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___________________________________________________________________________ 

ABSTRACT: The ligand sequential replacement on chromium(III)-aqua complexes by L-

alanine in slightly acidic aqueous solutions (pH range: 3.55–5.61) has been kinetically 

followed by means of UV-Vis spectrophotometry. A two rate constant model has been 

applied to fit the absorbance-time data, corresponding to the formation (k1) and decay (k2) of 

an intermediate not reactive enough to be in steady state (long-lived intermediate). The kinetic 

orders of the amino acid were fractional (0.40 ± 0.03 for k1 and 0.40 ± 0.02 for k2). The two 

steps showed base catalysis, and the activation energies were 60 ± 3 (for k1) and 83 ± 6 (for 

k2) kJ mol
-1

. The rate constants for the coordination of the first L-alanine ligand followed the 

sequence 2+ +

2 3CrOH  <  Cr(OH)  <  Cr(OH) , 3+
Cr being almost inactive. This suggests that the 

increase in the reaction rate with increasing pH was caused by the enhancement of the lability 

of the Cr(III)-aqua bonds induced by the presence of hydroxo ligands. The activation 

parameters for a series of ligand substitution on Cr(III)-aqua complexes by organic molecules 

yielded a statistically significant enthalpy-entropy linear plot with an isokinetic temperature of 

296 ± 21 K.  

___________________________________________________________________________ 
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1.  INTRODUCTION 

 

The coordination chemistry of chromium(III) differs from those of other transition metal ions 

in the rate of the reaction between the metal and its ligands. Whereas chemists are used to see 

in their laboratories how typical complexes such as tetraamminecopper(II) or 

diamminesilver(I) ions form in a rather fast way, and kinetic studies of the substitution of 

coordinated water on Pt(II) and many other metal ions by organic ligands often require the use 

of rapid reactant mixing techniques as the stopped-flow method,
1
 the characteristic kinetic 

inertness to substitution of the Cr(III) d
2
sp

3
 octahedrical complexes

2,3
 makes them especially 

attractive candidates to be employed in kinetic studies affordable by ordinary UV-Vis 

spectroscopy. For instance, the relatively slow reaction between Cr(III) and 

ethylenediaminetetraacetic acid (EDTA)
4,5

 is selected as an adequate experiment in chemical 

kinetics for undergraduate students in some university faculties around the world.
6,7

  

The complexes of Cr(III) are of certain importance in biology. Actually, chromium is 

nowadays considered by many authors as a necessary nutritional oligoelement
8
 because of its 

participation in the glucose tolerance factor.
9-12

 Although the classification as an essential 

trace element remains polemical,
13,14

 the capacity of chromium to potentiate the action of 

insulin is well established.
15

  

On the other hand, L-alanine, the simplest -amino acid presenting optical isomerism, is 

classified as one of the 10 non-essential biological amino acids for humans, due to their 

ability to produce it.
16

 Given that the amino acid molecules exhibit two functional groups with 

nitrogen and oxygen atoms capable of acting as electron-pair donors, they can be considered 

as suitable ligands for vacant-orbital transition metal ions. In particular, the reactions of 

complexation of Cr(III) by amino acids might be related to the problem of the origin of the 
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first peptides on prebiotic Earth,
17

 since transition metal ions have been shown to catalyze the 

formation of peptide bonds between the amino acid monomers acting as ligands.
18 

The substitution reactions on aqua,
19-26

 hydroxo,
27

 and ammonia
28

 complexes of Cr(III) by 

amino acids have been the subject of several kinetic studies. Although the results of two 

independent investigations of the Cr(III)-alanine reaction have already been reported,
29,30

 the 

process under a large excess of organic ligand being classified in both cases as a pseudo-first 

order reaction, some clear-cut deviations from this simple kinetic behavior have been 

observed. The main objective of the present work will be to search for and eventually find a 

kinetic model capable of accounting for those deviations.      

 

  

2.  EXPERIMENTAL PART  

2.1. Materials and Methods. All the experiments were done using milli-Q quality 

(Millipore Synergy UV system) water as solvent. The source of metal ions required to carry 

out the kinetic runs was Cr(NO3)3·9H2O (Merck). The source of organic ligands used in most 

experiments was CH3-CH(NH2)-COOH (alanine, in its L and DL forms, Sigma-Aldrich). 

Other amino acids used were glycine (Merck), as well as L-phenylalanine (Sigma-Aldrich), 

L-threonine (Sigma-Aldrich), and L-histidine (Fluka). KOH (Merck) and HCl (Sigma-

Aldrich) were employed to perform the reactions at an adequate pH range. Actually, the 

window of accessible pHs was rather narrow, being limited at the bottom by the rate of 

reaction (too slow under very acidic conditions) and at the top by the eventual precipitation of 

Cr(OH)3. The background electrolyte used to change the ionic strength when necessary was 

KNO3 (Merck).  
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The pH measurements were done by means of a Wave pH-meter provided with a 

combination electrode (calibrated with buffers at pHs 4.00 and 7.00, Sigma-Aldrich). The 

kinetic runs were monitored by a periodical measurement of the reacting mixture absorbance 

either at five different wavelengths with a Shimadzu 160 A UV-Vis spectrophotometer or at a 

single wavelength with a Shimadzu UV-1201V spectrophotometer. At the end of the 

reactions, the UV-Vis spectra corresponding to the final reaction products were recorded with 

the aid of a third spectrophotometer (SI Analytics, UV Line 8100 model). 

2.2. Kinetic Experiments and Calculations. In most of the runs, the complexing agent 

(either L-alanine or other amino acid) was in large excess with respect to the metal ion, 

Cr(III), acting as limiting reactant (isolation method). The selected wavelength to follow the 

reactions (leading to the highest difference between the initial and final absorbance readings) 

was usually that of 530 nm. The absorbances of the reacting mixture were periodically 

measured (time intervals: 60-360 s) during at least 6 hours, and the final values, along with 

the UV-Vis spectrum and the pH, were taken 4 days later (higher delay times were not 

advisable because of the potential contamination by fungal colonies feeding on the amino 

acid). All the experimental determinations were duplicated. In total, 106 kinetic runs were 

performed.   

