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Abstract: We offer a new approach for modeling past trends in the quantiles of the life table survivorship 

function. Trends in the quantiles are estimated, and the extent to which the observed patterns fit the unit root 

hypothesis or, alternatively, an innovative outlier model, are conducted. Then a factor model is applied to the 

de-trended data and it is used to construct quantile cycles. We enrich the on-going discussion about human 

longevity extension by calculating specific improvements in the distribution of the survivorship function, 

across its full range, and not only at the central-age ranges. To illustrate our proposal, we use data for the 

United Kingdom from 1922 to 2013. We find that there is no sign in the data of any reduction in the pace of 

longevity extension during the last decades. 
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1 Introduction 

The study of human longevity has traditionally focused on the estimation of central tendencies in the data 

describing mortality. For instance, Riley (2001) documents a significant increment in the life expectancy at 

birth around the world, from 1800 to 2000, by over 30 years. Wilmoth (1998), Oeppen and Vaupel (2002) and 

White (2002) also use central tendencies to argue in favor of an unstoppable pace of longevity extension, 

during the last century. 

Nevertheless, although the recorded significant increments in human life expectancy in recent decades are 

not under discussion, many authors have cast doubts on the ability of life expectancy to accurately capture all 

the relevant information on the tendencies of lifespan distributions and, therefore, have focused on analyzing 

other distribution features. For example, Bongaarts and Feeney (2002, 2003), Bongaarts (2005a) show that 

traditional period life expectancy is subject to biases when mortality rates are changing during the sample 

period, and therefore, it constitutes a non-fully satisfactory measure of longevity. Edwards and Tuljapurkar 

(2005) point to inequality in adult lifespan as the main driver of divergence in mortality around the world. 

Such lifespan inequality may become a feature of future demographic change, if mortality continues to 

stagnate at young ages while declining steadily at old ages, as suggested by Guillespie et al. (2014). 

Nevertheless, Vaupel et al. (2011) show that reducing life disparity and increasing life expectancy, are not 

incompatible objectives and, indeed, the countries that have been the most successful in reducing life 

disparities have consistently been the life expectancy leaders1.  

Other examples in the literature, which have turned to explore and analyze different measures of human 

longevity, on top of the traditional life expectancy, include the study of the modal and the median ages at 

death as suggested by Canudas-Romo (2008, 2010) or Horiuchi et al. (2013); or measures that explicitly focus 

on characterizing the variability in the distributions of lifespans as in Engelman et al. (2014). 

We propose an alternative methodological framework, useful to understand the trend of the shape of the 

life table survivorship function, on a wider basis than those allowed by the existing literature. Our model is by 

construction sensible enough as to distinguish the potential asymmetries that may exist, in the temporal 

reduction of specific mortality rates at different ages. We argue that in order to obtain a fuller understanding 

of the changes in the distribution of human lifespan over the last century, and of those that it seems likely to 

undergo in forthcoming decades, we need to turn to more general procedures that extend the analysis beyond 

that of the central tendencies and the dispersion around them.  

In this paper, we propose the means for constructing these measures, based on quantiles, and undertake a 

rigorous study of the features of these statistical constructs. This analysis allows us to shed light on the 

mechanisms of the dynamics of human longevity. In this way, we also present a new contribution to the 

controversy concerning whether the rate of improvement in human longevity2 can be considered constant as 

stated by Oeppen and Vaupel (2002) and White (2002) or decreasing, and probably bounded, as suggested by 

Vallin and Meslé (2010), King and Soneji (2011), Mayhew and Smith (2015) and very recently by Dong, et 

al. (2016) and Olshansky (2016). 

Our methodology is able to encapsulate in a single framework many of the features of the mortality 

shifting dynamics, without resorting to indirect analyses on the interaction between different statistics of 

human longevity, as is commonly done (see for example Canudas-Romo (2008, 2010) or Edwards and 

Tuljapukar (2005)); or comparisons between the tempo-adjusted measures of human longevity and the non-

adjusted measures (Bongaarts, 2005a).  

The study of the asymmetries in the dynamics of the survivorship functions is important, because they 

affect the full range of the lifespan distribution. For instance, Wilmoth et al. (2000), Rau et al. (2008) and 

Engelman et al. (2014) provide a detailed quantification of the impact of changing demographic parameters 

on the pattern of lifespan trends and variability. The former authors highlight the importance of the reduction 

in death rates at old ages in the increments in life expectancy witnessed during the last century, especially 

above age 80. Engelman et al. (2014) document the importance of declining childhood mortality on the 

reduction of the general lifespan variability, and the impact of improved survival in adulthood on the rising 

variability of lifespans at older ages. In the same strand of the literature, aiming to understand the hidden 

imbalances in the temporal improvements of mortality at different ages, van-Raalte and Caswell (2013) 

provide estimates of the sensitivity of several indices of lifespan variability to changes in underlying 

                                                        
1 This is arguably also true within populations. For instance, by education is possible to increase life expectancy while reducing 
the variance of life expectancy between groups. 
2 That is, the growth rate at which life expectancy and related statistics increase, following reductions in specific mortality rates. 
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mortality. Other authors have explored alternative avenues to document hidden asymmetries in life 

expectancy. For example, based on a decomposition of specific mortality rates into natural and accidental 

rates, Guillén and Vidiella-i-Anguera (2005) show that constructing counterfactual scenarios, eliminating one 

mortality cause at a time, leads to a better understating of the influence of external causes of mortality in the 

forecast of life expectancy. Finally Basellini and Camarda (2016) use age at death distributions to model the 

age-specific pattern of mortality and to inform mortality forecasts. This approach allows them to capture the 

compression and shifting dynamics of mortality. 

The model we propose is based on the quantiles of the distribution of the life table survivorship function. 

A quantile indicates an age at which only a fraction of the population survives; for instance, if the 95th 

quantile3 is equal to age x, then only 5% of the population lives more than x years. A quantile is defined for a 

given level, here 95%. The analysis of quantiles allows us to focus directly on the asymmetries recorded at 

different age-ranges of the distribution, without resorting to comparisons among central tendencies, or among 

central tendencies and variability measures. It provides an alternative path to traditional analyses in which the 

trend of a central tendency is calculated, and then decomposed by age (or age and cause) to attribute the 

change to specific rates.  In the demographic literature is common to see trend lines of age-specific rates, or 

full-on Lexis surfaces of rates, or full-on Lexis surfaces of changes in rates, among others. These calculations 

allow the exercise of intuitive and practical relationships between the preferred central tendency measures and 

age-specific patterns, which are intuitive to the general public. Our methodology aims at complementing this 

traditional approach by directly analyzing quantiles of life tables4. 

In addition to constructing the empirical quantiles, our methodology identifies trends in the series of 

quantiles, and the specification of alternative hypotheses, which imply the estimation of endogenous structural 

breaks affecting the temporal trends of the series. We complement the deterministic model of the lifespan 

distribution, by adding uncertainty to the otherwise deterministic projections by means of a factor model, 

which is fundamental in demography. 

