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1 Introduction 

1.1 Introduction to proteins 
Proteins are large biomolecules that play a crucial role in virtually all biological 

processes in our cells, such as enzymatic activity, immune responses, signal 

transduction, transport mechanisms, cell adhesion, or cell cycle. There are a great 

variety of proteins, with very different sizes, properties, and functions. Strikingly, 

all proteins are constructed with the same set of building blocks, namely 20 

different amino acids.  The combination of these 20 amino acids in multiple ways 

results in proteins as diverse as enzymes, hormones, and antibodies, which form 

different tissues like feathers, bones, and muscles (Lehninger, Nelson, and Cox 

2008). Amino acids are organic compounds containing an amino and a carboxylic 

functional group covalently bound to a carbon atom, called alpha carbon or Cα, 

which in turn can be covalently attached to a side-chain group. The side-chain 

group defines the amino acid type, providing a particular size, shape, charge, 

hydrogen-bonding capacity, hydrophobic character and chemical reactivity (Berg 

et al. 2007). Proteins are linear polymers of amino acids, linked by peptide bonds 

formed between the carboxyl group of one amino acid and the amino group of 

another amino acid. 
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The amino acid sequences of proteins have their origin in the nucleotide sequences 

of genes. In a process called gene expression, the information contained in a given 

protein-coding gene is decoded to synthesize a protein. In a first step called 

transcription, mRNA is synthesized from DNA. Then, ribosomes decode this 

mRNA to produce a specific amino acid chain in a process named translation. 

During translation, ribosomes add one amino acid at a time to the end of the 

synthesized protein. Amino acids polymerize by forming a peptide bond between 

the carboxyl group of the amino acid in the protein, and the amide group of the 

amino acid to be added. The repeated amide N, Cα, and carbonyl C atoms of 

each amino acid residue constitute the backbone of a protein from which the side-

chain groups stem out (Lodish et al. 2000). During and after translation, 

polypeptide chains may be subjected to modifications. Once formed, proteins fold 

into a distinct 3D structure and may exist for a specific time that ranges from 

minutes to years, before being degraded and recycled through the process of 

protein turnover. 

1.1.1 Protein structure 

Four different protein structure levels are defined. 

The primary structure of a protein refers to the linear sequence of its amino acids. 

By convention, the primary structure of proteins starts at the N-terminal and 

finishes at the C-terminal, following the order in which ribosomes synthesize them. 

The primary structure of a protein is specified by the nucleotide sequence of the 

gene associated with it. 

Local, regular, three-dimensional arrangements of the protein backbone constitute 

the secondary structure of proteins. Hydrogen bonds between the backbone NH, 

and CO groups, usually stabilize these local arrangements. There are two common 

types of secondary structure motives: alpha helices and beta sheets. Interestingly, 

these periodic structures were predicted by Linus Pauling and Robert Corey in 

1951, years before they were experimentally confirmed (Berg et al. 2007). 

The spatial distribution of secondary structure elements defines the tertiary 

structure or fold of proteins. Interactions such as hydrogen bonding, van der 

Waals, salt bridges, hydrophobic packing, and disulfide bonds stabilize tertiary 

structures. 

In some occasions, proteins form assemblies with other molecules. In these cases, 

the three-dimensional arrangement of the subunits forms its quaternary structure. 

One example is hemoglobin, which is an assembly of four globular proteins. 
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In 1961, Anfinsen proposed that the amino acid sequence or primary structure of 

a protein determines its tertiary structure (Anfinsen et al. 1961). This hypothesis 

integrates the different structural levels defined above into an emergent process. 

The existence of intrinsically disordered proteins or the possibility of molecules 

having more than one conformational state are exceptions to the Anfinsen 

proposition. Nevertheless, it set the bases from where major research on protein 

folding developed. 

1.2 Protein-protein interactions (PPI) 
Protein sequence determines protein structure, and protein structure determines 

protein function. This is one of the leading mottos of structural biology. However, 

most proteins do not perform its function in isolation but interacting with 

biomolecules such as other proteins, lipids, nucleic acids or small molecules (Rual 

et al. 2005; Stelzl et al. 2005). Therefore, to fully understand protein function, we 

shall extend the analysis from individual proteins to protein interactions. 

1.2.1 PPI experimental characterization 

In recent years, the development of high-throughput techniques like yeast two-

hybrid (Y2H) screening (Uetz et al. 2000; Ito et al. 2001) and affinity purification-

mass spectrometry, AP-MS (Ewing et al. 2007), have dramatically increased the 

number of reported protein-protein interactions. Nowadays, there is access to 

global ‘snapshots’ of the interactome (Sanchez et al. 1999), the set of molecular 

interactions that take place in a cell or an organism. These studies have provided 

a global view of the interactions involved in a given process or pathway. They 

have also shown that PPIs are integrated into highly organized and dynamic 

interaction networks (Rual et al. 2005; Stelzl et al. 2005). Full understanding of 

these interaction networks could reveal not only the cellular processes they 

regulate but the underlying mechanisms of diseases such as cancer, giving clues 

of possible therapeutic strategies (Jonsson and Bates 2006; Sun and Zhao 2010; 

Choura and Rebaï 2012). 

Useful as they are, these methods can determine whether two proteins are likely 

to interact, but cannot reveal the molecular mechanisms involved in protein-

protein interactions (Skrabanek et al. 2008). To attain a deep understanding of 

protein function, we need to know the 3D structure and energetics of the formed 

complexes at atomic resolution (Stein, Mosca, and Aloy 2011), which these high-

throughput techniques cannot provide. 
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1.2.2 Experimental structural determination of complexes 

The Protein Data Bank, or PDB (Bernstein et al. 1977), is a database for 3D 

structural data of biomolecules such as proteins and nucleic acids. Table 1.1 

contains the number of structures for proteins and several protein complex types, 

grouped by experimental technique, deposited in the Protein Data Bank in Europe 

(PDBe) (Gutmanas et al. 2014; S. Velankar et al. 2012; Sameer Velankar et al. 

2011; S. Velankar et al. 2010) as in February 2018. There are almost four times 

more structures of individual proteins than structures of protein complexes 

(including protein-protein, protein-RNA, and protein-DNA complexes), even 

though the total number of estimated interactions can be much higher than the 

number of individual proteins (Stumpf et al. 2008; Venkatesan et al. 2009), a clear 

indication of the difficulties encountered when trying to resolve complex 

structures experimentally. Among the different types of protein interactions, 78% 

correspond to protein-protein, 14% to protein-DNA and 8% to protein-RNA 

complexes. 

 Protein/protein Protein/RNA Protein/DNA Protein 

X-Ray 20749 1629 3984 95568 

NMR 861 120 130 9702 

CryoEM 866 408 61 594 

Other 36 5 1 268 

Total 22512 2162 4176 106132 
 

Table 1.1. Number of structures deposited in the PDBe as in February 2018. 

Most of the structures in PDB have been solved by X-ray crystallography (Smyth 

and Martin 2000). While NMR (Wüthrich 1990) is the second preferred technique 

for single protein structure determination, electron microscopy is very close to 

NMR in the number of protein complex structures deposited in the PDB. 

1.2.2.1 X-ray crystallography 

X-ray crystallography has been essential in the development of structural biology 

(Smyth and Martin 2000). It is a mature technique that provides a very high level 

of detail of biomolecules, at the scale of atoms and chemical bonds. When a beam 

of X-rays strikes the regular and symmetric structure of a crystal lattice, it is 

refracted into a specific pattern. From the diffraction pattern, it is possible to 
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estimate the density distribution of electrons within the crystal, and from there, 

the mean positions of the atoms, chemical bond lengths, angles as well as other 

valuable information. As long as a good crystal is available, X-ray crystallography 

can be applied to huge complexes (> 100 kDa). The requirement of crystallized 

samples is the major drawback of this method. Systems for which crystallization 

is difficult such as membrane proteins, intrinsically disordered proteins, transient 

or low-affinity complexes are not suitable for this technique. Additionally, there 

are concerns about to what extent the structural information obtained from 

crystallized systems can be extrapolated to the in vivo, biological, environment 

(Ofran and Rost 2003; Ranjit Prasad Bahadur et al. 2004; R. P. Bahadur and 

Zacharias 2008). 

1.2.2.2 NMR spectroscopy 

NMR (Wüthrich 1990) spectroscopy is the experimental method with the second 

largest number of structures deposited in the PDB. This technique exploits a 

physical phenomenon by which nuclei in a magnetic field absorb and re-emit 

electromagnetic radiation at specific resonance frequencies. The analysis of NMR 

spectra can provide detailed information not only about the structure but also 

about the dynamics of molecules. NMR spectroscopy does not have the limitations 

imposed by requiring crystallized samples like X-ray crystallography. It can 

analyze proteins in solution, that is, in closer conditions to the in vivo 

environment than X-ray crystallography. The primary limiting factor of NMR is 

its inability to study proteins above 40 kDa (Krishnan and Rupp 2012), although 

more powerful magnets and technical advances are continuously improving its 

applicability. 

1.2.2.3 Cryo-electron microscopy 

In the last decade, the development of a new generation of ‘direct electron 

detectors’ has led to a revolution in the cryo-electron microscopy (cryo-EM) field 

(Kühlbrandt 2014; Callaway 2015). Cryo-EM does not require the molecule of 

interest to be crystallized. Therefore, it can be used to analyze molecules that are 

difficult to crystallize such as membrane proteins or large multi-protein 

complexes. The technique consists of firing a beam of electrons at a previously 

frozen sample. The scattered electrons are then registered on a detector, from 

which the structure of the sample can be resolved. Cryo-EM is suited to the study 

of large, stable molecules that are not severely affected by the electron beam. The 

first high-resolution structures of human ribosomes are a good example (Amunts 

et al. 2015; Khatter et al. 2015). However, a recent report has shown that cryo-
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EM could also resolve the structure of small membrane molecules at near-atomic 

resolution (Liao et al. 2013). 

1.2.3 Structural features of protein-protein interfaces 

The experimental techniques described in the previous section have revealed a 

large number of complex structures from which valuable information can be 

derived. For example, after a detailed analysis of these structures, several works 

have tried to decipher whether protein-protein interfaces have unique 

characteristics that may help to identify them. Unfortunately, it seems that there 

is no characteristic that, individually, could be used for such purpose. 

Protein-protein interfaces are diverse, and this diversity is somehow related to its 

interaction type. Interfaces of obligate complexes are more hydrophobic than non-

obligate complex interfaces. The latter may sometimes show some hydrophilic 

character (Susan Jones and Thornton 1997). Permanent complexes interfaces are 

more closely packed, less planar and with fewer inter-subunit hydrogen bonds 

than those of transient complexes (S. Jones and Thornton 1996). 

Some studies conclude protein-protein interfaces are enriched in aromatic (His, 

Tyr, Trp, Phe) and aliphatic (Leu, Val, Ile, Met) residues. Contrarily, they are 

depleted in charged residues (Asp, Glu, Lys) other than arginine, which is the 

residue type with a highest overall contribution to interfaces (R. P. Bahadur and 

Zacharias 2008; Conte, Chothia, and Janin 1999).  

The mean size of protein-protein interfaces is 1600±400 Å2 (Conte, Chothia, and 

Janin 1999). Data indicates there is a lower limit size for specific recognition. The 

lack of interfaces with a size below 800 Å2 suggests that complex formation 

requires a minimum number of contacts and removal of water molecules (R. P. 

Bahadur and Zacharias 2008). 

High complementarity between complex subunits seems to be a common 

characteristic of protein-protein interfaces of standard size. This feature is 

extensively exploited by protein-protein docking protocols (see below). Permanent 

complexes tend to have higher complementarity than transient complexes.  

Several studies have focused on the energetic contributions to binding affinity. 

Some of them report there is a significant hydrophobic contribution to the binding 

energy (C. J. Tsai et al. 1996, 1997). However, electrostatics seems to play an 

important role, too (Xu, Lin, and Nussinov 1997; Sheinerman, Norel, and Honig 

2000). Other groups have observed van der Waals contacts between non-polar 

residues, while polar residues establish hydrogen bonds with residues of the 
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complementary subunit or water molecules (S. Jones and Thornton 1996; Rodier 

et al. 2005). 

1.2.4 Computational methods for structural modeling of 
PPIs 

All the techniques described in section 1.2.2 are non-high-throughput methods 

that typically require long deployment times. Thus, as Figure 1.1 reflects, 

structural biology has severe difficulties following the rate at which high-

throughput experimental techniques report new protein-protein interaction data. 

Even though the number of structural models generated by non-high-throughput 

experimental methods is exponentially increasing, the gap between the number of 

identified interactions and the number of available 3D complex structures is 

growing. Given this situation, some computational methods have been developed 

to incorporate structural information into interactome networks and bridge the 

gap.  

 

Figure 1.1. Number of interactions in different organisms, with available experimental 
structure (green), modeled structure from a global template (yellow), modeled structure from 
a domain-domain template (orange) and without structure (grey). Data from Interactome3D. 

1.2.4.1 Molecular dynamics 

Classical molecular dynamics (MD) simulation is probably the most widespread 

method for the study of protein flexibility. Proteins are treated at atomic 

resolution level using classical force fields, which have been parametrized against 
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high-quality quantum mechanical calculations or experimental observables 

obtained from model systems (Orozco 2014).  

Since the first molecular dynamics simulation in the late seventies (McCammon, 

Gelin, and Karplus 1977) the field has experienced sustained progress based on 

improvements in the parametrization of the force fields, the sampling techniques, 

and the available computational architectures. Nowadays, it is possible to perform 

simulations of a standard size protein in the multi-microsecond range (Klepeis et 

al. 2009) and reach the millisecond regime with special-purpose systems designed 

for MD (Shaw et al. 2009). Unfortunately, protein dynamics on the microsecond-

to-millisecond timescales for large systems is currently out of reach for 

conventional MD simulations, not to mention the study of protein-protein or 

protein-membrane interactions. This limitation is even more relevant when some 

of the most crucial interactions, such as protein folding, protein docking, or 

concerted domain motions, take place within these timescales and involve multi-

molecular complexes of significant size. Simulations within these size and 

timescale ranges are not computationally feasible due to a size-related-problem 

coupled with a time-related-problem. As said before, the fast motions of individual 

atoms translate into collective, wider, and slower movements.  To accurately 

simulate the dynamics of a system, we must compute motions at time-steps of 

femtoseconds and beyond. For example, to obtain one-millisecond simulation we 

would have to perform the order of 1012 computations, and this number explodes 

when we include the size of the systems, which typically can have tens of 

thousands of atoms. To overcome these limitations, we must substitute the 

atomistic description of a system for a coarse-grain (CG), lower-resolution 

description (Orellana 2014). 

A large variety of CG approaches have been developed, including normal mode 

analysis (Case 1994; Tirion 1996; Bahar, Atilgan, and Erman 1997; Atilgan et al. 

2001), Gaussian network models (Haliloglu, Bahar, and Erman 1997), FRODA 

(S. Wells et al. 2005), FIRST (Jacobs et al. 2001) and Go models. 

1.2.4.2 Normal mode analysis 

Normal mode analysis (NMA) (Case 1994) is one of the most straightforward 

methods applied to the analysis of near-equilibrium protein motions. NMA 

assumes the energy of a given molecular structure is quadratic in the vicinity of 

an energy minimum, and the motions of the molecule can be decomposed into a 

set of independent harmonic vibrational modes, i.e., normal modes, such that any 

conformational change can be expressed as a linear combination of them (J. Ma 

2004). NMA can be applied with any kind of force field and can also deal with 
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both atomistic and coarse-grained representations of molecules. However, in 

practice, CG force fields are preferred due to their significant reduction of 

computational requirements. A popular CG implementation is the anisotropic 

network model (ANM) (Atilgan et al. 2001), a class of elastic network model, 

based on a simplified pairwise harmonic potential, described by a single force 

constant γ. Molecules are represented as an elastic network of beats connected by 

springs. Each beat is a residue, represented by its Cα atom, while the springs 

represent interactions between beats. All springs have the same force constant γ. 

Only interactions within a given cutoff distance are considered (see Figure 1.2). 

Despite the simplicity of the model, it has been shown that ANM can reproduce 

conformational changes observed between bound and unbound protein structures 

(Petrone and Pande 2006). ANM can also discriminate between low and high-

frequency modes. Therefore, ANM is a suited technique to describe collective and 

large biologically relevant motions associated to the lowest frequency normal 

modes (Tama and Sanejouand 2001; Zheng and Doniach 2003; Navizet, Lavery, 

and Jernigan 2004). ANM can further be used for estimating with reasonable 

accuracy experimental B-factors (Kundu et al. 2002; Kondrashov, Cui, and 

Phillips 2006), predicting hinge-bending movements (Emekli et al. 2008), and 

reproducing the flexibility patterns identify by NMR experiments (Yang et al. 

2007, 2009) or MD simulations (Rueda, Chacón, and Orozco 2007; Romo and 

Grossfield 2011; Orellana et al. 2010). Finally, ensembles of discrete conformations 

generated by ANM have also been used by other computational techniques like 

protein-protein docking to account for flexibility (Lindahl and Delarue 2005; 

Dobbins, Lesk, and Sternberg 2008; Rueda, Bottegoni, and Abagyan 2009). 

