any energetic interactions.  One of this systems for which long-range 
cooperative binding has been well studied is the ternary complex comprising 
of the effector protein BAMHI type II Endonuclease [17], the secondary 
binder glucocorticoid receptor DNA-binding domain (GRDBD) [18] and 
DNA. This is the system that I focused my attention on as well in the study 
Allosterism and signal transfer in DNA.  

In the BAMHI-DNA-GRDBD ternary system the binding sites of the two 
molecules are physically separated. This means that cooperativity implies that 
the DNA is able to transfer information from one binding site to the other. 
The structural parameter of most relevance to the binding of these two 
proteins is the major groove width. We confirm that cooperative protein 
binding is related to protein-induced changes in the flexibility of the major 
groove [16,19]. The distance and relative orientation of the two binding sites 
can lead to differences in conformational response upon binding of the 
effector protein. Interestingly, our findings additionally suggest that the 
origin of cooperativity in this system differs from conventional allosteric 
interactions in that the binding of the first protein (BAMHI) predisposes the 
dynamics rather than structure of the molecule to accommodating the second 
(GRDBD). It is actually the entropic part of the free energy that plays a 
dominant role in the cooperative nature of the binding process. This is an 
example of “allosteric communication without conformational change” 
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originally suggested by Cooper and Dryden, previously demonstrated for 
small ligands by the group and coworkers [20]. 

 

1 Long-Range	 Effects	 Modulate	 Helical	 Properties	 of	 some	

DNA	Dinucleotide	Pairs	

In this work we carry out a detailed analysis of CTAG in 40 different 
sequence contexts. We focus on this specific tetranucleotide sequence based 
on evidence of its high sequence dependence and polymorphism from a 
number of trajectories run in the group and in our miniABC dataset. We find 
evidence of intrinsic multi-modality of the individual trajectories in three 
helical bps parameters (shift, slide and twist). Shift distribution is tri-modal, 
while twist and slide distributions are bi-modal but only 4 specific 
combinations of substates are possible. Additionally, large differences in the 
distributions of these internal coordinates of the d(TpA) step are seen with 
sequence variation. 

We then go on to explain how information travels to allow the d(TpA) 
step to “feel” its sequence environment based on the concerted movements of 
the backbone and bases, which are also coupled to the formation of the 
unconventional h-bonds described in Section 4.1 of Chapter IV and a small 
contribution from the known sugar puckering flexibility. We detect this 
communication of mechanical information up to the octamer level, which 
means over almost one helix turn. We further examine the remote effects 
(beyond hexamer) in more detail, pointing out which types of sequences are 
more susceptible to transmitting information and at which steps 
communication vanishes. 

Definite experimental validation is impossible from a mere analysis of 
resolved structures in the database because of the averaging out of such 
subtle dynamic effects. However, distributions of helical parameters observed 
in structures containing the CTAG tetramer provide an indirect, but strong 
support to the 4-state model of TpA dynamic in CTAG. Lastly, we perform a 
genomic analysis of the occurrences of this tetramer in different organisms 
and observe a clear depletion compared to other tetramers, which might be 
connected to its high flexibility. 
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Publication: 

Alexandra Balaceanu, Diana Buitrago, Jurgen Walther, Pablo D. Dans 
and Modesto Orozco. Long-Range Effects Modulate Helical Properties of 
some DNA Dinucleotide Pairs (in preparation). 
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ABSTRACT	

	
We	 used	 extensive	 molecular	 dynamics	 simulations	 to	 study	 the	 structural	 and	
dynamic	properties	of	the	central	d(TpA)	step	in	the	highly	polymorphic	d(CpTpApG)	
tetramer.	Contrary	to	the	assumption	of	near	neighbors	(dimer-model)	and	next-to-
nearest	neighbors	(tetramer-model)	the	properties	of	the	central	d(TpA)	step	change	
quite	 significantly	 dependent	 on	 the	 hexamer	 context	 and	 in	 a	 few	 cases	 are	
modulated	by	 remote	neighbors	 (beyond	 the	hexamer	 level).	Our	 results	 highlight	
the	existence	of	previously	undescribed	mechanisms	for	the	long-range	transmission	
of	structural	information	into	the	DNA.	
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INTRODUCTION	

	

Early	 structural	models	 of	DNA	derived	 from	 fiber	diffraction	data	provide	 a	 static	
and	 averaged	 picture	 of	 the	 double	 helix	 [1–3],	 which	 despite	 its	 simplicity,	 was	
sufficient	 to	 represent	 the	 general	 shape	 of	 DNA	 in	 physiological	 conditions.	
However,	 as	 more	 accurate	 structural	 techniques	 appeared,	 the	 intrinsic	
polymorphism	 of	 double	 stranded	 DNA	 become	 evident	 [4–7]	 as	 significantly	
different	 conformations	 were	 described	 depending	 on	 the	 sequence,	 the	
environment,	or	the	presence	of	 ligands	[8–11].	Six	decades	after	the	development	
of	 the	 first	 duplex	 models,	 we	 understand	 DNA	 as	 a	 flexible	 and	 polymorphic	
molecule,	 able	 to	 sample	 a	wide	 range	 of	 helical	 geometries	 thanks	 to	 a	 complex	
choreography	 of	 backbone	 rearrangements,	 which	 allows	 the	 conformational	
changes	required	for	DNA	functionality	[11–18].	
	
Attempts	to	determine	the	principles	relating	sequence	and	structure	originated	 in	
the	 eighties	 when	 by	 processing	 the	 scarce	 experimental	 data	 available	 Chris	 R.	
Calladine	 [19]	 developed	 a	 series	 of	 heuristic	 rules	 relating	 sequence	 with	 some	
structural	 characteristics	 of	 DNA.	 In	 the	 late	 nineties	 [20]	 Olson	 and	 Zhurkin	
developed	a	complete	set	of	parameters	defining	the	expected	distribution	of	helical	
parameters	of	 the	10	unique	base	pair	 steps	 (bps).	 Parameters	were	derived	 from	
the	 analysis	 of	 the	 available	 crystal	 data	on	DNA-protein	 complexes,	 and	provided	
information	 not	 only	 on	 the	 equilibrium	 geometry,	 but	 also	 on	 the	 expected	
flexibility	 of	 the	 bps	 (extracted	 from	 the	 variability	 of	 the	 same	 bps	 in	 different	
crystals).	 Twenty	 years	 after	 their	 generation,	 Olson-Zhurkin	 parameters	 are	 still	
used	 to	 represent	 DNA	 by	means	 of	 helical	mesoscopic	 descriptors.	 However,	 we	
cannot	ignore	the	strong	assumptions	involved	in	their	derivation:	i)	the	ensemble	of	
configurations	 obtained	 from	 the	 analysis	 of	 crystal	 structures	 should	 define	 a	
densely	 populated	 Gaussian	 distribution;	 ii)	 a	 nearest	 neighbor	 model	 must	 be	
assumed,	i.e.	the	helical	geometry	can	be	decomposed	at	the	bps	level;	iii)	structural	
variability	found	in	structures	 in	PDB	should	exclusively	depend	on	the	flexibility	of	
the	 step;	 and	 finally	 iv)	 binding	 of	 a	 protein	 should	 not	 introduce	 anharmonic	
distortions	in	the	duplex	geometry.		
	
The	eruption	of	atomistic	molecular	dynamics	(MD)	simulations	gave	the	community	
an	 alternative	 source	 of	 parameters	 to	 describe	 DNA	 structure	 and	 flexibility.	
Compared	with	results	derived	from	the	analysis	of	experimental	structures,	the	MD-
based	ones	are	more	robust	as	they	are	obtained	from	processing	an	extremely	large	
number	of	snapshots,	and	provide	information	on	flexibility	that	is	not	contaminated	
by	the	presence	of	 ligands,	 lattice	or	any	other	environmental	artifacts.	As	a	major	
caveat,	MD-derived	descriptions	of	DNA	properties	are	dependent	on	the	length	of	
trajectories	as	well	as	on	the	quality	of	the	force-field	parameters	used	to	describe	
DNA	 interactions.	 Thus,	 early	 attempts	 to	 describe	 DNA	 from	 multi-nanosecond	
trajectories	led	to	artefactual	results	due	to	a	previously	unknown	error	of	the	most	
used	force-field	at	that	time	[21].	A	newer	force-field	[22]	and	higher	computational	
capabilities	provided	descriptions	of	DNA	properties	that	were	more	reasonable,	but	
still	far	from	the	required	accuracy	[12,23,24].	The	availability	of	the	highly-accurate	
PARMBSC1	 force-field	 [25,26]	 and	 the	 development	 of	 new	 MD	 codes	 taking	
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advantage	of	a	new	generation	of	computers	 [27–30]	provide	 the	community	with	
the	possibility	to	derive	reliable	representation	of	the	sequence-dependent	physical	
properties	of	DNA	from	the	analysis	of	microsecond	long	trajectories	collected	under	
highly	controlled	simulation	conditions.	
	
Results	 collected	 by	 the	 Ascona	 B-DNA	 Consortium	 [31–34]	 revealed	 two	 major	
findings	 which	 challenged	 current	 models	 of	 DNA	 flexibility.	 First,	 the	 nearest	
neighbor	model	 is	 insufficient	 to	 describe	 DNA	 flexibility,	 as	 the	 variability	 in	 bps	
parameters	depending	on	tetramer	environment	can	be	more	pronounced	than	the	
variability	found	when	comparing	different	bps	for	a	given	tetramer	context.	Second,	
several	distributions	of	 tetrameric	helical	parameters	are	not	normal	and	a	part	of	
such	non-normal	distributions	are	in	fact	multi-modal,	which	means	that	the	physical	
properties	 of	 such	 tetramers	 cannot	 be	 represented	 by	 a	 single	 set	 of	 elastic	
parameters	 (equilibrium	values	 and	associated	 stiffness).	Analysis	 of	 data	 revealed	
that	 the	 changes	 between	 sub-states	 happen	 towards	 a	 series	 of	 coordinated	
changes	 along	 the	 backbone	 [17,34,35],	 where	 unusual	 H-bond	 interactions	 and	
subtle	 changes	 in	 the	 solvent	 environment	play	 a	 key	 role	 [18,36].	 The	 analysis	 of	
ABC	 data	 and	 of	 additional	 trajectories	 stored	 in	 our	 BigNaSim	 database	 [21]	
suggested	 that	 a	 tetramer-based	 model	 was	 in	 general	 sufficient	 to	 derive	
transferable	descriptors	of	DNA	structure	and	flexibility,	but	a	few	exceptions	to	this	
general	rule	emerged;	the	clearest	one	is	the	d(CpTpApG)	tetramer	(in	the	following	
CTAG):	 a	 very	 polymorphic	 state	 for	 which	 results	 were	 significantly	 different	
depending	on	the	simulation.		
	
We	present	here	a	detailed	analysis	of	CTAG	in	different	sequence	contexts.	Results	
demonstrate	 that	 long-range	 effects	 modulate	 the	 geometrical	 properties	 of	 the	
central	d(TpA)	step.	Such	long-range	effects	are	very	visible	at	the	hexamer	level,	but	
quite	 surprisingly	 extend	 beyond	 this	 level,	 indicating	 the	 existence	 of	 a	 complex	
mechanism	 of	 information	 transfer	 across	 DNA	 through	 coordinated	 backbone	
movements.	
	
	

METHODS	

	

The	 choice	 of	 sequences	 and	 the	 simulation	 details.	 The	 systematic	 study	 of	
sequence	 dependent	 effects	 beyond	 the	 tetramer	 level	 have	 been	 to	 date	
impossible,	due	to	the	huge	number	of	sequences	that	need	to	be	considered.	For	
example,	 the	study	of	all	hexamers	would	require	the	analysis	of	2,080	sequences,	
and	 to	 consider	 all	 octamers	 32,826	 sequence	 combinations	 are	 needed.	
Fortunately,	 the	 analysis	 of	 ABC-	 simulations	 where	 tetramers	 appear	 in	 different	
molecular	 environments	 suggests	 that	 sequences	 effects	 beyond	 the	 tetramer	 are	
rare,	and	if	they	exist,	are	localized	in	certain	ultra-flexible	sequences.	We	focuss	our	
interest	 here	 in	 one	 of	 the	most	 flexible	 tetramer	 CTAG,	 for	which	 comparison	 of	
ABC	 trajectories	 and	 those	 found	 in	 BigNAsim	 suggest	 the	 existence	 of	 potential	
hexamer	dependences.	 Thus,	we	built	 a	 library	of	 40	different	 sequences	 covering	
the	 entire	 hexamer	 space	 (XpCpTpApGpX)	 as	 well	 as	 all	 possible	
pyrimidine(Y)/purine(R)	 combinations	 at	 the	 octamer	 level	 in	 several	 repeats	 (see	
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Supp.	 Methods).	 All	 the	 sequences	 were	 prepared	 using	 the	 leap	 module	 of	
AMBERTOOLS	 16	 [37]	 and	 standard	 ABC	 protocol	 [34].	 Accordingly,	 systems	were	
built	 from	Arnott’s	parameters,	neutralizing	the	DNA	with	monovalent	 ions,	adding	
water	(at	least	10	Å	of	water	separate	DNA	from	the	faces	of	the	box)	and	extra	150	
mM	 KCl.	 Systems	 were	 then	 optimized,	 thermalized	 and	 equilibrated	 before	
production	[31,32].	Water	was	represented	with	the	SCP/E	model	[38],	Smith-Dang	
parameters	were	 used	 for	 ions	 [39–41]	 and	 the	 recent	 PARMBSC1	 force-field	was	
considered	to	represent	nucleic	acids	interactions	[25].	Trajectories	(collected	in	the	
NPT	 ensemble	 T=298	 K,	 P=1	 atm.)	were	 extended	 from	 0.5	 µs	 to	 up	 to	 10	 µs.	 All	
simulations	 were	 performed	 with	 the	 pmemd.cuda	 code	 using	 periodic	 boundary	
conditions	 and	 Particle	Mesh	 Ewald	 [42,43].	Movements	 of	 hydrogen	 atoms	were	
annihilated	using	SHAKE	[44],	which	allowed	us	the	use	of	a	2	fs	integration	step.	All	
trajectories	 collected	 here	 are	 accessible	 through	 the	 MuG	 BigNAsim	 portal	 [44]:	
http://www.multiscalegenomics.eu/MuGVRE/modules/BigNASimMuG/.	
	
Analysis.	Standard	analysis	were	done	using	cpptraj	module	of	the	AMBERTOOLS	16	
package	[37],	the	NAFlex	server	[44]	CURVES+	and	CANAL	programs	[45],	 following	
the	 standard	 ABC-conventions	 [34].	 Duplexes	 were	 named	 following	 the	 Watson	
strand	 (e.g.	 ATGG	 stands	 for	 (ATGG)·(CCAT)).	 The	 letters	 R,	 Y	 and	 X	 stand	 for	 a	
purine,	a	pyrimidine	or	any	base	respectively,	while	X:X	and	XX	represent	a	base	pair	
and	 base-pair	 step	 respectively.	 Base	 pairs	 flanking	 the	 CTAG	were	 denoted	 using	
two	dots	 to	 represent	 the	 central	 tetrad	 (e.g.	R··Y).	 The	normality	and	modality	of	
the	helical	distributions	were	evaluated	using	Bayesian	 Information	Criteria	 [46,47]	
and	 Helguerro’s	 theorem	 [48]	 as	 described	 elsewhere	 [12].	 Classification	 of	 the	
torsional	 states	 of	 the	 different	 rotatable	 bonds	 in	 the	 DNA	 backbone	 was	 done	
using	 standard	 criteria	 [49].	 Correlations	 between	 different	 torsions	 were	
determined	 by	 circular	 correlation	 analysis	 (see	 Suppl.	 Methods	 for	 additional	
details).	Meta-trajectory	analysis	was	used	to	define	the	global	characteristic	of	the	
d(TpA)	essential	deformation	space.	With	this	purpose	the	40	individual	trajectories	
were	grouped	and	 subjected	 to	principal	 component	analysis	 [50,51]	 in	 the	helical	
space	 of	 the	 central	 d(TpA)	 step	 after	 Lankas’	 normalization	 of	 the	 different	
rotational	and	translational	degrees	of	freedom	[52].	The	essential	dynamics	of	the	
central	 d(TpA)	 step	 is	 defined	 by	 three	 eigenvectors	 (explaining	 60%	 of	 variance),	
which	 are	 defined	 by	 four	 bps	 deformations	 (shift,	 tilt,	 roll	 and	 twist)	 and	 four	
deformations	at	the	pairing	(buckle	and	propeller	twist)	of	the	two	bases	(dT	and	dA)	
composing	 the	 central	 d(TpA)	 step.	 The	 distributions	 of	 the	 four	 informative	 bps	
deformations	were	subjected	to	detailed	analysis	(see	Suppl.	Method	for	additional	
details).	 Comparison	 and	 clustering	 of	 the	 individual	 trajectories	 of	 the	 central	
d(TpA)	 for	 the	 40	 sequences	 studied	 (all	 with	 a	 common	 CTAG	 central	 tetramer)	
were	 done	 using	 symmetrized	 Kullback-Leibler	 (KL)	 divergences	 [52]	 followed	 by	
hierarchical	 cluster	 analysis	 using	 Ward's	 clustering	 criterion	 [53],	 where	 the	
dissimilarities	are	squared	before	cluster	updating	[54],	using	as	descriptive	variable	
the	8	distinguished	helical	variables	detected	by	the	PCA	of	the	meta-trajectory	(see	
Suppl.	 Methods	 for	 additional	 details).	 Molecular	 interaction	 potentials	 of	 the	
different	 duplexes	 were	 computed	 using	 our	 MIP	 program	 [54]	 implementing	
linearized	solutions	to	the	Poisson	Boltzmann	equation	and	Na+	as	a	probe	particle	
(see	 Suppl.	 Methods	 for	 additional	 details).	 Stacking	 and	 hydrogen	 bonding	 were	
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followed	by	geometrical	and	energetic	criteria	for	both	the	dimer	and	the	tetramer,	
as	described	in	detail	in	Supp.	Methods.	Structural	database	analysis	was	done	using	
all	 DNA	 structures	 containing	 the	 CTAG	 tetramer.	 Genomic	 analysis	 was	 done	 to	
determine	the	prevalence	of	the	CTAG	tetramer	in	different	wild	type	genomes	and	
its	resilience	to	mutation.	Genomes	of	H.	sapiens	(hg19),	E.	coli	(NC_000913.3)	and	S.	
cerevisiae	(sacCer3)	were	analysed.	Occurrences	of	this	tetramer	were	then	mapped,	
using	 Homer	 software	 [54],	 to	 the	 annotated	 regions	 of	 each	 organism	 obtained	
from	 UCSC	 and	 compared	 to	 the	 overall	 frequency	 of	 each	 annotation	 type.	 To	
compute	 the	 resilience	 to	mutation,	 the	 frequency	of	mutations	 for	each	 tetramer	
along	the	genome	in	30	different	cancer	types	(data	from	[54])	was	determined.		
	

	

RESULTS	AND	DISCUSSION	

	

The	CTAG	shows	a	dramatic	and	complex	polymorphism.	We	collected	trajectories	
for	 40	 oligonucleotides	 all	 of	 them	 containing	 the	 CTAG	 tetramer	 in	 a	 central	
position	 (see	 Methods	 and	 Supp.	 Table	 S1),	 all	 of	 them	 were	 stable,	 sampling	
structures	that	fit	well	in	the	B-like	double	helical	conformation.	As	suggested	by	the	
analysis	of	ABC-simulations	and	of	trajectories	deposited	in	BigNAsim,	CTAG	is	highly	
polymorphic	as	shown	in	clear	bimodal	distributions	of	some	helical	parameters.	To	
check	 that	 the	 bimodalities	 are	 not	 artefacts	 of	 limited	 sampling	 we	 extended	
trajectories	 for	 selected	 tetramers	 to	 10	 µs	 regime,	 tracing	 the	 changes	 in	 the	
distribution	 of	 helical	 parameters.	 The	 good	 convergence	 found	 in	 Supp.	 Figure	 1	
support	the	robustness	of	our	results	and	suggest	a	fast	dynamic	of	 interchange	of	
the	different	states	(see	below).	
	
In	order	to	obtain	a	global	average	picture	of	the	conformational	space	accessible	to	
the	 CTAG	 tetramer	 we	 joined	 the	 40	 individual	 trajectories	 (equal	 number	 of	
snapshots	 in	all	 cases)	 to	generate	a	meta-trajectory,	which	was	 then	subjected	 to	
PCA	 and	 BIC	 analysis.	 Four	 base-parameters	 (the	 symmetric	 buckle	 and	 propeller	
twist	 of	 d(T·A)	 and	 d(A·T))	 and	 four	 bps	 parameters	 at	 the	 central	 d(TpA)	 step	
emerged	as	determinant	to	explain	60%	of	the	variance	in	the	meta-trajectory:	roll,	
twist,	shift	and	slide.	As	seen	in	the	BIC	analysis	summarized	in	Figure	1,	deviations	
from	Gaussian	distribution	are	the	main	responsible	for	the	polymorphism	detected	
at	 the	 bps	 level.	 Such	 deviations	 could	 in	 principle	 emerge	 from	 two	 different	
sources:	 i)	 intrinsic	 multi-modality	 in	 the	 individual	 trajectories	 and	 ii)	 individual	
distributions	are	normal,	but	they	are	centred	at	different	average	values.	To	analyse	
which	 is	 the	 real	 origin	 of	 the	 deviation	 from	 normality	 in	 meta-trajectories	 we	
repeated	the	analysis	for	individual	trajectories.	Roll	distributions	were	unimodal	 in	
all	cases,	but	the	position	of	the	peak	were	displaced	towards	slightly	higher	values	
when	 the	 central	 tetramer	 is	 surrounded	 by	 R	 at	 5’	 and	 Y	 at	 3’	 (i.e.	 RCTAGY	
hexamers),	leading	to	a	bi-normal	distribution	of	the	meta-trajectory	(see	Figure	2).	
The	situation	 is	completely	different	for	twist,	slide	and	shift	where	bi-	or	even	tri-
modality	 is	 clear	 for	 individual	 sequences	 (see	Figure	2	and	Suppl.	 Figure	S2),	with	
the	different	 substates	being	 sampled	 in	a	 fast	equilibrium	along	 the	 time	scale	of	
the	simulations	(see	examples	in	Supp.	Figure	S3).	
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As	 shift	 distribution	 is	 tri-modal	 and	 twist	 and	 slide	 distributions	 are	 bi-modal	we	
could	 in	 principle	 expect	 12	 states.	 However,	 many	 of	 the	 combinations	 of	 twist,	
slide,	and	shift	substates	are	not	possible,	and	in	practice	only	4	states	appear	when	
meta-trajectory	is	projected	in	the	twist-slide-shift	3D	space	(Figure	3).	In	fact,	one	of	
them	 (high	 twist/positive	 slide/zero	 shift;	 HPZ)	 is	 populated	 only	 in	 some	 of	 the	
simulations	 and	 has	 globally	 a	 reduced	 impact	 in	 the	 meta-trajectory	 ensemble,	
which	 is	 dominated	 (Figure	 4)	 by	 3	main	 states:	 high	 twist/positive	 slide/negative	
shift	 (HPN);	 high	 twist/positive	 slide/positive	 shift	 (HPP),	 and	 low	 twist/negative	
slide/zero	 shift	 (LNZ).	 Experimental	 validation	 of	 the	 suggested	 polymorphism	 is	
nearly	 impossible	 as	 experimental	 structures	 are	 always	 averages	 (i.e.	 assume	 a	
normal	 unimodal	 distribution).	 However,	 plotting	 the	 scarce	 experimental	 data	
available	 for	 the	 CTAG	 tetramer	 on	 the	 two-dimensional	 population	 plots	 (shift-
twist,	shift-slide	and	twist-slide)	derived	from	meta-trajectories	provide	an	indirect,	
but	strong	support	to	our	results.	For	example,	the	shift	distribution	is	very	narrow	
and	 centred	 around	 zero	 for	 low	 slide	 values,	 while	 when	 slide	 increases,	 larger	
values	(either	positive	or	negative)	of	shift	are	sampled,	 in	perfect	agreement	with	
MD	meta-trajectories.	Similarly,	 low	twist	appears	experimentally	only	 in	zero	shift	
conformations,	 while	 high	 shift	 (either	 negative	 or	 positive)	 is	 found	 only	 in	
experimental	 structures	with	 high	 twist.	 Finally	 the	 twist-slide	 plot	 show	only	 two	
regions	 of	 high	 probability	 consistent	 with	 the	 same	 slide/twist	 correlation	 found	
experimentally	(see	Figure	3).	
	
