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We have studied the structure of3He droplets at zero temperature using a density functional approach
plus a configuration interaction calculation in an harmonic oscillator major shell. The most salient
feature of open shell drops is that the valence atoms couple their spins to the maximum value compatible
with Pauli’s principle, building a large magnetic moment. We have determined that 29 atoms constitute
the smallest self-bound droplet. [S0031-9007(97)03450-9]
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The structure and dynamical properties of liquid he
lium drops have been the subject of many experimen
and theoretical studies during the past 15 years (for rec
reviews, see [1,2]). During this time, a severe exper
mental limitation has been the impossibility of selectin
or detecting and identifying quantitatively small van de
Waals clusters [3]. The situation has recently change
and new scattering deflection methods seem able to
termine and select the size of large helium clusters [4
A new method based on diffracting a molecular bea
from a transmission grating looks very promising in doin
the same for small-size van der Waals clusters [5]. Th
might shed light onto the ground state structure of3He
droplets. Prompted by this experimental possibility, w
present here a realistic calculation of the structure of the
systems using a reliable density functional and powerf
techniques borrowed from the shell model description
the atomic nucleus (see, e.g., [6]).

The first systematic calculation of the ground state pro
erties of4He and3He drops was carried out by Pandhari
pande and co-workers using a variational Monte Car
(VMC) technique [7] and by Stringari and Treiner within a
local, zero range energy density functional (LDF) approx
mation [8]. At present, diffusion Monte Carlo calculation
are also available for4He drops [9,10]. For3He, there are
also two recent systematic calculations which make use
nonlocal, finite-range density functionals (NLDF) built so
as to reproduce a large number of properties of the hom
geneous and inhomogeneous liquid [11,12]. Within LDF
a random-phase approximation calculation of the collecti
spectrum of closed shell3He drops is also available [13].

One of the more interesting issues of these studi
is the existence of a minimum numberNmin of atoms
below which 3He droplets are unbound. That numbe
was estimated to be between 20 and 40 [7], since f
N ­ 20 the system was unbound and weakly bound fo
N ­ 40. Calculations carried out employing local or non
local functionals have reproduced this microscopic fe
ture [8,11,12]. These two numbers belong to thesp 1
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1d sp 1 2d sp 1 3dy3 sequence withp ­ 0, 1, 2, ... char-
acteristic of the harmonic oscillator (HO) well, each o
them defining a major shell closure.

NLDF calculations of large drops show departures from
that sequence aboveN ­ 168 [11,12]. These functionals
are fitted to reproduce many properties of the homog
neous liquid and of its free surface, as well as Landa
parameters and dynamical properties of the liquid [14
thus representing a considerable improvement over LD
[8]. Yet total energies of small drops depend to a consi
erable extend on the parametrization one uses. That c
be appreciated in Table I, where we collect the energies
closed shell drops up toN ­ 168 obtained in [7,8,11,12]
completed with those calculated with the NLDF of [14]
which is an improved version of that of [12] in the sens
that it better reproduces the properties of the homog
neous liquid, it is Galilean invariant in the spin channe
and yields binding energies of finite drops in better agre
ment with those of [7], at the price of only slightly
worsening the surface tension of the liquid free surfac
which is of 0.115 KÅ22 for the functional of [12] and
0.120 KÅ22 for that of [14], as compared with the ex-
perimental value of0.113 KÅ22. The results we shall
present here have been obtained using that functional.
compared with VMC [7], all density functional calcula-
tions yield some overbinding. However, it is worthwhile
noticing that the VMC approach of [7] underbinds the ho
mogeneous liquid by 0.13 Kyatom [15].

Within NLDF, an estimate ofNmin may be obtained
using the uniform filling approximation for open shel
drops. It consists in uniformly distributing the valence
atoms between the magnetic substates. This yiel
Nmin ­ 34, as can be seen in Fig. 1 (dashed line). Sinc
correlations not included in the mean field are known t
play an important role in open shell drops, that estima
may be too crude. Indeed, the interaction between diffe
ent configurations arising in thep ­ 3 major shell, made
of l ­ 1 and l ­ 3 orbital angular momentum substates
could produce a sizeable extra binding.
© 1997 The American Physical Society 4729
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TABLE I. Total energies (K) for several closed shell3HeN drops. PPW results are from [7],
ST from [8], WR from [11], BJHNS from [12], and BHN from [14]. Thè values correspond
to the energy per particle in the homogeneous liquid.