Several databases of pre-calculated protein motions like ProMode (Atilgan et al. 

2001), MolMovDB (Flores et al. 2006) and iGNM (Yang et al. 2005), and web 

servers like ElNemo (Suhre and Sanejouand 2004) are available for the scientific 

community to benefit from this useful technique. 
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Figure 1.2. Elastic Network Model representation 

1.2.5 Protein-protein docking 

Neither molecular dynamics nor normal modes are appropriate methods to obtain 

the structure of a complex from its subunits when no information of the binding 

mode is available. In these circumstances, many different protein-protein docking 

methods have been reported in the literature, which can be roughly classified into 

template-based modeling (TBM) and ab-initio docking (see Figure 1.3).  

 

Figure 1.3. Two principal protocols for protein complex structure prediction. Red and blue 
represent the sequences and structures of two individual chains. a) Rigid-body protein-protein 
docking, b) template-based modeling. From Szilagyi and Zhang, 2014. 
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1.2.5.1 Template-based modeling 

This technique predicts the unknown 3D structure of protein-protein complexes 

(targets) using as models the structures of experimentally resolved complexes 

(templates). TBM was initially developed by the folding community, based on 

the idea that homologous proteins, with close sequences, also had similar 

structures (Chothia and Lesk 1986). TMB does not require the structure of the 

monomer components of the complex. However, its performance strongly depends 

on the availability of suitable complex structures to use as templates, i.e., the 

majority of the successful models are for targets that share sequence identity with 

the templates higher than 40% (Kundrotas et al. 2012; Kundrotas, Vakser, and 

Janin 2013). Some authors estimate the number of protein interaction types, or 

“quaternary folds” in nature to be between 10,000 (Aloy and Russell 2004) and 

4000 (Garma et al. 2012). Both studies agree that current PDB only covers a 

small fraction of interaction types and that, given current progress, several 

decades should pass before a full coverage of the quaternary structure space is 

available. On the other hand, other authors state that the protein-protein 

interface space is limited, degenerate and close to being adequately represented 

in the PDB (M. Gao and Skolnick 2010; Zhang et al. 2010). Several methods 

(Sinha, Kundrotas, and Vakser 2010; Zhang et al. 2012; Guerler, Govindarajoo, 

and Zhang 2013; Nurcan Tuncbag et al. 2011; Petrey and Honig 2003; Keskin, 

Nussinov, and Gursoy 2008) are developed taking advantage of this fact. However, 

how to exploit interface similarity to model complete protein-protein complexes 

is still a mostly unsolved issue (Szilagyi and Zhang 2014). TBM methods can be 

part of genome-wide applications for generating complex models of whole 

interactomes (Zhang et al. 2012; Singh et al. 2010; Hosur et al. 2012; Mosca, Céol, 

and Aloy 2013; Lu et al. 2003). Furthermore, template-based modeling and 

protein-protein docking methods seem to be complementary, and have better 

results in combination than when they are used individually (Guerler, 

Govindarajoo, and Zhang 2013; Vreven et al. 2014). In summary, despite its 

drawbacks, TBM is a promising technique that could achieve excellent results 

once those drawbacks are overcome.  

1.2.5.2 Ab-initio protein-protein docking 

Ab-initio protein-protein docking aims to determine the three-dimensional (3D) 

structure of a protein complex from the 3D structure of its components. Many 

different methods have been developed since its origins in the late seventies 

(Wodak 1977; Pincus and Scheraga 1979).  
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Nowadays, bound protein-protein docking, where the monomers to dock have the 

same structure as in the native complex, is considered a resolved problem. On the 

contrary, unbound protein-protein docking where the inputs are structures of the 

unbound monomers is still an unsolved issue. This fact is important since, in a 

real situation, the available structures of the protein monomers are not in the 

bound but the unbound conformation.  

Most of the protein-protein docking protocols include the following phases: i) 

sampling phase, ii) scoring phase and iii) optionally, a final refinement phase. 

The goal in the sampling phase is to generate docking poses or conformations as 

close to the native complex structure as possible. Sampling algorithms should be 

quick and efficient in covering the conformational space (Halperin et al. 2002). It 

is essential to bear in mind that the conformational space defined by two 

interacting proteins has, potentially, 3N dimensions, where N is the total number 

of atoms of the interacting proteins. Many sampling algorithms have adopted the 

rigid-body approximation to reduce the number of degrees of freedom of the 

problem. Within this approximation, interacting proteins are considered rigid 

bodies during the search. By discarding intrinsic protein flexibility, the 

conformational space dimension decreases from 3N to six, corresponding to the 

set of rotations and translations a rigid-body can perform in the Euclidean space. 

Once the rigid-body approximation is adopted, it is possible to increase the 

sampling speed by representing the interacting proteins as grids, and applying 

Fast Fourier Transform (FFT) algorithms (Katchalski-Katzir et al. 1992) to 

search the rotational and translational space for those docking poses with the best 

correlation between grids. This approach, based on the idea that there exists steric 

complementarity at the protein-protein interfaces, permits an exhaustive search 

of the full six-dimensional docking space and has become one of the most popular 

techniques within the docking sampling field. The scheme can incorporate 

additional grids. For instance, FTDock (Gabb, Jackson, and Sternberg 1997)  

included an electrostatic grid, PIPER (Kozakov et al. 2006) pairwise interaction 

potentials, ZDOCK (Chen, Li, and Weng 2003) has incorporated, over the years, 

electrostatics, desolvation and statistical potential terms (B. G. Pierce, Hourai, 

and Weng 2011). 

The steric complementarity of protein-protein interfaces has also been exploited 

in other geometric-based methods such as PatchDock (Schneidman-Duhovny et 

al. 2005a) that, instead of Fourier transforms, incorporates geometric hashing 

algorithms to compute complementarity between protein surfaces. 

Following the sampling phase, in the scoring stage, the objective is to identify 
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structures similar to the near-native complex within the pool of docking poses 

previously generated. Most of the docking methods depend on a scoring function 

based on energetic terms for this task. For instance, pyDock (T. M.-K. Cheng, 

Blundell, and Fernandez-Recio 2007) scoring function is the combination of 

electrostatic, desolvation and van der Waals terms. Other methods like SIPPER 

(Pons et al. 2011) or PIE (Ravikant and Elber 2010) have developed atom or 

residue knowledge-based statistical potentials. In recent years, some approaches 

have followed an interesting path by integrating external information into their 

scoring functions, such as evolutionary data (Andreani, Faure, and Guerois 2013; 

Ovchinnikov, Kamisetty, and Baker 2014), information coming from SAXS 

(Jiménez-García et al. 2015) or cryo-EM experiments (de Vries et al. 2016). 

Once the scoring function has identified a set of docking candidates, most methods 

aim to include conformational flexibility by refining them. Usually, this 

refinement phase tries to incorporate flexibility through normal modes or the 

optimization of backbone and side-chain atoms. For example, HADDOCK 

(Dominguez, Boelens, and Bonvin 2003) uses soft potentials and includes water 

molecules in the refinement phase. FireDock (Andrusier, Nussinov, and Wolfson 

2007) restricts the side-chain flexibility to the clashing interface residues and 

models it by rotamers. 

1.2.5.3 Rigid-body approximation: Good and evil 

For many years, the rigid-body approximation has made tractable the protein-

protein docking problem. In a period where the number of computer resources 

was much more limited than today, it helped research on the protein-protein 

interactions field by speeding up both the sampling and the scoring phases to 

acceptable levels. However, the rigid-body approximation ignores protein 

flexibility, which is a critical component of protein-protein interactions. Almost 

all protein-protein interactions are associated with a conformational change. 

Proteins are entities that interact with the environment to perform their function. 

In a sense, we could say that proteins modify their environment by modifying 

themselves. If proteins were rigid bodies, without flexibility, they could not 

perform their function. Since protein-protein docking is a technique that aims to 

unravel protein-protein interactions, we could argue it cannot ignore flexibility. 

However, the assumption of the rigid-body approximation also has more practical 

implications. As mentioned above, the bound protein-protein docking problem is 

considered as solved. However, the unbound protein-protein docking is still an 

open issue. When differences between the bound and the unbound monomer 

structures are small, protein-protein methods are likely to get a near-native 
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solution. The more significant these differences are, the more problems protein-

protein methods encounter. Not surprisingly, sampling algorithms and scoring 

functions have low performances when they are forced to assume rigidity with 

flexible or very flexible cases. The rigid-body approximation has been fundamental 

in protein-protein docking research and is still valid for studying instances where 

proteins change little upon binding. However, if we want to tackle cases with 

medium to significant structural changes upon binding, our docking algorithms 

have to incorporate flexibility.  

1.2.6 Dynamic aspects of docking 

1.2.6.1 Protein flexibility 

As mention before, proteins are flexible entities that sample a great number of 

different conformations. The dynamic character of proteins should not be 

undervalued. On the contrary, its direct relation to protein function has led to 

extending the structure-function paradigm to include dynamics. A well-behaved 

protein must have the specific dynamical properties needed to perform its 

function. The intrinsic motions a protein can perform are determined by its 

structure that, ultimately, is defined by the protein sequence. We can follow this 

same trail to recognize how evolutionary selection acts upon the functional 

movements, structures, and sequences required for function (Orellana 2014). 

Protein dynamics are characterized by the timescale (kinetic component) and the 

amplitude and directionality of the fluctuations (structural component) (K. 

Henzler-Wildman and Kern 2007). Table 1.2 shows the amplitude and timescale 

of protein motions. In one extreme of the spectra, we find the fast, femtosecond 

bond vibrations. In the other, the slow, long motions that proteins perform while 

folding, Interestingly, these motion levels can be organized hierarchically. The 

collective motion of atoms at one level translates into the next, giving rise to 

slower and broader movements (K. A. Henzler-Wildman et al. 2007). For example, 

local atomic vibrations are transmitted via hydrogen bonds creating higher 

amplitude motions (Orellana 2014). 
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Time scale (s) Amplitude (Å) Description 

10-15 - 10-12 0.001 – 0.1 
- Bond stretching, angle bending, dihedral motion 
- Side chain motions 
- Loop motions 

10-12 - 10-9 0.1 – 10 - Helix motions 
- Subunit and domain motions (hinge bending) 

10-9 - 10-6 1 – 100 - Small peptide folding 
- Helix coil transitions 

10-6 - 10-1 10 – 100 - Folding and unfolding 

 

Table 1.2. Timescales and amplitudes of molecular motions 

 Protein dynamics can be studied experimentally by combining atomic-resolution 

or near-atom-resolution techniques like X-ray crystallography, NMR, cryo-

electron microscopy and SAXS, with low-resolution spectroscopic and classical 

biophysical methods like fluorescence, circular dichroism, infrared spectroscopy, 

absorbance, Raman spectroscopy and electron paramagnetic resonance. The 

former techniques provide the structural component of protein dynamics, while 

the latter supply the complementary, kinetic information (K. Henzler-Wildman 

and Kern 2007). However, the study of protein flexibility by experimental 

methods is still a challenging, high-demanding task. On the other hand, 

computational approaches can be perfect companions. Theoretical models can 

produce valuable information and predictions that may guide new experiments. 

Protein flexibility is thus critical to understand protein-protein interactions at the 

molecular level, and several mechanisms have been proposed to describe the 

dynamic aspects of protein association. 

1.2.6.2 Protein binding mechanism 

Several theoretical models have been proposed to explain protein binding 

mechanism. 

The lock-and-key model (Fischer 1894) postulated by Emil Fischer in 1894, states 

that proteins remain fixed upon complex formation and binding occurs when 

proteins with geometrical shape complementarity fit precisely into one another. 

This model could explain binding affinity and specificity. However, contrary to 

the rigid-body assumption inherent in the lock-and-key formulation, proteins are 

flexible entities that are subject to conformational changes upon binding. Decades 

later, the induced-fit model (Koshland 1958) suggested proteins initially interact 
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from the unbound conformations. Then, recognition between proteins induces a 

change in their 3D structures until the complex forms. The induced-fit paradigm 

could explain a certain degree of conformational flexibility (Echols, Milburn, and 

Gerstein 2003), as well as the promiscuity found in some proteins (Tidow and 

Nissen 2013). However, some studies (Bosshard 2001) argued that the induced-fit 

model alone could not justify significant structural changes upon complexion. 

Furthermore, the induced-fit model could not account for X-ray, cryo-electron 

microscope images and NMR data showing ensembles of conformations, 

dynamically fluctuating between them, that contain structures similar to the 

bound state (Boehr, Nussinov, and Wright 2009; Esteban-Martín, Bryn Fenwick, 

and Salvatella 2012). 

Straub already proposed the idea of selective binding to a specific conformation 

within the ensemble in 1964 (Straub and Szabolcsi 1964). This hypothesis was 

supported by Zavodszky experimental results (Závodszky, Abaturov, and 

Varshavsky 1966). Twenty-five years later, Frauenfelder, Sligar, and Wolynes 

described the energy landscape of proteins (Frauenfelder, Sligar, and Wolynes 

1991). This original work led to the model of ‘conformational selection and 

population shift’ (B. Ma et al. 1999; C. J. Tsai et al. 1999; Csermely, Palotai, and 

Nussinov 2010). According to this model, the native state of a protein is not a 

single conformation but an ensemble of closely related structures in equilibrium. 

The most suitable conformers will bind and stabilize with the interacting partner, 

shifting the equilibrium toward complex formation (Tobi and Bahar 2005). 

Recent works show some cases where conformational adjustment often follows 

conformational selection (Grünberg, Leckner, and Nilges 2004; Wlodarski and 

Zagrovic 2009). These new data support the development of an extended 

conformational selection model. The extended conformational selection model 

describes a general scenario, where both selections, and adjustment-type steps, 

favored by electrostatics and water-mediated hydrogen bonding, follow each 

other. Partner proteins can take different paths of consecutive conformational 

selection and adjustment steps (called binding trajectories (C.-J. Tsai, del Sol, 

and Nussinov 2008; Antal, Böde, and Csermely 2009), but converge to a common 

final state. Within the new framework, the lock-and-key, the induced fit, the 

original conformational selection and the conformational selection plus 

adjustment models are all special cases of the extended conformational selection 

model (Csermely, Palotai, and Nussinov 2010). 
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Figure 1.4. Schematic representation of the extended conformational-selection model. a) 
classical lock-and-key model, b) classical induced-fit model, c) classical conformational-
selection model, d) conformational-selection-plus-induce-fit model. From Csermely et al., 2010. 

1.2.7 Including flexibility in docking 

Incorporating flexibility in docking represents one of the current challenges in the 

protein structure modeling field. This flexibility affects both backbone and side-

chain conformational changes. The high number of degrees of freedom of the 

systems not only increases the required computational resources but also results 

in a higher rate of false positive conformations (Andrusier et al. 2008). Although 

there are methods that handle backbone and side-chain flexibility simultaneously, 

most groups treat them separately. 
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Most of the docking algorithms deal with side-chain flexibility in the refinement 

stage once the docked solutions have been generated. Most of them use rotamer 

libraries derived from statistical analysis of side-chain conformations in resolved 

protein structures (Lovell et al. 2000; Shapovalov and Dunbrack 2011). In this 

case, side-chain prediction can be treated as a combinatorial optimization 

problem, where the goal is to find the residue rotamer combination that minimizes 

the energy of the system. It has been proved this is an NP-hard (N. A. Pierce and 

Winfree 2002) and inapproximable (Chazelle, Kingsford, and Singh 2004) 

problem. Several algorithms like SCWRL (Canutescu, Shelenkov, and Dunbrack 

2003) or FireDock (Andrusier, Nussinov, and Wolfson 2007) have been developed 

to tackle this issue. To simplify the complexity of the problem, a family of 

methods prun rotamers based on the dead-end elimination (DEE) method 

(Desmet et al. 1992). In the same direction, the Residue-Rotamer-Reduction (R3) 

method, in addition, use a residue reduction procedure (Xie and Sahinidis 2006) 

to decrease the resources and computational time required to solve the side-chain 

conformation problem.  

A great variety of methods have been developed to handle backbone flexibility. 

Some docking methods use a soft interface approach by which some degree of 

interpenetration between the docked molecules is allowed. These methods can 

only model side-chain and small backbone rearrangements. One of the drawbacks 

of this strategy is that steric clashes are frequently introduced into the docked 

results, and a further refinement stage is necessary. For example, many methods 

rely on a short energy minimization of the docked solutions in a final, refinement 

stage, using algorithms based on all-atom force fields like CHARMM (Brooks et 

al. 2009) or AMBER (Case et al. 2005). This final step that we could relate to 

the induced-fit binding mechanism with small conformational changes reduces the 

number of steric clashes and improves the energetic description of the solutions, 

which may affect the scoring performance positively. Other families of methods 

have been developed to tackle cases were substantial conformational changes are 

present. For example, programs like FlexDock (Schneidman-Duhovny et al. 