Hexamer	 dependence	 in	 central	 d(TpA)	 conformation.	 All	 the	 sequences	 studied	
here	correspond	to	the	same	tetramer,	so	we	could	expect	a	similar	distribution	of	
helical	parameters	at	the	central	d(TpA)	step.	However,	this	is	not	the	case	as	shown	
in	selected	examples	in	Supp.	Figure	S2,	where	large	differences	in	the	distributions	
of	helical	coordinates	for	the	d(TpA)	step	appears.	To	analyse	this	in	more	detail	we	
perform	KL	analysis	of	 the	40	 trajectories	 in	 the	6-dimensional	 space	defined	 from	
the	PCA	analysis	as	informative	of	the	entire	flexibility	space	of	the	helix	(see	above).	
Clustering	analysis	can	be	performed	from	the	KL	results	to	determine	the	similarity	
between	sequences	based	on	the	dynamics	of	the	central	d(TpA)	step	and	organized	
in	relational	dendogram	(Figure	5),	which	clearly	show	the	presence	of	at	least	two	
major	 clusters.	 The	 first	 one	 is	 populated	mainly	 by	 sequences	where	 the	 central	
tetramer	is	flanked	by	Y	at	5’	and	R	at	3’,	but	also	contains	two	5’Y··3’Y	sequences.	
The	other	cluster,	the	largest	one,	is	subdivided	in	three	different	sub-clusters,	two	
of	 which	 are	 formed	 almost	 exclusively	 of	 sequences	 where	 the	 central	 tetrad	 is	
surrounded	by	R	at	5’	and	Y	at	3’;	 finally	 the	 last	 cluster	 corresponds	 to	 situations	
where	 the	 CTAG	 tetrad	 is	 surrounded	 by	 5’R··3’R.	 Examples	 of	 prototypical	
distributions	 obtained	 for	 representative	 sequences	 in	 each	 cluster	 are	 shown	 in	
Supp.	Figure	S4,	which	demonstrate	that	the	hexamer	content	has	a	non-negligible	
role	 in	 defining	 the	 properties	 of	 the	 central	 d(TpA)	 step	 in	 the	 CTAG	 tetramer,	 a	
clear	exception	of	the	next-to-nearest-neighbour	model.		
	
The	existence	of	long-range	effects	imply	that	the	motion	of	the	central	TA	step	must	
be	 somehow	 connected	 to	 the	 distant	 base	 pairs.	Mechanical	 information	 should	
travel	from	one	site	to	the	other	to	allow	the	TA	step	to	“feel”	its	environment	and	
respond	in	a	different	way	according	to	the	nature	of	the	base	pairs	located	almost	



	175	

half	 helical	 turn	 away.	 	We	were	 able	 to	 find	 a	possible	 explanation	based	on	 the	
concerted	and	correlated	movements	of	the	backbone	and	bases,	by	first	noting	that	
the	 twist	 polymorphism	 at	 TA	 was	 behaving	 as	 the	 better	 well-known	 YR	 step:	
d(CpG)	[18,34,36,55].		The	two	possible	twist	substates	(HT/LT)	at	the	AT	step,	were	
connected	to	the	backbone	BI/BII	polymorphism	at	the	next	GA	junction	(note	that	
BI/BII	 inter-conversion	is	mainly	governed	by	the	ζ	torsion).	Furthermore,	the	BI/BII	
polymorphism	at	GA	 is	possible	due	to	 the	 formation	of	 the	 intra	C8H8-O3’	hbond	
and	 the	 shift	 polymorphism	 in	 the	 same	 junction	 (Figure	 6A,	 and	 B)	 [36].	 Similar	
results	were	found	 if	 looking	to	the	correlation	of	twist	at	the	central	TA	step	with	
the	 bps	 at	 the	 5’-side	 (CT).	 It	 is	 then	 clear	 that	 the	main	 backbone	 polymorphism	
(BI/BII)	is	linked	to	the	base	polymorphisms,	mainly	to	shift	and	twist	(Supp.	Table	2)	
up	to	the	hexamer	 level.	The	 information	travels	 through	successive	backbone	and	
base	 polymorphisms	 which	 are	 limited	 to	 some	 specific	 substates	 due	 to	 DNA’s	
crankshaft	 motion	 (Supp.	 Table	 2).	 This	 concerted	 movement	 of	 some	
shift/slide/twist	 step	 parameters	 and	 the	 ζ	 torsion	 could	 be	 appreciated	 from	 the	
Pearson	 correlation	 coefficients	 that	 clearly	 show	 a	 correlation/anti-correlation	
pattern	 in	 successive	 bps.	 Since	 intra-molecular	 CH-O	 hbonds	 are	 the	 main	
responsible	 for	 the	 information	 transfer	 between	 the	 backbone	 and	 the	 base	 [36]	
(with	perhaps	 a	 small	 contribution	 from	 the	 known	 sugar	 puckering	 flexibility,	 see	
Supp.	Table	S2),	both	backbone	and	base	polymorphisms	can	be	followed	by	looking	
only	 to	 the	 formation	of	 those	C8H8-O3’	 hbonds	 in	 RR	 and	 YR	 steps,	 or	 C6H6-O3’	
hbonds	in	RY	and	YY	steps.	The	correlated/anti-correlated	formation	of	these	hbonds	
away	 from	 the	 central	 TA	 step	 clearly	 explains	 the	 transfer	 of	 mechanical	
information	up	to	the	hexamer	level,	and	also	up	to	the	octamer	level	depending	on	
the	sequence	(Figure	6C)	
	
Structural	 information	 travel	 beyond	 the	 hexamer	 level.	 Sequences	 created	here	
cover	 all	 the	 hexamer	 space	 with	 some	 redundancy	 that	 allowed	 us	 to	 check	 for	
some	remote	effects	beyond	the	hexamer.	Quite	surprisingly,	such	effects	are	clearly	
visible	already	in	dendogram	shown	in	Figure	5,	where	sequences	showing	the	same	
hexamer	sequence	appear	in	two	very	different	branches.	This	is	the	case	of	RCTAGY	
hexamers	 which	 populate	 two	 distinct	 clusters,	 with	 YR..YR	 octamers	 having	 the	
tendency	 to	 make	 an	 exception	 and	 display	 remarkably	 different	 behaviour	 than	
other	 R..Y	 sequences.	 In	 addition,	 although	 there	 is	 a	 clear	 cluster	 containing	 R..R	
hexamers,	 there	 are	 a	 few	 exceptions	where	 an	 R..R	 in	 specific	 octamers	 leads	 to	
significant	changes	in	the	population	of	the	preferred	regions	of	the	helical	space	at	
the	 central	 d(TpA)	 step,	 namely	 TA..GG,	 GG..AC	 and	 GG..GG.	 In	 contrast,	 when	
flanked	by	Y..R,	the	central	TpA	step	seem	to	maintain	a	very	consistent	and	stable	
behaviour	(see	Figure	7).	
	
In	 particular,	 and	 focusing	 on	 selected	 cases,	 YpCpTpApGpR	 sequences	 (Y..R)	 are	
very	stable	at	the	hexamer	level	where	the	sequence	effects	seem	to	be	completely	
dampened	down.	They	are	all	in	the	same	cluster	in	the	dendogram	of	Figure	5	and	
display	 consistent	 distributions	 in	 all	multimodal	 helical	 parameters:	 shift	 has	 two	
main	populations	at	+/-	2	Å,	with	the	zero	shift	state	being	less	favoured.	Slide	and	
Twist	are,	as	a	consequence,	pushed	towards	higher	values.	R..Y	hexamers	have	two	
very	distinct	types	of	behavior,	depending	quite	clearly	on	the	flanking	base	of	the	
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octamer.	 RR..YY	 octamers	 tend	 to	 populate	 zero	 shift	 states	 and	 have	 equal	
populations	 of	 high/low	 twist	 as	 well	 as	 of	 negative/positive	 slide.	 The	 YR..YR	
octamers	are	strikingly	different.	They	have	a	strong	preference	for	positive	shift	and	
do	not	visit	low	twist	or	negative	slide	very	often.	This	is	probably	due	to	a	domino	
effect	 of	 hbond	 proclivity	 that	 does	 not	 allow	 a	 BII	 backbone	 at	 the	 3’	 side	 and	
compensates	by	shifting	towards	the	major	groove.	Finally,	R..R	hexamers	can	also	
show	variability,	but	only	in	some	particular	cases,	when	instead	of	shifting	towards	
the	 minor	 groove	 as	 typical,	 they	 shift	 towards	 the	 major,	 maintaining	 similar	
distributions	of	twist	and	slide.	 (It	 is	hard	to	 justify	why	this	happens	based	on	our	
data,	but	2	of	 the	3	 cases	where	an	R..R	hexamer	 is	 assigned	 to	a	different	 group	
than	its	own	have	XR..GG	and	none	of	the	R..R	hexamers	in	the	fourth	group	has	a	
GG	at	the	3’	side).	
	
Data	 mining	 of	 structural	 databases	 and	 genomic	 implications.	We	 analyze	 the	
experimentally	 obtained	 structures	 of	 DNA	 stored	 in	 the	 protein	 database	 that	
contain	 the	 CTAG	 tetranucleotide	 sequence	 in	 order	 to	 qualitatively	 validate	 our	
results.	 Although	 the	 experimental	 data	 is	 scarce,	 with	 only	 a	 fraction	 of	 the	
tetramer	 sequence	 space	 covered	 and	 barely	 none	 of	 the	 hexamer	 space,	 the	
analysis	 of	 experimental	 structural	 parameters	 of	 TpA	 steps	 flanked	 by	 5’C-3’G	
confirms	 that	 multimodality	 is	 not	 a	 force	 field	 artifact.	 We	 observe	 correlations	
between	twist,	slide	and	shift	very	consistent	with	our	results	as	shown	in	Figure	3.	
Indeed,	the	experimental	structures	tend	to	crowd	the	middle	of	the	plot,	surely	an	
effect	 of	 the	 averaging	 of	 structures	 inherent	 to	 the	 structure	 determination	
technique	 that	 assumes	 unimodality.	 However,	 whenever	 a	 particular	 structure	
deviates	from	zero	shift	conformation,	the	twist	and	slide	are	necessarily	in	high	and	
positive	states,	respectively,	and	they	are	also	highly	correlated	with	each	other,	 in	
perfect	agreement	with	our	 results	 (Figure	3).	PDB	structures	 containing	 the	CTAG	
have	 values	 for	 the	 shift,	 slide,	 roll	 and	 twist	 helical	 parameters	 that	 cover	 the	
multimodal	distributions	obtained	in	our	trajectories.	There	are	only	106	naked	DNA	
structures	 (some	with	 small	 ligands	 or	metal	 ions)	 and	 160	 structures	 of	 protein-
bound	DNA	containing	CTAG.	Slide	and	twist	are	clearly	bimodal,	with	peaks	that	fit	
well	to	our	results	(Figure	8).	TpA	shifts	2	Å	towards	both	the	minor	or	major	groove	
in	 several	protein-bound	DNA	structures,	but	 the	data	on	naked	DNA	seems	 to	be	
insufficient	 to	 cover	 these	 deformations:	 there	 is	 a	 small	 peak	 at	 +2	 Å,	 but	 highly	
underestimated	 compared	 to	 our	 results.	 Roll	 has	 a	 broad	 distribution,	 similar	 to	
what	 we	 obtain,	 but	 again	 low	 sequence	 coverage	 might	 be	 to	 blame	 for	 non-
uniformity	and	bias	towards	several	discrete	values.		
	
Previous	 analysis	 suggests	 that	 CTAG	 has	 really	 unique	 physical	 properties	 which	
should	 provide	 the	 genome	 a	 point	 of	 high	 flexibility	 and	 polymorphism.	 Very	
interestingly,	CTAG	is	one	of	the	lowest	populated	tetramer	in	all	species	(see	Supp.	
Figure	 S5)	 appearing	 mainly	 on	 intergenic	 regions	 and	 very	 rarely	 on	 genes.	
Interestingly,	rare	CTAG	tetramers	are	well	conserved	with	an	unusually	low	rate	of	
stable	SNPs	mapping	on	them	(Supp.	Figure	S6),	which	suggest	that:	i)	despite	being	
far	 from	 coding	 regions	 they	 are	 important	 for	 the	 functionality	 of	 the	 cell,	 or	
alternatively	ii)	they	are	easily	accessible	to	the	mismatch	repairing	machinery.	The	
same	 conclusion	 can	 be	 reached	 from	 the	 analysis	 of	 cancer	 genomic	 data	which	
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show	that	again	CTAG	is	very	rarely	mutated	in	cancer	(Supp.	Figure	S7).	The	unusual	
physical	 properties	 of	 the	 CTAG	 tetramer	 matches	 it	 unusual	 prevalence	 and	
distribution	 in	 the	 genome	 and	 its	 extreme	 resilience	 to	 either	 germinal	 (SNPs)	 o	
somatic	(cancer)	mutations.	It	is	tempting	to	believe	that	cell	takes	advantage	of	the	
unusual	 properties	 of	 CTAG	 as	 points	 of	 high	 flexibility	 which	 might	 help	 to	 fold	
chromatin.		
	

	

CONCLUSIONS	

	
We	 present	 here	 an	 in-depth	 study	 of	 one	 of	 the	 most	 “structurally	 speaking”	
polymorphic	 tetranucleotide	 found	 in	 B-DNA.	 The	 complete	 helical	 space	 of	 the	
CTAG	 tetramer	 has	 been	 analyzed	 by	 means	 of	 extensive	 molecular	 dynamics	
simulations,	 and	 by	 data	 mining	 the	 Protein	 Data	 Bank,	 confirming	 its	 highly	
polymorphic	behavior	at	several	helical	parameters:	shift,	slide,	twist	and	BI/BII.	This	
confers	 to	 CTAG	 the	 possibility	 to	 exist	 in	 several	 different	 substates,	 being	
particularly	 flexible.	 We	 present	 here	 clear	 evidence	 that	 the	 type	 of	 substate	
displayed	by	CTAG	 in	 a	 given	 sequence	 context,	 and	 in	 consequence	 its	 dynamics,	
are	sequence	dependent,	and	 fine-tuned	by	 long-range	sequence	effects	 that	goes	
beyond	the	hexamer	context.	Based	on	the	concerted	and	correlated	movements	of	
bases	and	backbone	torsions	for	the	described	multimodal	degrees	of	freedom,	and	
driven	by	the	mechanical	limitations	imposed	by	DNA’s	crankshaft	motions,	we	were	
able	to	found	a	possible	explanation	on	how	structural	information	can	travel	almost	
half	 helical	 turn	 away	 from	 the	 central	 TpA	 step.	 This	 long-range	 structural	
“connection”	 allows	 the	 TpA	 step	 to	 “feel”	 its	 sequence	 environment	 up	 to	 the	
octamer	 level,	 and	 eventually	 adopt	 a	 different	 substate	 if	 needed.	Moreover,	we	
found	that	previously	described	unconventional	 intra-molecular	Hydrogen	bonds	of	
the	 type	C8H8-O3’	and	C6H6-O3’	which	 link	 the	movements	of	 the	bases	with	 the	
torsions	 in	 the	backbone,	could	be	used	as	descriptors	of	such	correlated	motions.	
Finally,	 we	 found	 that	 although	 this	 highly	 flexible	 tetramer	 is	 extremely	
underrepresented	 in	 several	 genomes	 along	 the	 animal	 Kingdome,	 being	 mostly	
present	in	intergenic	sequences,	it	has	been	preserved	with	a	low	rate	of	mutation	in	
normal	and	cancer	cell	 lines	 implying	a	possible	physical	 role	 for	CTAG	at	genomic	
level.	
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FIGURES	

	
	

	
Figure	1.	Relative	propensities	of	the	multimodal	bps	helical	coordinates	of	the	
central	 TpA	 in	 all	 40	 sequence	 contexts.	 Comparison	 to	 the	 global	 average	
propensities	 over	 all	 sequence	 contexts	 per	 component	 of	 the	 multimodal	
distributions	with	standard	deviations	that	reflect	the	variation	of	propensity	of	
each	 component	 among	 sequences.	 The	 propensity	 values	were	 computed	BIC	
analysis	(see	Methods	and	Suppl.	Methods).	 	
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Figure	2.	Normalized	frequencies	of	those	bps	helical	parameters	found	to	be	bi-
normal	 and	 tri-normal	 according	 to	 the	 BIC	 analysis.	 FIRST	 ROW:	 Overlapped	
density	of	the	shift,	slide,	roll,	and	twist	parameters	at	the	central	TpA	step	of	the	
40	sequences	studied	(see	Supp.	Table	S1).	SECOND	ROW:	Density	obtained	from	
the	 meta-trajectory	 (black	 line),	 and	 the	 BIC	 decomposition	 in	 two	 Gaussians	
(slide,	roll,	and	twist:	red	and	green	lines),	or	in	three	Gaussians	(shift:	red,	green	
and	blue	lines).	
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Figure	 3.	 3D	 and	 2D	 counts	 in	 the	 shift,	 slide,	 and	 twist	 planes	 from	 MD	
simulations	 at	 the	 central	 TpA	 step.	 In	 the	 2D	 density	 plots	 experimental	
structures	 from	 the	 PDB	 (see	 Supp.	 Methods)	 were	 added	 as	 black	 crosses	
(Protein-DNA	complexes),	or	blue	crosses	(isolated	DNA).	
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Figure	4.	2D	density	plots	in	the	shift/twist	and	shift/slide	planes	at	the	central	
TpA	step	for	3	selected	sequences.	
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Figure	 6.	Concerted	movements	along	 the	backbone	and	 the	bases	explain	 the	
flow	 of	 structural	 information	 from	 CTAG	 tetramer	 to	 the	 octamer	 level.	 A)	
Correlation	between	twist	and	the	BI/BII	population	(reduced	to	the	ζ	torsion	at	
the	3’-side	of	TA)	at	the	TA	junction.	B)	Correlation	between	twist	at	TA	and	the	
CH-O	hbond	formed	at	the	AG	junction	(bps	+1).	C)	Correlation	between	the	CH-
O	hbond	at	the	AG	junction	with	the	CH-O	hbond	at	bps+1	(hexamer	level),	and	
bps+2	 (octamer	 level).	 Note	 that	 the	 CH-O	 hbonds	 are	 always	 coupled	 to	 BII	
propensities,	stabilizing	the	BII	substate.	
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Figure	7.	Normalized	frequencies	of	shift,	slide	and	twist	at	the	central	TpA	step	
for	 3	 pairs	 of	 selected	 sequences	 showing	 non-negligible	 octamer	 effects.	 The	
colors	used	correspond	to	the	groups	found	in	the	clustering	analysis.	
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2 Allosterism	and	signal	transfer	in	DNA	

In 2013, an extensive study both in vivo and in vitro on the allosteric 
coupling between proteins bound to the DNA [16] was published and 
proposed a mechanism for cooperativity based on explicit solvent 
unrestrained MD simulations. Their model has later been challenged when 
another group ran significantly longer MD simulations and found significant 
noise in the data, concluding that an atomistic representation is entirely unfit 
for addressing this problem.  

This motivated us to clarify the issue, based on the our experience that 
sufficient sampling and the use of the latest generation force fields for DNA 
[21] (parmbsc1, see Chapter 4) are very successful in deciphering subtle 
modulation in the conformational landscape, even when structural effects are 
absent or very mild. We first discuss the structural response, looking at 
correlations and causality in the geometrical descriptors that would account 
for a site-to-site information transfer in the DNA. We find that the presence of 
BAMHI enriches the coupling between the degrees of freedom of the two 
binding sites. 

From a thermodynamic perspective, we eliminate the possibility of a 
predominantly enthalpic explanation and find that the mechanism is entropy-
mediated. In a nutshell, the way this takes place is through the inhibition of 
the flexibility in the secondary binding site by the restriction in 
conformational freedom upon effector binding at its own site. This happens 
because the two binding sites are dynamically coupled. In terms of free 
energy changes, the formation of the ternary complex is cooperative because 
in addition to paying an entropy penalty for binding to its own site, the first 
protein also does some of the unfavorable thermodynamic “work” required to 
stiffen the secondary binding site. 

Encouraged to study the effect in more depth, we adapt a methodology 
of computing and breaking down transfer entropy from information theory 
(previously used on proteins) for the study of our system. From the entropy 
transfer point of view, allosteric communication may be a general property of 
DNA that should be taken into consideration.   

 

Publication: 

Balaceanu A, Pérez A, Dans PD and Orozco M. Allosterism and signal 
transfer in DNA. Nucleic Acids Res 2018, DOI: 10.1093/nar/gky549. 
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ABSTRACT	

We	analyzed	the	basic	mechanisms	of	signal	transmission	in	DNA	and	the	origins	

of	the	allostery	exhibited	by	systems	such	as	the	ternary	complex	BAMHI-DNA-

GRDBD.	We	found	that	perturbation	information	generated	by	a	primary	protein	

binding	event	 travels	 as	 a	wave	 to	distant	 regions	of	DNA	 following	a	hopping	

mechanism.	However,	 such	 a	 structural	 perturbation	 is	 transient	 and	does	 not	

lead	 to	permanent	 changes	 in	 the	DNA	geometry	 and	 interaction	properties	 at	

the	secondary	binding	site.	The	BAMHI-DNA-GRDBD	allosteric	mechanism	does	

not	 occur	 through	 any	 traditional	 models:	 direct	 (protein-protein),	 indirect	

(reorganization	 of	 the	 secondary	 site)	 readout,	 or	 solvent-release.	 On	 the	

contrary,	 it	 is	 generated	 by	 a	 subtle	 and	 less	 common	 entropy-mediated	

mechanism,	which	might	have	an	important	role	to	explain	other	DNA-mediated	

cooperative	effects.	

	

INTRODUCTION	

Macromolecules	are	capable	to	transport	information	signals	emerging	from,	for	

example	 ligand	 binding,	 to	 distant	 regions	 activating	 a	 variety	 of	 secondary	

effects.	One	of	them	is	allostery,	which	implies	changes	in	the	binding	of	a	second	

ligand	due	to	prior	interaction	of	the	allosteric	effector	[1–5].	Allostery	has	been	

deeply	studied	for	proteins,	where	it	has	been	characterized	as	one	of	the	main	
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mechanisms	 of	 control	 of	 their	 activities	 [5–7].	Much	 less	 studied,	 but	 equally	

important,	 DNA-mediated	 allostery	 has	 been	 attributed	 a	 crucial	 role	 in	 the	

control	of	DNA-protein	 interactions	 [8–17].	Most	cases	of	cooperativity	 in	DNA	

can	 be	 explained	 by	 a	 “direct	 read-out”	 mechanism.	 Accordingly,	 a	 primary	

protein	recognizes	a	DNA	sequence	by	means	of	specific	interactions	with	one	of	

its	 domains,	 while	 other(s)	 domain(s)	 make(s)	 specific	 interactions	 with	 a	

secondary	protein,	positioning	it	near	the	second	DNA	sequence	to	be	recognized	

[9–11].	 In	 addition	 to	 the	 “direct	 readout”	 model,	 two	 other	 allosteric	

mechanisms	 have	 been	 suggested:	 the	 “indirect	 read-out”,	 where	 the	 primary	

protein	 distorts	 the	 structure	 of	 DNA	 improving	 the	 binding	 characteristics	 of	

the	 secondary	 site	 [12,13],	 and	 the	 “solvent	 release	mechanism”	 that	 assumes	

that	primary	binding	induces	changes	 in	water	or	 ion	distribution	reducing	the	

desolvation	 cost	 required	 for	 the	 secondary	 binding	 [14].	 Recent	 experiments	

[15,18,19],	and	theoretical	models	[17,20]	have	shown	cases	of	cooperativity	in	

DNA-protein	 binding	 that	 apparently	 do	 not	 fit	 within	 any	 of	 the	 traditional	

paradigms,	as	binding	sites	are	distant	and	binding-induced	structural	 changes	

in	 DNA	 are	 absent	 or	 very	 mild.	 Although	 in	 proteins	 a	 model	 of	 “allostery	

without	conformational	change”	[21]	has	been	described,	very	few	studies	have	

focused	on	similar	processes	in	DNA.	In	fact,	cooperative	binding	of	BAMHI	type	

II	 Endonuclease	 [22]	 and	 the	 glucocorticoid	 receptor	 DNA-binding	 domain	

(GRDBD)	 [23]	 to	 the	DNA	 is	 (to	our	knowledge)	 the	 first	described	example	of	

“allostery	 without	 conformational	 changes”	 involving	 DNA	 [15,24].	 The	

difficulties	 in	 understanding	 the	 origins	 of	 the	 BAMHI-DNA-GRDBD	 allostery	

highlight	 our	 limited	 knowledge	 on	 the	 mechanisms	 in	 which	 information	 is	

transferred	along	DNA	[18,25–27].		

