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Objective: The first aim of this study was to develop a nanocarrier that could transport the 

peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium 

and examine the mechanism of nanoparticle transcytosis. The second aim was to determine 

whether these nanocarriers could successfully treat a mouse model of Alzheimer’s disease (AD).

Methods: PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement 

technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol 

(PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial 

cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, 

confocal and transmission electron microscopy. The effectiveness of the treatment was assessed 

in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of β-amyloid.

Results: Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain 

endothelium compared with the free drug and the carriers showed a delayed release profile of 

PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor 

did they alter the permeability of the blood–brain barrier model. Electron microscopy indicated 

that the nanocarriers were transported from the apical to the basal surface of the endothelium 

by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a 

reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of β-amyloid 

in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspond-

ingly reduced.

Conclusion: PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be 

loaded with a pharmaceutical agent to effectively treat a mouse model of AD.

Keywords: nanoparticle, Alzheimer’s disease, blood–brain barrier, brain endothelium, pioglitazone, 

APP/PS1 transgenic mouse

Introduction
Alzheimer’s disease (AD) is a multifactorial brain disorder prevalent in elderly 

people.1,2 It is characterized by cognitive impairment, synaptic failure, aggregates of 

amyloid-beta (Aβ) and intraneuronal neurofibrillary tangles.3–5 However, AD is also 

referred to as a degenerative metabolic disease that is associated with physiological 

alterations such as hypercholesterolemia, metabolic syndrome, hypertension and dia-

betes type-2,6 a condition identified as a risk factor for the development of AD.

Pioglitazone (PGZ) (5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]–1,3-

thiazolidine-2,4-diona), an agonist of the peroxisome proliferator-activated recep-

tor (PPARγ), is a thiazolidinedione used for the treatment of type-2 diabetes. The 

PPARγ receptors have various functions including anti-angiogenic, antifibrotic, 
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anti-inflammatory and anti-tumor effects.7–10 PGZ is also 

neuroprotective in models of neurodegenerative disorders,10 

highlighting PPARγ agonists as a promising treatment for 

AD.11 Thus, PGZ has been reported to reduce oxidative 

stress, normalize cerebral blood flow and glucose uptake, 

increase neuronal activity and exert positive effects on 

cerebrovascular functions in an animal model of AD.12 

Furthermore, treatment with PGZ produced a significantly 

lower risk of dementia over the 5-year follow-up period 

in diabetic patients treated with PGZ compared with those 

who were not.13

Drug delivery to the brain is a challenge for the treatment 

of neurological disorders. The blood–brain barrier (BBB) 

is a physical interface between the central nervous system 

(CNS) and peripheral circulation that strictly controls which 

molecules can enter into the brain parenchyma.14 Only lipo-

philic molecules smaller than 400 Da can diffuse through 

the BBB; the passage of lipid insoluble or larger hydrophilic 

molecules is very limited.15,16 Different strategies to increase 

the transport of drugs through the BBB include liposomes, 

solid lipid nanoparticles (NPs), gold NPs and polymeric 

NPs.17–19 These drug-loaded polymeric NPs are a potential 

alternative to improve drug delivery to the brain.

The properties of polymeric NPs include drug encap-

sulation, stability, high loading capacity for many agents 

and controlled drug release kinetics. Moreover, they can be 

easily modified with a variety of surface-attached ligands.20,21 

Different polymers which deliver a variety of molecules 

through the BBB have been studied.22–24 Poly (lactic-co-

glycolic acid) (PLGA) systems have been the subject of 

great scientific interest due to their properties, specifically 

their biocompatibility and biodegradability. PLGA is an 

FDA-approved co-polymer used successfully for delivery 

to different tissues, including the brain.19,25–27

The attachment of specific ligands to the surface of NPs 

makes the delivery of drugs to CNS more targeted and may 

enhance the limited BBB penetration of therapeutic compounds. 

For instance, polyethylene glycol (PEG) can functionalize NPs 

to increase their plasma residence time, preventing their removal 

by mononuclear phagocytes. This allows the NPs to remain lon-

ger in circulation, thus increasing the probability of successful 

organ-targeted delivery and passage across the BBB.28–30

In this study, a formulation of PGZ-PLGA-PEG NPs was 

synthesized and their suitability for the treatment of AD was 

demonstrated. Physicochemical characterization and in vitro 

studies with a human brain microvascular endothelial cell 

line (hCMEC/D3) were carried out. An in vivo study for 

cognitive evaluation after treatment was performed in male 

APP/PS1 mice and wild-type-like (WT) littermates.

Materials and methods
Materials
PGZ was obtained from Capot Chemical (Hangzhou, People’s 

Republic of China) and Diblock copolymer PLGA-PEG 

(Evonik Ind., Resomer® Select 50:50 DLG mPEG 5,000–5 wt% 

PEG), was purchased from Evonik Corporation (Birmingham, 

AL, USA). Rhodamine 6G (Rhod), Tween® 80 (Tw 80), 70 

kDA FITC-dextran and 24-well filter inserts (PET membrane, 

pore 1 µm) were acquired from Sigma-Aldrich (Gillingham, 

UK). The dialysis membrane MWCO 12,000–14,000 Da, 

was obtained from Medicell International Ltd. (London, UK). 