 

 

3.  RESULTS AND DISCUSSION  

3.1. Spectrophotometric Monitoring of the Reaction. The stock aqueous solution of 

Cr(NO3)3 (0.3 M, pH 2.01) exhibited a distinct blue color. Addition of an aliquot to an 

aqueous mixture of L-alanine and KOH resulted usually in precipitation of Cr(OH)3, which 
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redissolved rapidly on stirring, yielding a perfectly transparent green solution, whose color 

shifted gradually to violet as the complexation reaction advanced.  

The absorbance of the solution increased at most wavelengths of the UV-Vis spectrum 

during the course of the reaction, and two absorption peaks shifting gradually toward the left 

side could be observed (Figure 1). The higher increase of the absorbance was that 

corresponding to the peak situated at the higher wavelength, thus being the best choice to 

follow the reaction keeping the experimental errors as low as possible. 

In certain kinetic studies, when the reaction has been followed by a spectrophotometric 

technique determining simultaneously the absorbances at two different wavelengths, a 

representation of the absorbance at one wavelength, A(1), as a function of the other, A(2), 

can yield some useful information on the chemical system under study, for instance, the 

participation of a long-lived intermediate (as opposed to very reactive, steady-state 

intermediates
31-33

) in the mechanism
5
 or the colloidal nature of one of the reaction products.

34-

36
  In the presence of a long-lived intermediate (I), the relationship follows the law: 
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 

  


 (2) 

 

  1 o( )A   and 
 2 o( )A   being the initial absorbances at the two wavelengths and l the optical path 

length, whereas the subscripts of the molar absorption coefficients indicate the corresponding 
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chemical species (reactant, intermediate, and product) and wavelength. According to eqs 1 

and 2, in the absence of any long-lived intermediate ([I] = 0) the A(1) vs A(2) plots should 

be linear. However, in the particular case of the Cr(III)-alanine reaction, both downward-

concave (1 = 585 nm, 2 = 530 nm) and upward-concave (1 = 400 nm, 2 = 530 nm) curves 

(Figure S1) were observed, suggesting the participation of at least a long-lived intermediate in 

the mechanism. 

In all the experiments corresponding to the Cr(III)-alanine reaction (and also for the other 

amino acids studied, except in the case of L-histidine), the absorbance-time plots presented a 

downward-concave curvature, meaning that the reaction rate decreased right from the 

beginning of the process (Figure S2, top). This decrease was much faster than expected for a 

pseudo-first order reaction (Figure 2). As a consequence, attempted pseudo-first order plots 

led to nonlinear upward-concave plots (Figure S2, bottom). However, in the case of L-

histidine, as well in those previously reported for the reactions of Cr(III) with EDTA
5
 and L-

glutamic acid,
37

 sigmoidal (S-shaped) absorbance vs time and autocatalytic-like (bell-shaped) 

rate vs time plots were found.  

3.2. Consecutive Steps: A Kinetic Model for the Reaction. According to the available 

experimental information, the kinetics of the Cr(III)-alanine reaction seems to follow the 

simplified mechanism:  

  

 

  
  1 2

fast slow
R          I          P

k k
   (3) 
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where R, I, and P stand for the limiting reactant (the metal ion), the long-lived intermediate 

(not being reactive enough to be in steady state, the slow step thus being the one 

corresponding to its decay), and the reaction product, respectively. The exact solutions for the 

time dependences of the concentrations of these species can be obtained by integration of the 

corresponding differential equstions,
38

 and are the following: 

 

   1

o

 
[R]   =   [R]  k te   (4) 

 

 

    1 21 o

2 1

    [R]  
[I]       (  )

  

k t k tk
e e

k k

 
 


 (5) 

 

 o[P]      [R]    [R]   [I]    (6)  

 

where [R]o is the initial concentration of the limiting reactant. The total absorbance at a given 

wavelength can be calculated as:  

 

 
  R, I, P,( ) =   [R]  +   [I]  +   [P]  A l       (7) 

 

where 
 R, ,

 I, , and  P,  are the molar absorption coefficients corresponding to the reactant, 

intermediate, and product, respectively, and considering the initial and final absorbances:  
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0
 

o o

, ,

I,

      

 [R]   [R]  
 =   [R]  +   [I]   +   [P]

A A
A l 
  

 (8) 

 

 Whereas the value of ,A   could be obtained from the final absorbance reading (once the 

reacting mixture reached the equilibrium state), that of 
0,A  was not experimentally accessible 

in a direct way because at t = 0 the reactants were still being mixed together. Thus, in a 

BASIC program different values of four fitting parameters (
0,A , 

   I ,
 , 

1
k

 
and 

2
k ) were 

systematically changed until minimization of the absorbance average error was attained. The 

latter was defined as: 

 

 
    

  

i,cal i,exp

1i

   

        

N

A A

N
E 






 (9) 

 

Ai,cal and  Ai,exp being the calculated and experimental absorbances at different times during 

the progress of the complexation reaction, respectively, and N the number of experimental 

points available for each kinetic experiment. The program so developed yielded a good 

enough concordance between the calculated and experimental absorbances (E = 3.40  10
-4

   

1.50  10
-3

). 

Furthermore, given that the Cr(III)-alanine reaction (under conditions of a large excess of 

organic ligand) has been previously reported in the chemical literature to follow a pseudo-first 

order behavior,
29,30

 it might be worth to compare the quality of the absorbance-time fits 

attained with two mathematical alternatives: the biparametric pseudo-first order kinetic model 
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(involving 
0,A  and k ) and the tetraparametric model (involving 

0,A , 
   I ,

 , 
1

k
 
and 

2
k ) used in 

the present work. As can be seen in Figure 3, the ratio between the experimental and 

calculated absorbances during the course of the reaction was much closer to unity when the 

two rate constant kinetic model was employed, the difference between the two models being 

especially notable at the beginning of the reaction. 