In	 this	 contribution,	 we	 propose	 a	 model	 of	 DNA	 allostery	 based	 on	

communication	from	site-to-site	by	entropy	transfer	using	correlated	motions	to	

transmit	information	through	the	system.	Moreover,	we	show	that	the	source	of	

allostery	 is	 the	directionality	of	 time-delayed	correlations	between	the	 internal	

degrees	 of	 freedom	 of	 DNA,	 which	 accounts	 for	 causality	 and	 explains	 the	

thermodynamics	of	complex	formation.	
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MATERIAL	AND	METHODS	

Simulated	systems:	We	explore	allosteric	effects	in	duplex	DNA	containing	the	

canonical	 BAMHI	 binding	 site	 (d(GGATCC))	 and	 the	 canonical	 GRDBD	 binding	

site	(d(AGAACATGATGTTCT)	separated	by	linkers	of	 increasing	length	(4,	7,	11	

and	15).	 In	all	 cases	 four	systems	were	simulated:	 the	naked	DNA,	 the	BAMHI-

DNA	 complex,	 the	 GRDBD-DNA	 complex	 and	 the	 BAMHI-DNA-GRDBD	 trimer	

(see	Supplementary	Figure	S1).	The	4x4	systems	were	created	using	Nucleic	Acid	

Builder	 and	 standard	 B-DNA	 geometrical	 parameters	 [28,29],	 except	 for	 the	

binding	 region	 where	 the	 geometries	 were	 transferred	 from	 the	 respective	

crystal	 structures	 (PDB	 codes	 2BAM	and	1R4R).	Note	 that	 the	GRDBD	binding	

site	used	(the	one	coming	from	the	X-ray	structure),	correspond	to	what	authors	

from	ref.	[15]	labeled	as	the	“reverse”	GRDBD	sequence.	

System	preparation:	The	systems	were	immersed	in	octahedral	boxes	of	water,	

which	were	defined	to	guarantee	no	DNA	atom	was	placed	at	less	than	10	Å	from	

any	face	of	the	periodic	cell.	Hydrated	systems	were	then	neutralized	by	adding	

Na+	 ions	 and	 extra	 100	 mM	 NaCl	 and	 subjected	 to	 a	 standard	

minimization/thermalization/pre-equilibration	[30,31]	procedure	followed	by	a	

50	ns	equilibration	prior	 to	production	 runs.	All	 the	 topologies	and	coordinate	

files	were	build	with	 the	 leap	program	of	AmberTools	15	[32]	and/or	with	 the	

utilities	provided	by	GROMACS	[33],	and	run	with	GROMACS	machinery.	

Production	 runs.	MD	trajectories	were	collected	in	the	isothermal	(T=	298	K),	

isobaric	 (P=1	atm)	ensemble,	 using	 a	Langevin	 thermostat	 [34]	 and	Andersen-

Parrinello	 barostat	 [35,36].	 The	 parmbsc1	 force-field	 was	 used	 for	 DNA	 [37],	

coupled	with	ff99SB-ILDN	for	proteins	[38],	Dang’s	parameters	for	ions	[39],	and	

TIP3P	waters	[40].	Periodic	boundary	conditions	and	Particle	Mesh	Ewald	(real	

space	 cutoff	 12	 Å	 and	 grid	 spacing	 1.2	 Å)	 were	 used	 to	 account	 for	 remote	

electrostatic	interactions	[41].	Van	der	Waals	contacts	were	truncated	at	the	real	

space	cutoff.	All	bonds	containing	hydrogen	were	constrained	using	LINCS	[42],	

which	allowed	us	to	use	an	integration	step	of	2	fs.	Trajectories	were	extended	

for	1	µs	each,	and	system	sizes	range	from	91,164	to	263,834	atoms.		Additional	

trajectories	 where	 BAMHI	 was	 instantaneously	 bound	 in	 a	 1	 μs	 equilibrated	

naked	 DNA	 (linker	 size=7)	 were	 collected	 to	 test	 the	 mechanism	 in	 which	
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perturbation	is	transferred	along	DNA.	 	As	the	direct	contacts	between	the	two	

proteins	are	possible	for	the	4-nt	linker,	most	of	the	discussion	is	limited	to	the	

7-,	 11-	 and	 15-nt	 linkers.	 All	 collected	 trajectories	 are	 available	 through	 our	

BigNasim	database	[43].	

Analysis	 of	 the	 trajectories.	Conformational	analysis	was	performed	with	 the	

use	of	Curves+	and	Canal	programs	[44]	to	obtain	the	DNA	internal	coordinates	

at	each	time	frame	such	as	helical	parameters	and	backbone	dihedrals.	Standard	

analysis	on	those	helical	parameters	were	performed	using	tools	implemented	in	

our	NaFleX	 server	 [45],	 and	 further	 analysis	was	done	with	a	combination	of	in-

house	tools.		

Analysis	 of	 the	 structural	 response.	 Correlations	 between	 geometrical	 variables	

were	 evaluated	 taking	 into	 account	 the	 nature	 of	 the	 coordinates	 involved,	 either	

linear	or	circular	(backbone	torsions).	Correlation	between	two	directional	variables	

was	 assessed	 with	 the	 use	 of	 Jammalamadaka	 formula	 [46].	 To	 compute	 time-

delayed	correlations	we	used	the	cross-correlation	[47]	between	the	time	series	of	

major	groove	widths	at	two	positions	on	the	DNA	with	a	maximum	lag	of	5	ns	(see	

the	 Suppl.	 Data	 for	 a	 more	 comprehensive	 description	 of	 these	 techniques).	

Correlations	network	analysis	of	backbone	torsions	was	performed	by	computing	all	

circular-circular	 correlation	 (edges)	 between	 backbone	 angles	 (nodes),	 and	 using	

them	 to	 build	 an	 interaction	 network	 represented	 as	 a	 descriptive	 network	 graph	

using	 the	 R	 package	 igraph	 [48].	 Classical	 molecular	 interaction	 potentials	 were	

computed	 (using	 our	 CMIP	 code	 [49])	 to	 determine	 the	 changes	 in	 recognition	

properties	 from	 an	 enthalpic	 point	 of	 view	 (only	 considering	 Coulomb	 and	 VdW	

interactions),	 induced	by	BAMHI	binding,	on	 the	 region	of	DNA	 that	binds	GRDBD.	

The	 ionic	 strength	 and	 the	 reaction-field	 dielectric	 constant	 were	 set	 to	 0.15	 and	

78.4	 M,	 respectively,	 while	 the	 dielectric	 constant	 for	 DNA	 was	 set	 to	 8	 [50].	 A	

protonated	methylamine	was	used	as	probe	particle.	Cation	analysis	was	performed	

by	 determining	 the	 cation	 distribution	 in	 curvilinear	 cylindrical	 coordinates.	 The	

distribution	of	sodium	cations	around	the	DNA	was	determined	from	the	last	200	ns	

of	 each	MD	 trajectory,	 and	 analyzed	 using	 Canion	 [51].	 The	 limits	 of	 the	 grooves	

were	defined	as	reported	elsewhere	[52,53].	In	order	to	analyze	the	effect	of	protein	
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interaction	 with	 DNA	 while	 reducing	 the	 thermal	 noise,	 we	 defined	 as	 protein	

“sensing	 contacts”	 all	 pairs	 of	 amino-acid/nucleotide	 that	 when	 coming	 in	 close	

proximity	to	each	other	(distances	between	centers	of	mass	below	7	Å	and	at	least	

one	atom	pair	distance	below	3	Å)	produce	the	most	significant	perturbations	in	the	

DNA.	 Selecting	 structures	 from	 the	 trajectories	 using	 these	 criteria	 yielded	 meta-

trajectories	 consisting	 of	 at	 least	 10,000	 disperse	 frames	 that	 were	 analyzed	

together.	

Analysis	of	thermodynamical	properties.	Entropy	calculations	were	performed	using	

both	the	Schlitter	and	Andricioaei/Karplus	methods	[54,55]	employing	two	separate	

alignment	methods.	Absolute	 entropies	 of	 the	DNA	heavy	 atoms	 in	 the	 secondary	

binding	 region	 (GRDBD	 recognition	 site)	 were	 calculated	 for	 naked	 DNA,	 and	 all	

complexes	 at	 increasing	 time	 windows	 (50	 ns	 to	 1	 µs).	 From	 these	 time	

dependent	 values	 we	 used	 the	 Harris’	 extrapolation	 scheme	 [56]	 to	 obtain	

converged	absolute	entropies	at	infinite	simulation	time,	and	used	them	to	calculate	

the	entropy	changes	upon	protein	binding.	The	dihedral	entropy	for	DNA	backbone	

torsions	was	computed	as	a	function	of	the	Kullback−Leibler	divergence	[57]	of	real	

dihedral	state	populations	from	the	assumed	independent	populations,	as	described	

by	Cukier	[58].	The	set	of	dihedrals	was	chosen	at	the	interface	between	linker	and	

secondary	binding	regions,	and	it	includes	torsions	on	both	Watson	and	Crick	strands	

(α,	β,	ε,	γ	and	ζ).	Using	major	groove	widths	fluctuations	along	the	DNA	we	calculate	

the	transfer	entropy	(TE)	between	two	base	pairs	following	the	method	proposed	by	

Schreiber	 [59],	 computing	 the	 TE	 as	 a	 summation	 of	 Shannon	 entropy	 terms	 [57],	

which	 stems	 from	 the	 calculation	 of	 conditional	 entropies	 between	 time	 series	

separated	in	time	by	τ	(chosen	here	to	be	2	ns).	A	rough	estimate	of	the	difference	in	

free	energy	of	binding	GRDBD	to	the	free	and	protein	bound	DNA	was	obtained	by	

following	an	adaptation	of	the	Confine-Convert-Release	(CCR)	method	described	by	

Roy	et	al.	 [60],	 based	 itself	 on	previously	described	 confinement	methods	 [61,62].	

We	 calculate	 the	 energy	 of	 confining	 each	 structure	 (naked	 DNA,	 BAMHI-DNA,	

GRDBD-DNA	 and	 BAMHI-DNA-GRDBD	 complexes)	 to	 its	 energy	 minimum	 by	

thermodynamic	integration	with	increasing	restraints.	The	negative	of	this	energy	is	

the	release	term.	 In	the	convert	step	that	completes	the	thermodynamic	cycle,	we	
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calculate	the	energy	difference	of	the	DNA	atoms	between	the	two	highly	restrained	

complexes.	Finally,	the	total	binding	free	energy	is	calculated	from	the	sum	of	these	

individual	contributions.	

More	details	on	all	analyses	and	methods	used	are	given	in	the	Supplementary	Data.	

	

RESULTS	AND	DISCUSSION	

The	 structural	 response.	We	 explore	 here	 BAMHI-DNA-GRDB	 allostery	 [15]	

using	 a	 variety	 of	 theoretical	 approaches.	We	 first	 investigated	 the	 possibility	

that	 direct	 protein-protein	 interactions	 can	 justify	 the	 observed	 cooperative	

binding	of	BAMHI	and	GRDBD	to	DNA	(the	list	of	simulated	systems	is	shown	in	

Suppl.	Fig.	S1).	To	this	end,	we	computed	the	protein-protein	interaction	energy	

during	the	last	100	ns	of	the	1	μs	molecular	dynamics	(MD)	trajectories	of	DNA	

bound	to	BAMHI	and	GRDBD	(104	snapshots	for	each	case).	While	for	a	short	(4	

bp)	linker	protein-protein	interaction	is	sizeable	(-17.7±2.0	kcal/mol),	for	longer	

linkers	it	is	negligible	(<	0.5	kcal/mol	in	all	cases),	precluding	a	“direct	read-out”	

mechanism.	Furthermore,	analysis	of	helical	parameters	and	groove	dimensions	

(Figure	 1	 and	 Suppl.	 Fig.	 2)	 demonstrates	 that	 (when	 well	 equilibrated	

trajectories	are	used)	the	interaction	of	DNA	with	BAMHI	does	not	significantly	

alter	the	helical	geometry	at	the	secondary	(GRDBD)	binding	site,	arguing	against	

an	“indirect	readout”	model.	Additionally,	analysis	of	the	MD	trajectories	clearly	

shows	that	BAMHI-induced	changes	in	water	and	ion	environment	are	restricted	

to	the	BAMHI	region	(see	Suppl.	Figure	S3	A),	also	arguing	against	the	prevalence	

of	an	ion-	or	water-	release	mechanism.	The	ability	of	the	DNA	at	the	secondary	

binding	 region	 to	 recognize	 charged	 aminoacids	 in	 the	 presence	 or	 absence	 of	

the	 effector	 protein	 (BAMHI)	 was	 assessed	 with	 our	 classical	 molecular	

interaction	potential	 (CMIP	[49]).	We	used	a	protonated	methylamine	probe	to	

simulate	 the	 presence	 of	 a	 charged	 amino	 acid	 sidechain(see	 Suppl.	 Fig.	 S3	 B)	

and	 found	essentially	no	difference	 in	 the	electrostatic	or	van	der	Waals	 terms	

between	 the	bound	and	 free	DNA	 for	any	of	 the	 linker	 region	sizes	 (see	Suppl.	

Table	 S1).	 The	 cooperative	 effect	 detected	 experimentally	 should	 then	 be	

explained	by	a	less	common	alternative	mechanism,	which	implies	a	subtle	flow	

of	information	between	primary	and	secondary	binding	sites.	
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To	 investigate	 the	 mechanism	 of	 the	 information	 transfer	 along	 DNA	 we	

explored	 the	 correlation	 between	 the	 movements	 in	 primary	 and	 secondary	

binding	 sites	 for	 naked	 and	 BAMHI	 bound	DNAs.	 Early	 studies	 on	 this	 system	

suggested	the	existence	of	strong	correlations	 in	the	movements	at	BAMHI	and	

GRDBD	binding	sites	[15,16],	while	more	refined	calculations	showed	that	such	

correlations	may	 emerge	 from	 equilibration	 artefacts	 [17].	 Indeed	 (as	 seen	 in	

Suppl.	 Fig.	 S4),	 short	 simulations	 lead	 to	 an	 overestimation	 of	 the	 correlation	

between	 the	 two	 binding	 sites.But	 when	 long	 equilibration	 windows	 are	

considered,	correlations	between	the	two	binding	sites	are	still	clearly	larger	for	

the	 DNA-BAMHI	 complex	 than	 for	 the	 naked	 DNA	 (Suppl.	 Fig.	 S4	 and	 Fig.	 2),	

suggesting	that	 the	GRDBD	binding	site	 feels	 in	a	dynamic	way	the	presence	of	

the	BAMHI,	even	for	the	longest	linker.	Depending	on	the	selected	time	window	

and	 the	 linker	 size,	 the	 differences	 in	 correlation	 strength	 between	 naked	 and	

bound	DNA	can	vary,but	 they	are	always	 larger	 in	 the	presence	of	 the	protein,	

most	 visibly	 so	 in	 the	 case	 of	 the	 15	 bp	 linker	 system,	 which	 also	 shows	 the	

higher	cooperativity	experimentally.	

To	 establish	 if	 the	 structural	 correlations	 observed	 imply	 causation,	 we	

computed	a	time-delayed	correlation	between	DNA	residues	[63],	which	account	

for	the	time	lag	that	might	appear	as	the	signal	travels	from	one	binding	site	to	

the	other	(see	Supplementary	Data).	The	expected	time	lag	at	each	position	was	

calculated	based	on	 the	 linear	progression	of	 correlation	maxima	at	 the	 first	3	

base	pairs	away	from	the	source	(bp	5),	which	show	the	least	amount	of	noise.	

The	assumption	made	here	is	that	the	signal	travels	at	a	constant	speed	through	

the	sequence.Figure	3	shows	correlation	coefficients	of	the	major	groove	widths	

between	base	pair	5	and	all	subsequent	base	pairs	with	their	corresponding	time	

delay,	 either	 in	 the	 forward	 (5’→3’	 on	 the	Watson	 strand	 –	 from	bp	 5	 to	 each	

other	bp)	or	reverse	direction	(3’→5’	–	from	all	further	base	pairs	to	bp	5).	The	

top	 half	 of	 Figure	 3	 depicts	 a	 comparison	 of	 such	 time-delayed	 major	 groove	

width	correlations	between	BAMHI	bound	DNA	of	the	different	liker	sizes.In	the	

systems	with	cooperativity-favorable	linker	sizes	(7	bp	and	15	bp),	the	delayed	

correlation	in	the	5’→3’	direction	(forward,	orange	line)	is	out	of	phase	from	the	

correlation	in	the	3’→5’	direction	(reverse,	blue	line),	so	that	at	key	positions,	the	

correlation	 is	 significantly	 stronger	 in	 the	 forward	direction.	This	 is	due	 to	 the	
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fact	 that	 the	 forward	 correlation	 at	 such	 positions	 decays	 significantly	 slower	

than	in	the	reverse	case.	These	results	indicate	that	the	effect	of	the	major	groove	

fluctuations	at	BAMHI	site	(when	this	protein	is	bound),	on	later	fluctuations	at	

the	 secondary	binding	 site,	 persist	 for	 longer	 times	 in	 the	 case	of	 7	 and	15	bp	

linkers.	In	contrast,	the	11	bp	linker	system	has	practically	symmetric	responses	

at	these	key	positions.	This	suggest	that	the	major	groove	width	fluctuations	in	

the	BAMHI	binding	region	drive	the	motions	in	the	GRDBD	binding	region	using	

the	 specific	 5’-3’	 direction	 for	 linkers	 7	 and	 15,	 whereas	 the	 nature	 of	 the	

structural	correlation	between	binding	sites	for	the	11	bp	linker	system	is	small	

and	non-directional.	The	bottom	half	of	the	figure	shows	the	corresponding	plots	

for	 the	naked	DNA	of	 different	 linker	 sizes.	 In	 the	 absence	 of	 the	perturbation	

induced	by	the	binding	of	 the	effector	protein,	 the	phase	shift	does	not	appear.	

To	further	confirm	that	this	behavior	is	due	to	the	introduction	of	a	perturbation	

at	the	effector	binding	site,	we	ran	a	separate	simulation	where	we	introduced	a	

gradual	 harmonic	 tear	 opening	 the	major	 groove	width	 at	 base	 pair	 5	 (bound	

region)	and	looked	on	the	effect	of	this	perturbation	to	the	forward	and	reverse	

delayed	 correlations	 (see	 Suppl.	 Fig.	 5).	 This	 result	 shows	 that	 a	 perturbation	

introduced	in	the	binding	region	of	BAMHI	will	indeed	affect	the	symmetry	of	the	

cross-correlation.	There	is,	additionally,	significant	difference	(p-value	<0.01	for	

the	cumulative	r-square	 in	 the	GRDBD	binding	site	of	 favorable	 linker	systems,	

obtained	 through	 pair-wise	 t-test)	 between	 correlation	 coefficients	 at	 the	

secondary	 binding	 region	 between	 free	 and	 bound	DNA	when	 taking	 the	 time	

delay	into	consideration.	This	suggests	that	correlations	in	the	naked	DNA	might	

be	 intrinsic	 and	 determined	 by	 simply	 the	 shape	 of	 the	 double	 helix	 that	

synchronizes	motions	instantaneously,	whereas	in	the	protein-bound	duplex	the	

response	 to	 perturbation	 takes	 a	 certain	 amount	 of	 time	 to	 travel	 through	 the	

sequence.	

The	changes	in	the	connection	pattern	between	recognition	sites	in	DNA	due	to	

BAMHI	 binding	 became	 even	 more	 evident	 when	 network	 analysis	 tools	 (see	

Suppl.	Data)	are	used	to	find	connectivity	maps	between	the	different	backbone	

torsions	 (Figure4;	 see	 results	 for	 a	 broader	 correlation	 range	 in	 Suppl.	 Fig.	

S6).Clearly,	 the	 presence	 of	 BAMHI	 enriches	 the	 connectivity	 between	 the	

different	torsional	degrees	of	freedom.	Interestingly,	while	such	connections	are	
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mostly	local	and	sequential	for	the	naked	DNA,	BAMHI	binding	triggers	crosstalk	

between	 the	 backbones	 of	 the	 two	 strands,	 through	 the	 space,	 and	 from	 the	

linker	 region	 to	 the	 secondary	 binding	 site,	 as	 expected	 from	 a	 “hopping”	

information	 transfer	 mechanism	 (Figure	 4,	 and	 Suppl.	 Fig.	 S6),	 i.e.	 where	 the	

information	 flows	 by	 giving	 hops	 between	 the	 dihedrals	 backbone	 of	 non-

sequential	residues.	

As	 noted	 above,	 the	 crosstalk	 between	 the	 two	 binding	 sites	 detected	 upon	

BAMHI	 binding	 does	 not	 lead	 in	 average	 to	 dramatic	 geometrical	 changes	 at	

distant	regions	(Figure	1	and	Suppl	Fig.	3),	but	generates	pulses	of	distortion	that	

can	travel	quite	long	distances	generating	non-negligible	temporary	geometrical	

distortions	 in	 the	duplex.	Although	differences	 in	major	groove	width	between	

naked	 and	 BAMHI-bound	 DNAs	 are	 in	 average	 rather	 small	 out	 of	 the	 BAMHI	

binding	site	(Figure	5),	 they	 increase	dramatically	 for	those	selected	structures	

where	we	detected	the	strongest	DNA-protein	contacts	(around	104	frames,	see	

Methods).	 This	 suggests	 that	 “protein-sensing”	 leads	 to	 a	 sizeable	 distortion	

pulse	at	quite	 long	distances	thanks	to	a	“hopping”	mechanism	with	½	and	full	

turn	periodicities	(Figure	5,	 left).	During	a	protein-sensing	event	 the	signal	can	

be	transferred	to	remote	regions	of	the	DNA,	but	once	the	contact	is	released,	the	

structure	relaxes	and	the	signal	starts	to	dissipate,	as	shown	by	the	evolution	in	

time	 of	 major	 groove	 width	 correlations	 along	 the	 sequence	 during	 and	 after	

protein	 clenching	 (Suppl.	 Fig.	 S7).	 Very	 interestingly,	 the	 distortion	 pattern	

introduced	 by	 “protein	 sensing”	 is	 enhanced	 at	 the	 GRDBD	 binding	 site	 for	

linkers	 7	 and	15,	 i.e.	 those	 showing	 experimentally	 strong	 cooperativity,	while	

for	linker	11,	where	cooperativity	is	not	experimentally	detected,	the	peak	of	the	

perturbation	wave	 is	 displaced	with	 respect	 to	 the	 secondary	 recognition	 site.	

Therefore,	 the	 linker	 size	modulates	 the	 impact	 of	 the	 distortion	 signal	 at	 the	

secondary	binding	site,	suggesting	thatprotein	contacts	affect	not	only	the	major	

groove	width	at	the	secondary	binding	site,	but	also	the	cross-talk	between	the	

two	 binding	 sites,	 as	 itcan	 be	 observed	 from	 the	 time	 evolution	 of	 structural	

correlations	during	and	after	protein	sensing	(Suppl.	Fig.	S7).	

To	further	validate	the	idea	that	“protein-sensing”	generates	a	wave	of	distortion	

transmitting	a	pulse	of	 information	 to	distant	 regions	of	DNA,	we	analyzed	 the	
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correlation	 between	 the	 groove	 width	 after	 50,	 100	 and	 200	 ns	 of	 the	

instantaneous	 insertion	 of	 BAMHI	 in	 its	 binding	 site	 in	 equilibrated	 DNAs.	

Average	results	 in	Figure	5	 illustrate	 the	generation	of	a	perturbation	wave	by	

“protein-sensing”	 that	 travels	 with	 a	 ½	 and	 1	 turn	 periodicity	 to	 reach	 the	

GRDBD	binding	site,	confirming	previous	suggestions	on	the	transient	nature	of	

the	structural	distortion.	

The	 entropic	 origin	 of	 cooperativity.	The	analysis	of	 the	structural	response	

presented	 above	 suggests	 that	 DNA	 acts	 as	 a	 wire	 transmitting	 pulses	 of	

information	originated	at	the	primary	binding	site	that	travel	to	distant	regions.	

The	existence	of	such	a	mechanism	of	information	transfer	is	a	necessary,	but	not	

sufficient	condition	for	the	appearance	of	cooperativity.	So,	the	question	is	now	

how	these	changes	 in	 the	dynamics	of	DNA	affect	binding	 thermodynamics.	To	

answer	 this	 question,	 we	 first	 evaluate	 the	 impact	 that	 backbone	 correlations	

(shown	 in	Figure	4)	have	 in	 the	DNA	entropy.	With	 this	purpose	we	computed	

the	 dihedral	 entropy	 at	 the	 interface	 of	 the	 linker	 region	 and	 the	 secondary	

binding	 site	 for	 all	 linker	 sizes	 following	 the	 method	 described	 by	 R.I.	 Cukier	

[58],	 which	 measures	 the	 decrease	 of	 entropy	 arising	 from	 the	 dependence	

among	 the	 dihedrals	 (see	 Suppl.	 Data).	 The	 results	 (Figure	 6	 top)	 strongly	

suggest	that	the	entropic	change	associated	with	the	network	of	correlations	at	

these	 positions	 depend	 on	 the	 linker	 size,	 in	 good	 qualitative	 agreement	 with	

experimental	data	(Figure	6,	see	Suppl.	Data	for	details).		