2005b), have focused on identifying hinge regions. Once the hinge regions have 

been detected, the proteins are dissected into their rigid subdomains, and a two-

body docking is performed with the various combinations of subdomains (Bonvin 

2006). Finally, a group of methods, that we could associate to the conformational 

selection binding mechanism, follow an ensemble docking approach. These 

techniques perform a rigid body docking of ensembles of conformations previously 

generated. The ensembles may be taken from experimental sources like crystal 

and NMR structures, or computational sampling methods based on molecular 
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dynamics (MD), normal modes, essential dynamics, etc. The conformers of the 

ensembles may be docked one by one (cross docking), or all together using 

algorithms based on the mean-field approach where the conformers are assigned 

weights that change according to the Boltzmann criterion (Bastard et al. 2003). 

1.2.8 Protein-protein docking assessment 

1.2.8.1 Protein-protein docking benchmarks 

Benchmarks are useful tools that serve as curated repositories where researchers 

can efficiently gather data to perform their studies. They also provide a common 

ground on which to compare the performance of the different algorithms. 

During the years, a protein-protein docking benchmark initially developed in Z. 

Weng lab has been steadily growing (Chen et al. 2003; Mintseris et al. 2005; 

Hwang et al. 2008, 2010; Vreven et al. 2015). Currently, the benchmark is a 

repository of 230 non-redundant, high-quality 3D-structures of protein-protein 

complexes and the unbound structures of their components. The benchmark 

incorporated, in its last version 5.0 (Vreven et al. 2015), experimental binding 

affinity values for 179 cases, addressing the growing interest of the docking 

community in developing algorithms to predict not only the structure of protein-

protein complexes but in the thermodynamics and energetic aspects of PPIs. 

DOCKGROUND (Douguet et al. 2006; Y. Gao et al. 2007) is another useful, 

automatically updated benchmark for protein-protein docking development. It 

contains bound, and unbound structures, and lately has included a set of docking 

decoys (Shiyong Liu, Gao, and Vakser 2008) that can be used to improve docking 

algorithms performance. 

SKEMPI (Moal and Fernández-Recio 2012a) is a manually curated database 

containing over 3000 experimentally measured changes in binding free energy 

upon mutation in heterodimeric complexes with at least one structure available 

in the PDB (Bernstein et al. 1977). SKEMPI also contains, when possible, data 

on changes in entropy, enthalpy and rate constants. 

1.2.8.2 CAPRI 

Following CASP example (Moult et al. 1995), the docking community established 

in 2001 the Critical Assessment of PRedicted Interactions, or CAPRI (Janin et 

al. 2003), a community-wide, worldwide experiment for protein-protein docking. 

CAPRI rounds start whenever experimentalists offer suitable targets. In each 

round, the organizers ask the participants to model a set of target protein 

complexes, whose structures have been experimentally resolved but are not yet 
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publicly available. CAPRI is a double-blind experiment, i.e., the participants do 

not know the complex structure to solve, and the organizers do not know the 

correspondence between the submissions and the participant groups. Each round 

comprises two separate competitions: predictors and scorers. In the predictor’s 

contest, participants are asked to submit a total of 100 complex models per target. 

Depending on the target, organizers may provide structures, models or sequences 

of the complex components for the participants to build their models. Models 

should be ranked, i.e., best models should be assigned the lowest ranks. The ten 

best-ranked models are selected for evaluation by the organizers. In the scorer's 

competition, participants are asked to evaluate a pool of docking complex models 

made up from the 100 models each predictor’s group submitted in the predictor's 

contest. Each scorers group must provide a ranked list of their ten best models. 

For both competitions, group predictions are evaluated according to the number 

of native contacts, ligand RMSD (LigRMSD), interface RMSD (IntRMSD) and 

rank of the near-native solutions (Méndez et al. 2003; Lensink, Méndez, and 

Wodak 2007). 

A total of 6 evaluation CAPRI meetings have been celebrated, corresponding to 

more than 100 targets. CAPRI context has not only proved to be a valuable tool 

to assess protein-protein docking algorithms. It has fostered the creation of a 

docking community and has guided it, suggesting the way forward and the new 

challenges to address. For example, besides protein-protein complex targets, 

CAPRI has proposed targets involving binding affinity, sugar binding, and 

interface water molecule prediction (Lensink and Wodak 2013a; Moretti et al. 

2013; Lensink et al. 2014). In the same spirit, the first joint CASP-CAPRI 

initiative took place in CAPRI round 30 (Lensink et al. 2016). The experiment 

encouraged participants to improve their docking protocols in the challenging area 

of docking homology models. 

1.3 Energetics of protein-protein interactions  

1.3.1 Binding affinity 

The binding of two proteins can be interpreted as a reversible process. When this 

process has reached equilibrium, it is governed by the law of mass action (Kastritis 

and Bonvin 2013). For example, we could represent a simple reaction between 

two proteins A and B as follows: 

[𝐴] + [𝐵]  

௞೚೙  
ሱ⎯ሮ

௞೚೑೑

ር⎯ሲ  [𝐴𝐵] 
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Where [A] and [B] are the concentration of the unbound proteins (reactants), and 

[AB] is the concentration of the bound complex (product). kon and koff denote, 

respectively, the association and dissociation rate constants, and are typically 

measured in M-1s-1. 

In this context, the binding affinity is the strength of the binding interaction 

between two or more molecules. Binding affinity can be expressed by the 

equilibrium dissociation constant (Kd). At equilibrium, we can write Kd as a 

function of the concentrations of reactants and product, and also in terms of the 

dissociation and association rate constants: 

𝐾ௗ =
[𝐴][𝐵]

[𝐴𝐵]
=

𝑘௢௙௙

𝑘௢௡
 

Additionally, the binding affinity can be associated with the Gibbs free energy 

(ΔG) by the following equation: 

∆𝐺 = −𝑅𝑇 ln 𝐾ௗ =  ∆𝐻 − 𝑇∆𝑆 

where R is the gas constant, T is the absolute temperature, and ΔH and ΔS 

represent the changes in enthalpy and entropy, respectively. 

1.3.1.1 Binding affinity determination by experimental methods 

Different experimental methods have been developed for determining binding 

kinetics (Vuignier et al. 2010). These methods can be grouped into direct and 

indirect techniques. Direct methods like gel filtration, ultracentrifugation or 

equilibrium dialysis, measure the actual concentration of bound and unbound 

proteins. Indirect methods, such as absorbance, resonance or fluorescence 

spectroscopy, infer the concentrations from a signal that is measured, assuming 

that the measured signal is directly proportional to the concentrations of the 

proteins. Three of the most frequently used methods to measure binding affinity 

belong to the indirect methods group: isothermal titration calorimetry (ITC) 

(Ladbury and Chowdhry 1996), surface plasmon resonance (SPR) (Willander and 

Al-Hilli 2009) and fluorescence-based methods (Masi et al. 2010).  

1.3.1.2 Binding affinity prediction by computational methods 

Calculation of protein-protein binding affinities is also a fundamental topic in 

structural modeling. This time, the focus is not determining the atom coordinates 

of protein complexes but understanding the energy determinants of protein 

binding. This question has vast practical implications in fields such as protein 

engineering (Kortemme and Baker 2004; Sharabi et al. 2011), de novo interface 

design (Fleishman, Whitehead, Ekiert, et al. 2011), computational mutagenesis 

(Ben-Shimon and Eisenstein 2010) and peptide therapeutics (Rao and Kumar 
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2008; Kumar et al. 2011). 

Different computational strategies have been developed to address the problem 

including Monte Carlo conformational searches (Abagyan and Totrov 1994), free-

energy perturbations (Kollman 1993), Poisson-Boltzmann (Honig and Nicholls 

1995), generalized-Born solvation (Qiu et al. 1997), and atomic continuum 

electrostatic calculations (Schaefer and Karplus 1996). All these techniques 

require a lot of computational resources and cannot be applied in the context of 

protein-protein docking, where a significant number of structural models have to 

be evaluated (Kastritis and Bonvin 2010). Less sophisticated methods have been 

suggested (Horton and Lewis 1992; Baker and Murphy 1998; X. H. Ma et al. 

2002). One of the proposed alternatives consists on predicting binding affinity 

with docking scoring functions. After all, many docking scoring functions are 

based on energetic terms and, ideally, binding affinity prediction and docking 

scoring should converge at some point in the future (Kastritis and Bonvin 2013). 

The development of databases with binding affinity data (Kastritis et al. 2011; 

Vreven et al. 2015) has allowed to develop and test these coarse-grain alternatives. 

At present, docking scoring functions cannot predict experimentally measured 

binding affinity with sufficient precision (Kastritis and Bonvin 2010). These 

scoring functions have been designed with the main goal of identifying the models 

structurally similar to the native complex but fail to reproduce the underlying 

energetics during complex formation. Several reasons may explain the difficulties 

encountered when predicting binding affinity (Kastritis and Bonvin 2013). First, 

the quality of the experimental data has been questioned. For example, atom 

coordinates from X-ray crystallography might be ambiguous sometimes. It has 

been also reasoned that predicting experimental affinity values obtained in 

solution, from crystal structures can introduce some noise. On the other hand, 

most of the current models do not consider the conformational changes that are 

taking place during binding. They also ignore variables like pH, temperature, and 

concentration of reactants, or implicitly assume the lock-and-key binding model, 

overlooking more complicated binding mechanisms like allosteric regulation, 

induced-fit or conformational selection. Finally, it should be noted that the 

performance of these methods depends on the quality and size of the experimental 

data used for learning and testing. We remark above the crucial role of a few 

databases with experimental binding affinity data in the development of novel 

predictors. That being true, we should also note that the data compiled in these 

databases is still limited and does represent a tiny portion of protein-protein 

binding heterogeneity. In this context, several algorithms showing high 

correlations with the data available at the time, have seen their performance 



Energetics of protein-protein interactions 

  23 

decrease when tested against new experimental measurements (Kastritis and 

Bonvin 2010).   

1.3.2 Protein binding hot-spots residues 

Protein-protein interface studies have revealed the existence of a set of residues, 

called hot-spots, which despite comprising only a small fraction of the interfaces, 

confer most of the binding energy of protein-protein interaction, thus being crucial 

for the stability of complexes. Typically, hot-spot residues are defined as those 

residues contributing in more than two kcal/mol to the binding energy of the 

complex (Thorn and Bogan 2001; Moreira, Fernandes, and Ramos 2007b). Several 

studies have focused on the characterization of hot-spot residues. Some works 

have estimated that 9.5% of interface residues are hot-spots. Hot-spot composition 

is enriched in tryptophan (21%), arginine (13.3%), and tyrosine (12.3%) residues 

(Lichtarge, Bourne, and Cohen 1996; Bogan and Thorn 1998). They frequently 

appear surrounded by a set of less energetically important residues, adopting an 

O-ring disposition, whose purpose seemed to be to occlude hot-spots from water 

(Bogan and Thorn 1998).  Hot-spots are not randomly distributed across the 

protein interfaces, but clustered in what have been called hot regions (Keskin, 

Ma, and Nussinov 2005). They are structurally conserved (Schreiber and Fersht 

1995; Lockless and Ranganathan 1999; Keskin, Ma, and Nussinov 2005; Caffrey 

Daniel R. et al. 2009), and have a cooperative character that may explain the 

extraordinary capacity of proteins to modulate its binding affinity and specificity 

to different partners (Cukuroglu et al. 2014). Hot-spots research may reveal 

essential mechanisms of protein-protein interactions and is also very important in 

drug design. For years it was thought that protein-protein interactions were not 

druggable since they are usually large, planar and lack the pockets targeted by 

classic protein inhibitors. However, the discovery of the role of hot-spots gave 

raised to a set of studies that demonstrated that binding affinity and specificity 

could be attained by epitopes consisting in a small number of residues (J. A. Wells 

1991; J. A. Wells and de Vos 1993; J. A. Wells 1996; DeLano 2002).  

Experimentally, hot-spots can be identified by alanine scanning mutagenesis (J. 

A. Wells 1991), alanine shaving (Jin and Wells 1994), and residue grafting (Jin 

and Wells 1994). These techniques are expensive, time-consuming, labor-

intensive, and cannot be applied on a large scale. Therefore, different 

computational methods for hot-spot identification have been developed. 

Reported hot-spot prediction algorithms are based on evolutionary information 

(Buyong Ma et al. 2003), the energetic contribution of residues to the binding 

energy (Guerois, Nielsen, and Serrano 2002), the structural features of hot-spots 
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(Landon et al. 2007; Nurcan Tuncbag, Gursoy, and Keskin 2009; N. Tuncbag, 

Keskin, and Gursoy 2010), protein-protein docking (Solene Grosdidier and 

Fernandez-Recio 2008), machine learning techniques (Ofran and Rost 2007; Assi 

et al. 2010; Melo et al. 2016) or molecular dynamics (MD) (Moreira, Fernandes, 

and Ramos 2007a). It should be noted that most of them require the structure of 

the complex to compute their predictions. Noticeably, pyDockNIP (Solene 

Grosdidier and Fernandez-Recio 2008), is among the few ones that does not 

require the complex structure and admits the unbound structures or models of 

the complex subunits as valid inputs. Interestingly, this method makes its 

predictions based on the normalized interface propensity (NIP) values of the 

residues, derived from rigid-body docking simulations.  

1.4 Other protein interactions: Protein-RNA 
docking 

Proteins interact not only with other proteins but with different biomolecules. 

Protein-RNA interactions constitute a good example. Protein-RNA interactions 

play a crucial role in critical cellular processes such as regulation, RNA 

translation, RNA transport and localization or RNA post-transcriptional 

modification, e.g., splicing and polyadenylation. This functional diversity extends 

to the variety of RNA types involved, including transfer-RNA (tRNA), ribosomal-

RNA (rRNA), messenger-RNA (mRNA) and micro-RNA (miRNA) (Susan Jones 

2016). RNA can be found in flexible single strands (ssRNA), but also in complex 

tertiary folds in the form of double-stranded RNA (dsRNA). Although protein-

RNA complexes are essential for cell function, their structures are 

underrepresented in the PDB (Bernstein et al. 1977), as shown in Table 1.1. 

Protein-RNA complexes are difficult to crystallize due to their conformational 

flexibility. Standard NMR techniques can be applied to solve RNA-protein 

complexes below 50 kDa, but the size of large macromolecular complexes such as 

the spliceosome or the ribosome is a limiting factor for this technique. On the 

other hand, the latest hardware and software developments in cryo-EM may help 

to convert this technique in the standard for RNA-protein structural 

characterization. However, given that experimental structural determination of 

protein-RNA complexes at high resolution is challenging, computational 

approaches may help to fill the gap and foster the understanding of the processes 

where they are involved. 

Target 34 was the first protein-RNA case in a CAPRI context (Janin 2010b; 

Lensink and Wodak 2010b). It was the first time the docking community 

evaluated the potential of their protocols, designed for protein-protein docking, 
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to deal with protein-RNA complexes. Initially, several docking methods initially 

developed for docking proteins were adapted to predict protein-RNA models such 

as GRAMM (Katchalski-Katzir et al. 1992), Haddock (van Zundert et al. 2016), 

Hex (Ritchie and Kemp 2000), PatchDock (Schneidman-Duhovny et al. 2005a), 

and FTDock (Gabb, Jackson, and Sternberg 1997). Later, specific protein-RNA 

scoring potentials were developed. They are based on reverse Boltzmann statistics 

as DARS-RNP and QUASI-RNP (Tuszynska and Bujnicki 2011), residue 

propensities like OPRA (Pérez-Cano and Fernández-Recio 2010) and statistical 

mechanics as ITScore (Huang and Zou 2014).  Several benchmarks (Barik et al. 

2012; Pérez-Cano, Jiménez-García, and Fernández-Recio 2012) and docking 

algorithms (Pérez-Cano et al. 2009; Guilhot-Gaudeffroy et al. 2014; Huang and 

Zou 2014; Tuszynska et al. 2015) are now available. In general, the performance 

of these methods is acceptable in complexes between proteins and double-stranded 

RNA, but quickly decreases when they have to deal with the flexibility of single-

stranded RNA (ssRNA). New methods try to address this issue by modeling the 

ssRNA structures from small sequence fragments (Beauchene, Vries, and 

Zacharias 2016). Even though structural biology has seen substantial steps 

forward in the field of protein-RNA interactions in the last decade, much more 

work is needed to unravel protein-RNA interactions. 
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2 Objectives 
Protein-protein interactions (PPI) are essential in virtually all biological 

processes, and its study at the molecular level is a field of high scientific relevance 

and therapeutic interest. Several computational approaches have been developed 

to model protein interactions by docking. Despite all the advances in recent years, 

computational protein docking faces significant challenges ahead, such as dealing 

with highly flexible interacting proteins or weak interactions. Thus, new strategies 

for better energetic description and exploration of the protein docking landscapes 

are necessary in order to overcome current limitations. 

This Ph.D. thesis has focused on developing new computational tools to deal 

efficiently with major challenges in protein docking, with the general goal of 

achieving a better understanding of binding energetics and mechanism.  