3.3. Reaction of Cr(III) with L-Alanine Kinetic Results. Both rate constants decreased 

as the metal ion initial concentration increased, k1 according to an upward-concave curve, 

whereas k2 yielded a straight line (Figure S3). These decreases were caused by the 

corresponding decrease in the reacting mixture initial pH, due primarily to the dissociation of 

hexaaquachromium(III) ion to yield hydroxopentaaquachromium(III) ion.
39,40

 

 In contrast, both rate constants increased as the organic ligand initial concentration 

increased. The corresponding double-logarithm plots yielded straight lines with slopes 0.40 ± 

0.03 in the case of k1 and 0.40 ± 0.02 in that of k2 (Figure 4). This means that the apparent 

kinetic orders of the amino acid were fractional (non-integer) numbers, thus excluding the 

possibility of the reaction being of first order as far as the concentration of L-alanine was 

concerned.  

The ionic strength of the medium was changed by the use of KNO3 as background 

electrolyte, and its effects on both experimental rate constants have been determined. A plot 

of the logarithm of each magnitude against I 

1/2
 / (1 + I 

1/2
) yielded straight lines with the slopes 

0.93 ± 0.18 (for k1) and 0.43 ± 0.26 (for k2) M
-1/2

 (Figure S4).  

The pH of the medium was varied by means of a changing concentration of KOH. An 

increase of the pH resulted in an increase of both k1 and k2 (Figure 5), indicating the existence 

of base catalysis in the two cases. 
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 Both experimental rate constants increased with increasing temperature (Table 1), fulfilling 

the Arrhenius equation (Figure S5), and yielding an activation energy for the first 

experimental rate constant considerably lower than that associated with the second (Table 2) . 

This result is consistent with the finding that rate constant k1 was one order of magnitude 

higher than k2. 

On the other hand, when the source of organic ligands was changed from L-alanine to a 

DL-alanine racemic mixture, both the kinetic data (k1 and k2) and the final UV-Vis spectrum 

remained unaltered within the experimental error margin (Figure S6), denoting that the 

reaction was rather insensitive to the nature of the amino acid optical isomer.  

3.4. Reactions of Cr(III) with Other Amino Acids: Kinetic Results. The temperature-

dependence kinetic data for the reactions of Cr(III) with four other biological amino acids 

have been determined, fulfilling in all the cases the Arrhenius equation (Figure S5) and 

yielding the activation parameters compiled in Table 2. Whereas the reactions with glycine, L-

phenylalanine, and threonine followed the same two rate constant kinetic model developed for 

that with L-alanine (involving a single long-lived intermediate), the reaction with L-histidine 

followed a three rate constant kinetic model (involving two long-lived intermediates). These 

three rate constants were designated as ko, k1, and k2. Whereas rate constants k1 and k2 for L-

histidine correlated well with their counterparts for the other four amino acids (Figure 6), rate 

constant ko followed a different pattern. This suggests that the discordant rate constant did not 

correspond actually to the replacement of an aqua ligand by the amino acid but to the base-

catalyzed aquation of an initial Cr(III)-nitrate complex
41,42

 (rate constant ko) instead, the 

Cr(III)-aqua complex being the one susceptible of reaction with a first amino acid molecule 

(rate constant k1) followed by a second (rate constant k2).   
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A representation of the activation enthalpy as a function of the activation entropy for the 

reactions of Cr(III) with EDTA,
5
  L-glutamic acid,

37
 and the five amino acids corresponding 

to the present study yielded a linear plot (Figure 7). It has been shown, however, that at least 

some of the enthalpy-entropy linear correlations found in the chemical literature are caused by 

the accumulation of experimental errors. This is so because the standard deviation associated 

with the enthalpy is directly proportional to that associated with the entropy, the 

proportionality constant being equal to the mean experimental temperature.
43-47

 Nevertheless, 

there seem to be reliable evidences supporting the physicochemical meaning of some of those 

correlations.
48,49

  In the present case, despite the slope of the plot (isokinetic temperature, Tiso 

= 296 ± 21 K) being almost coincident with the mean experimental temperature (Texp = 298 

K), the correlation was statistically significant since, according to the p-test,
50

 the probability 

of it being caused by random experimental errors was relatively low (P = 0.0106). 

 3.5. UV-Vis Spectrum of the Long-Lived Intermediate. The electronic spectrum of the 

long-lived intermediate could not be directly recorded, but it could be calculated by 

discounting the contributions of both the green reactant and violet product from the spectrum 

recorded at the instant when the intermediate reached its maximum concentration, by means 

of the formula: 

 

 
 R, P,

I,

max max

max

   (  [R] +  [P] )  
  =  

 [I]  

A l

l

  



 



 (10) 

 

where [R]max, [I]max, and [P]max are the concentrations of reactant, intermediate, and product at 

the instant: 
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1

1 2 2

max

   1 
  =   ln  

 

k
t

k k k
 (11) 

 

 As shown in Figure 8, the spectrum was intermediary between those corresponding to the 

reactant and product. This result contrasts with the spectra for the long-lived intermediates 

observed in the reactions of Cr(III) with EDTA
5
 or L-glutamic acid,

37
 since in the latter two 

cases the spectrum was very close to that recorded for the reactant. This suggests that they 

might be in fact quite different intermediates, the one involved in the Cr(III)-alanine reaction 

being a complex with a single amino acid ligand (the product containing two or more organic 

ligands), whereas the ones involved in both the Cr(III)-EDTA and Cr(III)-glutamic acid 

reactions might be Cr(III)-aqua complexes containing zero organic ligands, their formation 

corresponding to the aquation reaction of the initial Cr(III)-nitrate complex, as happened also 

in the case of the first long-lived intermediate formed in the Cr(III)-histidine reaction. 