Trypsin-EDTA was purchased from Thermo Fisher (London, 

UK). Alamar Blue (AB) was obtained from Invitrogen Alf-

agene® (Carcavelos, Portugal).

Methods
Optimization and characterization of NPs
PGZ-NPs were obtained by the solvent displacement 

technique.31 The organic phase with PGZ (1 mg/mL) was 

solubilized in dimethyl sulfoxide (DMSO) 5%, to which a 

mixture of PLGA-PEG (9.5 mg/mL) and acetone (5 mL) was 

added. Once completely dissolved, the solution was added 

drop by drop with moderate stirring into 10 mL of an aqueous 

solution of 1.16% Tw 80. The pH was adjusted to 4.5 with 

HCl 0.1 M. Then, the solvents were evaporated and the NP 

dispersion was concentrated into a final volume of 10 mL 

under reduced pressure.

The conditions for NP production were optimized in a fac-

torial design26 (Figure S1). Three independent variables (PGZ, 

PLGA-PEG and Tw 80 concentrations) and four dependent 

variables (average particle size [Z
av

], polydispersity index 

[PI], zeta potential [ZP] and entrapment efficiency [EE] were 

studied. A pH of 4.5 was kept constant for all the assays.  

A total of 16 experiments (eight factorial points, six axial 

points and two replicated center points) were required for the 

estimation of the pure error sum of squares using Statgraphics 

Plus 5.1 software (The Plains, VA, USA). 

The experimental responses were the result of the indi-

vidual influences and interactions of the three independent 

variables. In the surface of response, a low concentration 

of PGZ and PLGA-PEG produced smaller NPs and con-

sequently greater homogeneity of the formulation. The 

formulation with the most appropriate physicochemical 

characteristics was selected for use in this study.
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Transmission electron microscopy (TEM) was used 

to evaluate the morphology of PGZ-NPs. Before negative 

staining, the copper grids were activated with ultraviolet light 

and samples were positioned on the grid surface, diluted with 

water (1:3) and negative stained with a 2% (v/v) uranyl acetate 

solution. After being dried at room temperature, the samples 

were examined by TEM on a Jeol 1010 (Tec-nai Spirit TEM, 

FEI, Jeol, Welwyn Garden City, UK) at 80 kV.

The morphometric parameters (Z
av

 and PI) of PGZ-NPs 

were determined by photon correlation spectroscopy (after 

1:10 dilution with water) with a Zetasizer Nano ZS (Malvern 

Instruments, Malvern, UK) at 25°C. The surface charge or 

ZP was calculated from electrophoretic mobility. The values 

are the mean ± SD which are calculated for at least three 

different batches.32

The EE of PGZ-NPs was determined indirectly by 

measuring the concentration of the free drug in the disper-

sion medium. The non-entrapped drug was separated by 

a filtration/centrifugation technique (1:10 dilution) using 

Ultracell–100K (Amicon® Ultra; Millipore Corporation, 

Billerica, MA, USA) centrifugal filter devices at 12,000 rpm 

for 15 minutes. The EE was calculated using equation (1):

EE (%)

Total amount of  PGZ Free amount of  PGZ

Total amount 
=

−
oof  PGZ

100×
 

(1)

Samples were evaluated by HPLC using a validated 

analytical method.33 The mobile phase was: 0.1 M acetonitrile, 

ammonium acetate and glacial acetic acid (75:25:1 v/v), with 

a flow of 0.7 mL/min and a volume of injection of 10 µL. 

The reported values are the mean ± SD (n=6).

Release profile
In vitro PGZ release studies from NPs were performed 

in vertical Franz diffusion cells using membrane dialysis 

with MW 12–14 KDa cutoff under sink conditions27 at 

37.0°C ± 0.5°C with moderate and continuous stirring. The 

PGZ-NPs and free drug at the same concentration (1 mg/mL) 

were dissolved in DMSO and PBS (60:40) and receptor solu-

tion (RS) at pH 7.4 for 23 hours. At specific time intervals, 

a volume of 0.2 mL of the formulations was placed in the 

donor compartment and the receptor compartment was filled 

with the same volume of RS. Amounts of PGZ released were 

measured by HPLC. Values are reported as the mean ± SD 

(n=3). PGZ released at each time point was evaluated and 

data were fitted into different kinetic models34 Akaike’s 

information criterion (AIC) and coefficient of determina-

tion (r2) were determined for each case as an indicator of the 

model’s suitability for each dataset.35

syntheses of rhodamine NPs
To evaluate the cellular uptake of NPs by hCMEC/D3, Rhod 

was incorporated into the NPs. Rhod-NPs were synthesized by 

the same method as PGZ-NPs, but with addition of 100 µg/mL 

Rhod in 500 µL of methanol, mixed with 9.5 mg/mL PLGA-

PEG in 5 mL of acetone (organic phase). After the preparation 

of Rhod-NPs, the EE was determined from the amount of 

the free-Rhod present in the aqueous phase of the formula-

tions, obtained by filtration/centrifugation at 12,000 rpm for 

15 minutes. The amount of Rhod was measured by fluores-

cence spectroscopy (λex 528 nm, λem 547 nm).