Our methods and results have a practical application to the analysis of the viability of pension schemes, 

but the tools we propose should be of general interest for describing and understanding human longevity 

extension, and the challenges faced by an aging population. This challenge is an important one and 

consequently has received considerable attention in the fields of economics and demography during the last 

years. For example, Waite (2004) discusses the consequences of an aging world, in terms of the societal 

transformations that must be pursued if we want to be prepared for a world in which one out of five people 

will be above 65 years, and a high percentage of those, will be above 85 years. She states that these oldest-old 

men and women are much more likely than the young-old to live in nursing houses, to have substantial 

disabilities, and to have lack of financial resources. Moreover, she argues that the number of older adults to be 

expected in the future gives us valuable information about how many hospital beds, geriatricians, home health 

aides, and nursing home beds will be required. Our model enables us to advance one step forward in the 

comprehension of the dynamics of longevity extension by providing, by the first time, novel measures based 

on quantiles of this phenomenon. 

The analysis addressed in this article is especially relevant for studying longevity risk. Risk managers of 

pension funds and financial institutions offering life annuities are interested in projecting and analyzing the 

trends for fractions of the cohorts that survive more than the expected. 

In our empirical section we study the time-series properties of each quantile recorded over a nine-decade 

period for the United Kingdom (men and woman, from 1922 to 2013). We find that most survivorship 

quantiles are better described by deterministic trends subject to random breaks in specific periods than by 

stochastic trends with drifts. Because of the dramatic fall in infant mortality rates at the beginning of our 

sample (1922-1940), we found greater improvements in that period for the lowest quantiles than we did 

during the last seven decades of the sample. This finding is in line with the outcomes reported by Vallin and 

Meslé (2010). However, we find no sign of a reduction in the rate at which population aging and longevity 

extension are occurring; indeed, from our model, we can expect further improvements at the different 

quantiles of the duration of life. We can also expect the continuing aging of the population, mainly as a 

consequence of a greater number of people reaching more advanced ages (above 65 or 85 years), but also due 

                                                        
3 If we split the population into 100 quantiles, the quantile equals the percentile. 
4 Notice that our work also shares a certain relationship with the studies by Sanderson and Scherbov (2005, 2007) and Lutz et al. 
(2008). They relate age and life expectancy at different ages. That is, they use the full age pattern of life expectancy, a conditional 
life expectancy, which is more informative than using just a single instance of central tendency. The amount of information 
returned by their procedure or ours is roughly the same, as it allows to analyze longevity extension in a more comprehensive 
fashion than central tendencies do. 
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to increments in the duration of life at the highest quantiles (at which most of the population would expect to 

be dead).  

The rest of this paper is organized as follows. The second section presents the data and methodology, and 

includes a description of the construction of the quantiles, an explanation of the time-series tools needed to 

distinguish between stochastic and deterministic trends in the data. The third section presents the results; the 

fourth section discusses these findings and section five draws conclusions and limitations of our study.  

2 Data and Methods  

The data for the empirical section in this piece of research were taken from the Human Mortality Database. 

We used the annual mortality rates up to 110 years, for males and females, from the United Kingdom (𝑚𝑥). 

Our full sample spans the period from 1922 to 2013, that is, a total of 92 calendar years.  

Our methodology involves the following two steps: first, we transform traditional mortality surfaces, 

composed of period mortality rates discriminated by sex and age, into the survivorship function, and we 

determine its quantiles. Second, we assess whether the constructs are best described by stochastic or 

deterministic trends, and we explore the possible presence of structural breaks in these trends. Third, we 

conduct structural change test on the estimated linear trends of the quartiles. Below we provide further details 

for each step. 

2.1 Measures of the Duration of Life 

Traditional analyses of human lifespan have been based primarily on the estimation of central tendencies in 

the data. Statistics such as the median, the mean and the mode of the lifespan distribution have dominated 

practices since the first demographic and actuarial research agendas were drawn up. Today, however, the 

importance of incorporating measures that can describe the dispersion of the data around a given central point 

is widely recognized, and the sensitivity of such measures to the underlying mortality scheme has been 

explored. And, yet, focusing solely on the measurement of central tendencies and dispersion leaves critical 

aspects of mortality and longevity patterns unexplored. This can be corrected by decomposing the original 

trends into cause and age-specific mortality rates or by analyzing the full spectrum of the life table quantiles 

as we propose here. 

We construct period life tables on the basis of central death rates. Thus 𝑚𝑥𝑡 are mortality rates at age 𝑥 

and for period 𝑡 . Let 𝑑𝑥𝑡  denote the number of deaths at age 𝑥  in period 𝑡 , and 𝑙𝑥𝑡  be the number of 

individuals alive at age 𝑥  in period 𝑡  (i.e. 𝑙0𝑡 = 𝑃 ). Traditional central tendencies of the data can be 

constructed in this way, including period life expectancy ( 𝑒0𝑡 ), modal age at death ( 𝓂𝑡 =
{𝑥|max[𝑑𝑥𝑡] for 𝑥 > 10}) and median age at death (ℳ𝑡). The latter is the age at which half the population has 

died; that is, when the survival function is equal to one half. It also represents a specific case for the quantiles 

of the distribution of human longevity, which can be defined as:  

 

𝑄𝑡
𝛼 = {𝑥|ℓ𝑥 = 1 − 𝛼},   𝛼 ∈ (0,1).                  (1) 

 

Thus, for a given level 𝛼, 𝑄𝑡
𝛼  is the age at which a fraction (1 − 𝛼) of the initial population is still alive. 

Conversely, a proportion equal to 𝛼  is dead at age 𝑄𝑡
𝛼 . Another way to think of the quantiles is as the 

cumulative deaths function, or complement of the life table survivorship function.  

2.2 Deterministic or Stochastic Trends: Allowing for Endogenous Structural Breaks 

Demographic phenomena inherit uncertainty and therefore statistical demography should always account 

for the stochasticity process behind them. Although that is clearly correct, we stress out here that there are 

different ways to add stochasticity into the modeling process. For example, one can assume that mortality 

rates (or survivorship quantiles, as in our case) present unit roots (i.e. stochastic trends) and therefore any 

shock affecting them persists in time without vanishing. In this case, quantiles (or rates) should be understood 

as the aggregation of an infinite number of random shocks (perhaps white noise shocks). 

On the other hand, stochasticity can be added as a complement to a deterministic trend and, in this case, 

what we face is a statistical process composed by three parts: a line, a stationary component that is clearly 

stochastic, and random noise. Both processes (those with stochastic or deterministic trends) reflect the 

stochastic nature of demographic phenomena, but they do not imply the same for the analysis of mortality and 
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longevity. In the latter case most of the shocks always vanish after some periods, while other shocks are able 

to produce permanent shifts in the trajectory of the survivorship quantiles (what we call structural changes). 

We content that one should not assume that trends are either stochastic or deterministic, and permanent breaks 

are either present or absent, but this needs to be tested in an appropriate fashion.  

In seeking to acknowledge these alternatives and in order to correct the tests so as to provide reliable 

inferences about the presence or absence of unit roots, various proposals have been made in the time-series 

literature. In this regard Kim and Perron’s (2009) proposal is particularly appealing, because it allows for a 

single break in the series under both the null and the alternative hypotheses. In the demographic literature, a 

single break seems sufficient for the description of mortality series in several countries (Ouellette et al. 2014)5  

Below, we present the models used to test for the presence or absence of unit roots in survivorship 

quantiles and for breaks in the linear trends of these quantiles. Equations 2 and 3 correspond to what is called 

an innovative outlier (IO) model. Equation 2 is the null hypothesis of the test and equation 3 is the alternative 

hypothesis. IO models are well suited to deal with processes that have experienced gradual breaks, that is, for 

which the full effects are only evident after a certain amount of time has elapsed. Notice that in case of a null 

rejection the series would be better described by a deterministic trend plus random breaks, while under the 

null it would be better to fit a stochastic trend to the data. 