N PPW [7] ST [8] WR [11] BJHNS [12] BHN [14]

20 4.12 1.6 0.97 2.05 2.70
40 21.44 27.6 29.80 27.49 24.28
70 219.25 235.0 237.3 233.7 227.1

112 251.52 284.0 286.5 281.3 269.9
168 2103.8 2159.6 2162.4 2155.0 2139.7

` 22.36 [15] 22.49 22.49 22.49 22.49
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To make quantitative that statement, we have resort
to a configuration interaction calculation in thep ­ 3 ma-
jor shell, whose basic ingredients are the two-body m
trix elements of the residual atom-atom interaction, whic
we have taken to be the effective3He-3He interaction de-
duced from the NLDF of [14]. For each specific drop, th
NLDF in the uniform filling approximation provides both
the single particle wave functions, to evaluate the tw
body matrix elements, and the single particle energie
The dimension of them-scheme variational space (num
ber of different Slater determinants in the space) reach
D ­ s 20

10 d ­ 184 756 for N ­ 30. We have solved the
secular problem using the codeANTOINE [16], a fast im-
plementation of the Lanczos method mostly oriented
nuclear structure problems. This procedure takes care
relevant correlations that are absent in the uniform fillin
HF approximation and can accommodate possible sphe
cal symmetry breaking. The method has been succe
fully applied to the description of deformed nuclei in the
laboratory frame [17] using a spherical shell model bas
which plays, in that case, the same role as the unifor
filling HF approximation does here.

Table II displays the most important matrix element
obtained forN ­ 30 andN ­ 40. Although in a differ-
ent representation, they bear some of the characteristics
the triplet pairing matrix elements of liquid3He [18]: No-
tice that the matrix elements in a singlel orbit are very re-

FIG. 1. NDLF energies (short-dashed line), correlation ene
giesEC (short-long-dashed line), and total energies (solid line
as a function of the numberN of atoms in the droplet.
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pulsive forL ­ 0, essentially zero for evenL values, and
attractive for oddL values, which, in addition, are very
similar. The diagonal matrix elements involving twol or-
bits are much more attractive in theS ­ 1 channel than in
theS ­ 0. Besides theS ­ 1 matrix elements are nearly
L independent. We shall see that these features of the
trix elements completely determine the structure of op
shell droplets. They are also responsible for the quanti
tive and qualitative differences between the present resu
and those of [12], where the use, for the sake of simpl
ity, of a zero-range3He-3He residual interaction to com-
pute the pairing matrix elements within one activel orbit
led to the incorrect prediction that small3He drops could
display a pairing of BCS type.

The calculated correlation energiesEC are plotted in
Fig. 1 (dash-dotted line). They smoothly depend on t
number of particles in the shell having a pronounce
minimum at midshell. Moreover, they roughly have th
same value for particles and for holes. Adding th
correlation to the NLDF ground state energy, we obta
the total energy, which is also shown in Fig. 1 (soli
line). It is seen that correlations move the limit of stabilit

TABLE II. Matrix elementskl1, l2sLdjV jl3, l4sLdl (K) for N ­
30 and 40 drops.

l1, l2, l3, l4 LS N ­ 30 N ­ 40

3, 3, 3, 3 00 0.724 0.896
11 20.247 20.228
20 20.019 20.010
31 20.210 20.235
40 0.015 0.024
51 20.203 20.239
60 0.010 20.003

1, 1, 1, 1 00 0.307 0.506
11 20.137 20.155
20 20.018 0.081

3, 1, 3, 1 20 20.024 20.012
21 20.237 20.264
30 20.197 20.245
31 20.188 20.264
40 20.005 20.053
41 20.235 20.287
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down by about five atomic units. Consequently, w
predictNmin ­ 29. The very pronouncedEC minimum at
midshell allows one to state that the droplet with 30 atom
is bound, even taking into consideration the uncertainti
of the NLDF mean field results, as shown in Table I. Tha
size is in the reach of new detection techniques [5].

The structure of small droplets is also a major issu
A common feature of droplets withN ­ 20 to 40 is
that their ground states have the maximum spin valu
allowed by Pauli’s principle, i.e.,Smax ­ ñy2, where ñ
is the number of particles (holes) in the valence spa
below (above) midshell. This is due to the propertie
of the residual interaction discussed above: The ener
minimum within onel orbit is obtained for configurations
having the maximum antisymmetry in orbital space an
consequently, the maximum symmetry in spin space.
addition, due to the dominance of the spin triplet chann
in the interaction between atoms in different orbits, th
aligned states of each orbit couple their spins to th
maximum allowed value.