cell culture
An immortalized (hCMEC/D3) line36 was cultured in 

endothelial basal medium-2, supplemented with 2.5% fetal 

bovine serum, hydrocortisone, vascular endothelial growth 

factor (VEGF), EGF, insulin-like growth factor I (IGF-I), 

human fibroblast growth factor, ascorbic acid and gentamicin 

sulphate according to the manufacturer’s formulation (Lonza, 

Basel, Switzerland). Cells were grown to confluence on tissue 

culture flasks or inserts coated with collagen Type one from 

calf skin (Sigma, Gillingham, UK) and incubated in 5% CO
2
 

in air at 37°C.

Alamar blue (AB) was used to test for any cytotoxic 

effect of NPs on the hCMEC/D3 cell line. Cells were seeded 

in collagen-coated 96-well plates at 3×104 cells/well and 

were maintained for 24 hours. Then, cells were incubated 

with 100 µL/well of 0.5–10 µg/mL of either PGZ-NPs or 

Rhod-NPs diluted with endothelial culture medium for 

24 hours. After the incubation, hCMEC/D3 cells were treated 

with 10% (v/v) of AB diluted in FBS-free endothelial culture 

medium. Absorbance was measured at 570 nm (reduced AB 

form) and 620 nm (oxidized AB form) between 4–5 hours 

after AB treatment using a FLUOstar OPTIMA microplate 

reader (BMG LABTECH, Ortenberg, Germany). The cell 

viability was calculated by the percentage of AB reduction, 

using the manufacturer’s protocol as described previously.37 

All experiments were performed three times.

cellular uptake of NPs
hCMEC/D3 cells were seeded in 12 well plates (120,000 

cells/well) and grown for 2 days. At confluence, hCMEC/D3 

cells were incubated with 1 µg/mL of Rhod-NPs for 15, 
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30 and 60 minutes, compared with untreated cells and 

analyzed by flow cytometry. The Free-Rhod and Free-Rhod-

NPs (Rhod not encapsulated during NP production) were 

also studied to analyze whether the Rhod could internalize 

without NPs. Fluorescence-activated cell sorting analysis was 

performed by collecting cells with trypsin/EDTA and wash-

ing twice with Hanks balanced salt solution (HBSS) (Sigma 

Aldrich, UK). Washed cells were analyzed on a Becton-

Dickinson (Reading, UK), FACS calibur (FL2 detector set 

at 410V). The experiments were done in triplicate and the 

values are reported as the mean ± SD (n=3) of the median 

fluorescence of 10,000 cells.

hCMEC/D3 monolayers were grown to confluence 

on fibronectin and collagen-coated 8-well Nunc La-Tek 

Chamber slides (Sigma Aldrich, UK). Confluent cells were 

treated with 1 µg/mL of Rhod-NPs for 3 hours at 37°C. Then, 

hCMEC/D3 cells were washed with HBSS and fixed in 4% 

formalin solution for 10 minutes at room temperature. The 

nuclei were counterstained with mounting medium DAPI 

(blue) (Vector Laboratories, Burlingame, CA, USA). Both 

nuclei staining and Rhod-NP-internalization were analyzed 

using confocal laser scanning microscopy (Leica TCS SP5, 

Leica Microsystems, Milton Keynes, UK).

Detection of internalization of NPs by TeM
The internalization of PGZ-NPs and Rhod-NPs in hCMEC/

D3 cells was investigated by TEM. The cells were seeded at 

120,000 cells per 1 cm2 on Transwell® inserts of polyester 

membrane (Costar, Corning, NY, USA). At confluence, the 

NPs (1 µg/mL) were applied to the apical side in endothe-

lial culture medium for 6 hours. Then, both chambers were 

washed three times in HBSS and fixed in 2.5% glutaraldehyde 

for 1 hour at room temperature. The fixative was removed and 

chambers were washed three times with 0.1 M Sörenson’s 

phosphate (PB) and stored in this buffer at 4°C.

In order to process the samples for TEM, all incuba-

tions were applied to both sides of the chamber at room 

temperature. Firstly, the cells were post-fixed in 1% osmium 

tetroxide diluted with 0.1 M PB for 1 hour. Then, the insert 

was washed three times in 0.1 M PB and removed from the 

well. The membrane was cut out of the insert and gradually 

dehydrated in sequence with ethanol: 30% for 5 minutes, 

50% for 5 minutes, 70% for 10 minutes, 100% for 10 minutes 

twice and 100% with a molecular sieve for 10 minutes. Then, 

the membranes were incubated in a mixture of 1:1 ratio of 

100% ethanol and Epon resin overnight. They were embed-

ded in Epon resin and the formed blocks were polymerized 

at 60°C for 48 hours. Resin blocks were micro sectioned at 

80 nm thickness using a Diatome diamond knife. The sections 

were mounted onto pioloform-coated copper grids and 

counter stained in 3.5% uranyl acetate for 35 minutes fol-

lowed by lead citrate for 10 minutes and finally washed three 

times before air-drying. The grids were imaged on TEM JEM 

1010 (Jeol, Japan) at an acceleration voltage of 80 kV using 

a magnification of 25,000–40,000.