Under the null hypothesis, the data generating processes are given by: 

 

𝑄𝑡
𝛼 = μ𝛼 + 𝑞𝑡−1

𝛼 + 𝜓𝛼∗(𝐿)[𝐼1,𝑡
𝛼 𝜇𝑏

𝛼 + 𝐼2,𝑡
𝛼 𝛽𝑏

𝛼 + 𝜀𝑡
𝛼],   𝛼 ∈ (0,1),              (2) 

 

where 𝐼1,𝑡
𝛼 = 1 if 𝑡 = 𝑇1 + 1 and 0 otherwise;  𝐼2,𝑡

𝛼 = 0 if 𝑡 ≤ 𝑇1 and 1 if 𝑡 > 𝑇1. 𝜓𝛼∗(𝐿) are lag polynomials 

in 𝐿 of order 𝑝 and they satisfy regular conditions of stationarity and invertibility (see Kim and Perron (2009) 

for further details). Sub-index 𝑏 indicates the change in the parameter due to the structural break.  

Under the alternative hypothesis, we have that: 

 

𝑄𝑡
𝛼 = 𝜇𝛼 + 𝛽𝛼𝑡 + 𝜓𝛼(𝐿)[𝐼1,𝑡

𝛼 𝜇𝑏
𝛼 + 𝐼2,𝑡

𝛼 𝛽𝑏
𝛼 + 𝜀𝑡

𝛼],     𝛼 ∈ (0,1).             (3) 

 

in our empirical exercise we set 𝛼 ∈ {0.1, 0.15 …  0.9, 0.95}. 

An additional consideration here concerns the fact that the break date 𝑇1 can be estimated using different 

procedures. We follow Perron and Zhu (2005), who propose estimating the unknown dates in a model 

composed of a deterministic trend with breaks by minimizing the sum of squared residuals in simple recursive 

regressions. The breaks in the trend may be due either to a change in the slope or to a shift in the level of the 

model. Our approach is very much in line with that taken by Ouellette et al. (2014), who use a criterion of 

maximizing the 𝑅2 of the model in each regression to estimate the dates of the breaks.6 

2.3 Factor Models  

Factor models constitute an attractive approach for modeling and projecting demographic data. They allow 

reducing the dimensionality of the original set and constructing accurate projections. The general strategy 

involves making the time series dependent on just a few unobserved stochastic factors, extracting these 

factors using proper techniques (such as principal components), and using the estimated factors in subsequent 

steps. In so doing, the number of estimated parameters in the model is significantly reduced and optimal 

forecasts are feasible. Examples of mortality data modeled using factor models are abundant in the actuarial 

and demographic fields, most notably with the model constructed by Lee and Carter (1992) and the multiple 

extensions and applications of it, by Brouhns and Denuit (2002), Guillén and Vidiella-i-Anguera (2005), 

Delwarde et al. (2006), Shang et al.  (2011), Stoeldraijer et al. (2013), Lemoine (2014), among many others. 

Here, we fit the factor model to the stationary component of the quantiles; that is, we model each quantile 

using models composed of deterministic linear trends with breaks, plus an intercept (as in equation 3). The 

                                                        
5 Pre-testing for unit roots and cointegration is necessary to avoid under- or over-differentiation of the series. Indeed, the time-
series literature in the demographic and actuarial fields includes recent studies of unit root pretesting, cointegration tests and 
structural breaks (D’Amato et al. 2014; Gaille and Sherris 2011; Torri 2011; Niu and Melenberg 2014; Ouellette et al. 2014). As 
for the specific task of projecting mortality surfaces, various studies explore the differences between differentiating and using the 
series in levels with key implications for the forecasting accuracy achieved by the models (Mitchell et al. 2013; Chuliá et al. 2016). 
6 An alternative approach would be considering joint distributions of the quantiles series, which would require substantial 
modifications to the tests employed here to assess time series properties of these constructs. We leave this for future research. 



 6 

break dates are estimated using the approach described in section 2.2. Afterwards, we extract the residuals of 

each model (which already includes the breaks) and label it 𝑐𝑡
𝛼. We may think of 𝑐𝑡

𝛼as the cyclical component 

of the quantile series. This cyclical component describes the stochastic dynamics of the quantile series around 

a deterministic trend plus breaks. In this sense, it represents shocks to the system that lack a permanent impact 

on the quantile series. See Appendix (section A.1.) for more details about the factor model used in this step. 

3 Results 

3.1 Quantiles of the Survivorship Function   

Figure 1 shows the smoothed distribution of human lifespan in the UK for ages ranging from 0 to 110 for 

different years. We used B-splines, as recommended by Ouellette and Bourbeau (2011). Alternatively, a 

parametric distribution can be fitted to the data, such as that proposed by Robertson and Allison (2012). These 

authors show that a Gaussian distribution, whose scale parameter decreases linearly with attained age (that is, 

a compressed Normal distribution) is a good proxy for more than 74 life tables from 35 countries. Similarly, 

Beer (2012) discusses different alternatives to the one used here. 

 

Males Females 

  
Fig. 1 Life table deaths distribution of the United Kingdom (1922-2013) for males and females smoothed 

using B-splines. We construct the lines of ages at death for the life tables corresponding to 1922, 1952, 1982 

and 2012. We use the mortality rates from the United Kingdom for males (left) and females (right). It can be 

seen that the distributions have shifted to the right with time, albeit to a greater extent in the left tail than in 

the right tail.  Data source: Human Mortality Database.  

 

Fig. 1 shows that in the last century the lifespan distribution has shifted to the right. This has been 

documented in the literature for many countries, especially economically developed ones (Riley 2001). The 

effects of this shift in the distribution on the traditional measurement of the central tendencies of life span, 

including life expectancy, median duration of life, and modal age at death, have also been explored. Thus, 

several studies have examined how improvements in specific age ranges of the distribution have impacted 

human longevity, for instance, Wilmoth (2000), Wilmoth et al. (2000), Canudas-Romo (2010) and Rau et al. 

(2008). These studies have provided some indications regarding the fact that the left tail of the distribution has 

shifted further to the right than the right tail.  

In order to explore the phenomenon of the asymmetric improvements in longevity in greater depth, we set 

𝛼 at different levels between 10 and 95%; that is, we study quantiles of longevity {0.1, 0.15 … 0.9, 0.95} for a 

total of 18 quantiles. We excluded 𝛼 = 0.05, because before 1946, more than 5% of the population had died 

before the age of one year. We also calculate period life expectancy, the median of lifespan, and the modal 

age at death.  

In Fig. 2 and 3 we present the central tendencies of the data and the estimated quantiles, respectively. 
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Males Females 

  
  

Fig. 2 Evolution of median age at death, modal age at death and life expectancy in the United Kingdom 

(1922-2013). The calculations are based on the mortality rates in the United Kingdom for males (left) and 

females (right) (1922- 2013). 