 3.6. UV-Vis Spectra of the Reaction Products. The final reaction mixture showed a 

distinct violet color and, once recorded its spectrum, two strong peaks were observed in the 

visible region, their wavelengths depending on the experimental conditions. An increase of 

the Cr(III) initial concentration resulted in a shift of the two absorption peaks recorded for the 

final violet complex toward higher wavelengths and, as could be easily anticipated, the 

corresponding maximum absorbances increased indeed, but the plots were not linear, showing 

a downward-concave curvature instead (Figure S7). In fact, even if the wavelength was kept 

constant (530 nm), there was a deviation from the Lambert-Beer law, since the molar 

absorption coefficient decreased as the metal ion initial concentration increased (Figure 9). 
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 In contrast, an increase of the L-alanine initial concentration resulted in a shift of the two 

spectral absorption peaks for the final violet complex toward lower wavelengths and, as 

observed before for the effect of the metal ion initial concentration, the corresponding 

maximum absorbances increased, but the plots were not linear either, showing a downward-

concave curvature again (Figure 10). 

 The spectral parameters corresponding to the reaction product with Cr(III) coordinated to 

the highest possible number of organic ligands (saturated) could be obtained by extrapolation 

of the data shown in Figure S7 at [Cr(III)]o = 0 or of those shown in Figure 10 at [L-alanine]o 

=  .  To check the results, the corresponding extrapolations at either [Cr(III)]o =   or [L-

alanine]o = 0, leading to the spectral parameters corresponding to the reactant with Cr(III) 

coordinated to zero organic ligands, were also carried out. The extrapolated values so 

obtained are compiled in Table 3. It should be noticed that the ones obtained at infinite initial 

concentrations (of either metal ion or amino acid) are to be preferred over those obtained at 

zero initial concentrations, for they are closer to the experimental values in the case of the 

reactant (the only species for which the spectrum parameters are directly accessible).  

 A variation of the initial potassium hydroxide concentration had also an effect on the UV-

Vis spectrum of the reaction product mixture. As can be observed, an increase of the initial 

base concentration resulted in a decrease of the wavelengths associated with the two peaks 

and an increase of the corresponding absorbances (Figure S8). 

 The spectroscopic data shown in Figures S7, S8, and 10 indicate that the wavelength for 

the first visible peak of the final reacting mixture lied in the range 392 409 nm, and for the 

second in the range 528 548 nm, increasing both with the initial concentration of metal ion 

and decreasing both with the initial concentrations of either ligand or potassium hydroxide. 

The values reported for the number of L-alanine ligands coordinated to each Cr(III) center in 
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the final violet complex are 2 according to some authors
30

 and 3 according to others.
29

 

Actually, the results shown in Figures S7, S8, 9, and 10 cannot be explained unless we 

assume the presence of at least four different complexes in the final reacting mixture. Thus, 

although the participation of other complexes cannot be discarded, the simplest explanation 

for the experimental data so far available is that four complexes differing either in the number 

of organic ligands or in their acid-base properties coexist in equilibrium in the final reacting 

mixture:  

 

 
  

1+ +

+1C H   +  Ala          C Hn n

K
   (12) 

 
2

+1C   +  Ala          Cn n

K
  (13) 

 

where Cn (or Cn – H
+
) and Cn +1 (or Cn +1 – H

+
) are Cr(III) complexes involving n  and n +1 L-

alanine ligands, respectively, their total concentrations being  [Cn]T = [Cn] + [Cn –H
+
]  and   

[Cn +1]T = [Cn +1] + [Cn +1–H
+
]. From a mass balance, it follows that: 

 

 

 
 

 

     

+

+1
1 T T +1 T+

 [C H ] 
   =   [Ala]  [C ]  ( +1)[C ]

 [C H ] 

n
n n

n

K n n


 


 (14) 

 

      
+1

2 T T +1 T

 [C ] 
   =   [Ala]  [C ]  ( +1)[C ]

 [C ] 

n
n n

n

K n n   (15) 

 

 Since an increase of the metal ion initial concentration results in an increase of both [Cn]T  

and [Cn +1]T, and so in a decrease of the [Cn +1–H
+
]/[Cn –H

+
] and [Cn +1]/[Cn] ratios, whereas an 

increase of the L-alanine initial concentration leads to the opposite result (an increase of the 
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[Cn +1–H
+
]/[Cn –H

+
] and [Cn +1]/[Cn] ratios), eqs 14 and 15 are consistent with the plots shown 

in Figures S7, 9, and 10 provided that the electronic spectra corresponding to the different 

complexes are shifted toward lower wavelengths as the number of organic ligands increases 

and, at the same time, there is an enhancement of the intensity of the absorption peaks: 

 

    1,2 1,2 1,2(0)  >  ( )  >  (  + 1)n n    (16) 

    1,2 1,2 1,2(0)  <  ( )  <  (  + 1)n n    (17) 

 

In eqs 16 and 17 the subscripts correspond to the first and second peaks of the UV-Vis 

spectrum, and the numbers within parentheses correspond to the L-alanine ligands 

coordinated to Cr(III) in each of the five complexes proposed: 0 for the initial green complex, 

n  for the final violet complexes Cn –H
+
 or Cn, and n +1 for the final violet complexes Cn +1–H

+
 

or Cn+1. Moreover, the finding of a clear-cut dependence of the electronic spectrum of the 

final reacting mixture on the pH of the medium (Figure S8) allows us to infer that: 

 

 
   

 
+

1,2 1,2(C )  <  (C H )n n    (18) 

   

 
+

1,2 +1 1,2 +1(C )  <  (C H )n n    (19) 

 
 

+

1,2 1,2(C )   (C H )n n    (20) 

 
 

+

1,2 +1 1,2 +1(C )   (C H )n n    (21) 
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 3.7. Hydrogen Ions Released. The number of hydrogen ions released to the medium per 

chromium atom during the course of the reaction could be calculated from the value of pH∞ 

by means of the following equation: 

 

 

+ +o o
o+

a o

 [L]   [M]   1 
Number (H )   =    + 1  [H ] + [B]

+ [H ]  [M]
( ){ }n

K






 (22) 

 

where  L, B, and M stand for ligand, base (potassium hydroxide) and metal, respectively, n is 

the number of organic ligands coordinated per chromium atom, and Ka is the first acid-

dissociation equilibrium constant of protonated L-alanine (for the carboxyl group, pKa 2.35 at 

25.0 ºC).
51,52 

The results indicated that the number of hydrogen ions released per chromium 

atom decreased as the initial concentration of metal ion increased, whereas it increased as the 

initial concentrations of either L-alanine or potassium hydroxide increased, remaining within 

the range 0.73 ≤ Number (H
+
) ≤ 2.53 (Figure 11). 