The specific objectives of this thesis are:  

1. Analyse the state-of-the-art of protein-protein docking methods and 
current limitations.  

2. Develop new methodologies for fast exploration of docking energy 
landscapes, by improving energy minimization and flexible refinement.  

3. Improve description of docking landscapes by conformational ensembles 
and clustering analysis. 
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4. Compute docking energy at the residue level for the description of 
mutational effects 

5. Study the energetics of protein-RNA interactions by docking.  
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3 Methods 

3.1 Standard protein-protein docking with pyDock 
In this thesis, we have used, evaluated and helped to optimize the rigid-body 

protein-protein docking protocol pyDock, which can be structured in two different 

phases: sampling and scoring. 

3.1.1 Sampling: FTDock 

In the sampling phase, we used the FFT-based docking program FTDock 2.0 

(Gabb, Jackson, and Sternberg 1997), with electrostatics and a grid resolution of 

0.7 Å, to generate 10,000 docking poses. FTDock is based on the algorithm 

developed by Katchalski-Katzir et al. (Katchalski-Katzir et al. 1992). FTDock 

discretizes the interacting molecules onto grids. Keeping the bigger molecule 

(receptor) fixed and moving the smaller one (ligand), FTDock performs a global 

scan of the translational and rotational space. The scoring method is based on the 

shape complementarity and favorable electrostatic interactions between the two 

grids. The scoring function is designed to permit some degree of surface 

overlapping to account for side-chain flexibility and allow to perform the docking 

of unbound structures. FTDock uses the fast Fourier transform (FFT) and 

Fourier correlation theory to reduce the overall computation required. 
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3.1.2 Scoring: pyDock scoring function 

In the scoring phase, the docking poses generated in the sampling stage were 

scored with pyDock scoring function (T. M.-K. Cheng, Blundell, and Fernandez-

Recio 2007), composed of three energetic terms: electrostatics, desolvation, and 

van der Waals (see Eq. 3.1).  

𝐸௣௬஽௢௖௞ = 𝐸௘௟௘ + 𝐸ௗ௘௦௢௟௩ + 𝑤௩ௗ௪𝐸௩ௗ௪ Eq. 3.1 

The pairwise electrostatics energy (Eq. 3.2) is based on the Coulombic 

electrostatics energy with a distance-dependent dielectric constant (Ɛ = 4.0d), 

which was explicitly calculated for all intermolecular ij atom pairs separated a 

distance dij, with q atomic charges taken from the AMBER 94 force field (Cornell 

et al. 1995). Pairwise electrostatic interaction energy values were truncated to a 

maximum and minimum value of +1.0 and -1.0 kcal/mol, respectively (to avoid 

excessive dependence on incorrect geometries).  

𝐸௘௟௘ = 332.0 ෍ ෍
𝑞௜𝑞௝

4𝑑௜௝
ଶ

௟௜௚

௝

௥௘௖

௜

 Eq. 3.2 

 

Desolvation energy (Eq. 3.3) represents the effective water-to-interface atomic 

desolvation energy of protein molecules, and it is based on the changes in the 

atomic accessible surface areas (ASAs) upon binding, with atomic desolvation 

parameters (ADPs) initially optimized for rigid-body protein-protein docking 

(Fernández-Recio, Totrov, and Abagyan 2003).  

𝐸ௗ௘௦௢௟௩ =  ෍ 𝐴𝐷𝑃௜ ∙ ∆𝐴𝑆𝐴௜

௥௘௖

௜

+  ෍ 𝐴𝐷𝑃௝ ∙ ∆𝐴𝑆𝐴௝

௟௜௚

௝

 Eq. 3.3 

 

If we defined the buried surface area (BSA) of a given atom as  

𝐵𝑆𝐴௜ = ∆𝐴𝑆𝐴௜ = 𝐴𝑆𝐴௜
௨௡௕௢௨௡ௗ − 𝐴𝑆𝐴௜

ௗ௢௖௞௘ௗ Eq. 3.4 

we can express Eq. 3.3 as 

𝐸ௗ௘௦௢௟௩ =  ෍ 𝐴𝐷𝑃௜ ⋅ 𝐵𝑆𝐴௜ + ෍ 𝐴𝐷𝑃௝ ⋅ 𝐵𝑆𝐴௝

௟௜௚

௝

௥௘௖

௜

 Eq. 3.5 
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The Lennard-Jones van der Waals energy (Eq. 3.6) was explicitly calculated for 

all intermolecular ij atom pairs separated a distance dij, with atomic parameters 

for equilibrium radii (r) and well depth (e) taken from AMBER 94 force field 

(Cornell et al. 1995). Atomic van der Waals interaction energy values were 

truncated to a maximum of 1.0 kcal/mol (again to avoid excessive noise from the 

docking of rigid-body surfaces). pyDock energy function (T. M.-K. Cheng, 

Blundell, and Fernandez-Recio 2007) is defined in Eq. 3.1, where EVDW is scaled 

by a weight wVDW set to 0.1.  

𝐸௩ௗ௪ = ෍ ෍ ඥ𝑒௜𝑒௝

௟௜௚

௝

௥௘௖

௜

൭ቆ
𝑟௜ + 𝑟௝

𝑑௜௝
ቇ

ଵଶ

− 2 ቆ
𝑟௜ + 𝑟௝

𝑑௜௝
ቇ

଺

൱ Eq. 3.6 

3.1.3 Protein-protein docking benchmark 

We used the protein-protein docking benchmark version 4 (Hwang et al. 2010) to 

test our protein docking methods. The benchmark contains structures of proteins 

with a high-resolution structure in both the unbound and bound states deposited 

in the PDB (Bernstein et al. 1977). All cases must have a sequence length longer 

than 30 amino acids. X-ray structures must have a resolution better than 3.25 Å. 

Redundancy of the protein complexes at the family level has been avoided using 

the Structural Classification of Proteins (SCOP) database (Murzin et al. 1995). 

Biological assembly information from the PDB has been used to distinguish 

between crystal contacts and biological complexes. 

Protein-protein benchmark 4 contains a total of 176 cases. According to their 

biochemical function, these cases can be classified as enzyme-inhibitor (52), 

antibody-antigen (25) and other functions (99). The authors have also classified 

the cases according to the expected difficulty for docking algorithms as easy/rigid 

body (121), medium (30) and difficult (25). This classification is based on the 

structural differences between the bound and the unbound conformations, as 

measured by the interface Cα-RMSD (Cα-IntRMSD) and the fraction of non-

native residue contacts (fnon-nat) (Méndez et al. 2003). Rigid-body cases are those 

cases with Cα-IntRMSD ≤ 1.5 Å and fnon-nat ≤ 0.4, medium cases are cases with 

1.5 Å < Cα-IntRMSD ≤ 2.2 Å, or Cα-IntRMSD ≤ 1.5 Å and fnon-nat > 0.4 Å, and 

difficult cases those with Cα-IntRMSD > 2.2 Å. To compute these quantities, we 

first should superimpose the unbound structures of receptor and ligand into the 

structure of the complex. Cα-IntRMSD is defined as the RMSD of the interface 

Cα atoms between the superimposed unbound and bound structures. The interface 

is defined as all residues with at least one atom located within 10 Å of the other 

protein (Chen and Weng 2002). fnon-nat is defined as the number of non-native 
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residue-residue contacts between the unbound structures divided by the total 

number of contacts in the complex. A pair of residues of receptor and ligand were 

considered in contact if any of their atoms were within 5 Å (Méndez et al. 2003). 

3.1.4 Assessment of protein-protein docking results 

Assessment of the docking solutions was done by calculating their Cα ligand root-

mean-square deviation (Cα-LigRMSD) with respect to the reference complex 

structure. We computed Cα-LigRMSD as the RMSD of the Cα atoms of the model 

and target ligands after superimposing the receptor subunits by least-square 

minimization on its equivalent Cα atoms. In oligomeric proteins, in which 

additional molecules of the ligand protein could bind to symmetric sites of the 

receptor, we calculated the Cα-LigRMSD with respect to all the different 

symmetric positions and chose the smallest value. The predictive success rates 

were computed as the percentage of cases of the benchmark set for which a near-

native docking solution was found within the top N docking models as sorted by 

the scoring function. We considered a solution was near-native if its Cα-LigRMSD 

with respect to the reference complex was not greater than 10 Å. 

3.2 CAPRI evaluation protocol 
The Critical Assessment of PRedicted Interactions (CAPRI) (Janin et al. 2003) 

is a community-wide experiment designed to test the reliability and accuracy of 

protein docking protocols. Each CAPRI round comprises two separate 

competitions: predictors and scorers. In predictors, the participants receive 

information from the individual components of a protein complex or target that 

they have to model. In most cases, target complexes are formed by two proteins. 

Typically, the largest is called receptor and the smallest ligand. In scorers, the 

participants are not asked to build models of the protein complex, but to evaluate 

a set of models made up from the structures submitted in predictors and identify 

the near-native ones. For each group, the ten best-ranked models are selected for 

assessment by the organizers both in predictors and scorers. Table 3.1 summarizes 

the criteria used to evaluate the quality of the models submitted by the 

participants. The same rules apply for both competitions. These rules try to assess 

both the correct geometry of the models compare to experimental structure, and 

their biological relevance. The quantities computed for each predicted model are 

the number of clashes between the docked proteins, the fraction of native contacts 

fnat, the RMSD of the backbone atoms of the ligand (BB-LigRMSD) and the 

RMSD of the backbone atoms of the interface residues (BB-IntRMSD). Models 

with clashes above a certain threshold are rejected. The threshold is set to the 
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average number of clashes in all the models submitted by the different groups for 

the given target, plus two times the standard deviation. A clash is defined as a 

pair of interacting atoms less than 3 Å apart (Lensink and Wodak 2010a). The 

geometric quality of the models is derived from the BB-LigRMSD, computed as 

the RMSD of the backbone atoms, i.e., C, Cα, O, and N, of the model and target 

ligands after superimposing the receptor subunits by least-square minimization on 

its equivalent residues. As the BB-LigRMSD might give poor estimates when the 

ligands are large, the BB-IntRMSD is also computed. BB-IntRMSD is defined as 

the RMSD between the equivalent backbone atoms of the superimposed interfaces 

of model and target, where the interface is given by all residues with atoms less 

than 5 Å apart in the target structure (Janin 2010a).  The biological relevance of 

the models is evaluated computing fnat, i.e., the fraction of correctly identified 

residue-residue contacts. Two interacting residues are considered in contact if any 

of its atoms are within 5 Å apart. The fnat, BB-LigRMSD and BB-IntRMSD 

values of a submitted model determine its classification as a high, medium, 

acceptable or incorrect model according to the criteria shown in Table 3.1. 

Quality Criteria 

High 
fnat ≥ 0.5 AND (BB-LigRMSD ≤ 1 Å OR  
BB-IntRMSD ≤ 1 Å) 

Medium 

(0.3 ≤ fnat < 0.5) AND (BB-LigRMSD ≤ 5 Å OR  
BB-IntRMSD ≤ 2 Å) 
fnat ≥ 0.5 AND BB-LigRMSD > 1 Å AND  
BB-IntRMSD > 1 Å 

Acceptable 

(0.1 ≤ fnat < 0.3) AND (BB-LigRMSD ≤ 10 Å OR  
BB-IntRMSD ≤ 4 Å) 
fnat ≥ 0.3 AND BB-LigRMSD > 5 Å AND  
BB-IntRMSD > 2 Å 

Incorrect 
fnat < 0.1 OR (BB-LigRMSD > 10 Å AND  
BB-IntRMSD > 4 Å) 

 

Table 3.1. Quality criteria used to evaluate the submitted models (Lensink, Méndez, and 
Wodak 2007). 

3.2.1 Generation of rigid-body docking poses for the 
predictors experiments 

In all targets, except for T100-101, we used FTDock (Gabb, Jackson, and 

Sternberg 1997) with electrostatics and 0.7 Å grid resolution and ZDOCK 2.1 

(Chen and Weng 2003) to generate 10,000 and 2000 rigid-body docking poses, 

respectively, in the same conditions as previously described (Solène Grosdidier et 
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al. 2007). For targets T53, T54, T57, T58 in the fifth CAPRI edition, and T59, 

T96-97, T103-105 in the sixth CAPRI edition we generated an additional pool of 

flexible docking poses using SwarmDock standard protocol (Moal and Bates 2010; 

Torchala et al. 2013; Li, Moal, and Bates 2010). As SwarmDock objective function 

we used DFIRE score (Song Liu et al. 2004), but without the final rescoring phase. 

In T46 we generated an additional pool of 10,000 solutions using FTDock without 

electrostatics and 1.2 Å grid resolution. In T46 and T47, we used RotBUS 

(Solernou and Fernandez-Recio 2010) to generate 59,112 and 41,021 additional 

docking poses, respectively. In T50, given the large size of H1N1 influenza virus 

hemagglutinin protein, we increased the number of translations selected from each 

rotation from 3 (default) to 10, generating a total of 92,432 FTDock docking 

poses. For target T106 we used LightDock (Jiménez-García et al. 2018a) to 

generate around 3000 additional flexible docking poses with DFIRE (Song Liu et 

al. 2004) as the objective function. Cofactors, water molecules, and solvent ions 

were not included in our docking calculations. 

3.2.2 Scoring of the docking poses for both the predictors 
and the scorers experiment  

We scored the docking models generated by the methods mentioned above, by 

applying pyDock default protocol described in section 3.1. For some targets, we 

found experimental information on possible interface residues, which were 

included in the final scoring as distance restraints with pyDockRST (Chelliah, 

Blundell, and Fernández-Recio 2006) in targets T60-64, or used as a final distance-

based filtering step in targets T104-105. We used the same protocol in the scorer 

experiment to score all the docking models that were proposed, except for target 

T46, where we did not include van der Waals, and target T59, where final RMSD-

based filtering was applied only as scorers. Cofactors, water molecules, and solvent 

ions were not considered for scoring. 

3.2.3 Removal of the redundant docking poses 

After scoring, we applied BSAS clustering algorithm (Theodoridis and 

Koutroumbas 1999) with a distance cutoff of 4.0 Å to eliminate redundant 

predictions as previously described (Pons, Solernou, et al. 2010). In target T47, 

since the resulting solutions looked correct, according to a highly homologous 

complex structure (PDB code 2WPT), we reduced the cutoff to 0.5 Å.  
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3.2.4 Minimization of final models 

The final ten selected poses were minimized to improve the quality of the docking 

models and reduce the number of interatomic clashes. In most targets of the fifth 

CAPRI edition we used TINKER (Ponder and Richards 1987) as previously 

described (Pons, Solernou, et al. 2010; Pons, Grosdidier, et al. 2010). In targets 

T53 and T54, we used CHARMM (50 steps conjugate gradient, 500 steps adopted-

basis Newton-Raphson and 50 steps steepest descent, with the CHARMM19 force 

field (Brooks et al. 2009)). In T58 and all targets of the sixth CAPRI edition, we 

applied AMBER10 with AMBER parm99 force field (Case et al. 2005; Wang, 

Cieplak, and Kollman 2000). The minimization protocol consisted of a 500-cycle 

steepest descent minimization with harmonic restraints applied at a force constant 

of 25 kcal/(mol⋅Å-2) to all the backbone atoms, followed by another 500-cycle 

conjugate gradient minimization without restrains. 

3.2.5 Modeling of subunits with no available structure 

In several targets, the structures of the subunits were not available, and we had 

to model them. In most of the targets, we used MODELLER 9v6 with default 

parameters (Sali and Blundell 1993) based on the template/s suggested by the 

organizers or other homolog proteins found by BLAST (Altschul et al. 1990) 

search. The final selected model was that with the lowest DOPE score (Shen and 

Sali 2006). For targets T53 and T54 we applied POPULUS (Offman, Fitzjohn, 

and Bates 2006) with default template selection and model building settings. We 

used HHpred server (Söding, Biegert, and Lupas 2005) to model the artificial 

alpha-repeat eGFP A in target T96, and the missing carboxy-terminal peptide 

(313-329 residues) of the Ubiquitin carboxyl-terminal hydrolase L5 (UCH-L5) in 

targets T98 and T99. MUSTER server (Wu and Zhang 2008) was used to model 

the UBE2Z protein in target T103. 

3.2.6 Servers experiment 

For the servers experiment, we ran our pyDockWeb server (Jiménez-García, Pons, 

and Fernández-Recio 2013) in 15 of the evaluated targets (T59-67, T96-97, T103-

105, T107). Sampling and scoring were done automatically with FTDock and 

pyDock, respectively. In those cases with additional experimental data available, 

we added distance restraints with the pyDockRST module included in the server. 

The best-scored server predictions were clustered with BSAS algorithm and 

minimized with AMBER10 as previously described. 
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3.2.7 Modeling of protein-peptide complexes 

For the prediction of the complexes between importin-α and nuclear signaling 

peptides (T60–64), we applied two different strategies. On the one side, the initial 

peptide structures were modeled by 500-cycle minimization with generalized Born 

(GB) model using AMBER12 package (Case et al. 2005) and AMBER parm99 

force field (Cheatham, Cieplak, and Kollman 1999) followed by 20 ns unrestrained 

molecular dynamics (MD), from which five representative snapshots were 

selected. Then, these peptide structures were used for docking simulations with 

our standard protocol for predictors, after which the results of the independent 

docking runs were merged, scored by pyDock and clustered with BSAS algorithm. 