We	 further	processed	our	equilibrated	MD	trajectories	 (see	Suppl.	Data)	of	 the	

naked	 DNA,	 BAMHI-DNA,	 GRDBD-DNA	 and	 BAMHI-DNA-GRDBD	 complexes	 to	

determine	the	(DNA)	entropy	change	arising	from	GRDBD	binding	in	naked	DNA	

and	when	DNA	is	already	bound	to	BAMHI.	From	these	values	we	can	define	the	

entropy	cooperativity	as	∆∆S(coop)=∆S(B)-∆S(A),	where	∆S(A)	and	∆S(B)	are	the	

entropic	 variation	associated	 to	 the	binding	of	 the	GRDBD	protein	 to	naked	or	

BAMHI-bound	DNA	respectively.	Entropies	were	computed	from	the	analysis	of	

the	mass-weighted	covariance	matrix	as	described	by	Andricioaiei-Karplus	[55],	

and	 to	 have	 an	 additional	 estimate	 from	 Schlitter’s	 formulation	 [54].	 To	 gain	

extra	confidence	on	 the	robustness	of	 the	results	 two	alignment	methods	were	

used	to	define	the	average	structure,	and	estimates	were	obtained	for	different	
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time-windows,	 which	were	 then	 combined	 using	 Harris’	 extrapolation	 scheme	

[56]	to	obtain	values	extrapolated	at	infinite	simulation	time	(see	Suppl.	Data	for	

details).	An	example	of	 the	obtained	 results	 is	 summarized	 in	Figure	6	bottom	

(the	results	are	quite	robust	 to	 the	approach	used	 to	align	 the	duplexes,	 to	 the	

procedure	 followed	 to	 transform	 oscillations	 into	 entropy	 measures,	 to	 the	

extension	of	the	trajectory,	or	even	through	the	simulation	of	replicas;	see	Suppl.	

Fig.	 S8).	 Thus,	 as	 suggested	 by	 dihedral	 entropy	 measures	 above,	 the	

cooperativity	studied	here	has	an	entropic	origin.	Very	interestingly,	for	linkers	

of	7	and	15	bp,	where	large	cooperative	effects	were	detected	[15],	we	observe	

that	 the	 entropy	 change	 associated	 to	 the	 binding	 of	 GRDBD	 is	 significantly	

reduced	 when	 the	 DNA	 is	 previously	 interacting	 with	 BAMHI	 (leading	 to	 a	

positive	cooperative	entropy	term).	On	the	contrary,	for	duplexes	with	an	11	bp	

linker	 no	 significant	 entropy	 differences	 are	 found	 when	 binding	 happens	 in	

naked	 or	 BAMHI-bound	 DNA,	 suggesting	 no	 sizeable	 cooperativity,	 in	 perfect	

qualitative	agreement	with	experimental	findings	[15].	

It	is	worth	noting	that	the	entropy-mediated	mechanism	of	cooperative	binding	

observed	 herein,	 is	 also	 supported	 by	 relative	 changes	 in	 the	 effective	

temperature	computed	from	atomic	oscillations	 in	the	presence/absence	of	 the	

first	protein	(see	Suppl.	Fig.	S9).	Additionally,	the	Confine-Convert-Release	(CCR)	

calculations	[61,60,62]	(see	Suppl.	Data.	and	Suppl.	Fig.	S10)	further	confirm	the	

expected	free-energy	change	associated	to	cooperativity	for	linkers	7	and	15,	in	

agreement	with	the	relative	koff	measured	experimentally	[15].	

We	went	one	 step	 further	and	examined	 the	 information	 transfer	 landscape	of	

the	 naked	 and	 BAMHI-bound	 DNA	 using	 Schreiber’s	 formulation	 of	 entropy	

transfer	[59].	This	approach	allows	us	to	find	entropy	sinks	and	sources	upon	the	

binding	of	the	protein	to	DNA,	and	explains	how	given	pairs	of	nucleotides	from	

one	 binding	 site	 to	 the	 other	 communicate	 with	 each	 other	 using	 entropy	

transfer	 [64–67].	Thus,	based	on	 the	Shannon	 formulation	of	 entropy	 [57],	but	

taking	into	account	the	time	delayed	conditional	probabilities	of	time	series	[59],	

we	quantify	the	allosteric	communication	through	the	DNA	(for	details	see	Suppl.	

Data).	 Results	 are	 summarized	 in	 Figure	 7	 and	 Supp.	 Fig.	 S11	 and	 show	 the	

entropy	transfer	landscape	between	residues	of	the	DNA	when	BAMHI	is	bound	
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(Supp.	Fig.	S11,	right),	and	the	quite	uniform	landscape	of	the	naked	DNA	(Supp.	

Fig.	 S11,	 left).	 Without	 the	 protein,	 only	 few	 residues	 in	 the	 diagonal	 of	 the	

entropy	map	display	net	entropy	(TNETi→j)	transfer	(the	communication	is	local	in	

nature),	while	for	most	of	the	residues	the	information	flowing	in	and	out	to	the	

rest	 of	 the	 sequence	 is	 basically	 the	 same.	 The	 binding	 of	 BAMHI	 produces	 a	

drastic	change,	dominated	by	a	sizeable	net	entropy	transfer	from	the	bp	in	the	

BAMHI	 bound	 region	 to	 the	 secondary	 binding	 region	 (thus,	 in	 the	 5’→3’	

direction),	 which	 involves	 several	 bp	 and	 is	 clearly	 non-local	 (Figure	 7).The	

results	show	that	in	the	presence	of	the	effector	protein	(BAMHI),	the	base	pairs	

of	 its	 binding	 site	 are	 major	 entropy	 sources	 for	 several	 base	 pairs	 along	 the	

sequence,	whereas	base	pairs	in	the	secondary	binding	region	specifically	change	

their	 entropy	 transfer	 characteristics,	 becoming	 notable	 acceptors	 of	 entropy	

(Figure	7).	Analyzing	the	provenance	of	these	changes	as	shown	in	the	entropy	

transfer	 landscape	 of	 Supp	 Fig	 S11,	 the	BAMHI	 binding	 region	 seems	 to	 be	 an	

exceptionally	 strong	 entropy	 source	 for	 the	 bases	 that	 bind	 to	 the	 GRDBD	

protein	(Supp.	Fig.	S11),	displaying	directionality	 in	 the	 interactions	of	 the	 two	

binding	regions,	which	could	be	considered	as	an	entropic	switch	 that	controls	

the	binding	of	GRDBD.	

	

CONCLUSIONS	

Results	 reported	 here	 suggest	 that	 BAMHI	 binding	 to	 DNA	 generates	 a	

perturbation	wave	that	travels	to	quite	distant	regions,	and	if	the	linker	length	is	

suitable,	 produces	 a	 change	 in	 structural	 correlations	 between	 residues	 in	 the	

secondary	binding	 site.	This	 change	 reduces	 the	entropy	cost	associated	 to	 the	

second	 binding.	 We	 are	 pointing	 then	 to	 protein-induced	 changes	 in	 DNA-

entropy	as	the	origin	of	cooperativity	in	the	explanation	for	BAMHI-DNA-GRDBD	

binding	 cooperativity.	 This	 type	 of	 entropy-mediated	 allostery	 was	 previously	

suggested	 for	 protein-protein	 interactions	 [21,68,69],	 and	 for	 the	 binding	 of	

small	 minor	 groove	 binders	 to	 DNA	 [27,56],	 but	 to	 our	 knowledge,	 it	 has	 not	

been	previously	described	at	 the	molecular	 level	 for	DNA-protein	binding.	Our	

work	 also	 highlightsthe	 significant	 information	 transfer	 between	 base	 pairs	 in	

these	 systems.	 From	 the	 entropy	 transfer	 point	 of	 view,	 allosteric	
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communication	 may	 be	 a	 general	 property	 of	 DNAthat	 should	 be	 taken	 into	

consideration.	Furthermore,	we	demonstrate	that	the	knowledge	of	time	delayed	

correlations	 and	 entropy	 transfer	 is	 needed	 to	 quantify	 allosteric	 cross-talk	

through	the	DNA,	as	an	alternative	to	the	established	paradigms	of	cooperativity	

and	allosterism.	Time	delayed	events	and	causality	analyses	have	only	recently	

started	 to	 be	 viewed	 as	 crucial	 tools	 for	 studying	 allosteric	 communication	 in	

proteins.	We	now	show	that	information	transfer	through	DNA	merits	the	same	

attention	 as	 a	 mechanism	 to	 explain	 cooperativity.	 We	 speculate	 that	 this	

entropy-mediated	 cooperativity	 can	 be	 quite	 general,	 considering	 that	 many	

proteins	involved	in	DNA	recognition	are	too	small	to	make	significant	protein-

protein	contacts	to	account	for	the	direct	readout	mechanism,	that	in	many	cases	

proteinsdo	 not	 introduce	 large	 remote	 structural	 distortions	 in	 DNAupon	

binding	making	the	indirect	readout	also	unlikely,	and	that	the	rearrangement	of	

solvent	molecules	is	usually	quite	local	in	nature	precluding	for	most	of	the	cases	

the	solvent-release	paradigm	[70–72].	
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CHAPTER VI | Modeling RNA 

 

RNAs are the latest challenge of structural biology. Single-stranded RNA has 
the ability to fold onto itself and form highly complex structures that are diverse 
both in conformational and functional spaces.  

Because of their particular chemistry, size and flexibility, determining and 
understanding their 3D architecture has been difficult for both experimental and 
theoretical researchers. We thought it a very adequate time to review the most 
notable directions that computer models of RNAs are taking and to predict the 
impact that new trends might have on the determination of the physical properties 
of RNA. We addressed individually recent computational approaches and point 
out their strengths and weaknesses as well as the lessons from the past that 
prompted their development. We followed a systematic description from highly 
accurate QM models specifically applicable to small systems, to classical atomistic 
representations of MD, CG models, less accurate, but able to deal with large 
models and finally the trending bioinformatics approaches. 

Ab initio QM approaches offer a very accurate description of small RNA 
systems, but their scope is limited, due to their high computational cost, which 
constrains them typically to the development and validation of MD RNA force 
fields. Such force-fields are at the core of molecular dynamics simulations that 
have been widely used to study RNA properties. However, our detailed analysis 
highlight major shortcomings of all current RNA force-fields, which might be 
related to its over-training to reproduce duplex A-RNA or even small inaccuracies 
in the QM models to which they are fitted. More effort seems necessary to develop 
new atomistic RNA force-fields able to describe the entire flexibility space that can 
be covered by this molecule.  

All-atom MD simulations with explicit solvent are still very computationally 
expensive for managing extensive sampling of large and flexible RNAs. For that 
reason, a common approach is to reduce the resolution of the particle 
representation from atoms to beads, together with a potential function that either 
retains the essential physics or is based on a simplified formulation. It is not as 
straightforward as in MD to develop potentials that are accurate in describing 
interactions between beads, but simple harmonic terms, sometimes coupled with 
empirical terms work sufficiently well at this scale. The bottom line is that CG 
models are a trade-off between accuracy and calculation speed.  
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Taking advantage of the fast expanding database of experimental structural 
and sequence information, together with other observables determined from 
experiment, there is a big trend of trying to extract convoluted relationships 
between all these data that will ultimately produce dependable predictions for 3D 
assembly of RNA, regardless of the physical basis of its folding. Sequence 
information can be used based on evolutionary constraints to retain similar 
structures of functionally related RNAs. Additionally, recurrent structural 
information can be implemented to train algorithms to recognize structural 
patterns (of various scales) commonly seen in experimental structures of RNA.  
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SUMMARY	
	
While	 chemically	 close	 to	 DNA,	 the	 RNAs	 can	 adopt	 a	 wide	 range	 of	 structures,	 from	
regular	helices	to	complex	globular	conformations	showing	a	complexity	similar	to	that	of	
proteins.	 The	 determination	 of	 the	 structure	 of	 RNA	 molecules,	 crucial	 for	 function	
understanding,	is	severely	handicapped	by	their	size	and	flexibility,	which	makes	difficult	
the	systematic	use	of	experimental	approaches.		Simulation	techniques	are	suffering	also	
of	 very	 severe	 problems,	 related	 to	 the	 accuracy	 of	 the	 methods	 and	 their	 ability	 to	
sample	 a	 large	 and	 complex	 conformational	 landscape.	 	 Recent	 approaches	 created	 to	
reduce	 the	 shortcoming	 of	 	 the	 current	 generation	 of	 simulation	 methods	 	 will	 be	
reviewed	 here,	 following	 a	 systematic	 description	 from	 highly	 accurate	models	 able	 to	
deal	with	 small	 systems,	 to	 coarse	 grained	approaches,	 less	 accurate,	 but	 applicable	 to	
deal	with	large	models.		
	
	

INTRODUCTION	
	
	
What	have	we	learned	about	RNA	structure	from	QM	and	QM/MM	methods?	
	
Physics	 teaches	 as	 that	 ab	 initio	 quantum	 mechanics	 (QM)	 can	 represent	 with	 high	
accuracy	 any	 biomolecular	 system,	 among	 them	 RNA.	 Unfortunately,	 due	 to	 their	
computational	cost,	the	practical	application	of	ab	initio	QM	formalisms	to	large	systems,	
such	as	RNA,	is	often	impossible.	In	fact,	even	simpler	QM	methods,	like	those	based	on	
the	density	functional	theorem	(DFT)	fail	to	treat	systems	larger	than	102	atoms,	several	
orders	 of	 magnitude	 less	 than	 the	 size	 required	 to	 study	 RNAs	 in	 solution.1	 Further	
simplifications	 of	 the	 basic	 QM	 formalism,	 like	 those	 implicit	 in	 semiempirical	 (SE)	
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methods	 can	 extend	 the	 range	of	 applicability	 of	QM	 theory,	 but	 at	 the	 expense	of	 an	
expected	loss	of	accuracy.2	
	
High	 level	 QM	 and	 DFT	 calculations	 have	 had	 a	 central	 role	 in	 the	 development	 and	
validation	 of	 recent	 RNA	 force	 fields	 (FFs;	 see	 below).	 A	 recent	 example	 is	 the	
B97D3/AUG-CC-PVTZ	 study	 of	 the	 backbone	 and	 glycosidic	 torsions	 by	Aytenfisu	et	 al.3	

which	 highlights	 systematic	 errors	 in	 current	 RNA	 FFs	 which	 might	 lead	 to	 incorrect	
molecular	dynamics	 (MD)	 trajectories.	Different	conclusions	were	reached	by	 the	group	
led	by	Šponer´s	group	using	again	DFT	calculations	as	reference	conclude	that	the	errors	
in	current	RNA	FFs	are	related	to	imbalanced	hydration	and	not	to	intrinsic	errors	in	the	
classical	 gas	 phase	 Hamiltonian.4	 The	 same	 group	 has	 recently	 studied	 46	 different	
backbone	 conformations	 of	 the	UpU	dinucleotide	 step	 (see	 Figure	 1)	 using	 a	 variety	 of	
QM	 methods	 from	 the	 state-of-the-art	 CCSD(T)	 to	 the	 last-generation	 SE	 algorithms,5	

providing	 the	 community	 with	 an	 invaluable	 dataset	 for	 refinement	 of	 RNA	 FFs.	 Very	
recently	 our	 group	 has	 used	 for	 the	 first	 time	 DFT/MM	 (density	 functional	
theory/molecular	 mechanics)	 calculations	 to	 fit	 some	 dihedrals	 directly	 for	 QM	
calculations	 in	 solution,	 opening	 a	 new	 approach	 to	 use	 DFT	 calculations	 in	 the	
refinement	of	RNA	FF	(see	next	section).6	
	
Hobza	 and	 coworkers	 have	 led	 the	 use	 of	 high	 level	 QM	 methods	 for	 the	 description	 of	
nonconvalent	 interactions	 in	biomolecules,	 including	nucleobases.	The	 latest	 contributions	 from	
the	 group	 include	 the	 construction	of	 reference	databases	 of	 interaction	 energies	 computed	 at	
very	 high	 QM	 level.	 These	 databases	 are	 very	 useful	 for	 the	 parametrization	 and	 validation	 of	
lower	level	methods,	including	force	fields.	To	get	a	deeper	look	into	this	benchmark	calculations	
we	recommend	the	last	review	published	by	this	group.7,8	On	the	other	hand	focusing	our	in	the	
last	 couple	 of	 years,	 we	 should	 cite	 the	 DFT	 study	 by	 Rypniewski	 et	 al.9	 of	 the	 C-U	 and	 U-U	
pairings,	 where	 the	 authors	 suggest	 that	 unusual	 tautomeric	 forms,	 or	 even	 anionic	 states	 of	
pyrimidines	can	play	a	role	in	stabilizing	certain	forms	of	RNA.	Similarly,	Preethiet	al.10,11	used	high	
level	DFT	methods	to	study	the	impact	of	post-transcriptionally	modifications	in	the	base	pairings	
occurring	 in	different	RNA	motives	(interface,	rRNA,	and	the	 intron-exon	complexes).	 In	another	
nice	study	Wilson	et	al.12	analysed	the	154	non-redundant	RNA-protein	π	interactions	observed	in	
PDBwith	the	M06-2X13	functional,	finding	that	these	π-π	interactions	provide	a	huge	stabilization	
to	 the	 protein-RNA	 complex.	 Unusual	 interactions	 affecting	 RNA	 nucleobases	 have	 been	 also	
studied	by	means	of	high-level	QM	theory.	For	example,	Chawla	et	al.14	used	high-level	QM	theory	
(up	 to	 CCSD(T))	 to	 explore	 the	 interactions	 between	 the	 O4’	 atom	 and	 the	 π	 cloud	 of	 the	
nucleobase,	finding	that	this	apparently	irrelevant	interaction	can,	in	fact,	significantly	affect	the	
packing	of	RNA.	Cation-RNA	interaction	has	been	another	traditional	field	for	the	use	QM	theory.	

A	 recent	 example	 of	 this	 family	 of	 studies	 was	 published	 by	 Casalino	 et	 al.15	 who	 used	 DFT	
calculations	 to	 study	 typical	 Mg2+-RNA	 binding	 motifs,	 providing	 a	 useful	 benchmark	 set	 to	
develop	next-generation	of	Mg2+-adapted	FFs.	
	
Catalysis	 is	another	 field	where	 the	use	of	QM	is	strictly	necessary	since	 it	 typically	
implies	 the	 restructuration	of	bonds	and	electronic	 effects	 that	 classical	FFs	 cannot	
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handle.	 In	 that	 sense,	QM/MM	calculations	have	become	 the	 standard	approach	 for	
the	 study	of	 ribozymes.16-27	 Several	 of	 these	 studies	 focused	on	 the	 role	 of	metallic	
ions	or	cofactors	in	catalysis.21-27	Other	studies	focused	on	the	use	of	QM	methods	to	
understand	 complex	 experiments	 like	 those	 based	 on	 the	 measurement	 of	 kinetic	
isotope	effects	(KIEs).28	Very	interestingly,	other	non-ribozyme	RNAs	can	also	exhibit	
catalytic	properties,	as	it	has	been	descrived	for	unpaired	nucleotides	in	non-catalytic	
RNAs.29	Mlýnský	and	Bussi29	published	a	nice	study	where	by	using	QM(DFTB330)	/	
MM	calculations	 in	 the	 context	 of	 enhanced	 sampling	methods	 the	 characterize	 the	
pattern	of	reactivity	of	specific	RNA	motifs	like	the	uGAAAg	tetraloop.		
	
It	is	difficult	to	predict	the	impact	of	QM	calculations	on	RNA	in	the	next	decade,	but	expectation	
exist	 that	 a	 new	 generation	 of	 QM	methods	 using	 new	 partitioning	 schemes	 would	 allow	 the	
representation	 of	 more	 realistic	 segments	 of	 RNA.	 For	 example,	 Jin	 et	 al.31	 have	 shown	 good	
representations	 of	 15-mer	 RNAs	 using	 an	 electrostatically	 embedded	 generalized	 molecular	
fractionation	 with	 the	 conjugated	 caps	 (i.e.	 EE-GMFCC)	 method.	 Additional	 expectations	 arise	
from	 the	 generation	 of	 simplified	QM	 approaches,	 such	 as	 the	 density	 functional	 tight	 binding	
(DFTB)	or	RNA-adapted	SE	approaches.	As	an	example,	Huang	et	al.32	have	recently	introduced	a	
multidimensional	 B-spline	 correction	map	 (BMAP)	 to	 the	 sugar	 puckering	 in	 the	 AM1/d-PhoT33	

semiempirical	 Hamiltonian,	 which	 was	 successfully	 applied	 to	 reproduce	 different	 RNA	
transesterification	 reactions.	 Similarly,	 York’s	 group	 has	 presented	 exciting	 results	 on	 RNA	
systems	using	quantum	mechanical	 force	 fields	 (QMFFs),34	which	 scale	 linearly	with	 system	 size	
and	are	then	much	faster	than	fully-coupled	QM	methods.	
	
Structure	and	dynamics	of	RNA	molecules	as	seen	from	the	classical	world:	What	is	in	
charge?	
	
Despite	recent	advances	in	computers	and	in	simulation	tools,	there	is	no	expectation	
that	QM	methods	will	be	able	to	deal	(at	least	in	the	next	decades)	with	even	medium-
size	 (102	 nucleotides)	 RNAs	 in	 solution.	 This	 has	 fueled	 the	 development	 of	 MM-
methods	 (like	molecular	 dynamics,	MD)	 based	 on	 atomistic	 classical	 FFs.	The	most	
popular	RNA	FFs	are	those	originated	from	the	AMBER	(Assisted	Model	Building	with	
Energy	 Refinement)	 and	 the	 CHARMM	 (Chemistry	 at	 Harvard	 Macromolecular	
Mechanics)	communities.	Although	both	rely	grossly	on	the	same	formulation	of	 the	
potential	 energy	 functional,	 they	 differ	 in	 the	 parameterization	 strategy	 (see	
Vangaveti	 et	al.35	 and	 references	 therein).	 The	 four	 decades	 of	 healthy	 competition	
between	 CHARMM-	 and	AMBER-	 developers	 have	 promoted	 a	 dramatic	 advance	 in	
the	 field.	Nevertheless,	 it	would	be	highly	desirable	that	other	communities	 join	the	
race	 too,	 which	 seems	 to	 be	 the	 case	 of	 the	 OPLS	 (Optimized	 Potentials	 for	 Liquid	
Simulations)-	one	which	has	recently	published	a	careful	calibration	of	the	torsions	of	
nucleosides	and	nucleotides	from	high	level	DFT	calculations	and	NMR	observables.36	
	
During	the	last	decades,	the	evolution	of	both	AMBER	and	CHARMM	RNA	force	fields	
has	been	 fueled	by	 the	ever-growing	computational	power,	pushing	 the	 time-length	
boundaries	 of	 Molecular	 Dynamics	 (MD)	 trajectories.	 The	 extension	 of	 trajectories	
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has	made	evident	errors	not	visible	in	shorter	simulations.	For	example,	in	the	case	of	
the	 AMBER-community	 (Figure	 2)	 the	 94	 and	 99’s	 force	 fields	 (AMBER-ff94	 and	
AMBER-ff99)	were	 used	 for	 almost	 2	 decades,	 until	 significant	 errors	 emerged	 in	
long-scale	simulations.	This	forced	the	development	of	new	parameters	aimed	mainly	
at	refining	specific	torsion	angles	(AMBER-ff99-BSC0-χOL3,37,38	AMBER-ff99-χYIL,39	and	
AMBER-ff99-TOR40),	and	certain	non-bonded	terms41.	The	CHARMM-community	has	
mainly	 focused	on	 the	representation	of	proteins	and	 lipids	 for	many	years	and	the	
evolution	of	 the	nucleic	acids	version	has	been	slower	 (Figure	2).	CHARMM36	RNA	
parameters42	were	a	major	advance	for	this	community,	as	it	corrected	major	caveats	
of	 previous	 versions	 (CHARMM2243	 and	 CHARMM2744),	 allowing	 then	 for	 more	
reliable	simulations	of	different	types	of	RNAs.	Worth	mentioning	is	that	both	AMBER	
and	CHARMM	FFs	have	been	extended	to	account	for	non-coding	nucleotides	(more	
than	 100	 variants	 are	 available),45,46	 opening	 the	 possibility	 to	 study	 epigenetic	
changes	 in	 RNA	 and	 extending	 FF-based	 calculations	 to	 the	 study	 of	 non-natural	
nucleic	acids.	
	