Another relevant quantity is the spin gapDS, defined
as the energy difference between the ground state a
the lowest excited state with spinS ­ Smax 2 1. The
gap is plotted in Fig. 2. It is seen thatDS is roughly
proportional toñ, or equivalently to the ground state spin
Embedded in the spin gap they may lay several stat
with different L values. Only at midshell6 one atom,
is the spin gap empty. An explanation of this behavio
is given below. Exploratory calculations carried out in
the p ­ 4 and p ­ 5 major shells indicate that these
features, i.e., maximum spin alignment and largeEC and
DS at midshell, still persist.

We can go one step further taking advantage of th
specificities of the residual interaction. Looking at th
two-body matrix elements in Table II, one realizes tha
the diagonal matrix elementskl2sLdjV jl2sLdl ­ V L split
into three quasidegenerate blocks according to theirL
value: L ­ 0, even L fi 0, and odd L, in increasing
order of attraction. Let us consider a singlel orbit
and assume that exact degeneracy holds within ea

FIG. 2. The spin gapDS as a function of the numberN of
atoms in the droplet.
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block. In this case, the residual interaction has t
symmetry of the groupOs2l 1 1d, a subgroup of the
complete SUs2l 1 1d. Owning to that, the states o
the ln configuration can be classified according to t
representations of the group chain SUs2l 1 1d . Os2l 1

1d . Os3d (see Ref. [19]). The group representations a
such that at midshell and midshell6 one atom the state
of maximum spin contains a singleL value. For the other
cases, severalL values are degenerate. This explai
the results of the exact calculations discussed befo
Furthermore, for a given spin, a formula which on
involves the simplest Casimir operators of SUs2l 1 1d
holds for the lowest energy state of each spin:

Esñ, Sd ­

µ
ñ
2

∂
fdV 2 V g 1

µ
ñ
2

∂
V

1
1
2

dV

∑
SsS 1 1d 2

1
4

ñsñ 1 2d
∏

, (1)

where

V ­

P
s2L 1 1d s2S 1 1dV LP

s2L 1 1d s2S 1 1d
, (2)

dV ­ V odd 2 V even. (3)

The quantities earlier defined as correlation energyEC and
spin gapDS now read

EC ­

µ
ñ
2

∂
fdV 2 V g ;

µ
ñ
2

∂
V C , (4)

DS ­
1
2

dV

∑
SsS 1 1d 2

1
4

ñsñ 1 2d
∏

­
1
2

ñdV ,

(5)

so

Esñ, Sd ­

µ
ñ
2

∂
V 1 EC 1 DS . (6)

For a given valencep shell of degeneracy2Vp ­
sp 1 1d sp 1 2d, the maximum spin is predicted to b
S ­ sp 1 1d sp 1 2dy2. In order to build up this spin,
all the l orbits have to be half filled, i.e., theVp valence
particles are distributed asfn1, n2, ..., ni, ...g with ni ­
2li 1 1. This state is, therefore, unique. In thep ­ 3
case the maximum alignment configuration is

s f7fS ­ 7y2g ≠ p3fS ­ 3y2gdfS­5g. (7)

The correlation energy of the aligned configuration wi
n1 particles in the orbitl1 andn2 particles in the orbitl2

is now written as

ECfn1, n2g ­ ECfn1g 1 ECfn2g 1
1
4

b12 ñ1 ? ñ2 , (8)

whereb12 ­ fV S­1
12 2 V

S­0
12 g. For the spin gap we have

now

DS ­
1
2

b12sñ1 1 ñ2d . (9)
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It is clear that for a given number of valence particle
the closest to half filling the occupations the largest t
spin, the correlation energy, and the gap. In many ca
the ground state partition is solely dictated by the exigen
of producing maximum spin.

We have applied these analytical expressions toN ­
30 and have obtained a correlation energy of22.66 K
to be compared with the exact value22.51 K and a
gap of 0.65 K compared to the exact value 0.58 K. T
agreement is striking and justifies the use of expressi
(8) and (9) in the description of larger3He drops as far
as the matrix elements of the effective interaction ke
the features already discussed. Notice that neither in
single l case nor in the case of severall’s the correlation
energy depends on the number of pairs. Besides,
odd-even effects are present in any of the calcula
observables.

To conclude, we have shown that the inclusion of co
figuration interactions in the description of3He droplets
leads to predict rather unambiguously that3He30 is a self-
bound system. Near midshell, the correlation energy
substantial, and in all cases the ground state of o
shell droplets corresponds to a configuration with ma
mum spin alignment. The existence in these dropl
of a large spin will originate a sizeable magnetic m
ment mdrop ­ gSm3, with the 3He Bohr magneton de-
fined as m3 ­ h̄ey2m3c and the gyromagnetic facto
deduced from the experimental magnetic moment of a3He
atom [20] beingg ­ 12.8. This fact might be used in
beam deflecting experiments in inhomogeneous magn
fields as a complementary detecting technique.
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