Transport and permeability assay
Transfer of NPs across brain endothelium was analyzed 

using permeable cell culture inserts and TEM. Briefly, 

24-well cell-culture inserts (Millipore Millicell Hanging Cell 

Culture Insert, PET membrane; 1 µm) were coated with col-

lagen and fibronectin and seeded with 8×104 cells per insert. 

At confluence, cells were washed with HBSS and cultured 

with endothelial culture medium but without the growth 

factors VEGF, IGF, EGF and maintained for 48 hours. Then, 

cells were treated with 1 µg/mL of PGZ-NPs or Rhod-NPs 

diluted in VEGF, IGF and EGF-free endothelial culture 

medium for 6 hours. The basolateral side-medium was col-

lected and negative stained. NPs (as described above) were 

observed on TEM JEM-1400 operated at an accelerating 

voltage of 80 kV. The experiments were done in triplicate 

and the values are reported as the mean ± SD (n=3).

The effect of the transport of NPs on the hCMEC/D3 

cells was measured by a paracellular permeability assay 

as described previously by Tai et al.38 hCMEC/D3 treated 

with 10 ng/mL of TNFα and IFNγ for 24 hours was used as a 

positive control.39 At the end of these experiments, the api-

cal side-culture medium was removed and 400 µL of assay 

buffer (0.1% BSA in DMEM without phenol red) containing 

2 mg/mL 70 kDa FITC-dextran was added. The fluorescence 

that crossed to the basolateral side was measured every 

10 minutes for 1 hour using a BMG plate reader, and the 

permeability coefficient P
e
 derived.38

In vivo assay with aPP/Ps1 mice
The experiments were carried out in 7 month male APP/PS1 

mice and WT littermates on a C57/Bl6J genetic background. 

The generation of mice, expressing the human mutated 

APPswe and PS1dE9, has been described elsewhere.40 

Animals were maintained under standard animal housing 

conditions in a 12-hour dark-light cycle with free access to 

food and water. Genotypes were confirmed from 1 cm tail 

clips by PCR using conditions recommended by Jackson 

Laboratory. Mice were randomly assigned to treatment 

groups and the experiments were analyzed blind. The study 

was carried out following the guidelines of the European 
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Communities Council Directive 2010/63/EU and with the 

approval of the local ethical committee of the University 

of Barcelona.

Free-PGZ and PGZ-NPs (10 mg/kg) were dissolved in 

5% DMSO and administered orally in a volume of 10 mL/kg 

body weight. Animals were treated once a day, 5 days per 

week, for 4 weeks with the compounds or with the vehicle 

alone. The number of animals included in each group was 

3–4. After a 3-day wash-out, animals were subjected to 

behavioral evaluation.

Memory performance was evaluated with the two-object 

recognition test. On day 1, mice were placed for 9 minutes 

in a Y-maze, in which two identical objects were situated at 

the ends of the arms; the time that the mice spent exploring 

each object was recorded. Then, 24 hours after the training 

session, animals were placed again for 9 minutes in the 

V-maze, with one of the two familiar objects replaced by a 

novel object. The time that the animals spent exploring the 

two objects was recorded and an object recognition index 

(RI) was calculated, as the difference between the time spent 

exploring the novel object (T
N
) and the familiar object (T

F
) 

divided by the total time spent exploring the two objects 

[RI=(T
N
−T

F
)/(T

N
+T

F
)]. At the end of the behavioral testing, 

the animals were killed and their brains rapidly removed from 

the skull, fixed in 4% paraformaldehyde and processed for 

immunohistochemistry.

aβ immunohistochemistry
Fixed tissue samples were embedded in paraffin. Consecu-

tive de-waxed 4 µ coronal sections were incubated with 

98% formic acid (20 M, 3 minutes) and treated with 10 mM 

sodium citrate buffer, pH 6.0, for 20 minutes to enhance anti-

genicity. Endogenous peroxidases were blocked with 10% 

methanol−1% H
2
O

2
 for 15 minutes and then blocked with 

3% normal horse serum in PBS. They were incubated (4°C 

overnight) with primary antibody against Aβ (clone 6F/3D 

1:50, Dako, Denmark) and a peroxidase-conjugated second-

ary antibody, visualized with 7 mM diaminobenzidine in PBS 

(5 minutes). Sections were lightly counterstained with hema-

toxylin. The cortical total Aβ burden was calculated as the 

percentage of the area of amyloid deposition in plaques with 

respect to the total cortical area (0.6 mm2) in nine pictures 

taken from three different sections (−0.1, −1.5 and −2.0 mm 

from bregma) of each animal brain (three pictures per section 

corresponding to cingulate/retrosplenial and motor cortex, 

somatosensory cortex and piriform/entorhinal cortex). The 

selected areas were the main regions of the cerebral cortex in 

which Aβ is deposited in APP/PS1 mice. A researcher who 

did not know the treatments performed the quantifications. 