 

Males 

 

Females 

 

 

 
Fig. 3 Evolution of the age-quantiles (1922-2013). Note: We use the UK’s mortality rates for males and 

females. We estimated the quantiles as 𝑄𝑡
𝛼 = {𝑥|ℓ(𝑙𝑥𝑡/𝑙0𝑡  ) = 𝛼},   𝛼 ∈ { 0.1, … , 0.9, 0.95}. The black lines 

show the dates of the estimated structural breaks. These dates are presented in Table A.3 of the appendix. 

 

A given quantile of the survivorship function will increase as mortality improvements are recorded at a lower 

age. For this reason, we see parallel increments in the quantile surfaces (each quantile becomes clearer in 

time). Nevertheless, by construction, lower quantiles (below a certain age at which a mortality reduction is 

observed) are insensitive to improvements at higher ages and, even if the quantiles measures are clearly 

dependent, they still are able to reflect mortality idiosyncratic improvements at different ages in the mortality 

surface. And as such, they offer richer information about the distribution of human lifespan than traditional 

statistics such as the mean or the mode alone. 

In line with the findings in previous studies, for developed countries, for instance Canudas-Romo (2008, 

2010) the three central tendencies have experienced significant increments over the last century both for 

males and for females. The median life duration for females has increased from 68.20 years in 1922 to 85.45 

years in 2013 (that is, 17.25 years over the nine decades in our sample). In terms of life expectancy, the 

increment for females has been even more pronounced, rising from 57.93 to 82.03 years (a difference of 24.10 

years). Finally, the modal age at death for females has also increased, but in a significantly smaller magnitude, 

rising from 76.11 to 89.99 years (a difference of 13.88 years). The general trend for males is similar. In this 

case, the median has increased from 64.39 to 82.03 (17.64 years), life expectancy from 54.12 to 78.27 (24.15 

years), and the modal age at death from 75.19 to 86.71 (11.52). 
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Figure 3 shows the evolution of the survivorship quantiles at different levels. The evolution of the first 

quantile in the female population sample (10th percentile of human longevity) shows that in 1922 while 10% 

of the population could expect to die by the age of 2.61 years, 92 years later the same percentage of the 

population would not, on average, be dead until 66.60 years. This dramatic change, slightly lower than 65 

years, stresses the impact of improvements in infant mortality. The evolution of the last quantile (95th 

percentile) in our sample shows that in 1922 while 95% of the female population could expect to have died by 

the age of 86.99 years, nine decades later this threshold had increased to 97.35 years. Although significant, 

this increment of 10.36 years in the 95th percentile is not comparable to that recorded by the 10th percentile. 

However, the improvement recorded in the 95th percentile is not very different from those observed in the 70th 

and 90th percentiles (from 76.00 to 90.01 years, and from 84.05 to 95.21 years, respectively, that is 14.11 and 

11.16 years of improvements). A similar trend is recorded for the male population. 

It is also evident that the increment in the modal age at death is not attributable solely to improvements in 

the most advanced age categories but also to small improvements in all age categories. Thus, not only do the 

eldest of the old live longer, but also more individuals now die at these advanced ages, as highlighted by 

Wilmoth et al. (2000) and Rau et al. (2008). 

3.2 Stochastic Trends against Deterministic Trends  

The analysis can be further refined by studying the stochastic properties of the processes describing each 

quantile over time. In the Appendix (section A.2.) we present the results of the unit root tests for each quantile 

of the survivorship function. We test two alternative hypotheses: intercepts and intercepts and linear trends. 

The series of quantiles in almost all the cases are better described by a linear model with a one-time change in 

slope, than by a unit root process (stochastic trend). What is means is that, indeed, there are signs of 

acceleration or deceleration (depending on the sign of the rotation) in the rate of improvements for these 

quantiles, but such changes are one-time breaks during the whole sample. Once these big shocks have 

impacted mortality rates, subsequent shocks lack a permanent or cumulative effect on the quantile-trends of 

the lifespan distribution. 

We estimate the break dates (𝑇1
𝛼) and construct an indicator variable, 𝐼3,𝑡

𝛼 , such that: 𝐼3,𝑡
𝛼   = 1 if 𝑡 ≤ 𝑇1

𝛼 and 

0 if 𝑡 > 𝑇1
𝛼, as in the following equation:   

 

𝑄𝑡
𝛼 = 𝜇𝛼 + 𝛽𝛼𝑡 + 𝜇𝑏

𝛼𝐼3,𝑡
𝛼  + 𝛽𝑏

𝛼𝐼3,𝑡
𝛼  𝑡 + 𝑐𝑡

𝛼,𝑇𝑆
,       (4) 

 

in this way, we are able to estimate directly the change in the sensitivity (i.e., the change in the slope of the 

regression 𝛽𝑏
𝛼) due to the break (labeled with sub index b). In Fig. 4 we present the slopes of the coefficients 

of the temporal trends at the beginning (1922) and at the end of the sample (2013). There is one slope for each 

quantile before (𝛽𝛼 + 𝛽𝑏
𝛼) and after the structural breaks (𝛽𝛼). The slopes of the coefficient can be interpreted 

as the sensitivity of each quantile to the temporal trend, that is, as the annual growth rate of improvements in 

human longevity at the specific 𝛼 associated to a certain quantile.  
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Fig. 4 Slopes of the temporal trends of lifespan quantiles against alpha from the 10th to the 95th percentile in 

1922 (before any break) and in 2013 (after the breaks). Note: We estimated an equation including the 

temporal trends and dummy variables to determine directly the sensitivity of each quantile to the sustained 

upward trend. As expected, the rate of improvement is considerably faster at the lowest quantiles and slower 

at the highest. The behavior is more homogeneous at the end of the sample, after the majority of structural 

breaks had occurred in the 1940s and 1950s.  

 

Fig. 4 contains valuable information about the estimation of the sensitivity of the different quantiles to the 

generalized upward trend. For instance, the improvements in longevity are much more significant for the 

lower quantiles, where only a small fraction of the total population can expect to die, than they are for the 

higher quantiles. This difference, moreover, was considerably more pronounced at the beginning of the 

sample than it was at the end, before some structural breaks occurred.  

It is not, of course, necessary to go back to 1922 to obtain the shape of the solid line (period before the 

breaks) in Fig. 4, given that this was the process describing the data for women practically up to 1940, when 

the more significant structural breaks occurred (see Fig. 3). From 1940 onwards, the dotted line describes the 

situation better. Thus, additional increments in life expectancy in the future will come from further 

improvements along the whole curve and not solely from improvements in the lower quantiles (as was the 

case before the 1950s). Nevertheless, today when the current rates of improvement constitute the more 

homogeneous group, it is still true that the greatest improvements occur at the lower quantiles.  

3.3 Stochastic cycles 

To complement our linear trend model we breaks we included one stochastic cycle from a factor model, in an 

attempt at explaining more than 50% of the variability within the system, with the minimum number of 

unobservable or underlying factors. The estimated subjacent factor is presented in Fig. 5.  The factor has a 

cyclical behavior that captures the main dynamics of the series under study, for both men and women. These 

factors can be interpreted as survivorship cycles in the evolution of the lifespan distributions7. That is, the 

estimated factors described cyclical patterns of increasing and decreasing periods, in the survivorship 

quantiles, which explain temporary distancing from the deterministic trends that best describe each quantile. 