Despite	the	titanic	efforts	of	the	CHARMM-	and	AMBER-	communities,	several	errors	
in	 FF-based	 simulations	 still	 persist.	 For	 example,	 high	 populations	 of	 non-native	
stacking	 conformations,47	 or	 significant	 thermodynamic	 unbalances	 between	 the	
folded	 and	 unfolded	 states.48	 These	 difficulties	 might	 point	 toward	 fundamental	
problems	in	current	RNA	FFs.	For	example,	unbalanced	π-stacking49	and/or	hydrogen	
bond	 interactions,47,50	 improper	 hydration	 of	 RNA	 functional	 groups,50	 or	 even	
fundamental	problems	in	the	pair-wise	additive	potential	formalism.	This	has	boosted	
yet	another	round	of	parameterization	efforts	(highlighted	in	gray	on	the	timeline	of	
Figure	2),	using	in	some	cases	renewed	methodological	approaches.	The	field	is	now	
in	 an	 exciting,	 but	 also	 turbulent	 phase,	 and	 it	 is	 not	 trivial,	 even	 for	 an	 expert,	 to	
decide	the	combination	of	patches	to	add	to	the	default	FFs.	We	will	use	the	next	lines	
to	provide	the	readers	with	some	clues	for	selecting	the	best	FF	for	his/her	particular	
problem.	
	
The	 water	 model.	 Improving	 the	 water	 model	 is	 one	 possible	 way	 to	 change	 the	
balance	between	hydrogen	bonding	and	stacking	of	the	bases	and	correct	some	of	the	
known	 caveats	 of	 current	 RNA	 FFs.	 Advances	 in	 this	 direction	 were	 presented	 by	
Bergonzo	 and	 Cheatham	 in	 2015,50	 where	 the	 AMBER-ff99-BSC0-χOL3	 FF	 was	
combined	with	four	different	water	models	(TIP3P,51	SPC/E,52	TIP4P-Ew53	and	OPC54)	
to	 study	 the	 conformational	 landscape	 of	 the	 rGACC	 tetramer.	 The	 standard	water	
model	in	CHARMM	is	TIP3PCHARMM	(TIP3P	modified	to	include	non-zero	LJ	terms	for	
hydrogen	 atoms),	 which	 has	 been	 explicitly	 used	 in	 the	 force	 field	 charge	
parameterization.	 As	 a	 consequence,	 CHARMM-based	 simulations	 are,	 in	 principle,	
restricted	 to	 the	 TIP3PCHARMM	model.	 However,	 recent	 efforts	 in	 protein	 force	 field	
development,55	 suggest	 that	 changing	 off-diagonal	 LJ	 interactions	 (mainly	 the	
dispersion	 component)	 between	 water	 hydrogen	 atoms	 and	 the	 protein	 (without	
affecting	 water-water	 interactions)	 improves	 the	 protein	 compaction	 and	 folding	
compared	 to	 experimental	 data.	 These	 results	 suggest	 a	 possible	 pathway	 for	 RNA	
force	field	improvement	focused	on	the	water	model.			
	



	

	
	

224	

In	any	case,	the	modification	of	the	water	model	is	always	a	risky	decision	as	current	
water	models	have	been	validated	in	thousands	of	studies	(just	TIP3P	model	collects	
more	 than	 24,000	 citations).	 A	 RNA-tuned	 water	 model	 might	 lead	 to	 very	 strong	
links	 between	 RNA	 FF	 and	 water	 model,	 and	 to	 potential	 problems	 in	 the	
transferability	of	the	resulting	water	model.	
	
Scaling	 the	 phosphate	 LJ	 parameters.	 A	 further	 step	 to	 improve	 nucleic	 acid	
interactions	was	the	modification	of	the	LJ	parameters	of	charged	phosphates.	Based	
on	the	work	of	Steinbrecher	et	al.,56	on	bio-organic	phosphates,	a	~5%	increase	of	the	
van	 der	 Waals	 radii	 in	 RNA	 phosphate	 oxygen	 atoms	 (OP1/2,	 O5'	 and	 O3')	 was	
proposed	,	which	(when	combined	with	the	OPC	model)	improved	the	representation	
of	 the	 conformational	 ensemble	 of	 the	 rGACC	 tetramer.50	 Unfortunately	 the	
improvement	was	not	transferable	to	rCCCC.50	Pak	and	coworkers	suggested	that	the	
previous	correction	(named	vdWbb)	could	artefactually	weaken	phosphate	hydration,	
developing	an	alternative	LJ	correction	(vdWYP),	based	on	differential	pair-dependent	
Lorentz-Berthelot	 combination	 rules.57	More	 precisely,	 the	 vdW	 radii	 of	 the	 OP1/2	
phosphate	 atoms	 and	 the	 O2'	 were	 scaled	 up	 by	 5%,	 but	 only	 for	 intra-molecular	
interactions,	whereas	 the	original	unscaled	vdW	radii	were	used	 for	 the	 interaction	
with	water.	This	parameterization,	combined	with	the	OPC	water	model,	was	tested	
in	four	tetramers:	rGACC,	rCCCC,	rAAAA,	and	rCAAU,	showing	good	results	for	rCCCC	
and	 rAAAA,	 while	 for	 rGACC	 the	 minor	 conformation	 reported	 in	 NMR	 was	 not	
reproduced	and	artefactual	non-native	structures	were	obtained	for	rCAAU.57	The	FF	
variation	 suggested	by	Pak	and	coworkers	 failed	also	 to	 correct	 the	problem	of	 the	
low	melting	temperature	of	the	UUCG	tetra	loop	hairpin.56		Altogether,	it	is	clear	that	
the	correction	of	phosphate	non-bonded	potential	is	useful,	but	it	is	unable	to	correct	
all	problems	of	last	generation	RNA	FFs.	
	
Scaling	 the	 nucleobases	 LJ	 parameters.	 A	 recent	 work	 from	 Pak	 and	 coworkers58	
suggests	 a	 correction	 to	 the	 LJ	 parameters	 of	 the	 nucleobase	 nitrogen	 and	 oxygen	
atoms:	the	vdW	radii	are	scaled	down	by	2.5%	for	intra-molecular	interactions	while	
keeping	the	unscaled	parameters	for	nucleobase-solvent	interactions.	This	approach,	
which	reinforces	base	pairing	was	successfully	applied	to	fold	the	thrombin-binding	
DNA	 aptamer	 G-quadruplex,58	 and	 we	 might	 expect	 that	 the	 patch	 would	 be	
transferable	 to	 RNA.	 Focusing	 in	 the	 re-calibration	 of	 π-stacking	 interactions,	 Chen	
and	Garcia,41	modified	 heavy	 atom	LJ	 parameters	 by	 a	 slight	 (5%)	 reduction	 in	 the	
vdW	 radii	 combined	 with	 a	 20%/10%	 reduction	 in	 the	 vdW	 well	 for	
nucleobase/nucleobase	 and	 nucleobase/water	 respectively.	 By	 using	 this	 scaling	
strategy,	 they	 reported	 reasonable	 agreements	 to	 CCSD(T)	 stacking	 energies	 in	 the	
gas	 phase,	 and	 with	 aggregation	 constants	 and	 CD	 spectra	 in	 solution.	 This	 LJ	
modification,	 combined	 with	 a	 re-parameterized	 glycosidic	 torsion,	 allowed	 the	
authors	 to	 fold,	 for	 the	 first	 time,	 two	hyper	 stable	 tetraloops	 (rUUCG	 and	 rGCAA).	
However,	it	failed	to	fold	the	rCUUG	tetraloop,41	and	presents	problems	in	tetra	loop/	
tetramer	 conformational	 preferences,47	 and	 kissing	 loop	 structural	 stability,59	
showing	again	that	RNA	FF	re-calibration	is	more	complex	than	anticipated.	
	



	

	
	

225	

Refitting	 RNA	 backbone	 dihedral	 angles.	 As	 an	 extension	 to	 AMBER-ff99-χYIL39	 D.	
Wales	and	I.	Yildirim	recently	focused	on	re-fitting	the	α/γ	torsion	pair,	generating	an	
upgraded	version	called	AMBER-ff99-χ+α/γ,60	(homologous	to	AMBER-ff99-bsc0-χOL3	
regarding	 the	 identity	 of	 the	 refined	 torsions).	 A	 substantial	 difference	 in	 the	
parameterization	approach	compared	to	BSC0	resides	in	the	molecular	model	used	to	
generate	the	Quantum	Mechanics	(QM)	and	MM	potential	energy	profiles.	Such	model	
consisted	in	an	RNA	di-nucleotide	where	the	nucleobase	is	substituted	with	a	methyl	
group,	and	in	two	possible	conformations,	one	where	both	sugar	rings	are	in	3'-endo,	
and	the	other	where	the	5'	sugar	is	in	3'-endo	while	the	3'	sugar	is	in	2'-endo	(the	rest	
of	 the	 torsions	 being	 kept	 in	 canonical	 A-form).	 This	 parameterization	 improved	
substantially	 the	 conformational	 preferences	 of	 several	 tetramers	 by	 strongly	
suppressing	 the	 occurrence	 of	 non-native	 stacked	 conformations.	 However,	 major	
errors	are	visible	 for	other	 tetramers	such	as	 rCAAU,	and	rAAAA,	as	well	as	 for	 the	
UUCG	loop,	where	sampled	structures	are	incompatible	with	NMR	data.60	Following	a	
more	disruptive	approach,	Aytenfisu	et	al.3	 simultaneously	refined	α,	β,	γ,	ε,	 ζ	and	χ	
torsions	 taking	 as	 reference	 DFT(B97D3/aug-CC-PCTZ)	 potential	 energies	 of	 a	
database	 of	 nucleosides	 and	 dinucleotides,	 extracted	 from	 X-ray	 structures	 and	
supplemented	 with	 dihedral	 scans	 to	 sample	 barriers	 (>31,000	 structures).	 This	
approach	combines	enhanced	conformational	diversity	and	torsion	correlations.	The	
obtained	 parameterization,	 which	 represents	 a	 step	 forward	 towards	 the	
implementation	 of	 automatic	 approaches	 for	 FF-calibration,	 reduces	 artifact	
conformations,	 favoring	A-form-like	structures	for	several	tetramers	(rGACC,	rCCCC,	
rAAAA	and	 rCAAU),	but	 fails	 for	others,	 leading	 for	example	 to	bad	geometries	and	
stabilities	for	the	rUUCG	hairpin	loop.	
	
Small	 details	matter.	Contrary	 to	 DNA,	 RNA	 sample	 a	 wide	 range	 of	 non-canonical	
conformations	 where	 unexpected	 details	 can	 bias	 the	 conformational	 ensemble	
breaking	 the	block-transferability	principle	 implicit	 in	FF	development.	An	example	
was	 recently	 reported	 by	 Darré	 et	 al.6	 who	 combining	 QM/MM	 calculations	 and	
database	 analysis	 described	 the	 existence	 of	 an	 unexpected	 coupling	 between	 the	
2’OH	 conformation	 and	 sugar	 puckering.	 The	 results	 highlighted	 a	 potential	
mechanism	 for	 protein-induced	 sugar	 re-puckering	 in	 RNA	 and	 demonstrated	 the	
need	 to	 recalibrate	 the	 C2’-O2’	 torsion	 and	 to	 treat	 in	 a	 different	 way	 central	 and	
terminal	nucleotides.	
	
Empirical	 potentials.	 A	 remarkable	 shift	 from	 canonical	 RNA	 FF	 refinement	 has	
recently	been	proposed	by	Bussi	and	coworkers	who	used	experimental	data	not	only	
for	 validation,	 but	 directly	 in	 the	 fitting	 of	 parameters.	 One	 example	 is	 the	 elegant	
combination	of	enhanced	sampling	simulations	with	NMR	experimental	data,	 in	 the	
framework	of	the	maximum	entropy	principle	with	explicit	treatment	of	experimental	
uncertainties.61	In	their	approach,	nucleosides	(A	and	C)	and	dinucleotides	(ApA,	ApC,	
CpA,	 and	 CpC)	 J3-couplings	 were	 simultaneously	 used	 to	 generate	 chemically	
consistent	 perturbations	 to	 AMBER-ff99-BSC0-χOL3.	 The	 corrected	 potential	 was	
shown	 to	 be	 portable	 to	 rAAAA	 and	 rCCCC,	 notably	 reducing	 the	 occurrence	 of	
artifacts	in	previous	simulations.		Another	example	from	the	same	group	is	the	use	of	
torsion	preferences	taken	from	high	resolution	(<3	Å)	X-ray	structures	in	the	Protein	
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Data	 Bank	 (PDB),	 as	 reference	 distributions	 for	 RECT-Target-Metadynamics	 (T-
MetaDyn)	 simulations,	 from	 which	 corrections	 to	 AMBER-ff99-BSC0-χOL3	 potentials	
were	 suggested.62	 Such	 corrections	work	well	 in	 reproducing	NMR	 observables	 for	
rGACC	and	rCCCC,	but	fails	for	example	for	rAAAA,	highlighting	potential	problems	in	
FF	 transferability.	 In	 any	 case,	 irrespective	of	 the	 success/failure	 rate,	Bussi’s	work	
represents	 a	 proof	 of	 concept	 of	 a	 novel	 force	 field	 refinement	 approach	 departing	
from	the	pure	QM-based	parameterization	strategy	that	has	dominated	the	area	for	a	
couple	of	decades.	
	
Reformulating	 the	 electrostatics?	 Until	 very	 recently	 the	 electrostatic	 component	 of	
the	 force	 field	 was	 considered	 a	 taboo	 and	 no	 group	 wanted	 to	 modify	 the	 set	 of	
charges	appearing	in	the	90’s	versions	of	the	force	field.	The	reasons	are	multiple:	i)	
while	for	other	parameters	improving	the	level	of	the	reference	QM	calculation	leads	
typically	 to	 better	 parameters,	 this	 is	 not	 the	 case	 for	 charges,	where	 for	 not	well-
known	 reasons	 the	 HF/6-31G(d)	 level	 provides	 the	 best	 “effective	 charges”,	 ii)	
changing	 the	 charges	 should	 lead	 to	 a	 complete	 re-parameterization	 of	 all	 the	
torsional	 terms	 in	 the	 force	 field	 (something	most	groups	 try	 to	avoid),	 and	 iii)	 the	
modification	 of	 the	 charges	 can	 modify	 in	 an	 unpredictable	 way	 the	 RNA-solvent	
interactions.	 Very	 recently	 Shaw’s	 group	 has	 presented	 a	 new	 RNA	 FF63	 which	
includes	 a	 minimum	 alteration	 of	 AMBER	 nucleobase	 charges,	 which	 along	
recalibration	of	LJ	and	several	torsion	terms,	aims	at	improving	nucleobase	stacking,	
base	pairing	and	key	torsional	conformers.	This	upgraded	force-field	in	combination	
with	 the	 TIP4P-D	 water	 model,64	 seems	 to	 work	 quite	 well	 for	 several	 RNAs.	
However,	 caveats	 of	 this	 force-field	 are	 clear,	 such	 as	 certain	 over-stabilization	 of	
helical	regions,	which	possibly	contribute	to	 the	deviation	 from	NMR	data	observed	
for	 rUUUU,	 and	 to	 the	 higher	 melting	 temperatures	 of	 the	 rU40	 hairpin,	 the	 RNA	
duplexes	and	the	tetraloops.63		
	
More	disruptive	approaches	explicitly	introducing	polarization	in	the	force	field	have	
been	followed	by	other	authors.	MacKerell	and	the	CHARMM	group	were	pioneers	in	
this	field,	suggesting	the	first	nucleic	acids	polarizable	FF,65	which	has	been	recently	
revised66	 and	 which	 works	 well,	 at	 least	 for	 DNA.67	 Very	 recently,	 	 a	 nucleic-acid	
version	 of	 the	AMOEBA	FF68	was	 published	 by	 the	 groups	 of	 Ponder	 and	Ren,	 that	
may	 be	 also	 useful	 for	 the	 study	 of	 RNAs.	 Most	 importantly,	 both	 groups	 have	
dedicated	important	efforts	in	making	polarization	models	computationally	efficient,	
pushing	for	a	wide-spread	use	of	such	force	fields	in	the	future.69	We	may	speculate	
that	when	fully	refined	these	force-fields	will	become	the	defult	for	the	simulation	of	
medium-size	RNA	structures.	
	
The	 risk	 of	 overtraining.	 The	 description	 presented	 in	 the	 previous	 paragraphs	
highlights	 the	 problems	 of	 force-field	 modifications	 performed	 to	 improve	 a	 given	
RNA	system,	as	the	fitted	parameters	can	fail	to	represent	many	others.	This	is	a	well-
known	 risk	 in	 bioinformatics	 named	 “overtraining”,	 which	 in	 classical	 force-field	
appears	a	lack	of	transferability.	The	standard	approach	in	FF	development	to	achieve	
transferability	 and	 to	 reduce	 then	 overtraining	 has	 been	 to	 focus	 on	 small	 model	
systems,	 but	 experimental	 data	 on	 small	 RNA	 models	 is	 scarce	 and	 often	 of	 poor	
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quality.	 Even	 for	 medium	 sized	 systems,	 the	 reference	 experimental	 data	 that	 FF	
developers	can	use	is	insufficient,	for	example,	we	have	NMR	data	in	solution	of	only	a	
small	 number	 of	 4-mers	 and	 the	 data	 collected	 from	 them	 is	 quite	 limited	 (mostly	
sugar	J-couplings	and	a	few	NOEs).	These	data	might	be	enough	to	determine	if	a	FF-
based	simulation	is	incorrect,	but	are	unable	to	guide	a	full	parameterization	process.	
An	effort	 from	experimentalists	providing	data	useful	 to	 guide	FF	parameterization	
would	be	extremely	useful	and	highly	appreciated	in	the	field.	
	
Finally,	we	should	note	 that	 the	use	of	QM	data	as	reference	(the	default	 in	 the	 last	
decades	 of	 FF-refinement)	 is	 suffering	 the	 problems	 of	 sampling	 solvent-relevant	
conformations	at	 the	QM	 level.	Current	QM	procedures	 implement	continuum	SCRF	
descriptions	 of	 the	 solvent,70	 which	 are	 known	 to	 be	 not	 accurate	 enough	 when	
solvent-solute	boundary	is	not	well	defined	(for	example	in	the	case	of	systems	with	
potential	 intra-molecular	 hydrogen	 bonds).70	 Most	 FF-developers	 have	 faced	 this	
problem	 by	 limiting	 the	 region	 of	 the	 QM-explored	 conformational	 space	 to	 the	
biologically	relevant	one,	an	approach	that	has	been	extremely	successful	for	DNA	FF	
parametrization.71	 However,	 for	 a	 conformationally-promiscuous	 molecule	 such	 as	
RNA	 this	 is	 another	 source	 of	 overtraining	 as	 canonical	 structures	 might	 be	 too	
prevalent	and	unusal	conformations	might	be	poorly	described.	Clearly,	the	use	of	MD	
simulations	 based	 on	 QM/MM	 Hamiltonians	 seems	 a	 good	 choice	 for	 future	 FF	
refinements,6	 but	 here	 the	 QM	 level	 (typically	 DFT)	 need	 to	 be	 well	 calibrated	 to	
guarantee	 that	 complex	 interactions	 such	 as	 dispersion	 are	 well	 reproduced	 and	
QM/MM	 simulation	 should	 be	 long	 enough	 as	 to	 guarantee	 correct	 sampling	 of	 all	
degrees	of	freedom.		
	
Clearly,	RNA	FFs	need	to	be	improved,	but,	despite	their	caveats,	they	have	allowed	a	
significant	advance	 in	our	understanding	of	RNA.	We	will	discuss	next	a	 few	recent	
examples	of	the	successful	use	of	RNA	FFs,	addressing	the	reader	to	recent	reviews	by	
Bussi	 and	 coworkers	 2018,72	 and	 Šponer	 and	 coworkers	 20173	 for	 a	 more	
comprehensive	 revision	 of	 RNA	 FFs	 applications.	 One	 area	where	 FFs	 have	 shown	
certain	degree	of	success	is	in	the	study	of	particular	RNA	motifs.	One	example	of	this	
type	of	work	was	recently	published	by	Yildirim	et	al.74		who	predicted	the	structure	
and	 thermodynamics	 of	 the	 1x1	 internal	 loop	 in	 CUG	 repeats	 based	 on	 MD	 and	
discrete	path	sampling	(DPS)	calculations,	finding	a	complex	conformational	scenario	
characterized	by	a	dual	base	pair	scheme	explaining	the	binding	mode	of	drugs	active	
against	 myotonic	 dystrophy.75	 	 Similar	 techniques	 were	 used	 to	 determine	 the	
stability	of	the	bioactive	form	of	anticodon	stem-loops	of	tRNAGLY	iso-acceptors	when	
the	 specific	 modification	 G/C34↔A34	 (first	 position	 in	 the	 anticodon	 loop)	 is	
introduced.88	 MD	 simulations	 complemented	 with	 experimental	 measurements	
demonstrated	 that	 the	 presence	 of	 A34	 kills	 tRNA	 functionality	 explaining	 the	
emergence	 of	 ADAT	 (adenosine	 deaminases	 that	 catalyzes	 the	 conversion	 of	 A34	 to	
I34).	The	latter	is	prevalent	in	eukaryotes	and	explains	the	promiscuity	(C,U,A)	in	the	
recognition	 of	 the	 last	 position	 in	 the	 codon.76	 Another	 remarkable	 study	 is	 the	
thorough	analysis	of	the	binding	of	Mg2+	to	RNA,	presented	by	Cunha	and	Bussi.77	In	
this	work,	accurate	binding	affinities	of	Mg2+	to	all	possible	sites	on	an	RNA	duplex	is	
obtained	 by	 means	 of	 a	 trapping-penalized	 version	 of	 the	 bias-exchange	
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metadynamics	 approach78	 using	 AMBER-ff99-BSC0-χOL3.	 Worth	 noting,	 restraints	
were	 applied	 to	 both	 double	 and	 single-stranded	RNA	 segments,	 aimed	partially	 at	
avoiding	 force	 field	 artifacts.	The	 effects	of	 ion	 competition	and	hybridization	were	
well	reproduced,	and	furthermore,	RNA	conformational	entropy	was	shown	to	affect	
cation	binding	in	a	site-specific	(phosphate	or	nucleobase)	manner.	The	distribution	
of	 Mg2+	 cations	 around	 RNA	 was	 also	 addressed	 by	 Lemkul	 et	 al.79	 using	 a	 novel	
technique	 that	 concatenates	 explicit	 solvent	 Grand	 Canonical	 Monte	 Carlo	 (GCMC)	
simulations	with	short	MD	simulations,	allowing	the	determination	and	refinement	of	
Mg2+	binding	sites.	Application	of	 this	method,	 in	combination	with	the	CHARMM36	
force	field	(using	harmonic	restraints	on	the	phosphorus	atoms),	to	four	challenging	
RNA	 structures:	 a	 pseudoknot,	 a	 ribozyme	 stem-loop,	 a	 23S	 rRNA	 and	 a	 Mg2+	
riboswitch,	 predicted	 both	 inner-	 and	 outer-shell	 Mg2+	 coordination	 in	 agreement	
with	the	experimental	data.	Another	study	focusing	on	ion-RNA	interactions	is	that	of	
Havrila	 et	 al.80	 where	 the	 effect	 of	 different	 Na+	 and	 K+	 parameterizations	 on	 the	
structure	of	guanine	quadruplexes	(GQ)	and	the	interchange	between	ions	within	the	
GQ	channel	and	the	bulk	 is	evaluated.	Also	worth	to	mention	 is	a	very	recent	paper	
from	 the	group	of	Cheatham	where	a	 reference	protocol	 to	 address	 conformational	
variability	in	the	smallest	RNA	units	i.e.	dinucleotide	monophosphates,	is	proposed.81	
The	 authors	 prove	 that	 sampling	 convergence	 is	 achieved	 at	 the	 half	 microsecond	
time-scale	for	such	systems	when	using	T-REMD	using	18	replicas	spanning	the	280-
396K	 range.	 Using	 this	 approach	 in	 combination	 with	 different	 RNA	 force	 fields:	
AMBER-ff99-BSC0-χOL3,	 (with	 and	 without	 vdWbb	 phosphate	 corrections),	
Chen&Garcia,	 and	 CHARMM36,	 and	 several	 water	 models	 (TIP3P,	 TIP4PEW,	
TIP3PCHARMM	 and	 OPC),	 a	 consensus	 of	 five	 main	 conformers	 emerged	 from	 the	
structural	 sampling	 of	 all	 possible	 dinucleotides.	 These	 conformers	 and	 their	
associated	 torsional	 and	 non-bonded	 interactions	 characteristics	 constitute	 a	
reference	for	future	experiments	and	force	field	refinements.	Also	worth	mentioning	
is	 the	 	protocol	 for	 identifying	SHAPE	reactivity	nucleobases	 in	RNA	proposed	very	
recently	 by	 Mlýnský	 et	 al.82	 The	 work	 not	 only	 provided	 atomistic	 detail	 in	 the	
dependence	 between	 SHAPE	 reactivity	 and	RNA	 flexibility,	 but	 also	 holds	 potential	
for	RNA	3D	structure	prediction	and	validation	using	SHAPE	data.	
	