Aβ quantification was calculated using the Analysis tool of 

Adobe® Photoshop® CS4 (Maidenhead, UK).

statistical analysis
The sample size for experimentation was computed using 

the Power and Precision software (Biostat, Englewood, NJ, 

USA), assuming a power of 95% and no missing data. Data 

were analyzed using GraphPad Prism version 6.0 software. 

Statgraphics Plus 5.1 software was used to analyze the surface 

of response. Student’s t-test or one way ANOVA, followed 

by Tukey’s multiple comparison or Dunnett’s multiple 

comparison test were used to analyze the in vitro assays. 

Statistical analysis for the in vivo assay was performed with 

the SPSS® Statistics v21.0 software (IBM, New York, NY, 

USA). Memory data were analyzed with two-way ANOVA 

(genotype and treatment as between factors), followed by 

Tukey’s post hoc. Aβ area was analyzed with one-way 

ANOVA (treatment as between factors).

Results
PgZ nanocarrier characterization and 
release profile
After a detailed analysis of the parameters affecting NP syn-

thesis (Figure S1), a single formulation of NPs was chosen 

for the biological studies (Figure S2). These PGZ-NPs had 

a mean size of 155.0 ± 1.8 nm, a polydispersity index distri-

bution of 0.1, negative ZP of −13.0 ± 0.5 mV and an EE of 

92.5%. Smaller size facilitates passage through the BBB,16 

and may improve the delivery of drugs. Moreover, low PGZ 

concentrations produced NPs with greater negative ZP that 

could help prevent particle aggregation, thereby increasing 

the stability of the dispersion.41 Importantly, the lower con-

centration of Tw also decreased the toxicity for hCMEC/D3 

cells, besides facilitating interaction with endothelial surface 

molecules and hence, transport across the BBB.42

Different kinetic models of drug release were tested with 

both formulations to select the best fit. The formulations 

showed dissimilar profiles and the best fits were “One phase 

exponential association” for Free-NPs and “hyperbola” for 

PGZ-NPs, with respect to the AIC and coefficient of deter-

mination (r2) values obtained (Figure 1). After 10 hours, the 

free drug achieved 76.2% transfer whereas NPs released 

57.1% of the initially bound drug. In addition, Free-PGZ 

showed a faster release than PGZ entrapped in the particles 

(comparing Y
max

 to B
max

). Free-PGZ had a constant of dis-

solution (K) of 0.46 hour−1 whereas NP-entrapped PGZ had 
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a constant of 1.72 hours. This result indicates that NPs are 

still achieving a sustained release of the drug.

cytotoxicity assay
The in vitro cytotoxicity of PGZ-NPs and Rhod-NPs for 

hCMEC/D3 cells was assessed by determining the cell 

viability using the AB assay (Figure 2). Cells exposed 

to increasing concentrations of PGZ-NPs for 24 hours 

showed decreased cell viability from 5.1 nM (=2 µg/mL) 

(76.56% ± 2.72%). Treatment with Rhod-NPs also produced 

significant toxicity at 5.1 nM and Rhod-NPs were more toxic 

than PGZ-NPs at concentrations from 5.1 nM (P,0.05). 

On the basis of the cytotoxicity assays, the dose of 1 µg/mL 

was selected to investigate the characteristics of both types 

of NPs in vitro.

Transport of NPs by brain endothelium
Rhod was used to track the cellular uptake of NPs by 

hCMEC/D3 cells. NPs prepared using Rhod showed high EE 

(around 99%) and remained associated with the cells for 

extended periods of time. The cellular uptake of Rhod-NPs 

into hCMEC/D3 was measured at 15, 30 and 60 minutes by 

FACS. The values of fluorescence of Rhod-NPs increased in 

a dose and time-dependent manner (P,0.05) when compared 

to untreated cells (Figure 3). The uptake was time-dependent 

with significant uptake of NPs within the first 15 minutes of 

exposure. The fluorescence in Rhod-NPs treated hCMEC/D3 

cells was .50x higher than cells exposed to Free-Rhod 

(Figure 3C).

routes of transcytosis
To determine the subcellular localization of the NPs, 

hCMEC/D3 cells were treated with Rhod-NPs and examined 

by confocal microscopy (Figure 4). Red punctate fluores-

cence was observed in all cells; the size corresponded to 

individual NPs localized primarily in the cell body, close 

to the nucleus. These observations confirm the results 

obtained by FACS which demonstrated that all cells take up 

the Rhod-NPs (Figure 3A) and that the fluorescence signal 

was much higher when using Rhod-NPs in comparison to 

Free-Rhod. It has been proposed that internalization of NPs 

of this size occurs predominantly by adsorption to the cell 

surface followed by vesicular endocytosis. The results are 

consistent with NP-uptake into either caveolae or clathrin-

coated vesicles (CCVs).