On the other side, we applied a template-based approach. We first superimposed 

27 peptide-bound importin-α structures and identified the residue correspondence 

in the peptides at both binding sites. We threaded the target sequences through 

the peptide sequence and identified alignments which gave good agreements with 

the residue propensities in the homologs. We then used this as a basis for template 

modeling. For each target/alignment pair, peptide fragments were joined together 

with averaging of the atomic coordinates of overlapping fragments, keeping the 

side-chain conformations where possible. The amalgamated partial models were 

then superimposed into position in the binding sites of all 27 homologs; missing 

side-chains were rebuilt with SCWRL4 (Krivov, Shapovalov, and Dunbrack 2009) 

and the structures minimized with CHARMM (Brooks et al. 2009). The large set 

of models was then scored with pyDock. For each target, we submitted the five 

best models generated by each of these two strategies. The server submissions 

were automatically built by the pyDockWeb docking server, using as input the 

conformations of the peptides generated by homologous templates (PDB 3UL1 

and 3UKZ), followed by side-chain rebuilding with SCWRL in the context of the 

PDB 1EJL complex, and a subsequent 500-cycle minimization with GB model 

with Amber using AMBER12 package (Case et al. 2005) and AMBER parm99 

force field (Cheatham, Cieplak, and Kollman 1999). For the prediction of the rest 

of protein-peptide complexes (T65–67), we applied an ad hoc template-based 

homology protocol. For T65 and T66, we rigidly docked by FTDock and then 

scored the DIPF binding motif of the SBB peptide, which is structurally conserved 

in other SSB interactions (3C94, 3Q8D, 3SXU, 3UF7, and 3UFM). For our 10 

top hits, we then built the missing WMDFDD fragment by iteratively building 

toward the N terminus by sampling putative conformations from neighbour-

dependent u and w distributions (Ting et al. 2010) and a backbone-dependent 

rotamer library (Shapovalov and Dunbrack 2011), selecting configurations using 

DFIRE (Song Liu et al. 2004). A similar protocol was undertaken for T67 after 
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docking of the PSY domain of Commissureless (2EZ5) and building both the N- 

and C- terminal flanking residue outwards from this motif. We scored the final 

models with pyDock. For the server submissions with pyDockWeb, we used 

FTDock with the peptide models obtained by template-based homology modelling 

(for T65–66: eight templates with the following PDB code and chain ID: 3C94_B, 

3C94_C, 3Q8D_E, 3Q8D_F, 3UF7_B, 3UF7_C, 3SXU_C, and 3UFM_B; for 

T67: two templates with the following PDB code and chain ID: 2KQ0_B, 

2KPZ_B) or five representative models from 100 ns MD trajectories. The results 

from all docking runs were merged, and we submitted the top 10 models as scored 

by pyDock. 

3.3 Minimization 

3.3.1 Mapping of the rigid body transformation manifold 

A rigid body transformation can be described by a rotation matrix R, member of 

the Special Orthogonal group SO(3), and a three-dimensional translation vector 

t, defined in ℝଷ. A matrix R is a rotation matrix if and only if it is a square 

matrix such that 𝑅் = 𝑅ିଵ 𝑎𝑛𝑑 det 𝑅 = 1. The rigid body transformations can be 

considered the direct product of SO(3) and ℝଷ, SO(3) x ℝଷ. 

 As described below, we can use the exponential parametrization to locally map 

the nonlinear manifold onto the tangent space to the manifold, which is an 

Euclidean space. The exponential map relates the neighborhood of a manifold 

point to the tangent plane at that point. 

For example, the tangent space of SO(3) at I, the identity of the group of 

rotations, denoted by so(3) can be identified with the space of 3x3 skew-symmetric 

matrices, 

[𝜔] =  ൥

0 −𝜔ଷ 𝜔ଶ

𝜔ଷ 0 −𝜔ଵ

−𝜔ଶ 𝜔ଵ 0
൩ Eq. 3.7 

 

with 𝜔 = (𝜔ଵ, 𝜔ଶ, 𝜔ଷ)் ∈ ℝଷ . 

We can now map the tangent space so(3) of skew-symmetric matrices to SO(3) 

with the exponential map at identity 𝐼 ∈ 𝑆𝑂(3) defined as 

expூ(𝜔) =  𝑒[ఠ] Eq. 3.8 
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where the right-hand side of the equation can be rewritten as the Rodrigues 

formula 

𝑒[ఠ] = 𝐼 +
𝑠𝑖𝑛 (‖𝜔‖)

‖𝜔‖
[𝜔] +

(1 − 𝑐𝑜𝑠(‖𝜔‖))

‖𝜔‖ଶ
[𝜔]ଶ Eq. 3.9 

 

where ‖𝜔‖ is the Euclidean norm of ω. 

We can easily derive the exponential map of 𝑆𝑂(3) × ℝଷfrom that of 𝑆𝑂(3). The 

tangent space of the product group 𝑆𝑂(3) × ℝଷ at the identity (I, 0) can be 

identified with the set of points (𝜔, 𝑣) ∈ ℝ଺, such that 

exp(ூ,଴)(𝜔, 𝑣) = (𝑒[ఠ], 𝑣) Eq. 3.10 

 

Therefore, 

exp(ூ,଴): ℝ଺ → 𝑆𝑂(3) × ℝଷ Eq. 3.11 

 

defines a local mapping for 𝑆𝑂(3) × ℝଷ in the neighborhood of (I, 0). 

In practice, this means that we can perform the minimization at the tangent space 

of  𝑆𝑂(3) × ℝଷ, which is a Euclidean space ℝ6, and map the minimized solution 

in ℝ6 back to a rotation-translation pair (R, t) in 𝑆𝑂(3) × ℝଷ (see Figure 3.1). 

Thus, we reduce the total number of parameters to optimize to six, three for the 

rotation vector and three for the translation vector, dramatically decreasing the 

resources and time required to perform the minimization. 

We performed the minimization with the Powell optimization algorithm (Powell 

1964) implemented in the Python package Scipy (E. Jones, Oliphant, and 

Peterson 2015). Powell minimization is a conjugate direction method that does 

not require the optimization function to be differentiable. 
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Figure 3.1. Plot of a minimization run. The sphere represents the rigid body transformation 
space 𝑺𝑶(𝟑) × ℝ𝟑 and the plane the tangent space at the identity. The minimization takes place 
in the tangent space. Each optimization step is represented as a dot in the plane. Color dots 
are plotted every ten steps. Colors represent the energy values at the minimization steps. 
Red/blue dots are associated with high/low energies. The shadow dots in the sphere represent 
the minimization steps mapped onto 𝑺𝑶(𝟑) × ℝ𝟑 with the exponential map (From Mirzaei et 
al. 2012). 

3.4 Analysis of binding affinity changes upon 
mutation 

3.4.1 In-silico alanine scanning mutagenesis with AMBER 

The method requires the structure of the complex that is being studied and 

combines molecular dynamics simulations and binding energy calculations with 

the MM-GBSA method (Miller et al. 2012). Before running the molecular 

dynamics simulations, the system was solvated, minimized and equilibrated as 

follows. First, original PDB coordinates were stripped of hydrogen atoms, 

monovalent ions, and all water molecules. Missing side-chain atoms and hydrogen 

atoms were added from AMBER residue libraries using the LEAP AMBER tool. 

The resulting complex structure was then immersed in a periodic truncated 

octahedron box containing a 12 Å buffer of TIP3P water molecules, and Na+ and 

Cl- counterions were added to the solvent bulk to maintain the neutrality of the 

system and reach 50 mM NaCl ionic strength. Each solvated system underwent a 

short solvent minimization and five-step equilibration protocol. First, a 500-cycle 

steepest descent and a 500-cycle conjugate gradient minimization were performed, 

applying harmonic restraints with force constant of 50 kcal/(mol·Å2) to all protein 

atoms in order to minimize the solvent molecules. Then, the five-step equilibration 
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was performed by applying periodic boundary conditions and computing long-

range electrostatics by the particle-mesh Ewald method. At each stage, the 

integration time step was set to 2 fs, the system pressure to 1 atm, and the 

nonbonding cutoff distance to 12 Å. The five steps were:  

1) A 40 ps MD simulation was run applying harmonic restraints to all the 
protein atoms with force constant of 25 kcal/mol·Å2, raising the 
temperature to 300 K by Langevin dynamics approach with a collision 
frequency of 1 fs. 

2) A 20 ps step was performed, setting the temperature to 300 K and reducing 
system restraints to 10 kcal/mol·Å2. 

3) Another 20 ps simulation was run with 10 kcal/mol·Å2 restraints only to 
the protein backbone atoms. 

4) A further 20 ps simulation was performed, decreasing protein backbone 
restraints to 5 kcal/ mol·Å2. 

5) A final 100 ps unrestrained MD simulation was run without any restraint. 

Finally, a 5 ns MD simulation was performed in an isothermal-isobaric ensemble, 

setting pressure to 1 atm and temperature to 300 K. 

The AMBER MMPBSA.py script was used to perform Computational Alanine 

scanning calculation on 200 snapshots extracted from the last 2ns of the 5-ns-long 

MD trajectory. All the MEK1 and BRAF residues were mutated to alanine, and 

then the binding free energy change (ΔΔG) was estimated as the difference 

between the binding ΔG (MM-GBSA method) of the wild-type and that of the 

mutated complex. Give its high computational cost, the contribution of 

conformational entropy was not included, but that should not significantly affect 

the comparison of mutant and the wild-type free energies. 

3.4.2 Benchmarking predictive performance 

We checked the accuracy of the binding affinity changes upon mutation 

predictions with the data stored in SKEMPI v1.1, the Structural database of 

Kinetics and Energetics of Mutant Protein Interactions (Moal and Fernández-

Recio 2012b).  SKEMPI is among the largest databases with experimentally 

measured changes in binding free energy upon mutation. SKEMPI contains 3047 

ΔΔG measurements of 2792 unique mutations or sets of mutations found for 158 

structures of 85 protein-protein complexes. All its data has been manually curated 

and come from multiple studies reported in the literature. Many different types 

of mutations have been collected. Given that a large number of mutations come 

from alanine scanning experiments, a third of the data correspond to mutations 

to alanine.  
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3.5 Structural and energy determinants in protein-
RNA docking 

3.5.1 Protein-RNA docking protocol 

The general docking protocol described in section 3.1 was followed. However, some 

modifications were necessary to adapt the protocol to RNA molecules. In the 

sampling phase, FTDock 2.0 (Gabb, Jackson, and Sternberg 1997) was run 

without electrostatics and a grid size resolution of 1.2 Å. A total number of 10,000 

docking poses were generated for each benchmark case. 

Rigid-body orientations were scored with pyDock scoring function, defined by 

equations Eq. 3.1-Eq. 3.6 and described in section 3.1. Atomic desolvation 

parameters (ADPs) were adapted for protein-RNA complexes. We used the same 

ADPs as for protein-protein complexes, assigning the ADP of carboxylic O to 

RNA phosphate O atoms, and null ADP to RNA P atoms, to minimize the errors 

when computing their contribution (Pons, Solernou, et al. 2010). Parameters like 

atomic charges (q), equilibrium radii (r) and well depth (e) were taken from 

AMBER 94 force field (Cornell et al. 1995). Electrostatics and van der Waals 

terms were truncated as explained in section 3.1 to avoid excessive noise coming 

from docking rigid-body surfaces. 

3.5.2 Statistical potentials for scoring 

We also scored the protein-RNA rigid-body docking orientations with the pairwise 

protein-RNA statistical potentials previously developed within our group (Pérez-

Cano et al. 2009) (see Figure 3.2). For every residue-ribonucleotide pq pair at the 

interface of each docking pose i (considering as pairs those that have at least one 

atom within 4 Å distance from each other), the corresponding propensity value 

according to its type was assigned. The propensity-based values of all pairs were 

summed up to compute the final score of the given docking pose i, as shown in 

Eq. 3.12. Finally, all docking solutions were ranked according to these propensity-

based scores. 

∆𝐺௜
௦௧௔௧ =  ෍ ∆𝐺௣௤

௦௧௔௧

௣௤

 Eq. 3.12 

 

For the sake of comparison, success rates of pairwise protein-protein statistical 

potentials in the scoring of bound protein-protein rigid-body docking poses were 

extracted from the previous work of Pons et al., 2011 (Pons et al. 2011). 
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Figure 3.2. Pairwise protein-RNA statistical potentials (favorable pairs are in red; disfavored 
in blue). From Pérez-Cano et al. 2009. 

3.5.3 Explicit consideration of shape complementarity for 
scoring 

As previously reported, considering shape complementarity when scoring protein-

RNA docking poses can improve the predictive rates (Pérez-Cano et al. 2009). 

Here we scored the rigid-body docking orientations by using the FTDock 2.0 

SCscore, which is a correlation score describing the shape complementarity of the 

components represented as a discrete 3D grid (Katchalski-Katzir et al. 1992). We 

then aimed to combine the SCscore with the electrostatics and van der Waals 

energy terms. Since the variation of the distribution of values for these three terms 

ranged within the same order, we decided not to use any weighting factor to avoid 

potential over-fitting problems. Therefore, the three terms were combined in a 

single scoring function just by adding the scores, after changing the sign of the 

SCscore values to be consistent with the other terms (see Eq. 3.13). 

𝐸௖௢௠௕ = 𝐸௘௟௘ + 𝐸௩ௗ௪ − 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 Eq. 3.13 

3.5.4 Benchmarking and evaluation of scoring results 

The performances of the different scoring functions analyzed here for bound 

protein-RNA docking were evaluated on the bound structures of the 106 cases of 

the protein-RNA docking benchmark v1.0 (Pérez-Cano, Jiménez-García, and 

Fernández-Recio 2012). The benchmark set is composed of experimental protein-

RNA complex structures, for which the unbound proteins had available structures 

(or could be homology-based modeled). It includes 5 unbound-unbound, 4 
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unbound-pseudo-unbound, 62 unbound-bound, 5 unbound-model, 8 model-

unbound, 19 model-bound and 3 model-model cases. The benchmark covers all 

major functional categories and contains cases with different degrees of difficulty 

for docking, as far as protein and RNA flexibility is concerned. The benchmark 

set and more detailed information are available online at 

https://life.bsc.es/pid/protein-rna-benchmark/.  

On the other hand, the unbound protein-RNA docking was tested on a subset of 

cases from the same benchmark with unbound or modeled structures available for 

both protein and RNA components. This ‘‘unbound” data set comprises a mixture 

of 5 unbound-unbound, 4 unbound-pseudo-unbound, 5 unbound-model, 8 model-

unbound and 3 model-model cases. The total of 25 ‘‘unbound” cases were grouped 

in 6 easy, 13 medium and 6 difficult cases, defined according to the unbound-to-

bound conformational deformation of their interfaces as those cases with protein 

and RNA average IntRMSD below 2.5 Å, between 2.5 and 5.0 Å, and above 5.0 

Å, respectively (Pérez-Cano, Jiménez-García, and Fernández-Recio 2012). For 

comparison, protein-protein docking calculations were evaluated on the protein-

protein docking benchmark 3.0 (Hwang et al. 2008). 

The assessment of the docking solutions was done by calculating the ligand root-

mean-square deviation (LigRMSD) with respect to the reference complex 

structure, defined as the RMSD between the P atoms of the docking and reference 

RNA molecules, after superimposing the Cα atoms of the docking and reference 

protein molecules. In oligomeric proteins, in which additional molecules of RNA 

could bind in symmetric sites, we calculated the LigRMSD with respect to all the 

different symmetric positions and chose the smallest value. The docking solutions 

were classified as excellent-accuracy (LigRMSD ≤ 1 Å), high-accuracy (LigRMSD 

≤ 2 Å), medium-accuracy (LigRMSD ≤ 5 Å), acceptable (LigRMSD ≤ 10 Å), or 

incorrect (LigRMSD > 10 Å). Then, the predictive success rates for a given 

scoring function were computed as the percentage of cases, among those within 

the corresponding benchmark set, in which an acceptable (or any other better 

accuracy criteria) docking solution was found within the top N docking models as 

sorted by such scoring function. For comparison, we computed the success rates 

expected by random, based on aleatory permutation of the rank of the generated 

docking solutions for each case. 
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4 Results 

4.1 Rigid-body docking: assessment of the state-of-
the-art and current limitations in CAPRI 

We have participated in CAPRI editions 5th and 6th, where we submitted 

predictions for all the proposed targets. The assessment of our submissions by the 

CAPRI organization is summarized in Table 4.1 and Table 4.2. In the fifth 

CAPRI edition, we submitted acceptable models (or better) for 6 out of 9 targets 

as predictors and 4 out 7 as scorers. In the sixth CAPRI edition, excluding the 

CASP-CAPRI cases, we submitted acceptable models (or better) for 7 out of 18 

targets as predictors, and 4 out of 11 targets as scorers. Additionally, in the 25 

cases of the CASP-CAPRI experiment we submitted acceptable models or better 

for 11 out of 25 targets as predictors, and 14 out of 25 targets as scorers. 