The	 known	 shortcomings	 of	 current	 RNA	 FFs	 have	 encouraged	 several	 groups	 to	
supplement	theoretical	calculations	with	experimental	restrains.	A	recent	example	is	
the	nice	work	of	Vendrusculo	 and	 coworkers,83	which	 revisited	TAR	 (HIV-1	protein	
trans-activator	 of	 transcription)	 dynamics,	 in	 the	 TAR-Tat	 complex	 (Tat:	 trans-
activation	response	RNA	element).	The	authors	were	able	to	characterize	for	the	first	
time	 a	 low-population	 intermediate	 structure	 by	 performing	 Replica-Averaged	
Metadynamics	(RAM)	simulations	biased	by	NMR	residual	dipolar	couplings.	Another	
nice	 example	 is	 a	 recent	 contribution	 from	 the	 group	 of	 Al-Hashimi	 where	 a	
combination	of	NMR,	UV-melting,	QM	calculations	 and	MD	 simulations	was	used	 to	
study	 the	 occurrence	 of	 WC↔HG	 transitions	 in	 A-RNA.84	 Their	 results	 clearly	
demonstrate	that	the	WC↔HG	transition	is	much	more	difficult	 in	A-RNA	than	in	B-
DNA	and	that	while	m1A	(a	common	post-transcriptional	modification	in	adenine),	is	
easily	accommodated	in	B-DNA	through	Hoogsteen	pairing,	it	leads	to	the	disruption	
of	 the	duplex	 in	RNA.	Finally,	 rather	 recently	Bottaro	et	al.85	proposed	a	method	 to	
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accurately	 reconstruct	 RNA	 conformational	 ensembles	 using	 the	 maximum	
entropy/Bayesian	approach	to	reweight	MD	simulation	ensembles	in	order	to	fit	NMR	
experimental	 data	 (i.e.	 NOEs	 and	 scalar	 couplings).	 This	 elegant	 approach	 not	 only	
notably	reduced	force	field	artifacts,	but	also	improved	the	interpretation	of	the	NMR	
data,	providing	a	better	picture	of	RNA	tetranucleotides	conformational	landscape.	
	
What	are	we	losing	and	what	are	we	gaining	on	coarse-graining	RNA?	
	
Coarse	 grain	 (CG)	 is	 an	 ambiguous	 term	 used	 to	 label	 a	 family	 of	 models,	 which	 allow	
overstepping	the	practical	limits	of	the	atomistic	models	by	simplifying	the	representation	of	
the	model	and/or	the	complexity	of	the	potential	energy	functional.	Contrary	to	the	situation	
found	 for	 DNA,	 most	 CG	 models	 for	 RNA	 are	 particle	 based	 (pbCG),	 simplifying	 the	
description	of	the	nucleosides	by	fussing	several	atoms	into	a	single	bead.73,86-88	The	energy	
functional	 used	 to	 reproduce	 bead-bead	 interactions	 can	 be	 defined	 based	 on	 physical	 or	
statistical	 considerations.	 In	 the	 first	 case,	 the	energy	 is	 computed	as	 the	addition	of	 terms	
accounting	 for	pseudo-bonds,	 pseudo-angles,	 pseudo-dihedrals	 (and	 in	 some	 cases	pseudo-
non-bonded)	 interactions.	 IFoldRNAv2,89-91	TOPRNA,92	 HIRE-RNA93	 and	 the	 MARTINI	FFs94	
are	examples	of	this	type	of	potentials	which	in	all	cases	are	calibrated	to	reproduce	known	
experimental	 observables.	 In	 the	 second	 case,	 the	 statistical	 (knowledge-based)	 potentials	
rely	 on	 the	 statistical	 analysis	 of	 the	 Protein	 Data	 Bank	 or	 related	 databases	 to	 derive	 the	
frequencies	 of	 occurrence	 of	 particular	 interactions	 from	 which	 an	 inverse	 Boltzmann	
transformation	 yields	 effective	 “energies”.	 NAST95,96,	 oxRNA97,	 simRNA98,	 and	 RNAkb99	 are	
popular	 examples	 of	 methods	 implementing	 such	 statistical	 potentials.	 Methods	 such	 as	
YUP100,	RACER101	or	NARES-2P102	combine	both	physical	and	statistical	potentials.	In	any	case,	
irrespectively	 of	 the	 method	 used	 to	 define	 the	 energy	 functional,	 sampling	 of	 the	
conformational	space	needs	to	be	obtained	in	order	to	explore	potential	conformations	of	the	
RNA.	For	this	purpose,	most	models	(NAST,	NARES-2P,	iFoldRNAv2,	TOPRNA,	RACER,	RNAkb,	
HIRE-RNA,	and	MARTINI)	use	Molecular	Dynamics	(MD)	machinery,	others	implement	Monte	
Carlo	 (MC)	 algorithms	 (YUP,	 FARNA103,	 and	 oxRNA),	 Dokholyan’s	 group	 uses	 discrete	
Molecular	 Dynamics	 (Dmd89,	 iFoldRNAv2	 and	 iFoldNMR104),	 and	 finally	 the	 authors	 of	
simRNA	implement	a	variety	of	sampling	engines	in	their	codes.	
	
Beside	 the	 generality	 that	 all	 these	 models	 could	 share,	 each	 of	 them	 has	 been	
developed	 for	 a	 given	purpose	 and	potential	 users	must	be	 aware	of	 their	 intrinsic	
limitations	before	applying	 them.	The	 following	 lines	will	be	devoted	 to	 summarize	
the	characteristics	of	some	of	the	most	popular	CG	models	(Figure	3	and	Table	1	for	a	
summary).	To	facilitate	the	discussion,	the	models	are	ordered	from	the	most	detailed	
ones,	i.e.	the	closest	to	all-atom	representations,	to	the	coarsest	ones.	The	widely	used	
MARTINI94	CG-FF	has	now	a	RNA	version	created	to	integrate	with	CG	descriptions	of	
proteins,	 carbohydrates	 and	 lipids.	 In	 the	 RNA	 MARTINI	 model,	 each	 base	 is	
represented	 by	 either	 6	 (pyrimidines)	 or	 7	 (purines)	 beads.	 The	 model	 assumes	
knowledge	 of	 the	 secondary	 structure	 and	 has	 demonstrated	 a	 good	 ability	 to	
reproduce	 the	 structure	 of	 a	 variety	 of	 ribosomal	 and	 tRNAs.	HIRe-RNA93	 is	 a	 high	
resolution	model	that	also	uses	6(Pyr)-7(Pur)	beads	per	base,	and	physical	potentials	



	

	
	

230	

including	 base	 pairing,	 stacking	 and	 electrostatics	 terms.	 Using	 their	 latest	 version	
(HIRE-RNA	v3),	 the	authors	were	able	to	obtain	reliable	trajectories	 for	many	small	
RNAs.	simRNA98	is	a	medium	resolution	model	using	5	beads	per	residue	and	statistic	
interaction	potentials.	The	model	has	been	able	to	reproduce	structure	and	dynamics	
of	 medium	 (up	 to	 190	 nt)	 RNAs,	 especially	 when	 secondary	 structure	 is	 fixed	 by	
experimentally-derived	 restraints105.	 Three	 other	 models	 used	 5	 beads	 x	 base:	
RNAkb,	 RACER,	 and	 oxRNA.	 RNAkb99,	 is	 based	 on	 a	 statistical	 potential	 and	 was	
trained	to	distinguish	between	folded	RNAs	and	decoy	conformations,	showing	good	
results	 for	 small	 RNAs.	 RACER101	 also	 uses	 a	 hybrid	 statistical/physical	 potential	
which	include	terms	accounting	for	excluded	volumes,	electrostatic,	and	H-bonding	of	
the	bases.	The	method	works	well	 for	 short	 (<30	nt)	RNAs	and	when	experimental	
data	are	supplemented,	also	good	results	are	obtained	for	medium-sized	RNAs	(<100	
nt).	 oxRNA97	 also	 uses	 5	 beads	 for	 each	 residue,	 and	 a	 dual	 potential	 function	
(different	 for	 neighbor	 and	non-neighbor	pairs)	which	was	 calibrated	 to	 reproduce	
well,	 not	 only	 the	 structure,	 but	 also	 the	 thermodynamics	 of	 folding	 of	 short	 RNA	
motifs.	 Contrary	 to	 most	 of	 the	 previous	 methods	 that	 are	 coupled	 to	 MD,	 oxRNA	
relies	on	a	MC	algorithm	for	sampling.	iFoldRNAv289-91	is	a	coarser	model	that	uses	3	
beads	 representation	 per	 residue,	 and	 a	 physical	 potential	 including	 electrostatic,	
hydrogen	bonding	and	stacking	terms.	When	experimental	data	is	incorporated	to	the	
MD	sampling	methods,	the	model	provides	good	results	for	RNA	segments	up	to	200-
nt	long90.	iFoldNMR	is	the	latest	published	model	from	Dokholyan’s	group104.	It	uses	3	
pseudo	beads	per	residue,	with	bead	interactions	described	by	statistical	potentials,	
and	 taking	advantage	of	sparse	NMR	constraints	 to	guide	 the	3D	 folding	of	small	 to	
medium	RNA	 fragments	 in	 dMD	 simulations.	 TOPRNA92	also	 considers	 3	 beads	 per	
residue	 with	 CHARMM106	 equations	 parametrized	 to	 reproduce	 known	 structures.	
The	method	assumes	previous	knowledge	of	secondary	structure	and	works	well	for	
small	RNAs	when	coupled	to	an	MD	engine.	NARES-2P	uses	2	interaction	sites	and	a	
dipole	moment	 for	 each	 nucleotide.	102	 In	 this	model	 the	 backbone	 conformation	 is	
governed	 by	 a	 statistical	 potential	 fitted	 to	 reproduce	 experimental	 conformational	
ensembles	and	heat-capacity	curves.	The	model	uses	MD	simulations	 to	explore	 the	
conformational	space,	and	was	quite	accurate	to	reproduce	properties	of	small	RNAs.	
Very	recently,	Bussi	and	coworkers	developed	another	CG	model	using	2	beads	per	
residue	 (choosing	 an	 anisotropic	 particule	 to	 represent	 the	 nucleoside),	 called	
SPQR107.	The	method	uses	a	knowledge-based	potential	plugged	into	a	MC	algorithm,	
and	 successfully	 fold	 small	 to	medium	RNA	molecules.	 Finally,	 the	 lower	 resolution	
models	 (NAST,	 FARNA,	 YUP-rrRNAv1,	 and	 RS3D)	 use	 only	 1	 bead	 per	 residue.	
NAST95,96	locates	 the	 bead	 at	 the	 C3’	 using	 statistical	 potentials	 supplemented	with	
information	 on	 secondary	 structure,	 tertiary	 contacts	 derived	 from	 co-evolution	
analysis,	 and	 eventually	 with	 information	 derived	 from	 SAXS	 (small	 angle	 X-ray	
scattering)	 or	 chemical	 probing	 experiments.	 Despite	 its	 simplicity,	 the	 method	
coupled	 to	 MD	 simulations	 works	 well	 in	 the	 prediction	 of	 medium-sized	 RNA.	
FARNA103	uses	a	fragment	library	of	trinucleotides	and	a	statistical	potential	coupled	
to	 a	 MC	 algorithm,	 showing	 a	 good	 ability	 to	 reproduce	 short	 RNA	 motifs.	
YAMMP/YUP-rrRNAv1100	locates	the	bead	at	the	center	of	mass	of	each	residue	using	
simple	harmonic	terms	for	bonds,	angles,	dihedrals,	and	non-bonded	van	der	Waals	
interactions	showing	a	good	ability	to	reproduce	tRNAs.	Finally,	R3SD	from	Wang	and	
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collaborators	 is	 applicable	 to	 a	 wide	 range	 of	 RNA	 folding	 motifs	 for	 which	
experimental	data	are	available108,	being	based	on	SAXS	and	solvent	accessibility	data	
to	 build	 models	 with	 a	 resolution	 of	 1	 bead	 per	 residue.	 Sampling	 is	 achieved	 by	
coupling	the	potential	to	a	Metropolis	Monte	Carlo	algorithm	that	must	also	satisfied	
secondary	structure	constraint,	in	addition	to	any	tertiary	structure	restraint.	R3SD	is	
able	 to	 reproduce	with	 good	accuracy	 common	RNA	 folds	 in	 small-to-medium	RNA	
molecules.	
	
As	 noted	 above,	most	 of	 the	 CG	methods	 include	 the	 possibility	 to	 introduce	 experimental	
restraints	 to	 avoid	 the	 sampling	 of	 artefactual	 conformations.	 For	 example,	 hydroxyl	
cleavage88	 or	 chemical	 probing	 techniques	 such	 as	 SHAPE	 (Selective	 2′-Hydroxyl	 Acylation	
analyzed	by	Primer	Extension)	have	been	used	to	derive	restraints	to	fix	secondary	structure	
elements109,	and	gain	some	information	about	long	range	contacts.110-112		Recently,	SHAPE	has	
been	 coupled	 with	 mutational	 profiling	 in	 live	 cells,113	 or	 with	 single-molecule	 Forster	
resonance	energy	transfer	in	single	cells114	showing	very	good	ability	to	guide	the	sampling	of	
CG	models	towards	experimental	structures.114	SAXS	is	also	used	to	guide	CG	models115	as	in	
the	case	of	NAST	and	R3SD.95,96,108	A	recent	work	of	Lipfert	et	al.,	used	samples	labeled	with	
Gold	nano-particles	together	with	SAXS	to	provide	a	fine-grain	3D	structure	of	an	RNA	kink-
turn	motif116.	Very	recently,	SAXS	and	NMR	data	were	combined	to	supplement	RACER	(RnA	
CoarsE-gRained)101	accomplishing	the	folding	of	a	long	sequence	of	RNA	like	the	5S	ribosome,	
and	sparse	NMR	data	alone	were	used	in	iFoldNMR	to	derive	high	quality	models	of	medium-
sized	 RNA.104	 Light	 Activated	 Structural	 Examination	 of	 RNA	 (LASER),	 is	 another	 novel	
experimental	 technique	which	provide	 solvent	 accessibility	 inside	 cells	 at	 the	 nucleotide	
level	for	medium-sized	RNA	molecules.117	Also	recently,	and	already	in	the	frontier	between	
bioinformatics	 and	 modeling,	 different	 groups	 have	 used	 co-evolutionary	 data	 to	 bias	 CG-
models	to	establish	3D	contacts,	as	in	the	case	of	NAST,	or	the	newest	3dRNA	from	Xiao	and	
collaborators.118		
	
Beyond	 the	evident	progress,	CG	RNA	models	 still	 face	many	challenges.	One	of	 the	
most	 important	 is	 the	 development	 of	 parameters	 for	 partner	 biomolecules.	 Large	
RNA	 molecules	 (one	 of	 the	 aims	 of	 coarse-graining)	 like	 ribosome	 are	 usually	
associated	 to	 several	 proteins,	 and	 in	 other	 cases,	 the	 description	 of	 RNA-DNA	
complexes	 is	 needed	 to	 understand	 the	 replication	 and	 transcription	machinery	 of	
cells.	 Ions	 like	 Mg2+	 are	 also	 known	 to	 be	 crucial	 for	 the	 stability	 of	 certain	 RNA	
motives	or	the	folding	of	tertiary	structures.73,86	This	is	why,	models	like	oxRNA	and	
HIRE-RNA	that	can	combine	DNA	and	RNA	molecules,	NARES-2P	and	MARTINI	that	
can	also	include	proteins,	or	RACER	with	his	explicit	treatment	of	Mg2+	ions,	have	the	
advantage	 to	 consolidate	 themselves	 in	 the	 near	 future	 as	 the	 reference	 for	 RNA	
coarse-graining.		
	
Bioinformatics:	An	inescapable	complement	to	RNA	structure	prediction?	
	
Even	 the	most	efficient	CG	models	 face	 severe	problems	 to	deal	with	 large	RNA	structures,	
which	 have	 fueled	 the	 development	 of	 bioinformatics	methods	 taking	 profit	 of	 the	 lessons	
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learned	from	protein	structural	prediction.	These	methods	(see	Table	1	for	a	summary)	have	
been	 traditionally	 classified	 in	 two	 families:	 i)	 homology	 (comparative)	 modelling	
techniques119,120	which	 are	 based	 on	 the	 idea	 that	 RNA	 structure	 is	 more	 conserved	 than	
sequence,	and	ii)	approaches	based	on	the	assumption	that	RNA	is	hierarchically	assembled	
from	 small	 structural	 elements121.	 However,	 the	 partition	 between	 the	 two	 predictive	
paradigms	 is	 nowadays	 somehow	 artificial	 as	 the	most	 recent	 pipelines	 of	 RNA	 structural	
prediction	are	based	on	hybrid	methods	combining	homology	modeling,	hierarchical	folding	
and	CG	simulation	engines.	
	
Methods	 based	 on	 the	 structure	 conservation	 principle	 use	 techniques	 based	 on	 homology	
(or	 comparative)	 modeling119,120	 and	 more	 recently	 include	 evolutionary	 couplings96	 to	
capture	 conserved	 3D	 contacts.	 ModeRNA,119	 MMB120	 and	 RNA123122	 are	 examples	 of	
currently	available	homology	modelling	programs.	Homology	modelling	has	been	extremely	
fruitful	in	the	protein	field	and	has	the	advantage	to	be	easily	scaled	up	with	no	general	size	
limit,	but	in	the	RNA	field	they	suffer	caveats	derived	from	the	scarcity	of	non-redundant	RNA	
structural	 data.	Again,	 involvement	of	 the	 experimental	 community	 seems	necessary	 in	 the	
development	of	more	reliable	tools.	Methods	based	on	the	hierarchical	folding	hypothesis	can	
use	 as	 building	 blocks	 either	 secondary	 structures121	 (experimentally	 known	 or	
predicted123,124)	 or	 local	 mini-motifs	 (<4	 nucleotides)	 whose	 geometries	 are	 arranged	 in	
space	 to	 minimize	 some	 scoring	 function.125,126	 Such	 functions	 are	 generally	 statistical	
potentials	based	on	pairwise	interactions	either	at	atomic	or	coarse	grained	levels	and	focus	
on	 an	 ever-evolving	 play-off	 between	 computational	 efficacy	 and	 accurate	 energetic	
description.127-129	This	method	has	been	approached	in	several	ways	and	here	we	distinguish	
between	 the	 semi-automated	 (graphics-based)	 and	 the	 fully	 automated	 methods,	 each	
category	comprising	of	different	approaches.	
	
Semiautomatic	(graphics-based)	modeling	consists	of	 interactive	software	allowing	the	user	
to	integrate	secondary	information	on	RNA	into	a	graphical	interface	to	generate	a	3D	model.	
Early	examples	of	this	type	of	software	are	MANIP130,	and	ERNA-3D.131	More	recent	programs	
such	as	RNA2D3D132	or	Assemble/Assemble2133	allow	the	manipulation	and	assembly	of	RNA	
3D	constructs	even	when	they	are	complexed	with	other	macromolecules.	Furthermore,	they	
integrate	databases	of	structural	motifs	and	multiple	sequence	alignments	and	facilitate	the	
incorporation	of	explicit	manual	annotation	of	base	pairs	and	stacking	interactions.	Graphics-
based	 methods	 can	 be	 used	 to	 build	 large	 3D	 structures	 in	 a	 very	 simple	 way,	 but	 their	
performance	 depends	 heavily	 on	 user	 experience.	 Automated	 algorithms	 such	 as	
RNAComposer,134	 RSIM,135	 MC-Sym,136	 and	 3dRNA,137	 require	 a	 2D	 structure	 input	 and	
sample	different	3D	models	 taking	a	 fragment	assembly	approach.	RNAComposer	splits	 the	
2D	structure	in	stems,	hairpins,	loops	and	n-way	junctions	and	then	finds	matching	elements	
using	 the	 RNA	 FRABASE	 database.138	 RSIM	 assembles	 the	 3D	 models	 using	 a	 fragment	
database	 of	 trinucleotides	 and	 a	 Monte	 Carlo	 approach	 with	 biased	 moves	 preserving	
secondary	 structure.	 MC-Sym	 uses	 nucleotide	 cyclic	 motifs	 for	 the	 assembly	 and	 was	
optimized	 to	work	 in	a	pipeline	with	MC-Fold,	 a	 secondary	 structure	predictor.133	Reinharz	
and	 coworkers139	 expanded	 further	 the	 capabilities	 of	 MC-Sym	 by	 developing	 RNA-MoIP	
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(Table	 2),	 which	 identifies	 RNA	 motifs	 in	 the	 2D	 structure	 and	 enhances	 the	 MC-Sym	
sampling	 process,	 thus	 allowing	 the	modeling	 of	 bigger	 oligonucleotides.	 3dRNA	 builds	 its	
models	 from	 smallest	 secondary	 elements	 (SSEs,	 defined	 as	 base	 pair,	 hairpins,	 i-loops,	
etc.)118	(see	Table	2).	Vfold140	combines	a	CG-	physics-	and	knowledge-based	approach	with	a	
hierarchical	 folding	approach,	predicting	2D	structure	from	sequence	and	then	constructing	
the	3D	models	with	a	motif	assembly	method	based	on	entropy	and	free-energy	estimations.	
Very	recently,	 the	same	group	 launched	VfoldLA,141	using	 loop	fragments	as	building	blocks	
(instead	 of	 whole	 motifs).	 With	 a	 faster	 scoring	 function	 (based	 on	 template	 sequence	
similarity),	VfoldLA	allows	 the	prediction	of	more	structures	 than	 its	predecessor,	but	with	
slightly	 higher	 RMSD	 values	 on	 average.	 Recent	 methods	 such	 as	 F-RAG/RAGTOP,142	 and	
Ernwin’s	predictor,88	rely	on	graph	theory	for	guiding	the	assembly	of	3D	constructs.	Graph	
representation	 of	 secondary	 structure	 elements	 is	 taken	 one	 step	 further	 in	 the	GARN	 and	
GARN2	packages,143	where	 the	minimization	of	an	energy	 function	 is	 replaced	with	a	 regret	
minimization	algorithm	using	a	knowledge-based	scoring	potential.		
	
Some	authors	have	tried	to	skip	the	need	for	secondary	structure	annotation	by	working	with	
smaller	(<4	nts)	RNA	segments.	Thus,	Rosetta	FARFAR103	assembles	experimental	tri-residue	
fragments	iteratively	(starting	from	an	initially	extended	chain)	in	a	Monte	Carlo	simulation	
directed	 by	 a	 knowledge-based	 energy	 function,	which	 can	 be	 further	 refined	 by	 atomistic	
force-field	simulations.	BARNACLE125	uses	a	dynamic	Bayesian	network	(DBN)	to	model	RNA	
structures,	 using	 a	 maximum-likelihood	 estimation	 of	 di-nucleotide	 parameters.	
TreeFolder126	uses	 a	 conditional	 random	 fields	 (CRFs)	 method	 trained	 with	 tri-nucleotide	
data,	 combined	 with	 a	 tree	 guided	 conformation-sampling	 scheme.	 These	 methods	 are	
applicable	in	cases	where	no	secondary	structure	annotation	exists,	but	their	performance	is	
still	limited	when	dealing	with	long	RNAs.	
	
Finally,	 it’s	 worth	 mentioning	 the	 existence	 of	 integrated	 tools	 for	 the	 complete	 RNA	 3D	
structure	prediction	starting	from	the	sequence	(see	Table	2	for	a	summary).	In	many	cases,	
they	 add	 a	 layer	 of	 analysis	 with	 the	 quantification	 of	 non-canonical	 interactions	 or	
evolutionary-conserved	 3D-contacts.	 RMDetect144	 was	 one	 of	 the	 first	 of	 such	 packages	
combining	 different	 technologies	 based	 on	 the	 identification	 of	 3D	 structural	modules.	 The	
metaRNAmodule	 pipeline145	exploits	 and	 extends	 the	 capabilities	 of	 RMDetect,	 completely	
automating	 the	extraction	of	putative	modules	 from	 the	FR3D	database	 to	perform	 tertiary	
structure	prediction.	JAR3D146	 is	a	probabilistic	model	that	can	also	find	3D	motifs	from	the	
sequence	and	has	advantadge	of	a	continuous	self-training	as	new	structures	are	deposited	in	
the	 RNA	 3D	 Motif	 Atlas.147	 As	 noted	 above,	 the	 introduction	 of	 co-evolutionary	 data	 has	
revolutionized	the	field,	as	it	allows	to	introduce	non-local	restraints	in	the	derivation	of	RNA	
models,	 and	 several	programs	 such	as	FARNA/FARFAR148	and	more	 recently	NAST95,96	 take	
advantadge	of	such	information	(see	the	previous	section,	and	Figure	3).	
	