Confocal microscopy has insufficient resolution to 

determine exactly where the NPs are localized within the 

cells. To obtain a better understanding of the mechanism of 

NPs uptake, the cells were examined by TEM. The images 

show individual PGZ-NPs and Rhod-NP (100–150 nm) in 

the cytoplasm (Figure 5); the size corresponds to their initial 

physical characterization (Figure S2). No NPs were seen 

in intercellular junctions. This implies that the NPs have 

been taken up individually by endothelial cells and have not 

aggregated inside the cells. It is not possible to see a distinct 

vesicle membrane or electron-dense coat proteins around 

Figure 1 Release profile of PGZ from PGZ-NPs and Free-PGZ.
Abbreviations: PgZ, pioglitazone; NP, nanoparticles; aIc, akaike’s information 
criterion.
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Figure 2 hcMec/D3 cell viability measured by aB assay when exposed to 1.2–25 nM 
(0.5–10 µg/ml) PgZ-NPs and rhod-NPs for 24 hours. 
Notes: Data are shown as percentage of control (cell culture medium) which 
represents the maximum cell viability. Data are compared for each concentration 
of rhod-NPs vs PgZ-NPs *P,0.05, **P,0.01, ****P,0.0001 by student’s t-test 
(n=3).
Abbreviations: hcMec/D3, human cerebral microvascular endothelial cell; aB, 
alamar blue; PgZ-NPs, PgZ-loaded nanoparticles; rhod-NPs, rhod-nanoparticles.
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Figure 3 (A) Facs histograms of 10,000 hcMec/D3 cells treated for 3 hours with rhod-NPs or untreated cells. (B) Time-dependent interaction of rhod-NPs with 
hCMEC/D3. Each value is the mean of the median fluorescence of 10,000 cells from three independent experiments. ***P,0.001, ****P,0.0001 by one way aNOVa 
followed by Tukey’s multiple comparison (n=3). (C) Uptake of rhod-NPs; rhod-NPs-Free (not incorporated into the NPs) and Free-rhod in comparison with untreated 
cells at 3 hours.
Notes: each value is the mean of three independent experiments. *P,0.05 by one way aNOVa and Tukey’s multiple comparison (n=3).
Abbreviations: FACS, fluorescence-activated cell sorting; hCMEC/D3, human brain microvascular endothelial cell line; Rhod-NPs, Rhod-nanoparticles; NS, not significant.

Figure 4 cellular uptake and intracellular distribution of rhod-NPs in hcMec/D3. (A) hcMec/D3 untreated (control); (B) hcMec/D3 exposed to Free-rhod and 
(C) hcMec/D3 exposed to rhod-NPs.
Notes: cells were incubated for 3 hours with 1 µg/ml of NPs. Nuclei were counterstained with DaPI (blue).
Abbreviations: rhod-NPs, rhod-nanoparticles; hcMec/D3, human brain microvascular endothelial cell line.
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the NPs. However, it should be noted that both caveolae and 

CCVs are normally smaller (50–100 nm) than these NPs; 

hence a caveolus or CCV would contain just one NP and 

the closely apposed vesicular membrane would be difficult 

to visualize by TEM. Notably, NPs were not seen in larger 

pinocytotic vesicles or intercellular junctions. Nor was there 

any evidence of disturbance of the plasma membrane. These 

observations exclude paracellular movement as the route of 

movement and direct trans-membrane transfer to the cytosol 

is also unlikely. Hence, the most likely route of uptake across 

the endothelium is via endocytosis from the apical surface 

into a single CCV or caveolus. This is in accordance with 

the observed clustering of the NPs in the perinuclear region 

seen by confocal fluorescence microscopy, which is a char-

acteristic of caveolae.

Transport and permeability assays
To determine whether NPs are released from the baso-

lateral side of the endothelium, hCMEC/D3 cells were 

grown in confluent monolayers on filters in tissue-culture 

inserts. PGZ-NPs and Rhod-NPs were applied to the apical 

surface and the medium harvested from the basolateral 

side. After 6 hours, NPs had crossed the endothelial mono-

layer (Figures 6A and S3). The NPs were similar in size 

(100–200 nm) to those initially applied, suggesting they had 

crossed the endothelium intact.