 3.8. Chromium(III) Speciation. The kinetics of the reaction between Cr(III) and L-

alanine resembles that of other similar processes, such as the complexations of the same metal 

ion by EDTA
5
 or the -amino acids L-glutamic acid,

26,37
 DL-leucine,

25
 and DL-lysine,

26
 in 

that all of them exhibit base catalysis. It is precisely this pH dependence that offers the main 

clue to elucidate the mechanism involved in the reaction. 

 Trivalent chromium finds itself in slightly acidic aqueous solutions in the form of several 

species in equilibrium, from hexaaquachromium(III) ion to dissolved (either monomolecular 
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or colloidal) chromium(III) hydroxide, passing through the monohydroxo and dihydroxo 

complexes:  

 

 

  (3 ) (2 )

2 6 1 2 5

+ + +[Cr(OH) (H O) ] [Cr(OH) (H O) ]           +  Hx x
x x x x

 

 
  (23) 

 

where x = 0 2. Although the corresponding equilibrium constants were not known with 

exactitude for some time,
53 

a recent publication has reported experimental values for them that 

can be considered as reliable (for the successive dissociations of the hexaaqua complex: pKa,1 

3.52, pKa,2 5.78, pKa,3 7.88).
54

   

 Since, according to the kinetic model developed in the present work, rate constant k1 

should be considered as the ratio between the initial values of the reaction rate and the 

concentration of the inorganic (limiting) reactant, it must be correlated with the initial pH of 

the reacting mixtures. Unfortunately, given the slow response of the pH meter to yield 

accurate measurements, the only pH data experimentally accessible with a high degree of 

confidence are those corresponding to an equilibrium state (pH∞). However, the initial pH for 

each kinetic run could be theoretically calculated from the first and second acid-dissociation 

equilibrium constants of hexaaquachromium(III) ion
54

 and the first of the protonated form of 

L-alanine.
51,52

 It should be noticed that the use of a buffer was not advised because of the 

potential competition between the anionic basic form of the buffer and L-alanine as ligands 

for the metal ion. 

 The relative fractions of the different Cr(III) species present in equilibrium within the 

initial pH range covered by our kinetic experiments are shown in Figure S9. The predominant 

form was the monohydroxo complex, with appreciable amounts of both the hexaaqua and 
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dihydroxo complexes, and the hydroxide in very small concentration. In a first trial, we 

attempted to calculate the value of experimental rate constant k1 as a linear combination of the 

contributions of the four possible Cr(III) species: 

 

 
 

 

 

3
(3 )+

 1, 2 6
= 0

1,cal 3
(3 )+

2 6
= 0

  [Cr(OH) (H O) ] 

  =  

 [Cr(OH) (H O) ]

x
xx x

x

x
x x

x

k

k










 (24) 

 

A BASIC program was developed in order to find the best set of values k1,x (x = 0 3) 

minimizing the difference between the calculated (k1,cal) and experimental (k1,exp) rate 

constants. However, a k1,exp vs. k1,cal plot yielded a downward-concave curve (Figure 12, top).  

Therefore, a second trial was made (considering now negligible the contribution 

corresponding to x = 0) with a function of the type:  

 

 
 

 

 

3
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 1, 2 6+
= 0o

1,cal 3+
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2 6
= 0

  [Cr(OH) (H O) ] 
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  =   
 1 +  [H ]  
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x
xx x

x

x
x x

x

k

k
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








 (25) 

 

yielding the results k1,1 = 1.77 M
-1

 s
-1

, k1,2 = 128 M
-1

 s
-1

, k1,3 = 3.07  10
4
 M

-1
 s

-1
, and K = 9.66 

 10
4
 M

-1
, with an excellent concordance between k1,cal and k1,exp (Figure 12, bottom). We can 

see that, according to these data, the reactivity of the chromium species toward L-alanine 

increases following the sequence 2+ +

2 3CrOH  <  Cr(OH)  <  Cr(OH) , each time an aqua ligand 
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is replaced by a hydroxo ligand resulting in a rate constant enhancement by two orders of 

magnitude. This is consistent with the reported 75-fold enhancement of the reactivity toward 

water exchange of the hydroxopentaaqua Cr(III) complex with respect to the hexaaqua 

complex.
55

 

 3.9. Mechanism. The detected long-lived intermediate divides the reaction mechanism in 

two sequences, each with its own slow rate-determining step, the activation energy associated 

with the first sequence being the lower of the two (Figure 13).  Thus, according to the 

available experimental data, the mechanism that can be proposed for the complexation of 

Cr(III) by L-alanine consists of two elementary step sequences. The first leads from the 

reactants to the long-lived intermediate: 

 

 
    

 

 I(3 ) (3 )

2 6 2 5 2

,+ +

slow
[Cr(OH) (H O) ] [Cr(OH) (H O) ] +  H O           xx x

x x x x
k 

 


 
(26) 

 
   

 

 

 II(3 ) 2

2 5 1 5

,+ ( )+
2[Cr(OH) (H O) ]  +  OH          [Cr(OH) (H O) ]xx x

x x x x
k  

   (27) 

 
    III(3 ) 3

2 5 2 2 6

,+ ( )+[Cr(OH) (H O) ]  +  H O          [Cr(OH) (H O) ]xx x
x x x x

k 

 
   (28) 

 
   IV

  
3 3

2 5 2 5

,( )+ ( )++  RH          (RH)[Cr(OH) (H O) ] [Cr(OH) (H O) ]xx x
x x x x

k 

 
   (29) 

 
  

 

  
3 (3 )

2 5 1 2 5 2

( )+ +(RH)     [Cr(OH) (R)(H O) ] + H O[Cr(OH) (H O) ]       x x
x x x x

 

  
  (30) 

 

where x = 1, 2, or 3, depending on the particular reacting Cr(III) species, and RH stands for 

the zwitterionic form of the amino acid. The experimental results suggest that the presence of 

OH ligands in the reactant complex renders the Cr(III)-H2O chemical bonds more labile. The 

breakage of one of those bonds (as in eq 26) has been postulated to be a requirement for the 
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formation of the Cr(III)-EDTA complex.
7
 Then, a competition between hydroxide ion (eq 27), 

water (eq 28) and the organic ligand (eq 29) for the vacant coordination site of the penta-

coordinated metal ion takes place. In the last reaction the organic ligand suffers a conversion 

from monodentate (RH) to bidentate (R) and a water molecule is released, leading to the 

formation of the long-lived intermediate (eq 30). 