We	are	far	from	being	able	to	predict	the	structure	of	complex	RNA	motifs,	but	recent	
theoretical	 methods,	 either	 alone,	 or	 coupled	 with	 experimental	 restrains	 are	
providing	very	encouraging	results,123	visible	in	the	latest	rounds	of	the	RNA-Puzzles	
competition	 (Figure	4).149	For	example	Pyle	group150	 recently	modeled	domains	D2	
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and	 D3	 of	 RepA	 (lncRNA	 of	 1600	 nucleotides)	 with	 a	 variety	 of	 experimental	
restraints	 using	 RNAComposer	 and	 finding	 reasonable	 results,	 and	 Bujnicki	 group	
(the	 developers	 of	 ModeRNA119)	 extracted	 structural	 fragments	 corresponding	 to	
evolutionarily	conserved	regions	and	successfully	used	this	information	to	constrain	
the	geometry	of	conserved	residues	when	folding	large	RNA	constructs.	
	
	

CONCLUSIONS	
	
RNA	is	a	complex	molecule	with	a	chemical	structure	resembling	DNA,	but	with	a	conformational	
richness	 similar	 to	 that	 of	 proteins.	 RNA	molecules	 are	usually	 large,	 flexible,	 and	 show	a	 large	
conformational	 landscape	which	makes	difficult	 its	 experimental	 characterization,	making	often	
theoretical	 methods	 the	 only	 approach	 to	 gain	 structural	 information.	 Unfortunately,	
development	of	theoretical	methods	to	deal	with	RNA	structure	is	handicapped	by	the	multiscale	
nature	of	the	system,	which	has	forced	the	development	of	a	myriad	of	modeling	and	simulation	
techniques	we	have	revised	here.	Compared	to	proteins,	RNA	structural	characterization	is	still	in	
its	 infancy,	 but	 advances	 are	 evident,	 even	 for	 the	 most	 agnostic	 scientist.	 With	 a	 more	
coordinated	effort,	and	the	involvement	of	experimentalists	providing	more	comprehensive	data	
for	method	calibration	we	may	see	soon	a	new	generation	of	methods	able	to	make	quantitative	
predictions	on	the	structure	and	physical	properties	of	RNA.	
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TABLES	
	Table	1.	Summary	of	available	coarse-grained	methods	and	stand-alone	bioinformatics	tools	to	model	RNA	3D	structure.	
Particle-based	coarse	grain	m

odels	

CG
	force	field	

nam
e	

Sam
pling	m

ethod	
Potential	Energy	
Function	

Com
patible	m

olecules	/	
Experim

ental	
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algorithm
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Table	 2.	 Integrated	 tools	 and	methods	 for	RNA	3D	 structure	prediction	 starting	 from	
sequence	which	are	implemented	in	pipelines.	

Software	name	 Sampling	 Scoring	Function	
Sequence	

length	range	

Improvements	using	evolutionary	information	

Evolutionary	

Couplings	(EC)	

Guided	NAST	sampling	 K-means	clustering	with	

lowest	energy-per-

contact,	using	EC	

Tested	

between	70	

and	120	nt	

Direct	Coupling	

Analysis	

Guided	Rosetta	sampling	 Rosetta	function	with	

additional	terms	based	

on	predicted	tertiary	

contacts	

Tested	

between	50	

and	~100	nt	

3dRNA	 Fragment	assembly	of	SSE	

(Smallest	Secondary	

Elements)	guided	by	

coevolutionary	signals	

3dRNAscore	 Tested	

between	12	

and	101	nt	

Hierarchical	folding	pipelines	

MC-Fold	|	MC-Sym	 Fragment	Assembly	with	

Las	Vegas	algorithm	

Knowledge-based	

energy	function	

Up	to	~	50	nt	

RNA-MoIP	

(RNAsubopt	|	RNA-

MoIP	|	MC-Sym)	

Guided	MC-Sym	sampling	 Objective	function	based	

on	minimum	entropy	

Tested	

between	50	

and	128	nt	

F-RAG	|	RAGTOP	|	

RAG-3D	

Monte	Carlo	Simulated	

Annealing	

Knowledge-based	

scoring	function	

Tested	

between	17	

and	111	nt	
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FIGURES	
	

	
Figure	1.	Representation	of	the	46	conformers	present	in	the	UpU46	benchmark	set.	The	set	
consists	 of	 the	 46	 uracil	 dinucleotides	 (UpU),	 representing	 all	 known	 46	 RNA	 backbone	
conformational	 families	 described	 by	 the	 RNA	 Ontology	 Consortium.	 The	 conformers	 are	
given	two-character	names	that	reflect	the	seven-angle	(δεζαβγδ)	combinations	empirically	
found	favorable	for	the	sugar-to-sugar	 ‘‘suite’’	unit	within	which	the	angle	correlations	are	
strongest.	Note	that	all	conformers	were	aligned	to	a	common	reference	coordinate.		
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Figure	2.	Time	 line	of	 the	evolution	of	 the	CHARMM	(top)	and	AMBER	(bottom)	 force	
fields	 for	 RNA.	 Corrections	 to	 each	 original	 version	 are	 indicated	 and	 their	 main	

characteristics	are	commented.	The	region	highlighted	in	gray	corresponds	to	the	latest	

period	where	several	efforts	to	eliminate	artifacts	in	the	current	available	version	have	

been	 done.	 Such	 period	 is	 particularly	 addressed	 in	 the	 present	 work.	 The	 current	

standard	versions	are	indicated	in	blue.	
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Figure	3.	Mapping	strategies	used	for	coarse	graining	RNA	in	different	models,	as	illustrated	
by	the	corresponding	authors.	(a)	The	model	of	Jonikaset	al.	with	1	bead	per	residue,	called	
NAST.	(b)	The	FARNA	model	developed	by	Das	&	Baker.	1	bead	per	residue	is	used	to	reduce	
the	 complexity.	 (c)	 simRNA	 from	 Bonieckiet	 al.,	 with	 5	 beads	 per	 residue.	 The	 mapping	
scheme	 and	 a	 hairpin	 are	 shown.	 (d)	 The	 model	 developed	 by	 Faustino	 et	 al.	 for	 the	
MARTINI	 coarse-grain	 force	 field.	 Representation	 of	 a	 hairpin,	 and	 a	 complete	 ribosome	
containing	mRNA	and	tRNA.	(e)	The	RNAkb	model	of	Levitt	et	al.	use	5	beads	per	residue.	(f)	
The	5	beads	per	residue	model	of	Ren	et	al.	(RACER)	was	used	to	fold	short	RNA	oligomers.	
(g)	iFoldRNAv2	from	Dokholyan	et	al.	uses	3	beads	per	residue	to	fold	a	tRNA	molecule.	(h)	
TOPRNA,	 developed	 by	 Brooks	 et	 al.,	 uses	 3	 pseudoatoms	 to	 represent	 the	 phosphate,	
sugar,	 and	base.	 (i)	 The	oxRNA	model	 from	Ouldridgeet	al.	 uses	a	 single	 rigid	body	with	5	
interaction	 sites	 to	 represent	 a	 nucleotide.	 Representation	 of	 a	 pseudoknot.	 (j)	 The	 YUP-
rrRNAv1	developed	of	Harvey	et	al.,	with	1	bead	per	residue.	Representation	of	the	tRNAPHE	
hierarchy.	(k)	The	HIRe-RNA	model	of	Derremaux	et	al.	with	6/7	beads	per	residue.	Folding	
pathway	 of	 a	 triple	 helix.	 (l)	 The	 NARES-2P	 for	 RNA	 developed	 by	 Scheraga	 et	 al.	 with	 2	
beads	per	residue.	(m)	iFoldNMR	from	Dokholyan	et	al.,	with	3	beads	per	residue	coupled	to	
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sparse	NMR	restraints	data.	(n)	The	SPlit-and-conQueR	(SPQR)	model	of	bussi	et	al.,	with	2	
beads	per	residue	(one	anisotropic).	Representation	of	a	CG	tetraloop.	
	

	
Figure	 4.	 RNA-Puzzles	 determined	 in	 the	 collective	 and	 blind	 experiments	 in	 3D	 RNA	
structure	 prediction.	 (a)	 Structures	 assessed	 in	 RNA-Puzzles	 round	 II	 (from	 left	 to	 right):	
Lariat	 capping	 ribozyme	 (PDB	 id	 4P95);	 Adenosylcobalaminriboswitch	 (PDB	 id	 4GXY);	 and,	
the	T-box-tRNA	complex	structure	(PDB	id	4LCK).	(b)	The	six	3D	RNA	structures	predicted	in	
the	 RNA-Puzzles	 round	 III	 (From	 left	 to	 right,	 and	 from	 top	 to	 bottom):	 SAM-I	
riboswitchaptamer	 (PDB	 id	 3V7E);	 SAM-I/IV	 riboswitch	 (PDB	 id	 4L81);	 c-di-AMP	 bound	 to	
ydaOriboswitch	(PDB	id	4QLM);	The	ZTP	riboswitch	(PDB	id	4XW7);	Apo	form	of	L-glutamine	
riboswitch	(PDB	id	5DDO);	The	Varkud	satellite	(VS)	ribozyme	(PDB	id	4R4P).	
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Resumen en español 

 

1 Introducción 
 

Estructura del ADN 

En las células eucariotas, el ADN es un polímero muy largo dividido en 

unas pocas unidades independientes denominadas cromosomas, los cuales 

pueden llegar a medir dm (si se extienden) en organismos como el humano, 

pero están muy compactados dentro del núcleo celular. La fibra de ADN 

consiste en dos cadenas complementarias de biopolímeros formadas a partir de 

unidades repetitivas llamadas nucleótidos, enrolladas entre sí para formar una 

doble hélice. Cada nucleótido se compone de una de cuatro bases nitrogenadas 

lipófilas (citosina [C], guanina [G], adenina [A] o timina [T]), un azúcar 

desoxirribosa y un grupo fosfato completamente ionizado al pH fisiológico. Los 

nucleótidos se mantienen unidos en una cadena mediante enlaces fosfodiéster, 

lo que da como resultado una cadena principal de azúcar-fosfato alternante. Los 

grupos fosfato están unidos al carbono 5' de un nucleótido y al carbono 3' del 

otro, de modo que la unidad repetitiva completa en un ácido nucleico es un 

5',3'-nucleótido. Las bases nitrogenadas son (principalmente) anillos aromáticos 

de estructura plana que se conectan al anillo de la (desoxi)ribosa por un enlace 

glicosídico entre el nitrógeno base endocíclico y el átomo C1 del azúcar. Las 

bases en dos cadenas opuestas de polinucleótidos forman enlaces de hidrógeno 

para formar ADN bicatenario, de acuerdo con las reglas de apareamiento de 

bases (A con T y C con G), y se apilan una encima de otra para estabilizar la 

doble hélice (ver la Figura 1). 

La refinada forma del ADN permite la descripción de sus elementos 

estructurales constitutivos en términos de un conjunto reducido de 

coordenadas internas helicoidales. Una serie de parámetros rotacionales y 

traslacionales han sido delineados para describir las relaciones geométricas 

entre bases y pares de bases (definidos en la reunión EMBO en Cambridge en 

1988, también llamado "Cambridge Accord", y estandarizados en el Taller 

Tsukuba sobre Estructura e Interacciones de Ácidos Nucleicos [1] de modo que 

se utilice como marco de referencia único para calcular los parámetros de 

morfología base y generar valores uniformes en todos los estudios). Definido 

con respecto a un sistema de coordenadas unido a cada par de bases o a pasos 
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el surco mayor es más grande que el del menor, pero por consistencia se 

mantiene para otras formas del ADN. 

	

Figure	2	Modelo	de	base	 rígida	y	par	de	bases:	definición	de	parámetros	helicoidales	para	el	par	de	bases	y	el	
paso	del	par	de	bases	[2]. 



!"#(!

!

K%6! .+*&! B%5,$,%&!3+,#',3%$*&!8*!=($,'*&!8*!012_!012MV/! L)*! *&! *$!5>&!

'-5?#!6!*&3*'4B,'-!3%+%!$%&!&*')*#',%&!5,;.%&!:%)#L)*!$%!'-#B-+5%',D#!*;%'.%!

9%+4%! *#.+*! $%&! 8,B*+*#.*&! '-5C,#%',-#*&! 8*! &*')*#',%&<b! 012M0/! L)*! 3)*8*!

B-+5%+&*! *#! ',*+.%&! &*')*#',%&! 8*! 3)+,#%&! :3-+! *S*53$-/! H0HHH0<! *#!

'-#8,',-#*&! #-! B,&,-$D7,'%&! -! *#! =4C+,8-&! 8*! 012M0c2b! 6! 012Md/! L)*! &*!

*#')*#.+%! B%9-+*',8%! *#! &*')*#',%&! %$.*+#%#.*&! 8*! 3,+,5,8,#%M3)+,#%! :3-+!

*S*53$-/!EHEHEH<!6!*&.>!3+*&*#.*!*#!)#%!'%#.,8%8!5)6!3*L)*e%!*#!*$!#?'$*-!

8*!$%!'($)$%@!A%&!B%5,$,%&!8*!012!0!6!V!&-#!=($,'*&!!8*;.+D7,+%&/!5,*#.+%&!L)*!$%!

!"#$%&'D'5&A";",":;'.&'+0%*"0;&*'.&'/-',-.&;-'9%";,"9-/'.&/'456C'4E'+0%*"0;&*'.&'/-',-.&;-'9%";,"9-/F'GE'
+%-;*","0;&*'GHIGHH'&;'/-',-.&;-'9%";,"9-/F'JE'K0%*":;'#/",0*?.",-',0;'%-;#0*'9-%-'9"%"8".";-*'LM&%.&E'<'9$%";-*'
L;-%-;N-EF'5E'K"90*'.&'A%$;,"8"&;+0C'



	255	

familia de ADN-Z tiene una orientación levógira de la hélice (véase la Figura 4	

y la Tabla 1). 

	

Figure	4	Las	tres	formas	principales	de	ADN	doble	hélice.	 	

	

Geometry attribute A-DNA B-DNA Z-DNA 

Helix sense right-handed right-handed left-handed 

Repeat unit 1 bp 1 bp 2 bp 

Helical twist 32.7° 36.0° C/G: -49.3°/-10.3° 

Roll 0° 0° C/G: 5.6°/-5.6° 

bp/turn 11 10 6 

Inclination 22.6° 2.8° 0.1° 

Rise 2.54 Å 3.38 Å 7.25 Å 

Pitch 28.2 Å 33.2 Å 45.6 Å 

Propeller twist -10.5° -15.1° 8.3° 
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Glycosyl angle anti anti C/G: anti/syn 

Sugar pucker C3’-endo C2’-endo C/G: C2’-endo/C2’-exo 

Diameter 23 Å 20 Å 18 Å 

Major groove 
Width 2.2 Å 11.6 Å 8.8 Å 

Depth 13.0 Å 8.5 Å 3.7 Å 

Minor groove 
Width 11.1 Å 6.0 Å 2.0 Å 

Depth 2.6 Å 8.2 Å 13.8 Å 

Table	1	Características	geométricas	de	las	3	principales	familias	de	hélice	de	ADN	(Neidle	2008).	
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Estos tres principales modos de apareamiento de bases en el ARN también 

mantienen el grupo ribosa de ambas bases en el mismo lado del par, lo que 

permite la definición de un surco mayor y menor. El ARN es típicamente un 

polímero monocatenario y la formación de hélices y otras interacciones son 

posibles porque la molécula se repliega sobre sí misma, de forma similar a una 

proteína. 

En un nivel intermedio de análisis, denominado estructura secundaria, el 

elemento estructural fundamental de la secuencia de ARN es la doble hélice. 

Una vez que se especifican las hélices, las regiones no apareadas entre ellas se 

pueden clasificar en varios tipos de elementos estructurales, denominados 

colectivamente bucles. Los bucles pueden ser internos, entre dos tallos de hélice 

(un bucle interno de una sola cara se llama una protuberancia), bucles en 

horquilla, que consisten en varias bases separadas que están limitadas a cada 

lado por la misma hélice o bucles de múltiples bifurcaciones en la intersección 

de tres o más tallos de hélice (Figura 6). La estructura terciaria del ARN se 

compone de unos pocos tipos de entidades estructurales recurrentes, 

denominados colectivamente motivos de ARN, que se usan en diferentes 

combinaciones (como bloques de construcción) para generar una rica variedad 

de formas moleculares. En el artículo de revisión "Modeling, Simulations, and 
Bioinformatics in the service of RNA Structure", que forma parte de esta tesis, se ha 

recopilado un compendio de métodos teóricos para ayudar a la caracterización 

del complejo espacio conformacional multi-escala del ARN. 

	

Figure	6	Representación	de	los	elementos	de	la	estructura	secundaria	más	comunes	en	ARN. 
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Dinámica dependiente de la secuencia del ADN. 

El conocimiento actual de las características estructurales del ADN revela 

irregularidades dependientes de la secuencia en el espacio conformacional de 

diferentes hélices dobles. Algunos de los principios que relacionan la secuencia 

con la estructura han sido derivados a partir del análisis de los datos de 

cristalografía disponibles para el ADN y complejos proteína-ADN, que 

proporcionan información no solo sobre la geometría de equilibrio, sino 

también sobre la flexibilidad esperada de los bps [95,96,98]. Una fuente 

alternativa de parámetros para describir la estructura y flexibilidad del ADN 

son las simulaciones de dinámica molecular (DM) atomística. Los métodos de 

DM pueden cubrir mucho mejor el espacio de las secuencias que el análisis de 

estructuras experimentales y sus resultados están libres de artefactos de red y 

son consistentes con la presencia de ligandos y el solvente del entorno. Sin 

embargo, las descripciones de propiedades del ADN derivadas de DM son solo 

tan precisas como la calidad de los parámetros del campo de fuerza utilizado 

para describir las interacciones del ADN (ver la sección sobre DM a 

continuación) y la capacidad de muestrear suficientemente el espacio 

conformacional. 

Notablemente, los resultados basados en DM recopilados por el Ascona B-

DNA Consortium [8,9] revelaron dos hallazgos principales que desafiaron los 

modelos actuales de flexibilidad derivada de la secuencia del ADN. En primer 

lugar, el modelo del vecino más cercano es insuficiente para describir la 

flexibilidad del ADN ya que los parámetros de la hélice asociados a un 

dinucleótido pueden diferir en mayor cantidad según las bases que lo rodean 

que si se lo compara con otros dinucleótidos. En segundo lugar, una gran 

cantidad de distribuciones de equilibrio de los parámetros helicoidales tienen 

desviaciones no despreciables de la normalidad, está claro que la aproximación 

armónica (definida por los valores de equilibrio y la rigidez asociada) implícita 

en los modelos elásticos es inexacta. Una cuidadosa caracterización de estos 

efectos polimórficos y dependientes de la secuencia se ha realizado 

extensamente en la presente tesis y estos resultados se recogen en los trabajos 

“The Role of Unconventional Hydrogen Bonds in Determining BII Propensities in B-
DNA”, “The Physical Properties of B-DNA beyond Calladine’s rules” y “Long-Range 
Effects Modulate Helical Properties of some DNA Dinucleotide Pairs”. 

 

Interacciones proteína-ADN 
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La interacción de las proteínas reguladoras con el ADN es esencial para la 

realización adecuada de un gran número de procesos biológicos que van desde 

la regulación de la expresión génica hasta la replicación, reparación y 

empaquetamiento del ADN. Como primera clasificación de las interacciones, el 

reconocimiento de una molécula de ADN por un pequeña molécula o proteína 

puede ser altamente específico, reconociendo únicamente una secuencia 

determinada en un gen o incluso un genoma, o inespecífica, sin una unión 

preferencial significativa a una secuencia de nucleótidos particular. 

La unión no específica proteína-ADN ocurre a través de dos mecanismos 

clave relacionados [10], por los cuales se reconoce la atracción electrostática 

general entre las proteínas y el ADN, o la geometría global del ADN (13). Las 

proteínas se unen específicamente a las secuencias de ADN mediante dos 

estrategias comúnmente denominadas lectura "directa" e "indirecta". En una 

lectura directa, la secuencia de ADN es leída a través de contactos específicos 

entre las cadenas laterales de aminoácidos y los grupos funcionales básicos 

expuestos en la interfaz proteína-ADN. En una lectura indirecta, las proteínas 

reconocen las secuencias de ADN a través de variaciones dependientes de la 

secuencia en la flexibilidad y los parámetros estructurales tales como el ancho 

del surco, el twist entre los pares de bases o la conformación de la cadena 

principal. 

Los aspectos dinámicos de las interacciones proteína-ADN pueden 

separarse principalmente en dos tipos: la dinámica del proceso de unión en sí y 

la dinámica del complejo después de su formación. La visión consensuada de 

un evento de reconocimiento típico es que la proteína primero se une no 

específicamente al ADN, y luego se difunde a lo largo de la doble hélice 

mediante la formación de puentes de sal transitorios entre los grupos 

funcionales cargados de aminoácidos y los átomos de la cadena principal en el 

ADN [11]. Una vez que alcanza su sitio de unión, la proteína reconoce las 

propiedades de deformabilidad específica de su motivo de unión al ADN, que 

le permiten deformar fácilmente el ADN para alcanzar una cierta conformación 

[12,13]. Los complejos proteína-ADN, después de su formación, también se 

someten a procesos dinámicos interesantes e importantes y existe una cantidad 

sustancial de evidencia reciente de que el conjunto configuracional no se 

colapsa al unirse. En esta tesis estudiamos un caso muy interesante de 

interacción proteína-ADN, acerca de la cooperatividad de pares de proteínas en 

la unión al ADN, sin haber interacción directa entre las dos proteínas. El estudio 

se llama "Allosterism and signal transfer in DNA". 
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Simulaciones de dinámica molecular de ácidos nucleicos. 

Hay tres aspectos principales para un cálculo de DM: 1) el modelo que 

describe las interacciones moleculares; 2) el cálculo de energías y fuerzas del 

modelo, que debe hacerse con precisión y eficiencia; 3) el algoritmo utilizado 

para integrar las ecuaciones de movimiento. En la forma más simple de DM, las 

trayectorias de átomos y moléculas se determinan resolviendo numéricamente 

las ecuaciones de movimiento de Newton para un sistema de partículas 

interactuantes (Alder 1959, Rahman 1964, Lifson 1968). Por defecto, el equilibrio 

de la dinámica corresponde al conjunto microcanónico de la mecánica 

estadística (energía total constante), pero se pueden introducir términos 

adicionales si se espera que la simulación mantenga constantes algunas 

propiedades macroscópicas, como la presión o la temperatura. 

La simulación de dinámica molecular requiere la definición de una 

función de energía potencial, que junto con un conjunto de parámetros 

empíricos se denomina campo de fuerza (forcé-field). Los campos de fuerza más 

comunes consisten en una suma de fuerzas de enlace (asociadas con longitudes 

de enlace químico, ángulos de enlace y diedros de enlace) y fuerzas entre 

moléculas sin enlace (interacciones electrostáticas asociadas e interacciones de 

Van der Waals). Los valores de los parámetros se obtienen ajustando a cálculos 

electrónicos detallados (simulaciones de mecánica cuántica, QM) o una 

variedad de propiedades físicas experimentales. 

Los primeros intentos de describir el ADN a partir de trayectorias de 

varios nanosegundos condujeron a la destabilización de las estructuras. La 

mejora más exitosa para esos campos de fuerza fue el estándar por excelencia 

durante más de una década, ya que produjo descripciones razonables de las 

propiedades del ADN en el régimen de multi-nanosegundos. Muy 

recientemente, a medida que se hicieron disponibles simulaciones de multi-

microsegundos, fueron detectados varios errores en la parametrización 

parmbsc0 [14–20] y varios grupos desarrollaron correcciones de variable 

confiabilidad [19,21]. Nuestra propia contribución a este esfuerzo es presentada 

y discutida en la presente tesis en el trabajo “Parmbsc1: a refined force field for 
DNA simulations”. 