Hereinafter, we describe in detail our submissions for each of the targets 



Results 

46   

  Predictors Scorers 

Target Type 
Submission 

ranka Qualityb Successful 
groupsc 

Submission 
ranka Qualityb Successful 

groupsc 

T46 HH - - 2 (40) - - 8 (16) 
T47 HU 1 *** 25 (29) 2d *** 13 (14) 

T48 UU 3 * 14 (32) No scorers 
No 

scorers 
No scorers 

T49 UU 4 * 14 (33) 6 * 7 (13) 
T50 UH 1 ** 18 (40) 4 ** 12 (17) 
T51 DHD - - 3 (46) - - 5 (13) 
T53 UH 3e ** 20 (42) 1 ** 11 (13) 
T54 UH - - 4 (41) - - 0 (13) 

T58 UU 5 ** 11 (23) No scorers 
No 

scorers 
No scorers 

 

Table 4.1. Results of our pyDock protocol for all protein–protein targets of fifth CAPRI 
edition. 
U, unbound; H, homology-based model; D, domain. 
a Rank of the best model within our submission to CAPRI. 
b Quality of our best model according to CAPRI criteria. 
c Number of successful groups for each target;  in brackets, the total number of participants. 
d Model Rank 1 had medium accuracy (**). 
e Model Rank 1 had acceptable accuracy (*). 
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Targeta Typeb Predictorsc Serversc Scorersc 

T59 
Prot/Prot 

(U/H) 
0 0 0 

T60-64 (major 
binding site) 

Prot/Pep 
(U/H) 

M02** (T60) 
M03** (T61), 

M04* (T61) 
M03** (T62), 

M04* (T62) 
M03** (T63), 

M04* (T63) 
M03** (T64), 

M04* (T64) 

M08* (T63) N/A 

T60-64 (minor 
binding site) 

Prot/Pep 
(U/H) 

M01* (T63) 0 N/A 

T60-64 (minor 
binding site, six-

residue) 

Prot/Pep 
(U/H) 

M01** (T60) 
M01** (T61) 
M01** (T62) 
M01** (T63) 
M01** (T64) 

M03* (T61) 
M02** 

(T62), M08** 
(T62) 

M06* (T62), 
M10* (T62) 

M01* (T63), 
M07* (T63) 

N/A 

T65 
Prot/Pep 

(U/H) 
0 0 N/A 

T66 
Prot/Pep 

(U/H) 
M01* (EF) 

M04* (EF), 
M08* (EF) 

N/A 

T67 
Prot/Pep 

(U/H) 
M10* (all) 

M06* 
(PPxY), 

M07* 
N/A 

T95 
Prot-

DNA/Prot 
(U/U) 

0 X N/A 

T96 
Prot/Prot 

(H/H) 
0 0 0 

T97 
Prot/Prot 

(H/H) 
0 M10* M05*, M09*, M10* 

T98 
Prot/Prot 

(U/U) 
0 X 0 

T99 
Prot/Prot 

(U/U) 
0 X 0 

T100 
Prot/Prot 

(U/H) 
0 X 0 

T101 
Prot/Prot 

(U/H) 
0 X 0 

T103 
Prot/Prot 

(H/H) 
0 0 M03* (Ct), M05* (Ct) 

T104 
Prot/Prot 

(H/H) 
M03*, M06**, 
M07*, M10** 

0 
M01-02***, M03**, 

M04***, M05**, M06***, 
M07-08**, M09***, M10** 

T105 
Prot/Prot 

(H/H) 
M02**, M10** M02*, M06** 

M01**, M02*, M03-05**, 
M07-10** 

T107 
Prot/Prot 

(U/U) 
0 0 0 
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Table 4.2. Results of our pyDock protocol for all protein–protein targets of sixth CAPRI 
edition. 
a Underscored: target of special difficulty, with only three or fewer groups that submitted 
correct models. 
b B: bound; U: unbound; H: homology-based model. 
c Correct models submitted to CAPRI by our group. Each model is numbered according to 
its rank within our submission. The quality of each model is indicated, following CAPRI 
criteria: * acceptable; ** medium quality; *** high quality. In bold, our best-quality model 
for each target. “0”: no correct model submitted. “X”: no submissions. “N/A”: experiment not 
available (i.e., the target was not proposed for the scorers experiment). 

4.1.1 Fifth CAPRI  

4.1.1.1 Successful predictions 

4.1.1.1.1 Target T47 (model/pseudo-unbound) 

Target T47 consisted in the structural prediction of the complex between the 

DNase domain of colicin E2 and the immunity protein Im2. The colicin E2 was 

modeled based on the structure of colicin E9 (85% sequence identity) in complex 

with Im9 immunity protein (PDB 1EMV (Kühlmann et al. 2000)). The 

coordinates of the immunity protein Im2 were extracted from its structure in 

complex with colicin E9 (PDB 2WPT (Meenan et al. 2010)). Even though the 

binding mode for target T47 was easy to derive by template-based docking from 

the homologous colicin E9/Im2 complex structure (PDB 2WPT), we performed a 

template-free docking to assess our standard docking protocol. We applied 

distance restraints selecting those docking poses in which two key residues, Im2 

Y54 and colicin E2 F85 (equivalent to colicin E9 F86 in 2WPT), were within 6 

Å, the default restraint distance of pyDockRST module (T. M. K. Cheng, 

Blundell, and Fernandez-Recio 2008). We submitted five correct models (one high 

accuracy, one medium accuracy, and three acceptable). In the scoring experiment, 

we evaluated 1051 models with pyDock scoring function and applied the same 

distance filter that we used in predictors. All the models we submitted were 

successful (four high accuracy and six medium accuracy). 

4.1.1.1.2 T48 (unbound/unbound) 

Target T48 was the structural prediction of the complex between the diiron-

hydroxylase toluene 4-monooxygenase and the Rieske-type ferredoxin T4moC 

protein (PDB  1VM9 (Moe et al. 2006)). As the organizers suggested, we built 

the heterohexameric biological unit of the diiron-hydroxylase by applying crystal 

symmetry operations to its trimeric structure in complex with the T4moD effector 

protein (PDB 3DHH (Bailey et al. 2008)). After running the standard pyDock 

protocol we selected those docking poses that had any of the diiron-hydroxylase 
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Fe2+ and ferredoxin S2Fe2 atoms within 23 Å distance to allow for the electron 

transfer between these groups (Bailey et al. 2008) (expected distance of 16 Å in 

3DHH plus an arbitrary margin of 7 Å to allow the inclusion of some low-energy 

docking solutions). We submitted three models of acceptable quality. 

4.1.1.1.3 T49 (unbound/unbound) 

Target T49 was the same complex as T48 but with a different hexameric 

conformation for diiron-hydroxylase toluene 4-monooxygenase. We ran the same 

protocol as for target T48 and submitted four acceptable quality models. For the 

scoring experiment, we also applied the same protocol based on pyDock scoring 

and electron transfer distance filtering and submitted one acceptable model. 

4.1.1.1.4 T50 (unbound/model) 

Target T50 consisted in the structural prediction of the complex between the 1918 

H1N1 influenza virus hemagglutinin and the HB36.3 de novo designed protein. 

The coordinates of the hemagglutinin were taken from its structure in complex 

with an antibody (PDB 3GBN (Ekiert et al. 2009)) and the biological hexamer 

was rebuilt by applying symmetry operations. We modeled the HB36.3 based on 

the crystal structure of the homologous (83% sequence identity) protein 

APC36109 from Bacillus stearothermophilus (PDB 1U84), using the target-

template protein alignment offered by the organizers. Our submission as 

predictors contained nine successful models (five acceptable and four medium-

quality). For the scoring experiment, we evaluated the 1451 models with the same 

protocol as in predictors. We found five acceptable and one medium-quality 

model. 

4.1.1.1.5 T53 (unbound/model) 

Target T53 was a complex between two artificial alpha helicoidal repeat proteins 

(alpha-Rep), alpha-rep4 (PDB 3LTJ (Urvoas et al. 2010)) and alpha-rep2, both 

designed on the basis of thermostable HEAT-like repeats. The ligand alpha-rep2 

was built using as template alpha-rep4 (PDB 3LTJ), with 77% sequence identity. 

We generated the docking poses with ZDock, FTDock, and SwarmDock and 

evaluated them with pyDock. We submitted four successful predictions (three 

acceptable and one medium-quality model). For the scoring experiment, we 

applied the same protocol as in predictors. We found three acceptable and one 

medium-quality model. 

4.1.1.1.6 Target T58 (unbound/unbound) 

This target was a complex between the unbound G-Type Lysozyme (PDB 3MGW 

(Kyomuhendo et al. 2010)) and the unbound Escherichia coli Plig lysozyme 
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inhibitor (PDB 4DY3 (Leysen et al. 2012)). There was available small-angle X-

ray scattering (SAXS) data for this complex, which we used for scoring with our 

module pyDockSAXS, previously developed to combine pyDock scoring and 

fitting to SAXS data (Pons, D’Abramo, et al. 2010). Also, there was some 

available information indicating a central role of the G-type lysozyme E73, D86, 

and D97 residues and the E. coli Plig lysozyme inhibitor R119 and Y47 residues 

(Helland et al. 2009). Based on these residues, we imposed ambiguous distance 

restraints with our module pyDockRST (Chelliah, Blundell, and Fernández-Recio 

2006). We submitted one medium-accuracy and two acceptable models. 

4.1.1.2 Unsuccessful predictions 

In three of the protein-protein cases (T46, T51, and T54) we were not able to 

submit any correct model, either as predictors or as scorers. These cases seemed 

to be highly challenging for the majority of participants since in all of them there 

were no more than three successful groups as predictors or as scorers or both (see 

Table 4.1). In target T46 (model/model), the interacting subunits Mtq2 and 

Trm112 were modeled based on the homolog templates with low sequence identity 

(Mtq2 was based on a template with PDB code 1T43, 28% sequence identity; 

Trm112 was based on a template with PDB code 2J6A, 36% sequence identity). 

The inaccuracies in the modeling added too much error, and the docking was not 

successful. Target T51 (bound/model/unbound) was a complicated case of a 

multidomain protein, with interactions between GH5-CBM6/CBM13/Fn3 

domains. This could be divided into two different docking cases both involving 

CBM13 domain, which needed to be modeled based on a template with PDB code 

1KNL (38% sequence identity). Again, a model based on a template with that 

level of homology can deteriorate docking results. Target 54 (unbound/model) 

was in principle straightforward, involving the modeling of Rep16 based on the 

template with PDB code 3LTJ (88% sequence identity), but the submitted 

solutions were incorrect for us as well as for the majority of participants. Indeed, 

despite the scoring set contained several acceptable models, no group was able to 

identify them (see Table 4.1). 

4.1.2 Sixth CAPRI edition 

4.1.2.1 Successful predictions 

4.1.2.1.1 Targets T60-64 (unbound/peptide models) 

This set of targets consisted in the interaction between mouse importin-α and five 

different nuclear signaling peptides: Gu-α (T60), a28 (T61), a58 (T62), b6 (T63), 

and b141 (T64). These five complexes were evaluated as three targets: (i) the 
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major binding site; (ii) the minor binding site; and (iii) the six central peptide 

residues in the minor binding site. Coordinates of importin-α were taken from 

PDB 1EJL, bound to a large T antigen seven-residue peptide. The target peptides 

were modeled using a dual strategy, based on ab initio molecular dynamics or 

homologous templates (see section 3.2.7). For each submission, five of the protein–

peptide models were built by template-based homology modeling, and the other 

five by docking, using as input structures the models generated by molecular 

dynamics. Overall, we obtained excellent results. More in detail, as predictors we 

submitted one high- and four medium-accuracy models for the major binding site 

in the five peptide complexes; one acceptable model for the complete minor 

binding site of one of the peptide complexes (T63); and five medium models for 

the six-residue minor binding site of the five peptide complexes. Interestingly, all 

the correct protein–peptide models submitted as predictors were directly built 

based on homologous templates, which shows that the use of unrestrained 

molecular dynamics to build the conformations of the peptides did not yield 

suitable input structures for docking. 

4.1.2.1.2 Targets T65-66 (unbound/peptide models) 

These two targets consisted in the Ct peptide of ssDNA binding protein (SBB-

Ct) in complex with RNaseH (T65) or DNA helicase (T66). The structure of 

RNaseH was available as unbound (PDB 2RN2), while the coordinates of the 

DNA helicase were provided as unbound by the CAPRI organizers (now available 

as PDB 4NL4). The structure of the peptide was not available. As predictors, we 

applied an ad hoc template-based homology modeling procedure (see section 

3.2.7). We submitted one acceptable model as predictors. However, for the T65 

complex (PDB 4Z0U) we were not able to submit any correct model, either as 

predictors or as scorers. This case was highly difficult for the majority of 

participants, as there was only one successful group out of > 40 participants. 

Indeed, RNaseH binding to Ct peptide involved a large conformational change: 

RNaseH interface atoms, defined as those within 5 Å distance from Ct peptide in 

the complex structure, showed 4.2 Å RMSD between the unbound and bound 

structures. 

4.1.2.1.3 Target 67 (unbound/peptide model) 

Target T67 was the interaction between Nedd4 WW3 domain and the PPxY 

motif of ARRDC3. The organizers provided the unbound structure for the protein, 

and the peptide structure was modeled. As predictors, we applied an ad hoc 

template-based homology modeling procedure (see section 3.2.7). We submitted 

acceptable models as predictors. 
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4.1.2.1.4 Targets T96-97 (model/model) 

These targets consisted in the interaction between eGFP and the artificial a-

repeat eGFP-binder A (T96) or C (T97). We modeled eGFP based on a FRET-

optimized cerulean fluorescent protein (PDB 4EN1, 92% sequence identity). The 

structures of eGFP-binder A and C were modeled based on a homologous 

template (PDB 3LTJ) with 82% and 74% sequence identity, respectively. We 

submitted acceptable models for T97 as servers and as scorers, while we failed to 

submit any correct model for T96. The main reason for the different performance 

of these two targets could be related to the larger deviation of the modeled a-

repeat eGFP-binder A protein with respect to the bound structure in T96 as 

compared to that of the a-repeat eGFP-binder C protein in T97 (BB-IntRMSD 5 

Å and 2 Å, respectively). In the case of scorers, we also obtained better results 

for T97.  

4.1.2.1.5 Target 103 (model/model) 

Target T103 consisted in the Ube2Z protein in complex with Fat10. The 

structures of the Ube2Z and Fat10 proteins were modeled based on homologous 

templates (PDB 3CEG and 3U30, with 43% and 32% sequence identity, 

respectively). We submitted acceptable models only as scorers. 

4.1.2.1.6 Targets 104-105 (model/model) 

In these two targets, in addition to providing near-native models, the organizers 

asked to predict the interfacial water positions. Target T104 consisted in the 

interaction between pyoAP41 and ImAP41 proteins. As none of these structures 

were available, they were modeled based on homologous templates, colicin E9 

(48% sequence identity) and Im9 immunity protein (46% sequence identity), 

respectively. Both template structures were extracted from the PDB 1BXI. Target 

T105 consisted in the interaction between pyoS2 and ImS2 proteins, whose 

structures were modeled based on colicin E2 DNase (52% sequence identity) and 

Im2 immunity protein (59% sequence identity), as found in PDB 3U43 chains B 

and A, respectively. We applied distance restraints after pyDock protocol by 

selecting those docking poses in which two key contacting residues, pyoAP41 Y81 

and ImAP41 F59 (equivalent to colicin E9 F86 and Im9 Y54), or pyoS2 Y85 and 

ImS2 Y55 (equivalent to colicin E2 F86 and Im2 Y54), were within an arbitrary 

distance of 6 Å. We submitted acceptable (or better quality) predictions for 

complex structure and water positions in the two targets, both as predictors and 

as scorers. There was a clear correlation between the quality of our predictions 

for the complex structure and that of the interfacial water positions. 
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4.1.2.2 Unsuccessful predictions 

In the following cases, we were not able to submit any correct model, either as 

predictors or as scorers. These cases seemed to be difficult for the majority of the 

participant groups. 

4.1.2.2.1 T59 (unbound/model) 

Target T59 consisted in the interaction between the LSm domain of Edc3 protein 

and the ribosomal protein Rps28b. The NMR structure of Edc3 was available 

both as unbound (PDB 4A53) and in complex with a short helical leucine-rich 

motif (HLM) from Dcp2m mRNA Decapping Complex (PDB 4A54). The 

structure of the Rps28b was not available and had to be modeled. We decided to 

use the cryo-EM structure PDB 3IZB (superseded by 4V6I) (SI 85%). 