 Assuming that the penta-coordinated intermediate is reactive enough to be in steady state, 

the following expressions can be obtained for the parameters appearing in eq 25: 
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W II
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I IV
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x x

x

x

k k
k

K k
  (32) 

 

where 
 W

K  is the water ionic product. Equations 25, 31 and 32 are consistent with the 

dependence of k1 on the initial concentration of organic ligand (fractional kinetic order, Figure 

4, top). Moreover, the increasing effect of the ionic strength (Figure S4, top) can be explained 

by the decrease of rate constant 
   II,xk , since eq 27 involves two unlike-charged ions as 

reactants (for x = 1 or 2), and the observed base catalysis (Figure 5, top) comes 

straightforward from the increase of 
   I,xk as x increases from 1 to 3. 

 The second sequence (that parallels the first one) leads from the long-lived intermediate to 

the reaction products: 

 
      

 

 V ( )

2 2

3 3 +

1 5 1 4 2

,( )+

slow
       [Cr(OH) (R)(H O) ] [Cr(OH) (R)(H O) ] + H O     xx x

x x x x
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  (33) 
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        VI( ) ( )

2 2

3 + 2 +

1 4 4

,
 [Cr(OH) (R)(H O) ]  + OH         [Cr(OH) (R)(H O) ]  xx x

x x x x
k  

  
  (34) 

 
        VII(3 )+ (3 )+

1 2 4 2 1 2 5

,[Cr(OH) (R)(H O) ]  +  H O         [Cr(OH) (R)(H O) ]xx x
x x x x

k 

   
  (35) 

 
       

 

VIII(3 )+ (3 )+

1 2 4 1 2 4

,[Cr(OH) (R)(H O) ] +  RH   [Cr(OH) (R)(RH)(H O) ]    xx x
x x x x

k 

   
  (36) 

 

 Assuming again that the penta-coordinated intermediate is reactive enough to be in steady 

state, the following expression can be obtained for the second experimental rate constant: 
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where: 
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x x
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 (38) 

 

Equations 37 and 38 are consistent with the dependence of k2 on the initial concentration of 

organic ligand (fractional kinetic order, Figure 4, bottom). Moreover, the decreasing effect of 

the ionic strength (Figure S4, bottom) and the increasing effect of the pH (Figure 5, bottom) 

might be explained by the change in the relative proportions of the long-lived intermediates of 

the type   (3 )

1 2 5

+[Cr(OH) (R)(H O) ] x
x x



 
, provided that 

  V,xk  increases gradually from x = 1 to 3 

(the hydroxo ligands render the Cr-H2O bonds more labile), addition of a background 
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electrolyte resulting in an increase of the contributions of the less reactive, lower-x species 

(through a shift of the acid-dissociation equilibria of the long-lived intermediates to the left 

side because the reaction products are like-charged ions), whereas an increase of the pH 

resulted in an increase of the contributions of the more reactive, higher-x species.  

 Given enough time ( at t = ), the following equilibria might be reached:  

 

 

     

 

    

(3 )+ (3 )+

1 2 4 1 2 2 3
2

RH

H O
[Cr(OH) (R)(RH)(H O) ]        [Cr(OH) (R)(RH) (H O) ]x x

x x x x
 

   
  (39) 
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1 2 4 3 1 2 2 5

+[Cr(OH) (R)(RH)(H O) ]  +  H O  [Cr(OH) (RH) (H O) ]  x x
x x x x
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   
  (40)  

 

      

   

(3 )+ (4 )+

1 2 2 3 3 1 3 2 4

+[Cr(OH) (R)(RH) (H O) ] + H O [Cr(OH) (RH) (H O) ]    x x
x x x x

 

   


 
 (41) 

  

The correspondence between the complexes appearing in eqs 39 – 41 and those seen before in 

eqs 12 and 13 is shown in Table 4.   

 The number of hydrogen ions released to the medium during the course of the reaction (per 

chromium atom belonging to the violet complex) can then be estimated as: 

 

 

+ +

+

T

1 1  ([ ] + [ ]) + ( 1) ([ H ] + [ H ]) 
Number (H )  =  

[Cr(III)]

C C C Cn n n nx x   
  (42) 

 

and, depending on the experimental conditions, it takes values in the range 0 < Number (H
+
) < 

3 (since x = 1–3), in agreement with Figure 11. 
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 Finally, we can conclude that, all in all, and considering the complexity of the chemical 

problem under study, the kinetic model used to obtain the reaction parameters should be 

considered as a good enough approximation to the real behavior of nature. 

 

4.  CONCLUSIONS 

(i) The reaction rate decreased much faster than expected for a pseudo-first order process 

(even under a large excess of organic ligand). This unusual pattern could be explained by the 

participation of a long-lived intermediate, not being reactive enough for the steady-state 

approximation to apply, and the rate constants corresponding to the formation (k1) and decay 

(k2) of the long-lived intermediate have been determined under different experimental 

conditions. (ii) Rate constant k1 was one order of magnitude higher than k2, and the respective 

activation energies were 60.2 ± 3.3 and 83.3 ± 5.9 kJ mol
-1

, indicating that the formation of 

the long-lived intermediate was much faster than its decay. (iii) The UV-Vis spectrum of the 

long-lived intermediate was intermediary between those of the green inorganic reactant and 

the violet reaction product, whereas the spectroscopy data strongly suggested the coexistence 

of at least four complexes between Cr(III) and L-alanine in the final reacting mixture. (iv) The 

rate constants for the replacement of an aqua ligand by L-alanine followed the sequence 