For example, in the case of males, while an increasing in the deterministic trend characterized the evolution of 

the quantiles under study, during the whole sample period, we also observed a positive cycle, from 1970-

2000. This means that during such period the empirical quantiles were higher than those predicted by the 

linear model (even taking into account possible breaks in the pace of improvement, as discussed before). 

During the same period there was also a positive cycle in the case of females.  

On the contrary, both men and woman, experienced temporary lower quantiles, than those predicted by the 

linear models, from 1940 to 1960. This means that traditional trends were still recovering after the WWI and 

WWII and this process required more or less 20 years to be completed. 

  

                                                        
7 This mortality cycles should not be confused with sine or cosine functions describing symmetric and deterministic oscillations 
about a certain trend. Instead, we are talking about stochastic cycles that describe asymmetric and random departures from the 
trend. 
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Fig. 6 Stochastic factor subjacent to all the lifespan quantiles. We estimate the factor in each case using 

principal components. The factor captures the common cyclical behavior of the stationary component in the 

quantiles. The long run component is modeled using broken trend models.  

 

Quantiles series provide a different perspective on the analysis of human lifespan, compared to what can be 

currently found in the demographic or actuarial literature. We could have used instead mortality rates as our 

fundamental units, as is done in regular exercises. In this case, we would have tested for unit roots in 

mortality rates and perhaps fitted deterministic trends with breaks to characterize mortality series, instead of 

fitting them to the survivorship quantile series. Working with rates as building blocks seems convenient and 

intuitive in the context of mortality risk and risk heterogeneity analyses. Nevertheless, quantiles offer a 

complementary view of the same phenomenon, and they are natural candidates to analyze the whole 

distribution of human lifespan in a novel and intuitive way. Being denominated in ages, it is easy to explain 

to the general public what a certain quantile means, and what an increment or a reduction in its trajectory 

implies for human lifespan. From this angle, for example, issues related to longevity risk seem to be much 

more naturally addressed using survivorship quantiles than using mortality rates. 

From our results we do not discard future reductions in infant, young or adult mortality, as potential 

drivers of future increments in our quantile series. We look at changes in the pace at which these survivorship 

improvements have been occurring during the last century. Our conclusion is that, using time series data-

driven techniques, as the ones proposed here, not limits to lifespan can be recorded and not changes in the 

dynamics of the deterministic trends, that characterize quantiles of the lifespan distribution, are documented 

(for the UK, both for men and women), or at least not yet. This contrasts with what has been recently 

proposed by Dong et al. (2016). They interpret a reduction in the support of the life span distribution (which 

for example is evident from figures 3 and 4 here), as a sign of a reduction in the pace of lifespan 

improvement. We look directly to the rate of improvement in each fragment of the lifespan distribution, and 

we found that consistently with them not all the survivorship quantiles improve at the same rate (see figure 

4), but contrary to them, we also document that there has been not reduction in the pace at which any quantile 

has been improving during the last 50 years in our sample. That is, even if the variance among the quantiles 

series is reducing, the trend in human lifespan has not changed.. 

4 Discussion  

Many of our findings concerning the long run behavior of the central tendencies of human longevity are 

related to previous works in the literature. For example, Oeppen and Vaupel (2002), Cheung and Robine 

(2007), White (2002) and Canudas-Romo (2010), have documented an upward trend in the central measures 

of life duration using data sets for various developed countries over the last century. They conclude, 

moreover, that this upward trend in life expectancy, median duration of life, and modal age at death is a clear 
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reflection of improvements in public health, medicine, economic development, nutrition, education, and 

household conditions. 

However, several studies also present evidence pointing to the fact the pace of these trends is dependent 

on the specific ages at which the improvements occur, for instance: Wilmoth and Horiuchi (1999), Wilmoth 

(2000), Wilmoth et al. (2000), Felipe et al. (2001), Fledelius et al. (2004), Wrycza and Baudisch (2012); 

among others, particularly Canudas-Romo (2010), who stresses that life expectancy and the median duration 

of life are highly sensitive to improvements in infant and child mortality, while the modal age at death is not.  

The upward trend in the modal age at death has changed over time and it is widely known that the increase 

in life expectancy used to be mainly due to the reduction in infant, child and young-adult mortality, but in 

recent decades, it was mainly due to reduction in old-age mortality, as documented by Horiuchi et al. (2008) 

and Wilmoth and Lundström (1996). Thus, the apparent discontinuities in the slopes of the trends of the three 

measures are explained by the contributions made by different ages to total mortality. In the early years of the 

sample, the dramatic improvements in infant and child mortality led to marked increments in life expectancy 

and the median duration of life, but they had only a small impact on the mode. Once infant and child mortality 

rates stabilized around 1940-1945, the rate of increases in life expectancy slowed down, and subsequent 

improvements in expectancy can be attributed in the main to the increase in the survivorship of individuals at 

older ages. Survivorship at these late ages has had a smaller impact on life expectancy and no effect on the 

median duration; in contrast, the impact on the modal age at death has been marked. Thus, all in all, the 

longevity dynamics present broken trends with different slopes for the three central tendencies of the lifespan.  

However, as stressed in the introduction, there is a dearth of studies focusing on the evolution recorded at 

the quantile level of the distribution of deaths in the fields of demography and actuarial sciences. It is our 

contention, that the study of these quantiles is much more informative than the analysis of the central 

tendencies alone. The analysis of quantiles permits quantifying the dynamics affecting different parts of the 

life table survivorship function distribution.   

There are important substantive issues regarding the trends in life tables and the number of deaths reported 

at different ages, and therefore at different quantiles of the survivorship distribution. Regarding the shifting of 

the deaths distribution (Figure 2) toward older ages, and with respect to changes in the shapes of these curves, 

one may wonder, how fast did the curve move to older ages? Was the move accelerating, decelerating, or on a 

constant pace? Was the shape of old-age death distributions compressed, expanded or did it remain 

unchanged? In what way are those changes in location and changes in shape related? Do females and males 

differ in those aspects (periods of compression against periods of constant shape)? Are there noticeable 

international variations in those respects? Those and other related questions, as the shifting mortality 

hypothesis proposed by Bongaart (2005), could be addressed in direct and more comprehensive fashion, using 

the proposed methodology. 

Focusing on the quantiles of the survivorship function is also novel because, as mentioned before, it 

switches the assumptions about what the fundamental atoms in the study of longevity and mortality are. This 

approach is certainly related to a strand in the demographic literature that uses directly estimations based on 

the life table function of the distribution of deaths (Zanotto et al., 2016) or on the age at death distribution 

(Basellini and Camarda, 2016), as an alternative to modeling the logarithm of the central death rate for each 

age (𝑙𝑜𝑔(𝑚𝑥𝑡))as is traditionally done in the field. Doing so allows getting linear improvements in life 

expectancy, whereas working with the logs of mortality rates, you force e_0 to taper. Specifically, in our case, 

this explains why you observe linear and constant improvements in the trends of the quantiles of the 

survivorship function (Fig. 4) without tapering even at the highest ages. Particularly, it explains the path 

followed by the median of the lifespan distribution (𝑄𝑡
𝛼 , 𝛼 = 0.5), which is constant and linear during the last 

50 years in the sample period. 