4.1.2.2.2 T95 (unbound/unbound) 

Target T95 consisted in the interaction between PRC1 ubiquitylation module and 

the nucleosome core particle, whose coordinates were available as unbound 

structures (PDB 3RPG and 3LZ0, respectively). Once the complex structure was 

released (PDB 4R8P), we found that the molecules did not show large 

conformational changes upon binding (RMSD of < 1 Å to the bound conformation 

calculated on all the Cα atoms and roughly 1.5 Å on all the DNA atoms with 

respect to the complex structure). Nevertheless, this was a challenging case in 

which only three participants submitted acceptable models. Most likely, the 

presence of DNA made docking and scoring extremely difficult. 

4.1.2.2.3 T98-101 (unbound/model) 

Targets T98–101 consisted in the interaction between the Ubiquitin Carboxyl-

terminal hydrolases L5 or L5Ub (with ubiquitin covalently bound) proteins and 

either RPN13 activator or Ino80G inhibitor. The structures for these complexes 

were later released with the following PDB codes: 4UEM, 4UEL, 4UF6, and 4UF5, 

respectively. These cases were highly difficult for all participants, as there was 

not found a single acceptable model among all the participants. The main 

challenges in these cases were the large conformational changes of both the 

interacting proteins upon binding, the inaccuracy in the modeling of Ubiquitin 

carboxyl-terminal hydrolase L5 interface, as well as the small interface area 

between the docking partners.  

4.1.2.2.4 T107 (unbound/unbound) 

Target T107 consisted in the interaction between the hemopexin binding protein 

and hemopexin. This case was highly challenging for all the groups, as there was 

not a single acceptable model among all participants. The main reason for the 
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difficulty of this target lies on the large conformational changes of the hemopexin 

binding protein upon hemopexin binding, especially involving a large loop 

(residues 707–730) located within the complex interface (unbound-to-bound Cα-

RMSD 16.2 Å). Another potential reason for the target difficulty could be the 

large size of the hemopexin binding protein, composed of around 800 amino acid 

residues, for which our methodology cannot provide enough sampling, as it was 

found during the last CAPRI edition (Pallara et al. 2013). 

4.1.2.3 CASP-CAPRI experiment 

CAPRI round 30, the first joint CASP–CAPRI experiment, consisted in 25 targets 

of homo- and hetero-oligomers from the CASP11 2014 round (targets T68–94, 

excluding T76 and T86, which were canceled). We submitted at least one 

acceptable model in 11 out of the 12 easy homodimer targets, either as predictors 

or as scorers. Also, as scorers, we successfully predicted two out of the six difficult 

homodimer targets, and one out of the two hetero-complex targets. On the 

contrary, we did not submit any successful model for any of the five tetrameric 

targets, where the inaccuracy of the homology-built subunit models and the 

smaller pair-wise interfaces severely limited the ability to derive the correct 

assembly mode. Globally, pyDock predictions were placed among the top 10 

ranked groups out of about 25 predictors, and among the top 5 ranked groups out 

of about 12 scorers participating in this experiment. 

4.2 pyDockLite: A modified pyDock scoring function 
for fast exploration of docking energy landscapes 

As shown in the previous section, the docking method pyDock, developed in our 

laboratory, has been successfully applied to a large variety of cases in the 

assessment experiment CAPRI, and it has been found as one of the most 

competitive protein-protein docking protocols worldwide. Under the rigid-body 

approximation, it has reached a good balance between computational 

requirements and performance. However, its scoring function is too heavy to 

tackle computationally demanding problems such as those that involve explicit 

modeling of flexibility. Here, we have developed the new pyDockLite scoring 

function, with the goal of making pyDock more efficient without losing too much 

performance.  
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4.2.1 pyDockLite description and performance in protein-
protein benchmark 4 

4.2.1.1 pyDockLite desolvation term 

As described in section 3.1.2, in order to compute pyDock desolvation term we 

need to calculate the BSAs based on the differences between the total ASA of the 

complex or docking model and that of the unbound components (see equations 

Eq. 3.3 and Eq. 3.5). The computation of ASA is performed with Naccess, and it 

is quite demanding. For a set of generated rigid-body docking poses, the ASA of 

the unbound components can be computed only once, but the ASA of the different 

docking models need to be computed each time, constituting the most demanding 

part of the pyDock evaluation of rigid-body docking solutions. Therefore, we 

explored whether the BSA between two atoms could be somehow estimated as a 

function of their unbound ASA values and their atomic distance.  

Figure 4.1 plots the BSA computed with Naccess, using a water sphere of radius 

1.4 Å, for a toy system composed of two carbon atoms of 1.8 Å radius. The x-axis 

represents the distance between the centers of mass of the atoms, and the y-axis 

the computed BSA. When the distance between the centers of mass is equal or 

greater than 6.4 Å, the value of BSA is zero, i.e., the total ASA of the atoms 

remain constant. That distance, 6.4 Å, is the diameter of the atom carbon, 3.6 Å, 

plus the diameter of a water molecule used in Naccess calculations, 2.8 Å. Below 

6.4 Å, BSA linearly increases when the distance decreases. Incidentally, a BSA 

value is calculated for the purposes of this test even when the atoms are clashing, 

i.e., when their distance is below 3.6 Å. Interestingly, Figure 4.1 suggests that, 

for a system formed by two atoms, we can estimate the BSA value from the 

distance between the carbon atoms. 
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Figure 4.1. BSA as a function of the distance between two carbon atoms of 1.8 Å radius. BSA 
values have been computed with the software Naccess. 

For a system formed by many atoms, e.g., a docking pose, the situation is more 

complicated. For simplicity, we could extrapolate the above-mentioned 

observation to all the atoms of a molecule and express the BSA of a given atom 

as a function of the distance with its closest atom of the other subunit. Thus, we 

could get an estimated BSA value with the following procedure:  

 Compute with Naccess the ASA for all the atoms in the unbound 

subunits: ASAi
unbound 

 In the docked conformation, for each atom i, compute BSAi according to 

Eq. 4.1, where dclosest is the distance to the nearest atom of the 

complementary subunit. 

 Check that BSA is not greater than ASA in the unbound conformation, 

i.e., it is not possible to bury more surface area than the initially 

available (Eq. 4.2). 

𝐵𝑆𝐴௜(𝑑௖௟௢௦௘௦௧) =  ൜
64 − 10 ∙ 𝑑௖௟௢௦௘௦௧, 𝑖𝑓 0 < 𝑑௖௟௢௦௘௦௧ ≤ 6.4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 4.1 
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𝑖𝑓 𝐵𝑆𝐴௜ > 𝐴𝑆𝐴௜
௨௡௕௢௨௡ௗ → 𝐵𝑆𝐴௜ = 𝐴𝑆𝐴௜

௨௡௕௢௨௡ௗ Eq. 4.2 

Two big approximations are assumed in this approach. First, the BSA of a given 

atom is only attributed to the nearest atom of the complementary subunit (see 

Figure 4.2-A). Most of the times, this may not be the case, since other atoms 

could also contribute to the BSA (even though to a lesser extent than the closest 

atom). A possible variant would be to include in Eq. 4.1 all neighbor atoms of the 

complementary subunit, but in that case, the error could be even more significant. 

Unlike other magnitudes BSA does not comply with the additive property, i.e., 

the combined BSA due to two given atoms on a third one is not always equal to 

the sum of the individually induced BSAs (see Figure 4.2-B). The second 

approximation is considering a single atom type, in this case, carbon, in our model 

to approximate Naccess computed BSA. We made this decision to simplify the 

model and reduce the computation times as much as possible. In any case, BSA 

computation is a prerequisite to estimating the desolvation energy term, which is 

always calculated using the corresponding atomic solvation parameters for each 

atom type (see equations Eq. 3.3 and Eq. 3.5). Figure 4.3 shows that despite the 

approximations assumed by the model, the correlation with pyDock ASA-based 

desolvation energy is high. 

 

Figure 4.2. Schematic view of BSA computing approximations. A) pyDockLite solvation 
implementation only considers the BSA of the closest atom. In the case of atom 1, it will only 
take into account the effect of atom 2 (dotted line) but will ignore the effect of atom 3 (dashed 
line). B) BSA is not additive: The BSAs due to atoms 2 (green) and 3 (blue) over atom 1 
superimposed in a particular region (red), which will be computed only once. 
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Figure 4.3. Correlation plot between pyDock desolvation (x-axis) and pyDockLite desolvation 
(y-axis) for the 10,000 docking poses generated by FTDock to model trypsin/CMTI-1 squash 
inhibitor (PDB 1PPE) from the unbound structures of Trypsin (PDB code 1BTP) and CMTI-
1 squash inhibitor (PDB code 1LU0). Only 1000 random docking poses are shown for the sake 
of clarity, but the Pearson correlation coefficient is computed over the 10,000 evaluated poses. 

4.2.1.2 pyDockLite electrostatic term 

We adopted a basic truncation technique to reduce the computational cost 

associated with the calculation of electrostatics and van der Waals energies (Eq. 

3.2 and Eq. 3.6), by defining a distance cutoff beyond which the energy value is 

set to 0. Figure 4.4 shows the correlation between the standard and the truncated 

electrostatic energies for different cutoffs. We obtained Pearson correlation 

coefficients equal to 0.86, 0.99 and 1.00 for cutoff distances of 10, 30 and 50 Å, 

respectively. From these results, a cutoff of 30 Å seems to define a good balance 

between accuracy and speed.  
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Figure 4.4. Correlation plot between pyDock (x-axis) and pyDockLite (y-axis) electrostatics 
for cutoff distances of 10 Å (A), 30 Å (B) and 50 Å (C). Data corresponding to 10,000 docking 
poses generated by FTDock to model trypsin/CMTI-1 squash inhibitor complex (PDB code 
1PPE) from their unbound components. Only 1000 random docking poses are shown for the 
sake of clarity, but the Pearson correlation coefficient is computed over the 10,000 evaluated 
poses. 

4.2.1.3 pyDockLite van der Waals term 

We followed the same approach to define the van der Waals distance cutoff 

beyond which the energy value is set to 0. As van der Waals interactions quickly 

decay with distance, the Pearson correlation coefficient between the standard and 

the truncated energies is already 1.00 for a cutoff distance of 10 Å (see Figure 

4.5). However, in the first pyDockLite implementation van der Waals cutoff 

distance was set to 30 Å, the same value as the electrostatic cutoff. There was a 

reason for this counter-intuitive decision. It was quicker to calculate the atoms 

for which the electrostatic and van der Waals interactions were to be computed 

only once, for a single distance, than to do the calculation of the atoms twice, for 

two different distances, even though we would be computing “unnecessary” van 

der Waals interactions between atoms more than 10 Å apart. In a second 

pyDockLite implementation we modified the way by which atoms were selected, 

allowing to define the cutoffs independently without performance losses. All 

pyDockLite results presented in this thesis were obtained before the second 

version of pyDockLite was implemented, i.e., with a common cutoff distance of 

30 Å for both, electrostatics and van der Waals terms.  
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Figure 4.5. Correlation plot between pyDock (x-axis) and pyDockLite (y-axis) van der Waals 
for cutoff distances of 10 Å (A), 30 Å (B) and 50 Å (C). Data corresponding to 10,000 docking 
poses generated by FTDock to model Trypsin/CMTI-1 squash inhibitor complex (PDB code 
1PPE). Only 1000 random docking poses are shown for the sake of clarity, but the Pearson 
correlation coefficient is computed over the 10,000 evaluated poses. 

4.2.2 pyDock vs. pyDockLite performance 

After defining the individual terms of the new pyDockLite scoring function, as 

above described, we compared its performance with that of pyDock. Figure 4.6 

shows the correlation between pyDockLite and pyDock values for all cases of the 

protein-protein docking benchmark 4. We see that correlation between both 

functions is high, with a Pearson correlation coefficient of 0.92.  

We also evaluated the docking success rates of pyDockLite scoring function over 

the 176 cases of protein-protein docking benchmark 4. As Figure 4.7 depicts, 

pyDockLite and pyDock performances were very similar. Top 10 success rates 

were 17% for pyDockLite and 18% for pyDock, while top 1 and top 100 were 3% 

and 31% for pyDockLite and 5% and 36% for pyDock, respectively. 
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Figure 4.6. Correlation plot between pyDock (x-axis) and pyDockLite (y-axis) scoring values 
for the docking poses generated by FTDock for the 176 cases of protein-protein docking 
benchmark 4. Only 1000 random docking poses are shown for the sake of clarity, but the 
Pearson correlation coefficient is computed over the 1,760,000 evaluated poses. 

 

 

Figure 4.7. Docking success rates for pyDock (dashed-black) and pyDockLite (solid-red) over 
the 176 cases of protein-protein docking benchmark 4 for the top N docking models selected 
by the respective scoring function. 

We compared pyDock and pyDockLite computational speed for several cases of 

different sizes. Table 4.3 shows the computation times, in seconds, required to 

compute 100 docking poses by applying pyDock in standard conditions, as well 

as pyDockLite with three different distance cutoffs. Two complexes of different 

sizes are included in the analysis. Complex with PDB ID 1PPE may be considered 

a small complex, with receptor and ligand docking subunits of 221 and 29 residues, 
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respectively. Complex with PDB ID 2VIS is bigger, with receptor and ligand 

docking subunits of 960 and 431, respectively. Regardless of the size of the 

complexes, even the slower version of pyDockLite was up to 10 times faster than 

pyDock. Therefore, pyDockLite may be considered a good proxy to pyDock when 

a fast scoring function is required.  

Case Sizea pyDock 
pyDockLite  

(10 Å) 
pyDockLite  

(20 Å) 
pyDockLite  

(30 Å) 

1PPE 221/29 58 s 2 s 4 s 6 s 
2VIS 960/431 604 s 27 s 36 s 57 s 

 

Table 4.3. Computation time, in seconds, required to score 100 docking poses by applying 
pyDock in standard conditions, and pyDockLite with distance cutoffs of 10, 20 or 30 Å. a 
Number of residues of the docking receptor/ligand subunits. 

4.2.3 pyDockLite integración in LightDock for fast 
exploration of docking landscapes based on GSO 
algorithm 

pyDockLite scoring function was used for the exploration of docking energy 

landscapes in LightDock (Jiménez-García et al. 2018b), a multi-scale protein-

protein docking framework that integrates Glowworm Swarm Optimization 

(GSO) (Krishnanand and Ghose 2009) and ANM (Atilgan et al. 2001; Doruker, 

Atilgan, and Bahar 2000) representation of proteins to efficiently sample the 

rotational and translational space, including protein flexibility. Unlike most 

protein-protein docking algorithms that separate between the sampling and the 

scoring phase, LightDock integrates scoring and sampling while exploring the 

energetic landscape. In a standard LightDock run the energy function is evaluated 

millions of times. Therefore, a fast scoring function like pyDockLite was an 

excellent candidate to be included among the functions implemented within 

LightDock. Currently, LightDock implements nine different scoring functions. It 

even allows to combine them as a linear combination of terms with user-defined 

weights. 

The predictive capabilities of LightDock were assessed on the 230 complexes of 

protein-protein docking benchmark 5. Two different scoring functions were used 

during the sampling phase: DFIRE (Zhou and Zhou 2002) (named LightDock-

DFIRE) and pyDockLite (named LightDock-pyDockLite). Additionally, all the 

models generated with LightDock-DFIRE and LightDock-pyDockLite were 

merged and rescored in the end with pyDock scoring function. We called these 

scoring variants LightDock-DFIRE/pyDock and LightDock-pyDockLite/pyDock, 
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respectively. As shown in Figure 4.8-A, LightDock-pyDockLite top 10 success rate 

was better than that achieved by LightDock-DFIRE, and only slightly worse than 

the combination of FTDock and pyDock (FTDock/pyDock). pyDock rescoring 

improved the performance of both methods. The improvement was greater for 

LightDock-DFIRE, indicating that the differences between LightDock-

pyDockLite and LightDock-DFIRE results depended on the scoring of the 

resulting models, given that the sampling with DFIRE provided good models that 

were only identified after rescoring them with pyDock. By combining the models 

generated by LightDock-pyDockLite and LightDock-DFIRE and rescoring them 

with pyDock, we achieved the best overall performance, with success rates of 19% 

and 44% for the top 10 and top 100, respectively.  