The integrity of the cell monolayer after exposure to 

both types of NPs was assessed using a paracellular tracer, 

FITC-dextran (MW 70 kDa). Changes in the permeability 

coefficient were calculated and the data show that treatment 

of hCMEC/D3 cells with PGZ-NPs and Rhod-NPs for 

6 hours does not increase the paracellular permeability of 

the endothelial monolayer (Figure 6B). This demonstrates 

that the NPs had not altered paracellular permeability of the 

endothelial monolayer, and further confirms that the NPs seen 

in Figure 6A had crossed the endothelium by transcytosis.

effect of treatment on memory and 
neuropathology in aPP/Ps1 mice
In order to test the in vivo effect of the PGZ-NPs, a com-

parison was made with Free-PGZ in APP/PS1 mice. Oral 

administration was chosen as this reflects the route of PGZ 

administration in humans. Previous work has shown that 

exposure of these NPs to acid (0.1 M HCl) for 15 minutes 

(reflecting gastric conditions) followed by neutralization 

does not affect their size, ZP, PI or EE. Daily administra-

tion of Free-PGZ and PGZ-NPs (10 mg/kg) for 4 weeks 

reduced the memory impairment observed in vehicle-treated 

APP/PS1 mice, as revealed by the two-object recognition 

test (Figure 7A). Two-way ANOVA revealed a significant 

genotype [F
(1, 16)

=5.413, P,0.05] and treatment effect 

[F
(2, 16)

=12.717, P,0.001] and interaction between the two 

factors [F
(2, 16)

=3.551, P=0.053]. Subsequent Tukey’s post hoc 

tests revealed that APP/PS1 mice treated with vehicle exhib-

ited a memory impairment when compared to correspond-

ing WT littermates (P,0.01) and that Free-PGZ (P,0.05) 

and PGZ-NPs (P,0.01) increased the recognition index in 

APP/PS1 mice when compared to vehicle. No significant 

Figure 5 localization of PgZ-NPs and rhod-NPs in hcMec/D3 by TeM.
Note: cells exposed to 1 µg/ml for 6 hours.
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; rhod-NPs, rhod-nanoparticles; hcMec/D3, human brain endothelial cell line; TeM, transmission electron microscopy.
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difference in the total exploration time during the memory 

acquisition session or the memory test was observed between 

groups, discounting any possible impact of the treatments on 

the anxiety levels or the activity of the mice.

Chronic treatment with Free-PGZ or PGZ-NPs did not 

significantly modify [F
(2, 8)

=2.993, P=0.04] the total Aβ 

burden in the cortex with respect to vehicle-treated mice 

(Figure 7B and C). The vehicle employed in this study did 

not induce any modification in Aβ burden when compared 

to untreated mice (data not shown). Notably, the level of Aβ 

deposition in mice treated with PGZ-NPs was half of that in 

mice treated with Free-PGZ (Figure 7); however there was 

considerable variation between individual animals. These 

results demonstrate that a PPARγ agonist improves memory 

in APP/PS1 mice and suggest that encapsulation of PGZ in 

NPs can reduce the Aβ burden.

Discussion
In this study, we have demonstrated that PGZ-NPs devel-

oped by a displacement technique are appropriate for the 

treatment of a model of AD. The release profile from NPs 

was slower than Free-PGZ. Moreover, the NPs were not 

cytotoxic for human brain endothelium (hCMEC/D3) at the 

doses used and produced no alteration in permeability of the 

α γ

Figure 6 (A) Images of PgZ-NPs and rhod-NPs by TeM after 6 hours in the basolateral compartment. (B) Permeability of hcMec/D3, following exposure to 1 µg/ml of 
NPs for 6 hours. TNFα+ IFNγ (10 ng/ml, for 24 hours) was used as a positive control, increasing endothelial permeability.
Notes: each value is the mean of three independent experiments. ns=nonsignificant, *P,0.05 by one-way aNOVa and Dunnett’s multiple comparison test (n=3).
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; rhod-NPs, rhod-nanoparticles; hcMec/D3, human brain endothelial cell line; TeM, transmission electron microscopy; 
TNFα, tumor necrosis factorα; IFNγ, interferon; Pe, permeability coefficient.
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endothelial monolayer. These results are in accordance with 

a previous study using mouse Bend-3 cells, which indicated 

that PLGA-PEG NPs did not damage endothelial cells.19

Theoretically, endocytosis of NPs can occur by pas-

sive transfer across the cell membrane into the cytoplasm 

or by active endocytosis into vesicles, including CCVs 

and caveolae. NP size affects the principal entry route; 

the smallest NPs (,10 nm) can directly cross the plasma 

membrane whereas endocytosis is the principal entry route 

for larger NPs.43

The route of endocytosis depends greatly on how the 

NPs interact with different domains of the plasma mem-

brane, which is affected by size, coating, surfactant and 

surface charge as well as any specific targeting molecule 

on the NPs. These factors may also affect the ability of the 

NPs to cross the BBB in vivo.44 The subcellular localization 

of NPs in this study, determined by confocal and electron 

microscopy, indicated that they cross the endothelium intact 

by vesicular transcytosis.

Most endothelial cells have large numbers of caveolae 

which mediate transport of nutrients to the tissue.45 However, 

brain endothelium in vivo has relatively few caveolae com-

pared with endothelium in other tissues and consequently 

there is less internalization by this route. However, PEG 

on the surface of NPs can improve their internalization by 

brain endothelium46 and it has been suggested that PEGylated 

PLGA NPs could enter these cells in CCVs47 as an alternative 

to caveolar transcytosis. CCVs have previously been shown 

to play a key role in the transportation of PEGylated NPs in 

which energy-dependent endocytosis is involved.48 Moreover, 

particles up to 200 nm in diameter can be efficiently taken up 

into CCVs.49 The 50-fold higher rate of uptake of Rhod-NPs 

compared with free rhodamine also implies that the NPs are 

taken up by a different mechanism than the free tracer.