5 Conclusions and limitations 

From our exercise it is clear that the rate of improvement at different age-categories is not the same, and 

indeed it is more pronounced still today for young ages than for old ones. Nevertheless, we also know that the 

proportion of people above certain ages is increasing at a constant rate. Structural breaks did occur, but only 

at the beginning of the sample. These results are consistent with well-established findings in the literature on 

demographic and epidemiologic transitions (that is, that mortality improvements at younger ages happened 

earlier and were of a bigger magnitude than improvements at older ages).  

Moreover, our methods may enable us to project the trajectories of the quantile series in the future. Such 

exercise would take into account, not only the linear trends of the data, but also the stochastic cycles around 
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these, which are generally overlooked in the literature. One possible limitation of our methods in this regard is 

that they should not be used to forecast the quantiles long time ahead (hundreds of years), when possible 

crossovers among the quantile lines, although very unlikely, still might occur. One alternative is to assume 

that all the quantiles shared a stochastic trend (i.e. they are cointegrated), in the same spirit of Lee-Carter. But 

given that we rejected the null of unit roots and therefore the quantiles cannot be cointegrated. This is an 

interesting issue that certainly needs to be addressed in future research. 

Longevity extension owes more to the fact that more people are getting to older ages, than to the fact more 

people are reaching extremely high ages in the tail of the distribution. This latter situation remains true, but to 

a lesser extent, compared to the former.  

This behavior has important implications for pension funds and welfare states. An aging population 

represents a challenge, not solely because individuals live longer, but also because more elderly people die at 

these advanced ages. This concentration of the age at death is changing the traditional point of view regarding 

the evolution of longevity and has led to a reassessment of the viability of defined-benefit pension schemes, 

which frequently recommend increasing the age of retirement to ease the pressure posed by an aging 

population. The future funding of pension schemes will not only have to take into account the fact that people 

contributing to the system live longer (and so will enjoy benefits for longer periods), but to the fact that more 

people will have to be subsidized in the near future. That is all the quantile series in our exercise are 

increasing at constant rates during the last decades in our sample. 

Our study fails to detect a reduction in the pace of longevity extension over the last 50 years in our sample 

of UK males and females. A reduction in the rates of improvement did occur prior to the 1950s, but no further 

signals of deceleration are to be expected in the near future. 

With our methodology, we model the trends of longevity extension by looking at the evolution of age-

limits reached by only a fraction of the population. Future comparisons among different countries, and related 

dependency-ratios, may be conducted using our methodology, and they will enhance our understanding of 

longevity extension and will contribute to improve measurement of the increase of human life duration. Our 

methods facilitate comparisons of longevity dynamics across countries or regions (as done in Rees et al. 

2012). That is, by focusing on the quantiles of the survivorship function it is possible to analyze relative 

dynamics, which otherwise would be hidden in traditional analysis of the central tendencies of the mortality 

statistics.   

In theory it is possible to go from mortality rates to quantiles and vice-versa. In practice, coming back 

from projected quantiles to implied mortality surfaces and to constructs based on them, such as life 

expectancy, is unfeasible. Or at least it is, when we use a relatively small number of quantiles as we did (we 

used 18 quantiles). One needs a much more finer grid of quantiles to be able of getting back representations in 

terms of mortality rates. This would take us very far from our main objective of analyzing fundamental time 

series characteristics of the survivorship function, and the pace of human longevity expansion, so we leave it 

for future research. 
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Appendix 
 
A.1. Factor Models 

 

In this context, the factor model on the quantile cycles can be presented as: 

 

       𝑐𝑡
𝛼 =  λ𝛼𝑭𝑡 + 𝑒𝑟𝑟𝑜𝑟𝑡

𝛼   

𝑐𝑡
𝛼 =  𝚪𝑡

𝛼 + 𝑒𝑟𝑟𝑜𝑟𝑡
𝛼 ,                                         (A.1) 

 

where 𝑒𝑟𝑟𝑜𝑟𝑡
𝛼  is referred to as the idiosyncratic error of the model,  λ𝛼  is a ‘factor load’ coefficient that 

measures how much the cycle reacts to general shocks, which affect all the quantiles of the distribution. 𝚪𝑡
𝛼 =

λ𝛼𝑭𝑡 is the common component of the model, that is shocks that impact all the quantiles. If we define 𝑪𝑡 =

(𝑐𝑡
𝛼1 , 𝑐𝑡

𝛼2 , … , 𝑐𝑡
𝛼𝑚)′  and 𝚲 = (𝜆𝛼1 , … , 𝜆𝛼𝑚)′, where 𝛼𝑗 , 𝑗 = 1, … 𝑚  represents specific quantile indexed by 𝑗 

(and therefore 0 < 𝛼𝑗 < 1), we have, in matrix form:  

 
𝑪𝑡

(𝑚 × 1)
=

𝚲     𝑭𝑡

(𝑚 × 𝑟)(𝑟 × 1)
+

𝒆𝒓𝒓𝒐𝒓𝑡,

(𝑚 × 1)                       (A.2) 

 

where 𝒆𝒓𝒓𝒐𝒓𝑡 = (𝑒𝑟𝑟𝑜𝑟𝑡
𝛼1 , 𝑒𝑟𝑟𝑜𝑟𝑡

𝛼2 , … , 𝑒𝑟𝑟𝑜𝑟𝑡
𝛼𝑚)′ . Note that, without loss of generality, even when the 

model specifies a static relationship between 𝑐𝑡
𝛼 and 𝑭𝑡, 𝑭𝑡 can be considered a dynamic vector process. If 𝑭𝑡 

and 𝑿𝑡 are jointly stationary, then 𝑭𝑡 evolves according to a vector autoregression (VAR) process, as follows: 

 

𝑨(𝐿)𝑭𝑡 = 𝒖𝑡,                        (A.3) 

 

where 𝑨(𝐿) is a polynomial of the lag operator. This model is referred to in the literature as a dynamic factor 

model if 𝑭𝑡 includes primitive factors and their lags or as a static factor model if it accounts only for the 

primitive factors (Bai and Ng 2008). 

The factors in Eq. 5 can be estimated using principal components (PC) or singular value decompositions 

(SVD), both methods allowing the estimation of the factors and the factor loads.  

Identification issues arise owing to the fact that 𝑭 and 𝚲 are clearly not separately identifiable. For any 

arbitrary (𝑟 × 𝑟) invertible matrix 𝑯 we have that: 

 

𝑭𝚲′ = 𝑭𝑯𝑯−𝟏𝚲′ = 𝑭∗𝚲′∗,             (A.4) 

 

where 𝑭∗ = 𝑭𝑯  and 𝜦∗ = 𝜦𝑯−1 . In this case, the factor model is observationally equivalent to 𝑪 =
𝑭∗𝚲′∗ + 𝒆𝒓𝒓𝒐𝒓. Therefore, 𝑟2 restrictions are required to uniquely fix 𝑭 and 𝚲 (Bai and Wang 2012). Notice 

that the estimation of the factors when using either PC or SVD imposes the normalization that  
𝚲′𝚲

𝑴
= 𝑰𝑟  and 

𝑭′𝑭 be diagonal, which are sufficient to guarantee identification (up to a column sign change). We follow this 

approach here. 

 

A.2. Further considerations when dealing with stochastic versus deterministic trends 

 

When working with time series, such as mortality rates or, as in this case, temporal quantiles of the 

lifetable survivorship function, the trends and cycles in the data must be modeled accurately in order to 

determine whether the time dynamics of the system respond to stochastic or deterministic trend components 

(or, alternatively, whether the processes are stationary in levels and, thus, do not house any trend at all).  