2+ +

2 3CrOH  <  Cr(OH)  <  Cr(OH) , revealing that the hydroxo ligands rendered the Cr(III)-

H2O chemical bonds more labile. (v) A reaction mechanism, consistent with the available 

experimental information, has been proposed, including an elementary reaction sequence for 

each experimental rate constant, the key (slow) steps involving the breakage of a Cr(III)-H2O 

chemical bond, thus leaving a vacant coordination place to allow the entrance of the organic 

ligand. 
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Table 1. Values of the Experimental Rate Constants at Various Temperatures 

a
 

  

T / ºC k1 / 10-4 s-1 k2 / 10-5 s-1 E / 10-4
 

b      

 20.0  2.59 ± 0.01 2.63 ± 0.01 5.54 ± 0.76 

 22.5 3.02 ± 0.03 3.30 ± 0.06 6.79 ± 0.42 

 25.0 3.73 ± 0.04 5.08 ± 0.24 5.28 ± 0.14 

 27.5 4.72 ± 0.01 6.03 ± 0.29 6.95 ± 1.34 

 30.0 5.77 ± 0.49 8.03 ± 0.97 6.30 ± 2.71 

 
a 

[Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.354 M, [KOH]o = 5.0310
-3

 M, pH∞ 4.06 ± 

0.03.  
b

 Average error of the calculated absorbances with respect to the experimental values. 

___________________________________________________________________________ 
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Table 2. Arrhenius and Eyring Parameters Associated with the Experimental Rate 

Constants with Several Biological Amino Acids as Complexing Agents 

a
 

  

amino acid  rate constant ln (A/s
-1

) Ea / kJ mol-1 H
o
‡ / kJ mol-1 S

o
‡ / J K-1 mol-1

        

glycine 

b
 k1  15.3 ± 1.7 58.8 ± 4.1 56.3 ± 4.1   126.1 ± 13.8 

 k2 22.0 ± 1.7 79.9 ± 4.2 77.4 ± 4.2   70.7 ± 14.2 

L-alanine 

c
 k1  16.4 ± 1.3 60.2 ± 3.3 57.7 ± 3.3   116.8 ± 11.0 

 k2 23.6 ± 2.4 83.3 ± 5.9 80.9 ± 5.9   56.6 ± 19.7 

L-phenylalanine 

d
 k1  24.3 ± 1.7 83.6 ± 4.2 81.1 ± 4.2   51.2 ± 14.0 

 k2 36.5 ± 3.5 117.2 ± 8.6 114.8 ± 8.6 50.6 ± 28.8 

L-threonine 
 

e
 k1  10.8 ± 1.4 47.7 ± 3.5 45.2 ± 3.5   163.6 ± 11.9 

 k2 23.1 ± 1.5 82.9 ± 3.7 80.4 ± 3.7   61.0 ± 12.5 

L-histidine  
f
 ko  25.1 ± 1.0 81.1 ± 2.5 78.6 ± 2.5   44.3 ± 8.4 

 k1 29.1 ± 4.0 86.4 ± 9.8 83.9 ± 9.8   11.3 ± 33.0 

 k2 25.3 ± 1.5 84.2 ± 3.6 81.8 ± 3.6   42.5 ± 12.1 

 
a 

[Cr(NO3)3]o = 5.8810
-3

 M, 20.030.0 oC. 
b 

[ligand]o = 0.194 M, [KOH]o = 4.9910
-3

 M, 

pH∞ 3.86 ± 0.07.
 c 

[ligand]o = 0.354 M, [KOH]o = 5.0310
-3

 M, pH∞ 4.06 ± 0.03.
 d 

[ligand]o 

= 8.8210
-2

 M, [KOH]o = 4.9710
-3

 M, pH∞ 3.58 ± 0.02.
 e 

[ligand]o = 0.194 M, [KOH]o = 

5.0110
-3

 M, pH∞ 3.60 ± 0.05. 
 f 

[ligand]o = 0.119 M, [HCl]o = 9.5510
-2

 M, pH∞ 4.45 ± 

0.06.  

___________________________________________________________________________ 
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Table 3. Spectral Parameters Associated with the First and Second UV-Vis Peaks of the 

Green (Reactant) and Violet (Product) Complexes at 25.0 ºC 

a,b,c,d
 

  

peak parameter reactant e
 product f   

 1 / nm  421 (412)  391 (388) 

 2 / nm 581 (564)  530 (522) 

 1 / M
-1

 cm
-1

 22.2 (23.3) 70.4 (82.0) 

 2 / M
-1

 cm
-1

 12.2 (19.2) 83.4 (89.4) 

 
a 

The main values were obtained by extrapolation at infinite initial concentrations of either 

metal ion (reactant) or amino acid (product). 
b 

The values in parenthesis were obtained by 

extrapolation at zero initial concentrations of either metal ion (product) or amino acid 

(reactant). 
c 

Changing the metal ion initial concentration: [Cr(NO3)3]o = (0.291.76)10
-2

 

M, [L-alanine]o = 0.354 M, [KOH]o = 5.0310
-3

 M, pH∞ 3.724.12.
 d 

Changing the amino 

acid initial concentration: [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.0150.354 M, 

[KOH]o = 8.2810
-3

 M, pH∞ 3.844.25. 
e

  Spectral parameters for the reactant Cr(III) 

coordinated to zero organic ligands. 
f 
Spectral parameters for the product Cr(III) coordinated 

to the highest possible number of organic ligands (saturated). 

__________________________________________________________________________ 
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Table 4. Correspondence between the Final Violet Complexes Predicted from their 

Recorded UV-Vis Spectra and the Chemical Formulas Proposed in the Mechanism 

  

 predicted complex
a
 proposed complexb   

 Cn  
  

 

  

(3 )+

1 2 4[Cr(OH) (R)(RH)(H O) ] x
x x



 
 

 Cn H
+
    

 

(4 )+

1 2 2 5[Cr(OH) (RH) (H O) ] x
x x



 
 

 Cn +1 
   

  

(3 )+

1 2 2 3[Cr(OH) (R)(RH) (H O) ] x
x x



 
 

 C n +1H
+
    

 

(4 )+

1 3 2 4[Cr(OH) (RH) (H O) ] x
x x



 
 

 
a 

The subscripts n and n +1 stand for the number of organic ligands. 
b 

RH and R stand for 

amino acid molecules acting as mono- or bi-dentate ligands, respectively.  