These observations indicate that the PGZ-NPs enter and 

can potentially cross brain endothelium directly. Transcytosis 

of NPs within vesicles shields any cargo molecule such as 

PGZ or rhodamine from ABC-transporters (eg, pgp/ABCB1), 

located in the apical plasma membrane, which act on sub-

strates in the cytoplasm and/or the membrane. Even if the NPs 

enter the cytoplasm, the delayed release of cargo means that 

less drug can be removed by multi-drug transporters.

Figure 7 In vivo evaluation of PgZ-NPs.
Notes: (A) Memory performance of treated animals in the two-object recognition test. aPP/Ps1 animals treated with vehicle showed cognitive impairment when compared 
with wild-type littermates. In contrast, Free-PgZ and PgZ-NPs treatment reduced the memory impairment in aPP/Ps1 mice. (B) cortical aβ burden is not significantly 
modified in treated APP/PS1 mice, in spite of the tendency to decreased deposition in NP-PGZ-treated animals. (C) representative images of aβ immunoreactivity in cortical 
sections of aPP/Ps1 mice chronically treated with Free-PgZ, PgZ-NPs or vehicle. scale bar=200 µm. Data are expressed as the mean ± seM. **P,0.01 compared to WT 
animals. $P,0.05, $$P,0.01 compared to vehicle group.
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; PgZ, pioglitazone; WT, wild-type; Veh, vehicle. 
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The experiments in vivo demonstrated the potential for 

PGZ, and particularly PGZ-NPs, to reduce memory deficit 

and neuropathology in APP/PS1 mice. These results are in 

accordance with Searcy et al50 who demonstrated that Free-

PGZ improved reversal learning in a triple transgenic mouse 

model of AD mice. Moreover, other studies showed that 

APP/PS1 mice treated for nine days with PGZ reversed non-

cognitive behavioral deficits and restored distance and speed 

traveled in an open field51 and, improved partially, the cogni-

tive impairments in the Morris water maze test.52 A number 

of other studies have reported neuroprotective properties 

of PGZ.9,10,50,52,53 Moreover, the Phase III clinical trial also 

demonstrated a role for PGZ in slowing cognitive decline in 

people with mild cognitive impairment due to AD.54

In this study, the overall reduction in Aβ burden in PGZ-

NPs treated mice was striking although individual results 

were variable. Previous work has also produced divergent 

results. In one other study, the amyloidogenic APP process-

ing and Aβ production were not affected by treatment with 

pioglitazone.51 In contrast, an acute 2-week treatment with 

combined leptin and PGZ resulted in a reduction of spa-

tial memory deficits (Y maze) and brain β-amyloid levels 

(soluble β-amyloid and amyloid plaque burden) relative to 

vehicle-treated animals.55

Conclusion
The overall conclusion from our study is that PGZ-NPs 

reduce memory impairment and neuropathology in APP/

PS1 mice. However, it is not certain whether the release 

of PGZ from NPs in vivo occurs inside the CNS or outside 

the CNS. The results indicate that any difference between 

the effect of Free-PGZ and PGZ-NPs is most likely due to 

either the slower release profile from PGZ-NPs (Figure 1) or 

the improved rate of transcytosis across brain endothelium 

(Figures 3–6) with the potential for evading the action of 

multi-drug transporters at the blood–brain barrier.

The data all confirm that NPs cross endothelial cells 

in vitro without affecting cellular integrity. Moreover, PGZ 

encapsulated into polymeric NPs (PLGA-PEG) improved 

the cognitive deficit in APP/PS1 male mice in a similar way 

to Free-PGZ, and showed a clear tendency to reduce beta 

amyloid deposition in the cerebral cortex, suggesting that 

PGZ-NPs are a new alternative to treat AD, both improv-

ing drug delivery into the brain and providing for a more 

sustained drug release.
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Figure S1 Design of experiments. response surfaces of PgZ-NPs at Tw 80 1.16%, with different concentrations of PgZ and Plga-Peg: (A) Zav, (B) PI, (C) ZP and (D) ee.
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; PgZ, pioglitazone; Plga-Peg, poly (lactic-co-glycolic acid) polyethylene glycol; Zav, average particle size; PI, polydisper-
sity index; ZP, zeta potential; EE, entrapment efficiency.
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Figure S2 (A) Image of PgZ-NPs by TeM and (B) size of PgZ-NPs by dynamic 
light scattering.
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; TeM, transmission electron 
microscopy.

200 nm

Figure S3 Transport in vitro assay in hcMec/D3. 
Note: PGZ-NPs on the basolateral surface (filter side) of the endothelium after 
6 hours.
Abbreviations: PgZ-NPs, PgZ-loaded nanoparticles; hcMec/D3, human brain 
endothelial cell line.
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