The way of approaching each case differs considerably. For example, when the system is stationary in 

levels (that is, there is not a deterministic, nor a stochastic trend in the data), it is possible to project future 

patterns using traditional time-series ARMA-models (Enders 2010) or traditional principal components 

analysis (Stock and Watson 2002). In this case, the shocks to the system, for example, mortality reductions 

due to specific improvements in health treatments, vaccines, medical facilities, etc.; would lack a permanent 

effect on mortality rates. Indeed, the effects of such shocks disappear after several periods, perhaps with some 

level of persistency, but in the long run, they do not modify the level of mortality rates.  
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However, if the series are trend-stationary, they have to be detrended before the estimation of causal or 

forecasting models. In this case, a simple deterministic model would suffice to describe the trend and thus, the 

projection of future patterns should focus on forecasting the cycles of the series, around the deterministic 

trend.  

 Finally, if the series are difference-stationary, traditional analysis is only valid after checking for 

cointegration (Engle and Granger 1987; Johansen 1988) or after differentiating each series, as many times as 

is required, to achieve stationarity. Cointegration refers to a situation in which two or more time series 

(mortality rates or survivorship quantile series) shared the same stochastic trend. That is, the effects of shocks 

that affect the dynamics of the series do not disappear and, moreover, they are the same for all the series. 

In pragmatic terms, the first step to take is to check for unit roots in the data. Traditional and augmented 

unit root tests proposed by Dickey and Fuller (1979) and Said and Dickey (1984), respectively, are employed 

in this study, to determine whether the series present evidence of unit roots.  

It is especially important to compare with the case in which the series are well described by a temporal 

trend that faces unexpected random breaks. In this case, traditional unit root tests suffer a very inconvenient 

lack of power and might easily conclude in favor of a unit root, even when the process is better described by a 

linear trend with one or several breaks. This is especially important in the present context, because, on the one 

hand, under the unit root hypothesis, any shock affecting the quantiles of the survivorship distribution would 

have a permanent effect on the trajectory of such quantiles. On the other hand, if the unit root-hypothesis is 

rejected, the effects of a shock would disappear, around the deterministic trend, creating what we could label 

as mortality cycles. That is, cyclical patterns of increasing and reduction in mortality quantiles, around the 

deterministic trend. Under a deterministic trend model with a break, we could identify which shocks to the 

system produce a permanent effect, in terms of mortality reduction, and which of them disappear in few years. 

The former will be associated to the break-dates, while the latter will describe the stationary cycles around the 

quantile-trend.  

 

 

A.3. Testing Procedure. 

 

 
Table A.1. Traditional unit root tests (t) for lifespan quantiles and critical values (cv). We used an Augmented 

Dickey-Fuller test with different lags (from 0 to 2) and with alternative hypotheses: intercept and intercept 

and trend. In the cases when the absolute value of the calculated t-statistic is higher than the absolute value of 

the critical value (cv), the null of a unit root is rejected. We report the critical values at 95% in every case. 

      
Males 

        

Alternative Intercept    Intercept and Trend 

Lags 0 1 2   0 1 2 

Percentile 
t cv t cv t cv 

  
t cv t cv t cv 

                            

10 -1.9 -2.9 -1.8 -2.9 -2.3 -2.9   -1.0 -3.5 -1.0 -3.5 -0.7 -3.5 

15 -2.7 -2.9 -2.0 -2.9 -2.6 -2.9   -2.6 -3.5 -1.5 -3.5 -1.9 -3.5 

20 -2.4 -2.9 -1.8 -2.9 -2.4 -2.9   -3.1 -3.5 -2.0 -3.5 -2.3 -3.5 

25 -2.0 -2.9 -1.4 -2.9 -1.9 -2.9   -3.4 -3.5 -2.1 -3.5 -2.3 -3.5 

30 -1.5 -2.9 -0.9 -2.9 -1.2 -2.9   -3.8 -3.5 -2.3 -3.5 -2.3 -3.5 

35 -1.0 -2.9 -0.3 -2.9 -0.4 -2.9   -4.0 -3.5 -2.4 -3.5 -2.1 -3.5 

40 -0.7 -2.9 0.1 -2.9 0.2 -2.9   -3.7 -3.5 -2.2 -3.5 -1.8 -3.5 

45 -0.3 -2.9 0.6 -2.9 0.7 -2.9   -3.1 -3.5 -1.8 -3.5 -1.2 -3.5 

50 -0.1 -2.9 0.8 -2.9 1.1 -2.9   -2.6 -3.5 -1.5 -3.5 -0.9 -3.5 

55 0.1 -2.9 1.1 -2.9 1.5 -2.9   -2.3 -3.5 -1.2 -3.5 -0.6 -3.5 

60 0.2 -2.9 1.4 -2.9 1.8 -2.9   -2.0 -3.5 -1.0 -3.5 -0.3 -3.5 
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65 0.3 -2.9 1.6 -2.9 2.0 -2.9   -1.9 -3.5 -0.8 -3.5 -0.2 -3.5 

70 0.4 -2.9 1.7 -2.9 2.2 -2.9   -1.8 -3.5 -0.8 -3.5 -0.1 -3.5 

75 0.4 -2.9 1.7 -2.9 2.2 -2.9   -1.8 -3.5 -0.8 -3.5 -0.1 -3.5 

80 0.3 -2.9 1.7 -2.9 2.2 -2.9   -1.9 -3.5 -0.8 -3.5 -0.2 -3.5 

85 0.2 -2.9 1.6 -2.9 2.1 -2.9   -2.1 -3.5 -1.0 -3.5 -0.4 -3.5 

90 0.1 -2.9 1.5 -2.9 2.0 -2.9   -2.4 -3.5 -1.2 -3.5 -0.5 -3.5 

95 -0.1 -2.9 1.3 -2.9 1.8 -2.9   -3.0 -3.5 -1.6 -3.5 -0.9 -3.5 

 

 

Females 

 

Alternative Intercept    Intercept and Trend 

Lags 0 1 2   0 1 2 

Percentile 
t cv t cv t cv 

  
t cv t cv t cv 

                            