__________________________________________________________________________ 
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Figure 1.  Periodic scanning of the UV-Vis spectrum at 30-min time intervals during the 

course of the process. The shift from green to violet indicates the progress of the reaction 

from reactants to products. [Cr(NO3)3]o = 1.7610
-2

 M, [L-alanine]o = 0.354 M, [KOH]o = 

5.0310
-3

 M, pH∞ 3.71, 25.0 oC.  
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Figure 2.  Reaction rate as a function of the limiting reactant concentration. The dashed line 

corresponds to a hypothetical pseudo-first order behavior, whereas the arrows indicate the 

progression of the complexation process. [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.133 

M, [KOH]o = 8.2810
-3

 M, pH∞ 3.97, 25.0 oC.  
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Figure 3.  Ratio between the experimental and calculated absorbances at 530 nm as a function 

of time during the course of the reaction. Triangles: biparametric (pseudo-first order) kinetic 

model (E = 9.1710
-3

). Circles: tetraparametric (two rate constant) kinetic model (E = 

7.3010
-4

). [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.133 M, [KOH]o = 8.2810
-3

 M, 

pH∞ 3.97, 25.0 oC.  
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Figure 4.  Double-logarithm plots showing the dependence of the experimental rate constants 

k1 (top, r = 0.940) and k2 (bottom, r = 0.969) on the initial concentration of L-alanine. 

[Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.0150.354 M, [KOH]o = 8.2810
-3

 M, pH∞ 

3.794.24, 25.0 oC.  
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Figure 5.  Dependence of experimental rate constants k1 (top, r = 0.999) and k2 (bottom, r = 

0.808) on the initial concentration of potassium hydroxide. [Cr(NO3)3]o = 5.8810
-3

 M, [L-

alanine]o = 5.8910
-2

 M, [KOH]o = (1.648.21)10
-3

 M, pH∞ 3.563.84, 25.0 oC.  
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Figure 6.  Correlation between the values of the experimental rate constants at 25.0 ºC for the 

same amino acid. Triangles: ko vs k2 (ligand: L- histidine).  Circles: k1 vs k2 (ligands: glycine, 

L-alanine, L-phenylalanine, L-threonine, 
, and L-histidine; r = 0.996).  



 

 

 

 

 

 

 

 

42 

 

40

60

80

100

120

-180 -120 -60 0 60

S  

o
  / J K

-1
mol

-1


H

   
 o
  /

 k
J 

m
o

l-1

=

=/

/
 

 

 

 

 

Figure 7.  Enthalpy-entropy compensation plot for the reactions of Cr(III) with several 

organic ligands (r = 0.970). Purple point: data from ref. 5 (ligand: EDTA). Green points: data 

from ref. 37 (ligand: L-glutamic acid).  Blue points: data from this work (ligands: glycine, L-

alanine, L-phenylalanine, L-threonine, 
, and L-histidine).  
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Figure 8.  Molar absorption coefficients as a function of the wavelength for three Cr(III) 

complexes: reactant (green dashed line), long-lived intermediate (red continuous line), and 

final product (violet dashed line). [Cr(NO3)3]o = 1.7610
-2

 M, [L-alanine]o = 0.354 M, 

[KOH]o = 5.0310
-3

 M, pH∞ 3.71, 25.0 oC.  
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Figure 9.  Molar absorption coefficient at 530 nm for the electronic spectrum recorded for the 

final violet complex as a function of the metal ion initial concentration. [Cr(NO3)3]o = 

(0.291.76)10
-2

 M, [L-alanine]o = 0.354 M, [KOH]o = 5.0310
-3

 M, pH∞ 3.724.12, 25.0 oC.  
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Figure 10.  Wavelengths (bottom) and absorbances (top) corresponding to the first (left) and 

second (right) peaks of the electronic spectrum recorded for the final violet complex as a function 

of the organic ligand initial concentration. [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 

0.0150.354 M, [KOH]o = 8.2810
-3

 M, pH∞ 3.844.25, 25.0 oC. 



 

 

 

 

 

 

 

 

46 

 

1.3

1.6

1.9

2.2

0.0 0.2 0.4

[L-alanine]   / M 

N
u
m

b
er

 (
H

+
)

o

0.7

1.4

2.1

2.8

0.20 1.05 1.90

N
u
m

b
er

 (
H

+
)

[Cr(III)]   / 10
-2

 Mo

0.6

1.2

1.8

1 5 9

N
u
m

b
er

 (
H

+
)

[KOH]   / 10
-3

 Mo  

 

 

Figure 11.  Number of hydrogen ions released per chromium atom during the course of the 

reaction under different experimental conditions at 25.0 oC. Top: [Cr(NO3)3]o = 

(0.291.76)10
-2

 M, [L-alanine]o = 0.354 M, [KOH]o = 5.0310
-3

 M, pH∞ 3.724.12. 

Middle: [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 0.0150.354 M, [KOH]o = 8.2810
-3

 

M, pH∞ 3.844.25. Bottom: [Cr(NO3)3]o = 5.8810
-3

 M, [L-alanine]o = 5.8910
-2

 M, 

[KOH]o = (1.648.21)10
-3

 M, pH∞ 3.553.84. 
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Figure 12.  Correspondence between the experimental values of the first rate constant and 

those calculated according to either eq 24 (top) or eq 25 (bottom). [Cr(NO3)3]o = 5.8810
-3

 

M, [L-alanine]o = 5.8910
-2

 M, [KOH]o = (1.648.21)10
-3

 M, pH∞ 3.563.84, 25.0 oC.  
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Figure 13.  Qualitative energy-reaction coordinate diagram for the sequential complexation of 

Cr(III) by L-alanine showing the experimental activation energies corresponding to the 

conversions of the initial reactant (R) into the long-lived intermediate (I), and of the latter into 

the final product (P). 
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