2 Objetivos. 
	

El objetivo principal de esta tesis es ofrecer una visión integral y 

consensuada de las propiedades estructurales y dinámicas del ADN en 
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condiciones fisiológicas. Los trabajos presentados aquí se han ido construyendo 

gradualmente unos sobre otros, y los resultados se han ido acumulando 

sucesivamente para formar un compendio de mecanismos interdependientes. El 

orden en que se presentan los resultados no siempre es cronológico. En el 

proceso de una tesis doctoral, hay muchas situaciones en las que uno está 

estancado o en las que “los árboles no están dejando ver el bosque”, pero en 

retrospectiva, al analizar el resultado final, es fácil construir una sucesión de 

logros graduales. A continuación, presento la acumulación lógica de objetivos, 

como se ve después de una tesis doctoral. 

o Benchmarking del campo de fuerza del ADN de vanguardia parmbsc1 

probándolo en una gran variedad de sistemas de ADN bajo diversas 

condiciones. Esto es claramente un prerrequisito para usar con confianza 

simulaciones de DM en el estudio de ADN-B. Se debe probar que las 

trayectorias muestrean el espacio conformacional del ADN-B a fondo y 

de manera exhaustiva. 

o Explicar los polimorfismos del ADN-B es probablemente la clave para 

elucidar el rompecabezas de sus intrincadas propiedades mecánicas 

dependientes de la secuencia que, en última instancia, rigen la mayoría 

de las funciones biológicamente relevantes de la doble hélice. 

o Desarrollar un conjunto exhaustivo de reglas que rigen los efectos de la 
secuencia en un ADN-B a nivel de tetranucleótidos. Combinamos el 

nuevo campo de fuerza parmBSC1 y los últimos conocimientos en el área 

de polimorfismos en el espacio helicoidal, para brindar una descripción y 

explicación completas a nivel de tetranucleótidos para los polimorfismos 

de las diferentes bases, pares de bases y bps, y sus interconexiones. 

o Descifrar los efectos más allá de los tetrámeros en el espacio 

conformacional del ADN-B, para conocer su contribución a la dinámica 

del ADN. Nuestro objetivo es determinar la fuerza, la relevancia y, en 

última instancia, los mecanismos de modulación conformacional de 

largo alcance mediante patrones de secuencia específicos. 

o Aplicar el conocimiento de las propiedades intrínsecas del ADN al 

estudio del reconocimiento entre proteínas y ADN, así como la unión 
cooperativa de proteínas al ADN. Finalmente nos propusimos descubrir 

cómo la comunicación de largo alcance a través del ADN, como se 

demuestra a partir de los efectos de la secuencia, tiene un impacto en su 

papel en las interacciones proteína-ADN. 

o Elaborar un compendio de enfoques computacionales para el modelado 
de ARN, que obliga a los investigadores a mirar más allá de los 

esquemas comunes de simulación clásica o cuántica. Nuestro objetivo es 
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resumir el alcance y el desafío de los enfoques más recientes creados 

para caracterizar la gran variedad conformacional del ARN, lo que 

debería ayudar a guiar el desarrollo de una nueva generación de 

métodos capaces de hacer predicciones cuantitativas sobre la estructura 

y las propiedades físicas del ARN. 

 

3 Resumen de resultados. 
 

3.1  Parmbsc1: a refined force f ield for DNA simulations 
(Parmbsc1:	un	campo	de	fuerza	refinado	para	simulaciones	de	ADN)	

Sinopsis. Presentamos parmbsc1, un nuevo campo de fuerza para la 

simulación atomística del ADN, que se ha parametrizado a partir de datos 

mecánicos cuánticos de alto nivel y ha sido probado en casi 100 sistemas (~ 140 

µs) que cubren la mayor parte del espacio estructural del ADN. Parmbsc1 

proporciona resultados de alta calidad en diversos sistemas, resolviendo 

problemas de campos de fuerza previos. Parmbsc1 pretende ser un campo de 

fuerza de referencia para el estudio del ADN en la próxima década. Los 

parámetros y las trayectorias están disponibles en 

http://mmb.irbbarcelona.org/ParmBSC1/. 

 

Corregimos el perfil acoplado ε/ζ, la torsión glicosídica χ, así como los 

parámetros de puckering usando cálculos de QM de alto nivel tanto en fase 

gaseosa como en solución. Los nuevos parámetros ε/ζ mejoraron la 

representación de equilibrio BI/BII (que por definición está determinado por 

estos dos diedros, con trans/gauche- que representa el estado canónico de BI, 

mientras que BII está dado por gauche-/trans de ε/ζ) y rectificado las 

distribuciones de twist y roll, que están estrechamente correlacionadas con el 

estado de la cadena principal. La corrección de χ abordaba el equilibrio anti/syn 

de la orientación de la base y permite simulaciones precisas de estructuras de 

ADN no canónicas, y también reduce el fraying de la base del extremo. El 

puckering se actualizó debido a su acoplamiento a las torsiones modificadas y 

mejoró el sesgo de parmbsc0 hacia las conformaciones East. 

También validamos minuciosamente no solo la reproducción correcta de 

estructuras experimentales, sino también contra observables experimentales, 

tales como NOE y RDC de experimentos de RMN, longitudes de persistencia 

(persistence length) y tasas de transición en diferentes tipos de solventes. Las 
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3.2  The Role of Unconventional Hydrogen Bonds in Determining BII  
Propensit ies in B-DNA. 
(La	función	de	los	enlaces	de	hidrógeno	no	convencionales	en	la	determinación	de	las	

propensiones	BII	en	B-DNA)	

Sinopsis. Es probable que una comprensión precisa de las transiciones de 

la cadena principal del ADN sea la clave para dilucidar el rompecabezas de las 

intrincadas propiedades mecánicas dependientes de la secuencia que rigen la 

mayoría de las funciones biológicamente relevantes de la doble hélice. Un factor 

que se cree que es importante en el reconocimiento indirecto dentro de 

complejos proteína-ADN es el efecto combinado de dos torsiones de la cadena 

principal del ADN (ε y ζ) que dan lugar al bien conocido equilibrio 

conformacional BI/BII. En este trabajo explicamos la propensión BII 

dependiente de la secuencia observada en los pasos RpY (R = purina; Y = 

pirimidina) a nivel de tetranucleótidos con la ayuda de un contacto C-H ···O, no 

detectado previamente entre átomos, que pertenecen a bases adyacentes. 

Nuestros resultados están respaldados por extensas simulaciones de dinámica 

molecular multi-microsegundo del Ascona B-DNA Consortium, de cálculos 

mecánicos cuánticos de alto nivel y minería de datos de las estructuras 

experimentales depositadas en Protein Data Bank. 

Completamos el rompecabezas de poblaciones de estado BI/BII en los 

diferentes tetranucleótidos de ADN-B y relacionamos las transiciones de la 

cadena principal con una compleja interacción de cambios coordinados en la 

geometría de las bases [15,20], donde las interacciones de puentes de hidrógeno 

inusuales y los cambios sutiles en el solvente juegan un papel clave. 

Observamos en las extensas trayectorias de DM de µABC la formación de un 

contacto C6H6-O3’ en pasos RpY, una interacción análoga al contacto C8H8-O3’ 

de los pasos RpR. Nuestro análisis claramente relacionó la presencia de esta 

interacción en la cadena principal de la unión entre dos bases con la transición 

de la cadena principal a BII en la misma unión (R2> 0.9) y se encontró que el 

contacto estabiliza este estado. 

Proporcionamos una imagen exhaustiva del mecanismo que induce las 

transiciones BI/BII en la cadena principal dependientes de la secuencia, 

señalando cómo esto se logra en los diferentes tipos de bps. Aunque la 

formación de enlaces está en todos los casos extremadamente correlacionada 

con el estado de la cadena principal, la coreografía más compleja de los cambios 

en los parámetros helicoidales en los mismos bps y las bases vecinas es bastante 

diferente dependiendo de la secuencia. Además, el análisis de estructuras 

experimentales de alta resolución de ADN aislado apoya nuestras conclusiones 

de un acoplamiento dependiente de la secuencia entre los sub-estados de la 
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cadena principal y la formación de enlaces de hidrógeno. Los cálculos Ab initio 

nos permitieron cuantificar la fuerza relativa de estas interacciones y especular 

sobre las implicaciones en la estabilidad de la cadena principal a nivel de los 

tetrámero. 
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3.3  The Physical  Properties of B-DNA beyond Calladine’s rules 
(Las	propiedades	físicas	del	B-DNA	más	allá	de	las	reglas	de	Calladine)	

Sinopsis. Presentamos un esfuerzo de múltiples laboratorios para describir 

las propiedades físicas del dúplex ADN-B en condiciones fisiológicas. Al 

procesar una gran cantidad de datos de simulaciones de dinámica molecular 

atomística, determinamos las propiedades estructurales dependientes de la 

secuencia del ADN expresadas en la distribución de equilibrio de su dinámica 

estocástica. Nuestro análisis incluye un estudio de los momentos de primer y 

segundo orden (o media y covarianza) de la distribución de equilibrio, que 

pueden ser capturados con precisión por un modelo Gaussiano o armónico, 

pero con dependencia de secuencia no local. Posteriormente, caracterizamos la 

coreografía dependiente de la secuencia de la cadena principal y los 

movimientos de la base que modulan los efectos no Gaussianos o anarmónicos 

manifestados en los momentos superiores de la dinámica del dúplex, al 

muestrear la distribución de equilibrio. Contrariamente a las suposiciones 

anteriores, tales deformaciones anarmónicas no son raras en el ADN y pueden 

jugar un papel importante en la determinación de la conformación del ADN 

dentro de los complejos. Los polimorfismos en las geometrías helicoidales son 

particularmente frecuentes para ciertos contextos de secuencias de 

tetranucleótidos, y siempre están acoplados a una red compleja de cambios 

coordinados en la cadena principal, siendo los equilibrios BI/BII un 

determinante principal. El análisis de nuestras simulaciones, que contienen 

ejemplos de las 136 secuencias distintas de tetranucleótidos, nos permite 

reformular las reglas de Calladine, utilizadas durante décadas para interpretar 

la geometría promedio del ADN de acuerdo con la supuesta dependencia de 

secuencia local y las fluctuaciones armónicas, de una manera más precisa, lo 

que lleva a un conjunto extendido de reglas con poder predictivo cuantitativo 

que abarca dependencia de secuencia no local y fluctuaciones anarmónicas. 

Nuestros resultados determinan que los parámetros helicoidales son 

transferibles (con pocas excepciones) a nivel de tetranucleótidos y nos alientan a 

hacer observaciones cualitativas de su variabilidad e interdependencia que 

resultarían confiables (Figura 8). El ADN-B muestrea sus coordenadas internas 

de forma concertada, generando una coreografía compleja de transiciones 

conformacionales que modula los polimorfismos de ADN. Por lo tanto, muchos 

parámetros helicoidales y torsiones de la cadena principal muestran patrones 

de correlación coherentes específicos de secuencia entre los 3 bps de un 

tetrámero. Los cationes representan un jugador adicional en esta negociación, 

que tiene la capacidad de modificar sutilmente el paisaje polimórfico del ADN, 

particularmente a nivel de bps. 
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Figure	8	Esquema	del	paisaje	polimórfico	del	B-ADN	a	nivel	de	tetranucleótidos.	Los	136	tetranucleótidos	únicos	
se	agruparon	de	acuerdo	con	purinas	(R)	y	pirimidinas	(Y),	para	las	cuales	solo	existen	10	combinaciones	únicas. 
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3.4  Long-Range Effects Modulate Helical  Properties of some DNA 
Dinucleotide Pairs.  
(Efectos	de	largo	alcance	modulan	las	propiedades	helicoidales	de	algunos	pares	de	

dinucleótidos	de	ADN)	

Sinopsis. Usamos extensas simulaciones de dinámica molecular para 

estudiar las propiedades estructurales y dinámicas del paso central d(TpA) en 

el tetrámero altamente polimórfico d(CpTpApG). Contrariamente a la 

suposición de los vecinos cercanos (modelo dímero) y los próximos vecinos 

(modelo tetrámero), las propiedades del paso central d(TpA) cambian de 

manera bastante significativa en función del correspondiente hexámero. Aún 

más sorprendente, encontramos que en algunos casos las propiedades del 

d(TpA) central parecen depender de vecinos remotos (más allá del nivel de 

hexámeros), lo que destaca la existencia de mecanismos para la transmisión a 

largo plazo de información estructural en el ADN.  

Presentamos aquí un análisis detallado de CTAG en diferentes contextos 

de secuencia. Los resultados demuestran que los efectos de largo alcance 

modulan las propiedades geométricas del paso central d(TpA). Dichos efectos 

de largo alcance son muy visibles a nivel de hexámeros, pero 

sorprendentemente se extienden más allá de este nivel, lo que indica la 

existencia de un complejo mecanismo de transferencia de información a través 

del ADN mediante movimientos coordinados de la cadena principal. 
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3.5  Allosterism and signal transfer in DNA. 
(Allosterismo	y	transferencia	de	señal	en	el	ADN)	

Sinopsis. Analizamos los mecanismos básicos de transmisión de señal en 

el ADN y los orígenes de la alostería exhibidos por sistemas tales como el 

complejo ternario BAMHI-DNA-GRDBD. Encontramos que la información de 

perturbación generada por un evento de unión a proteína primaria viaja como 

una onda a regiones distantes de ADN, siguiendo un mecanismo de salto. Sin 

embargo, tal perturbación estructural es transitoria y no conduce a cambios 

permanentes en la geometría del ADN y las propiedades de interacción en el 

sitio de unión secundario. El mecanismo alostérico BAMHI-DNA-GRDBD no 

ocurre a través de ningún modelo tradicional: lectura directa (proteína-

proteína), indirecta (reorganización del sitio secundario) o liberación de 

solvente. Por el contrario, es generado por un mecanismo sutil y menos común 

mediado por entropía, que podría tener un papel importante para explicar otros 

efectos cooperativos mediados por el ADN. 

Primero discutimos la respuesta estructural, observando las correlaciones 

y la causalidad en los descriptores geométricos que explicarían la transferencia 

de información de sitio a sitio en el ADN. Encontramos que la presencia de 

BAMHI enriquece el acoplamiento entre los grados de libertad de los dos sitios 

de unión. 

Desde una perspectiva termodinámica, eliminamos la posibilidad de una 

explicación predominantemente entálpica y encontramos que el mecanismo 

está mediado por la entropía. En términos de cambios de energía libres, la 

formación del complejo ternario es cooperativa porque además de pagar una 

penalización por entropía para unirse a su propio sitio, la primera proteína 

también hace algo del "trabajo" termodinámico desfavorable requerido para 

endurecer el sitio de unión secundario, puesto que los dos sitios de enlace están 

acoplados dinámicamente. 

Además, adaptamos una metodología de cálculo y descomposición de la 

entropía de transferencia de la teoría de la información (previamente utilizada 

en proteínas) para el estudio de nuestro sistema e identificamos fuentes y 

sumideros de flujo de información a través del ADN. 
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3.6  Modeling, Simulations, and Bioinformatics in the service of 
RNA Structure. 
(Modelizaciones,	simulaciones	y	bioinformática	al	servicio	de	la	estructura	del	ARN)	

Sinopsis. Aunque químicamente se acercan al ADN, los ARN pueden 

adoptar una amplia gama de estructuras, desde hélices regulares hasta 

conformaciones globulares que muestran una complejidad similar a la de las 

proteínas. La determinación de la estructura de las moléculas de ARN, crucial 

para la comprensión de la función, se ve gravemente obstaculizada por su 

tamaño y flexibilidad, lo que dificulta el uso sistemático de enfoques 

experimentales. Las técnicas de simulación también están sufriendo problemas 

muy graves, relacionados con la precisión de los métodos y su capacidad para 

muestrear un espacio conformacional grande y complejo. Los enfoques 

recientes creados para reducir las limitaciones de la generación actual de 

métodos de simulación serán revisados aquí, siguiendo una descripción 

sistemática de modelos altamente precisos capaces de tratar con sistemas 

pequeños, con enfoques coarse grained (CG), menos precisos, pero aplicables 

para tratar con modelos grandes. 

Abordamos enfoques computacionales recientes y señalamos sus 

fortalezas y debilidades, así como las lecciones del pasado que impulsaron su 

desarrollo. Seguimos una descripción sistemática de modelos QM altamente 

precisos específicamente aplicables a sistemas pequeños, a representaciones 

atomísticas clásicas de DM, modelos CG, menos precisos, pero capaces de tratar 

con modelos grandes y finalmente los enfoques bioinformáticos en auge 

actualmente. 
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4  Discusión y conclusiones 
	

Problema de exactitud del campo de fuerza 

La utilidad y aplicabilidad de las simulaciones de DM para modelar 

sistemas biomoleculares depende de su capacidad para muestrear 

suficientemente el espacio conformacional y la descripción correcta del 

potencial en términos de la forma funcional del campo de fuerza y el conjunto 

de parámetros. Claramente, el campo de fuerza define la forma del espacio 

conformacional para un conjunto dado de posiciones atómicas y también el 

acceso a los mínimos energéticos. Al simular sistemas en equilibrio, 

especialmente en sistemas bastante estables como el ADN, los campos de fuerza 

se esfuerzan por generar conjuntos que reproducen sistemas reales y no tiene 

por qué ser una gran desventaja con el poder de muestreo. En los últimos años, 

se ha convertido en tarea de los ingenieros informáticos y los desarrolladores de 

software abordar el problema de lograr escalas de tiempo largas y 

biológicamente relevantes. 

La convergencia y reproducibilidad de simulaciones de ADN atomístico 

con campos de fuerza de última generación, como nuestro parmbsc1, se ha 

demostrado de forma convincente [22,23]. También parece que hasta llegar a 

una revolución significativa, donde los milisegundos de simulación se vuelven 

rutinarios, los rangos de muestreo actuales cubren por completo las estructuras 

internas y la dinámica de los ADN-B en esta escala de tiempo [24]. 

La creciente confianza ha permitido a muchos investigadores utilizar DM 

para estudios muy detallados sobre la naturaleza dependiente de la secuencia 

de oligómeros de ADN y sobre el complejo arsenal de mecanismos que rigen su 

comportamiento. En cualquiera de estos estudios es necesaria una validación 

cuidadosa de los resultados ya que aún no está del todo claro qué tan bien y en 

qué grado se reproducen los efectos de secuencia en DM. El hecho de que la 

última generación de campos de fuerza coincida muy bien entre sí y que se 

ajusten a los escasos datos experimentales es seguramente muy alentador, pero 

pasará algún tiempo hasta que se puedan validar pequeñas diferencias en las 

geometrías de las secuencias. 

Nuestra propia validación extensiva del campo de fuerza parmbsc1, así 

como una gran cantidad de otros trabajos que, desde su publicación, se han 

establecido específicamente para evaluar su rendimiento [22,23], o simplemente 

lo han aplicado con éxito, hablan de una parametrización muy estable capaz de 

tratar con una amplia gama de ADN. Vale la pena mencionar que en 
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condiciones especiales podrían ser necesarias pequeñas mejoras, lo que podría 

lograrse con la inclusión de términos de polarización. Sin embargo, hasta la 

fecha, ningún campo de fuerza ha sido capaz de modelar la polarización sin 

desestabilizar finalmente el sistema y esto a un costo enorme (un factor de 10) a 

la velocidad de cálculo. 

En resumen, con base en el notable desempeño de parmbsc1, nosotros y 

otros grupos podemos emplearlo con confianza en el estudio detallado de la 

dinámica del ADN y esperamos que el número de resultados de soporte solo 

aumente. 

Dependencia de la secuencia y polimorfismos del ADN-B. 

Entonces, ¿qué es lo que realmente aprendemos al analizar la variabilidad 

de conformación del ADN sobre su espacio de secuencia a nivel de los 

tetrámeros? Está bien establecido que diferentes bps tienen diferentes 

preferencias con respecto a sus geometrías internas, y hasta cierto punto, el 

conjunto de reglas heurísticas de Calladine es capaz de dar sentido a estas 

diferencias. 

A nivel de bps, algunas secuencias son extremadamente estables, como 

ApT, y algunas secuencias, como CpG, tienen un equilibrio biestable y 

convierten entre diferentes disposiciones de sus geometrías internas. Hay casos 

en que esta frustración puede explicarse por la distribución de cargas, el 

volumen o la fuerza de sus interacciones de apilamiento y los puentes de 

hidrógeno, pero en muchos casos requiere una visión más integral, teniendo en 

cuenta los efectos de secuencia de más alto nivel. 

En simulaciones de DM de multi-microsegundos, los parámetros de pares 

intra-base son siempre unimodales ya que los estados alternativos a los que se 

puede acceder a través de la apertura de la base no se muestrean en esta escala 

de tiempo. Sin embargo, sus promedios de conjunto muestran diferencias 

considerables de acuerdo con el cambio en la secuencia. Los parámetros de 

pares de bases pueden ser bimodales, pero solo en ciertas combinaciones de 

tetranulceótidos que constituyen aproximadamente el 5% de los casos. Esto 

puede explicarse teniendo en cuenta que el bps central de una combinación 

particular de cuatro nucleótidos tiene una preferencia estructural que está en 

conflicto con la de sus pasos vecinos. Con el fin de minimizar el costo de 

energía y satisfacer de la mejor manera posible todos los requisitos 

conformacionales, un bps más flexible poblará varios estados, generalmente un 

máximo de dos. 
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La optimización de las geometrías entre varios bps generalmente implica 

reorganizaciones de la red troncal, con el azúcar fosfato actuando como una 

bisagra que permite la coordinación consecutiva de bps en una coreografía 

compleja que a menudo involucra otros factores, tales como cambios sutiles en 

el entorno del solvente. En los ADN-B, la transición principal más importante es 

BI/BII, que se puede relacionar con la química a través de la fuerza relativa 

dependiente de la secuencia de puentes de hidrógeno no convencionales que 

estabilizan las conformaciones BII. En un modelo de tetrámero de ADN-B, las 

transiciones de la cadena principal de diferentes tetrámeros se traducen en 

movimientos a lo largo de diferentes grados internos de libertad, dependiendo 

de la secuencia. 

Por lo tanto, ahora podemos construir una imagen del espacio 

conformacional interconectado del ADN como una superposición de secuencias 

de tetranucleótidos con descriptores estructurales transferibles. Todavía es una 

cuestión de especulación cómo estas propiedades podrían ser explotadas por 

proteínas y otras moléculas que se unen al ADN para diferentes funciones 

biológicas. 

Transferencia de información a través del ADN. 

Sin embargo, hay algunos casos especiales en los que el modelo de 

tetrámero no parece ser suficiente. El CTAG es uno de esos casos que 

demuestra que, para un tetrámero altamente flexible y polimórfico, la 

composición de la secuencia de largo alcance puede tener un efecto notable 

sobre las propiedades estructurales del bps central. Analizar el mecanismo 

detrás de esta comunicación de largo alcance a través del ADN ha significado 

más que nada una oportunidad para comprender los raros eventos de 

modulación de secuencia que podrían ser mucho más generales en casos de 

distorsiones mayores e inducidas en la hélice. En CTAG pudimos observar la 

influencia de la secuencia no solo desde el nivel del hexámero, sino incluso más 

allá, y los datos apuntan a un complejo mecanismo de transferencia de 

información a través del ADN mediante movimientos coordinados de la cadena 

principal. 

En la realización de la función biológica, el ADN a menudo se considera 

erróneamente como un retículo inerte sobre el cual las proteínas se ensamblan 

para replicar o transcribir genes. Sin embargo, los experimentos demuestran 

que la transferencia de información en el ADN puede ocurrir incluso a largas 

distancias y puede producir efectos alostéricos sobre la unión al ligando (17, 18). 
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Sin lugar a duda, la unión de proteínas o moléculas pequeñas al ADN 

puede producir cambios conformacionales acoplados que pueden afectar a un 

sitio de unión vecino y aumentar su afinidad por la proteína de unión 

secundaria. Tales cambios no necesitan alterar los promedios del conjunto y 

solo potencian modificaciones en la forma del pozo de energía en el sitio de 

unión secundario. Como se ve a partir de la información dinámica 

proporcionada por una trayectoria de DM, tal vez en más de un caso de parejas 

de proteínas, el ADN actúa como un cable que transmite pulsos de información 

originados en el sitio primario de unión que viajan a regiones distantes. 

Mostramos que los métodos de DM pueden proporcionar explicaciones 

razonables para los fenómenos de unión cooperativa en el ADN y abren por 

primera vez la posibilidad de la "alostería sin cambio conformacional" en el 

reclutamiento de proteínas al ADN. Desde un punto de vista termodinámico, 

este tipo de enlace cooperativo parece estar impulsado por la entropía. Por lo 

tanto, el primer evento vinculante congela algunos de los grados de libertad 

alrededor de su propia región de unión, pero también reduce el costo de 

entropía asociado al segundo enlace. 
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