10 -2.6 -2.9 -2.9 -2.9 -3.6 -2.9   -1.4 -3.5 -1.0 -3.5 -1.2 -3.5 

15 -2.8 -2.9 -2.8 -2.9 -3.9 -2.9   -2.4 -3.5 -1.5 -3.5 -1.9 -3.5 

20 -2.8 -2.9 -2.8 -2.9 -3.8 -2.9   -2.9 -3.5 -1.7 -3.5 -2.1 -3.5 

25 -2.5 -2.9 -2.4 -2.9 -3.2 -2.9   -2.9 -3.5 -1.7 -3.5 -2.0 -3.5 

30 -2.1 -2.9 -2.0 -2.9 -2.6 -2.9   -3.0 -3.5 -1.7 -3.5 -1.9 -3.5 

35 -1.8 -2.9 -1.6 -2.9 -2.1 -2.9   -3.1 -3.5 -1.8 -3.5 -1.8 -3.5 

40 -1.5 -2.9 -1.2 -2.9 -1.6 -2.9   -3.3 -3.5 -1.9 -3.5 -1.8 -3.5 

45 -1.4 -2.9 -1.0 -2.9 -1.3 -2.9   -3.8 -3.5 -2.0 -3.5 -1.9 -3.5 

50 -1.2 -2.9 -0.7 -2.9 -0.9 -2.9   -4.2 -3.5 -2.3 -3.5 -1.9 -3.5 

55 -1.1 -2.9 -0.5 -2.9 -0.7 -2.9   -4.8 -3.5 -2.6 -3.5 -2.1 -3.5 

60 -0.9 -2.9 -0.4 -2.9 -0.5 -2.9   -5.2 -3.5 -2.8 -3.5 -2.2 -3.5 

65 -0.9 -2.9 -0.3 -2.9 -0.4 -2.9   -5.8 -3.5 -3.2 -3.5 -2.5 -3.5 

70 -0.9 -2.9 -0.3 -2.9 -0.3 -2.9   -6.5 -3.5 -3.5 -3.5 -2.8 -3.5 

75 -0.9 -2.9 -0.2 -2.9 -0.2 -2.9   -7.1 -3.5 -3.9 -3.5 -3.1 -3.5 

80 -0.9 -2.9 -0.2 -2.9 -0.1 -2.9   -8.1 -3.5 -4.7 -3.5 -3.7 -3.5 

85 -0.9 -2.9 -0.1 -2.9 0.0 -2.9   -9.1 -3.5 -5.5 -3.5 -4.5 -3.5 

90 -0.9 -2.9 -0.1 -2.9 0.0 -2.9   -9.4 -3.5 -6.0 -3.5 -5.0 -3.5 

95 -1.1 -2.9 -0.2 -2.9 -0.1 -2.9   -9.8 -3.5 -6.3 -3.5 -5.4 -3.5 

 

 

We first perform the test against the alternative hypothesis of an intercept. That is, assuming in the 

alternative hypothesis that the quantiles fluctuate around a constant mean, which would be the case of 

underlying constant mortality rates across age categories. As expected, the null of a unit root cannot be 

rejected in this case (that is, we reject the constant mortality hypothesis) regardless of the quantile under 

consideration. This result is not surprising, because of the clearly increasing dynamics during the sample of 

every series, which is evident in Fig. 3.  

At this point, we had to construct the test with an alternative that included a time-trend. In this case, we 

found that for some of the quantiles, that is, those above the 45th percentile for females and those between the 

30th and 40th percentiles for males, the null of a unit root must be rejected. This means that the processes 

within these ranges are trend-stationary and that they should not be modeled as if they contained a stochastic 
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trend. This is an important finding. It means that the best model describing the data, within the 

aforementioned categories, is a simple deterministic linear model. In this case, given the constant slope of the 

straight line, no signs of increasing or decreasing pace in the process of longevity extension is found. It does 

not mean that mortality is constant at these categories, but rather that the rate of the mortality shift.  

For quantiles lying outside the aforementioned range, it is unclear as to whether they are described by a 

unit root process or by a deterministic trend with a break. Table A.2 reports the values of the corrected 

statistics and the corrected critical values, considering a break in both the null and the alternative, for the IO 

model described in section 2.2. We only report the results of the tests for those quantiles for which we failed 

to reject the null of a unit root (see Table A.1), thus, the blanks in this table correspond to the cases for which 

a simple linear model suffices and, therefore, we do not need to test for the IO model. In the other cases we do 

need to consider the presence of structural breaks in the trend. A consideration of this possibility shows that 

the null of a unit root is rejected at every quantile for females (with the sole exception of the 25th percentile). 

 In the case of men, the null hypothesis of a unit root is rejected at the 10th and 15th percentiles, at a 

confidence of 95%, and the 20th, 25th, and 95th percentiles, at a confidence of 90%. Percentiles lying between 

the 45th and 90th levels for males could, alternatively, be modeled via a stochastic trend. However, in this case, 

additional specification tests are needed before we might conclude in favor of the unit root hypothesis (i.e., 

tests allowing for a greater number of breaks, and different functional forms of the deterministic trends). 

Therefore, we prefer to model all the quantiles using the broken trend model, because it proves to be more 

appropriate in most cases.  

Once again we are facing an interesting finding. The series of quantiles in almost all the cases are better 

described by a linear model with a one-time change in slope, than by a unit root process (stochastic trend). 

What is means is that, indeed, there are signs of acceleration or deceleration (depending on the sign of the 

rotation) in the rate of improvements for these quantiles, but such changes are one-time breaks during the 

whole sample. Once these big shocks have impacted mortality rates, subsequent shocks lack a permanent or 

cumulative effect on the quantile-trends of the lifespan distribution.  

 

Table A.2. Unit root tests (t), critical values (cv) and fraction of the sample where the structural break is 

presented (θ) for the innovative outlier model. We used the statistic proposed by Kim and Perron (2009), 

which allows for a single break under both the null and the alternative hypotheses. Critical values at a 

confidence of 95% are shown. θ is the fraction of the sample in which the structural break is detected. Blanks 

correspond to the quantiles better described by a linear model, for which there is not necessity of considering 

neither the IO model or the unit-root hypothesis.  

 

  
Males 

 

Females 

 

Percentile t cv θ t cv θ 

              

10 -8.7 -3.99 0.2 -6.6 -4.17 0.3 

15 -6.1 -3.99 0.2 -5.7 -4.17 0.3 

20 -3.6 -3.99 0.2 -4.9 -4.17 0.3 

25 -3.9 -3.99 0.2 -2.2 -4.17 0.3 

30 - - - -4.4 -3.99 0.2 

35 - - - -4.5 -3.99 0.2 

40 - - - -4.3 -3.99 0.2 

45 -2.4 -4.24 0.4 -4.3 -3.99 0.2 

50 -2.8 -4.24 0.5 - - - 

55 -2.8 -4.24 0.5 - - - 

60 -2.7 -4.24 0.5 - - - 

65 -2.8 -4.24 0.5 - - - 

70 -2.8 -4.24 0.5 - - - 
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75 -2.9 -4.24 0.7 - - - 

80 -3.2 -4.18 0.7 - - - 

85 -3.3 -4.18 0.7 - - - 

90 -3.7 -4.18 0.7 - - - 

95 -4.2 -4.18 0.7 - - - 

 

 

At this point, we need to identify the periods in which the breaks in the linear trends occurred and estimate the 

sign of such rotations. Given the results above, the break dates are determined endogenously and they are 

reported in Table 3. In this table we calculated the break date for all the quantiles, even for which they are not 

statistically significant, in the sake of completeness.  

 

Table A.3. Unit root tests for the innovative outlier model. We used the statistic proposed by Zhou and Perron 

(2005) to estimate endogenously the breaks in the trends. 

 

  

Males 

  

Females 

 

Percentile break year Percentile break year Percentile break year Percentile break year 

                

10 1943 55 1968 10 1945 55 1937 

15 1941 60 1968 15 1945 60 1937 

20 1940 65 1968 20 1945 65 1937 

25 1940 70 1968 25 1957 70 1937 

30 1940 75 1983 30 1940 75 1938 

35 1963 80 1984 35 1940 80 1938 

40 1963 85 1984 40 1940 85 1938 

45 1963 90 1984 45 1940 90 1938 

50 1968 95 1984 50 1940 95 1938 
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