We further investigate if LightDock performance depended on the flexibility of 

the interacting proteins. We classified the 230 cases according to the RMSD of 

the interface Cα atoms (Cα-IntRMSD) between the unbound and bound 

conformations, as defined by protein-protein docking benchmark 5, in five 

different categories: rigid (Cα-IntRMSD < 0.5 Å), low-flexible (0.5 Å < Cα-

IntRMSD < 1.0 Å), medium-flexible (1.0 Å < I- Cα-IntRMSD < 2.0 Å), flexible 

(2.0 Å < Cα-IntRMSD < 3.0 Å) and highly-flexible (Cα-IntRMSD > 3.0 Å). As 

could be expected, FTDock/pyDock performance is higher for rigid cases, while 

LightDock-pyDockLite performs better in the low-flexible cases (see Figure 4.8-

B). These results suggest that even though the ANM modeling is probably 

improving the results for flexible cases, it is also decreasing the performance for 

rigid cases, introducing flexibility when it is not required. LightDock-DFIRE 

achieved worse performance than LightDock-pyDockLite for the low-flexible 

cases, suggesting that, due to its coarse-grained nature, DFIRE scoring cannot 

take advantage of ANM modeling this type of cases. 
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Figure 4.8. Predictive success rates for LightDock on 230 cases of the protein-protein docking 
benchmark 5. (A) Success rates for the top 10 docking models for: LightDock-pyDockLite 
(blue), LightDock-DFIRE (orange), LightDock-pyDockLite/pyDock (grey), LightDock-
DFIRE/pyDock (yellow), combination of LightDock-pyDockLite/pyDock and LightDock-
DFIRE/pyDock (purple). For comparison, the performance of the standard protein-protein 
docking protocols FTDock/pyDock (green) and ZDock 3.0.2 (red) are shown. (B) Top 10 
success rates according to unbound-to-bound conformational changes measured by the RMSD 
of the interface Cα atoms (Cα-IntRMSD), as defined in the protein-protein docking benchmark 
5. Complexes are classified as rigid (Cα-IntRMSD < 0.5 Å), low-flexible (0.5 Å < Cα-
IntRMSD < 1.0 Å), medium-flexible (1.0 Å < Cα-IntRMSD < 2.0 Å), flexible (2.0 Å < Cα-
IntRMSD < 3.0 Å) and highly-flexible (Cα-IntRMSD > 3.0 Å). 
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4.3 pyDockLite applied to fast minimization of 
docking poses 

4.3.1 Rigid-body minimization 

As explained in the methods section, pyDock standard docking protocol evaluates 

a set of given conformations generated in the sampling phase by FTDock. FTDock 

is a high-speed algorithm based on the discretization of the interacting molecules 

and a global scan of the translational and rotational spaces, propelled by Fast 

Fourier Transform algorithms, in search of conformations with maximum surface 

complementarity between their subunits. By discretizing the molecules and the 

rotational and translational space in its search, FTDock sampling of the energy 

landscape is rather coarse, and the resulting docking solutions, when converted 

from grid-representation to atomic coordinates (maintaining the internal relative 

atomic positions in the rigid-body approach), might not be in the optimal 

geometric position for a full-atom energy-based scoring function like pyDock. We 

reasoned it was necessary to optimize the position of each rigid-body docking pose 

in the new energy-based pyDock landscape. Therefore, we have developed here a 

methodology to search for local energy minima from a set of rigid-body sampled 

poses. We first developed pyDockLite, a new force field derived from pyDock 

scoring function in which all energetic terms, i.e., electrostatics, desolvation and 

van der Waals, have been modified to reduce its computational cost without losing 

accuracy (see section 4.2). Next, we conceived a rigid-body optimization 

algorithm, based on the work of Mirzaei, et al. (Mirzaei et al. 2012), that performs 

the minimization on the 6D manifold, space which locally resembles a Euclidean 

space, of the rigid, affine transformations of the ligand. The core of the method 

consists in using the exponential parametrization to locally map the rigid body 

transformation manifold onto a Euclidean space, where standard optimization 

algorithms can be applied (see section 3.3.1). 

To test the new methodology, we performed the following protocol: 1) run a 

protein-protein docking with pyDock over the 176 cases of protein-protein docking 

benchmark 4 structures, 2) sort the final docking models according to their 

docking energy, 3) select the first 100 ranked scored poses and optimize them to 

get the final ‘minimized’ models. We ran this protocol in optimal conditions, i.e., 

docking the bound structures of the complex subunits, and realistic conditions, 

i.e., docking the unbound structures of complex subunits. We also tested two 

different weighting factors for the contribution of the van der Waals energy to 

the total scoring. In the standard pyDock protein-protein docking protocol the 
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default weighting factor for the van der Waals energy is set 0.1 to allow some 

degree of overlapping of the interacting atoms in the rigid-body models resulting 

from unbound docking and thus reduce the noise of the scoring function. As the 

goal of minimization is to improve the geometry of the previously generated 

docking solutions, we wanted to check whether increasing the contribution of the 

van der Waals term by setting a weighting factor equal to 1.0 could be beneficial 

for the scoring of such minimized docking models. 

4.3.1.1 Minimization improves the geometry of near-native poses from 

bound docking  

We analyzed whether minimization is able to improve the structural quality of 

the docking models. One of the most common criteria to assess the quality of a 

docking model is the Cα-LigRMSD with respect to the native complex structure 

(see section 3.1.4). Figure 4.9 shows the comparison of the Cα-LigRMSD of the 

docking models before and after minimization for the set of near-native poses, i.e., 

models with a Cα-LigRMSD less than 10 Å with respect the protein complex, 

generated by FTDock for the 176 cases of protein-protein docking benchmark 4, 

starting from the bound or the unbound structures of the interacting proteins. 

The minimization algorithm, with a van der Waals weight set to 1.0, performed 

exceptionally well when applied to docking models generated from bound 

structures, bringing most of the near-native poses (Cα-LigRMSD < 10 Å before 

minimization) to minimized models close to 1 Å Cα-LigRMSD, thus efficiently 

converging to the native structure. The minimization is much less efficient when 

using a van der Waals weight of 0.1. In this case, most poses improve Cα-

LigRMSD, but they do not generally converge to the native structure. 

Performance of the algorithm was not so good when minimizing poses generated 

from unbound structures regardless of the van der Waals weight used. In these 

conditions, the algorithm reduced only slightly the Cα-LigRMSD, and for a small 

number of poses.  
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Figure 4.9. RMSD before and after rigid-body minimization of near-native docking models, 
i.e., with a Cα-LigRMSD ≤ 10 Å with respect the reference complex structure generated with 
FTDock for cases of protein-protein docking benchmark 4. Rigid-body minimizations have 
been performed as described in Methods by using pyDockLite with van der Waals (VDW) 
weight set to 0.1 or 1.0. (A) Docking models generated from bound subunit structures, 
minimized by pyDockLite with VDW weight set to 0.1; (B) Bound docking models, minimized 
by pyDockLite with VDW weight set to 1.0; (C) Docking models generated from unbound 
subunit structures, minimized with VDW weight set to 0.1; (D) Unbound docking models, 
minimized with VDW weight set to 1.0. 

4.3.1.2 Minimization improves the description of docking energy 

landscapes 

One of the objectives we pursue with the rigid-body minimization is improving 

the description of the docking energy landscape, with multiple minima ideally 

explored by the different docking models. Figure 4.10 shows the different docking 

energy landscapes before and after minimization, for the interaction between HISF 
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protein (PDB code 1THF) and amidotransferase HISH (PDB code 1K9V), 

represented by the distribution of pyDockLite values as a function of Cα-

LigRMSD with respect to the native structure (PDB code 1GPW). When starting 

from bound structures, FTDock generates several near-native solutions with Cα-

LigRMSD ranging from 2 to 10 Å (Figure 4.10-A, Figure 4.10-C). Most of these 

solutions were correctly identified by pyDockLite scoring function since they 

showed the lowest docking energies. When the scoring function used a van der 

Waals weight of 1.0, the minimization algorithm improved the description of the 

docking energy landscapes, for instance reducing the Cα-LigRMSD of seven 

docking poses to around 0.5 Å, with docking energies almost equal to those of the 

native complex (Figure 4.10-D and Table 4.4). Improvement of docking energy 

landscapes was also evident when using van der Waals weight of 0.1 (Figure 4.10-

B and Table 4.4). When starting from unbound structures, FTDock could also 

generate near-native solutions. A few of them were ranked by pyDockLite within 

the top 10 poses, regardless of whether the van der Waals weight was 0.1 or 1.0. 

Rigid-body minimization with van der Waals weight set to 0.1 did not generally 

improve Cα-LigRMSD of the near-native solutions, although, it improved the Cα-

LigRMSD of a non-near-native pose from 16 to 6 Å (see Table 4.5). Additionally, 

it kept one of the near-native poses within its top 10 ranked poses. In contrast, 

when minimization was performed with a van der Waals weight of 1.0, the 

optimization decreased the Cα-LigRMSD of most of the near-native solutions. 

Unfortunately, none of them were ranked within the top 10 poses (see Table 4.5).  

In summary, the minimization algorithm improved the docking energy of the 

poses regardless of whether the minimized structures were bound or unbound. 

However, it could only bring the docking poses to the bottom of the energy funnel 

when the docking models were generated from the bound structures, that is when 

the docking models had the backbone and side-chains in the same conformation 

as the complex (Figure 4.10-B, Figure 4.10-D). These plots reveal that flexibility 

is essential for protein binding and a correct description of the docking landscape. 

It is through conformational changes that interacting proteins can reach the 

bottom of the energy funnel that represents the bound conformation. These plots 

reflect that proteins would follow the principle of minimum frustration introduce 

by Bryngelson and Wolynes (Bryngelson et al. 1995) not only when they fold, but 

also when they interact: by developing a smooth funnel-like energy landscape 

proteins would ensure a resilient and fast binding, avoiding local minima traps. 
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Figure 4.10. Docking energy landscapes before and after minimization for the interaction 
between HISF protein (PDB code 1THF) and Amidotransferase HISH (PDB code 1K9V). The 
plot shows, for each docking model, its docking energy calculated with pyDockLite vs. its Cα-
LigRMSD with respect to the reference complex (PDB code 1GPW). The plot represents 
pyDock top 100 docking poses from (A) bound docking models before minimization, with 
pyDockLite van der Waals (VDW) weight set to 0.1, (B) bound docking models after 
minimization, pyDockLite VDW weight set to 0.1, (C) bound docking models before 
minimization, pyDockLite VDW weight set to 1.0, (D) bound docking models after 
minimization, pyDockLite VDW weight set to 1.0, (E) unbound docking models before 
minimization, pyDockLite VDW weight set to 0.1, (F) unbound docking models after 
minimization, pyDockLite VDW weight set to 0.1, (G) unbound docking models before 
minimization, pyDockLite VDW weight set to 1.0, and (H) unbound docking models after 
minimization, pyDockLite VDW weight set to 1.0. The native complex is shown for comparison 
(red cross). 
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Table 4.4. Cα-LigRMSD and rank of near-native poses for the complex with PDB code 1GPW, 
between HISF protein and Amidotransferase HISH, before and after rigid-body minimization 
of docking models generated from bound structures. We have tested the performance of the 
minimization algorithm with pyDockLite as optimization function with two different van der 
Waals weights: 0.1 and 1.0. a Rank of poses with pyDockLite VDW weight set to 0.1. b Rank 
of poses with pyDockLite VDW weight set to 1.0. c Cα-LigRMSD of minimized poses with 
pyDockLite VDW weight set to 0.1. d Cα-LigRMSD of minimized poses with pyDockLite VDW 
weight set to 1.0. 
 

 Before rigid-body minimization After rigid-body minimization 

Pose 
RMSD 

(Å) 
Rank 

0.1vdwa 
Rank 

1.0vdwb 
RMSDc 

(Å) 
Rank 

0.1vdwa 
RMSDd 

(Å) 
Rank 

1.0vdwb 

5721 1.9 7 19 2.0 82 1.4 28 
904 2.2 69 88 1.9 80 1.2 23 
2227 3.4 12 8 4.0 4 2.6 20 
3362 8.8 5 15 8.3 12 8.1 27 
8418 16.1 54 62 6.2 11 16.1 8 

 

Table 4.5. Cα-LigRMSD and rank of near-native poses for the complex with PDB code 1GPW, 
between HISF protein (PDB code 1THF) and Amidotransferase HISH (PDB code 1K9V), 
before and after rigid-body minimization of docking models generated from unbound 
structures. We have tested the performance of the minimization algorithm with pyDockLite 
as optimization function with two different VDW weights: 0.1 and 1.0. a Rank with pyDockLite 
VDW weight set to 0.1. b Rank with pyDockLite VDW weight set to 1.0. c Cα-LigRMSD of 
minimized poses with pyDockLite VDW weight set to 0.1. d Cα-LigRMSD of minimized poses 
with pyDockLite VDW weight set to 1.0. 

4.3.1.3 Minimization improves docking success rates of bound docking 

We further investigated whether the minimization protocol could improve 

identification of near-native docking solutions and therefore, the predictive success 

rates of docking. For this, we re-ranked the docking poses according to the 

 Before rigid-body minimization After rigid-body minimization 

Pose 
RMSD 

(Å) 
Rank 

0.1vdwa 
Rank 

1.0vdwb 
RMSDc 

(Å) 
Rank 

0.1vdwa 
RMSDd 

(Å) 
Rank 

1.0vdwb 

824 2.2 1 2 2.8 4 0.8 7 
5671 3.8 4 3 2.1 6 0.5  4 
2139 3.9 2 4 2.7 9 0.6  6 
8922 4.1 35 16 2.5 7 0.5 3 
1000 4.1 3 1 2.6 8 0.6  5 
535 5.0 5 6 4.2 1 0.5 2 
218 5.2 6 26 4.8 2 4.2  9 
3734 6.2 7 24 3.9 3 5.2  8 
3479 9.1 8 10 2.0 5 0.5 1 
5642 19.7 54 90 16.9 16 9.7 25 
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minimized energy and computed the success rates. When docking models were 

generated from bound structures, the top 10 success rates of the minimized 

energies were 74% and 52%, using the van der Waals weight of 1.0 and 0.1, 

respectively. These performance differences depending on the van der Waals 

weight are remarkable, especially if we consider that pyDock success rates were 

60% regardless of the van der Waals weight. This is indicative of the relevance of 

van der Waals forces and surface complementarity when the interacting subunits 

are very close to the native structures. After minimization with pyDockLite van 

der Waals weight of 1.0, a total of 32 cases found a near-native solution within 

the top 10 predictions, while 3 cases lost their near-native solution within the top 

10 predictions. Contrarily, when the van der Waals weight was set to 0.1, 18 cases 

lost their near-native solution within the top 10 predictions, and only 5 found a 

new near-native solution after minimization. When docking models were 

generated from unbound structures, the top 10 success rates obtained with the 

pyDockLite optimized structures were 18% and 17%, with van der Waals weight 

set to 0.1 and 1.0, respectively. These values were similar to the success rates 

obtained with pyDock: 18% and 11%, when using van der Waals weights of 0.1 

and 1.0, respectively.  

  

Figure 4.11. Predictive success rates for top 100 docking models generated by pyDock from 
(A) bound structures, and (B) unbound structures of protein-protein docking benchmark 4, 
before minimization and scored by pyDockLite with van der Waals weight of 0.1 (dotted-
black); before minimization and scored by pyDockLite with van der Waals weight of 1.0 
(dashed-black); after minimization, with pyDockLite van der Waals weight of 0.1 (solid-green); 
and after minimization, with pyDockLite van der Waals weight of 1.0 (solid-red).  
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4.3.2 Flexible minimization: Minimization with normal 
modes 

In section 4.3.1 we showed that protein flexibility is essential for protein binding 

and should be considered if we want to reach the bottom of the characteristic 

energy funnels of protein-protein interaction landscapes. Several studies indicate 

that we can use a reduced set of normal modes to reproduce important biological 

motions (Ma, 2005) correctly. Inspired by these studies, we analyzed whether we 

could apply normal modes to improve the scoring and the quality of the models 

generated with our docking protocol. We abandoned the rigid body model of the 

previous section and chose the anisotropic network model (ANM) (Atilgan et al. 

2001) to represent protein structures. Within the ANM framework, molecules are 

represented as elastic networks of beats and springs. Each residue is represented 

by its Cα atom as a beat, while springs represent interactions between beats (see 

Figure 1.2). Only interactions within a cutoff distance are considered. In our case, 

the cutoff was set to 15 Å. The system can be decomposed into a set of normal 

modes, i.e., eigenvectors, which can describe the motion and states of molecules. 

The linear combination of normal modes can be used to generate different 

molecule structures. Normal modes for receptor and ligand were pre-calculated 

with ProDy (Bakan, Meireles, and Bahar 2011). The five non-trivial, lowest 

frequency normal modes were selected to account for protein flexibility during the 

minimization stage as in Zacharias et al. (May and Zacharias 2008). Thus, a total 

of sixteen degrees of freedom, i.e., three related to the rotation matrix, three to 

the translation vector and ten to the subunits normal modes were optimized. It 

should be noted that our approach used normal modes to model backbone 

flexibility. Side chains were treated as rigid bodies attached to the corresponding 

backbone atom. We tested this new NM-based minimization by running a similar 

protocol to that executed with the rigid body minimization framework, i.e., 1) 

run a protein-protein docking with pyDock over the 176 cases of benchmark 4 

structures, 2) sort the final docking models according to their docking energy, 3) 

select the first 100 ranked scored poses and optimize them to get the final 

‘minimized’ models. This time, we only ran the protocol in realistic conditions, 

i.e., docking the unbound structures of complex subunits, and tested two van der 

Waals weight values: 0.1 and 1.0. 

4.3.2.1 Minimization effect on pose’s RMSD  

Figure 4.12 shows the Cα-LigRMSD of the docking models before and after 

minimization for the set of near-native poses of the 176 cases of benchmark 4. We 

see that including global protein flexibility through normal modes does not 
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systematically reduce the Cα-LigRMSD of the docking models. Results seem to 

be slightly better with van der Waals weight set to 1.0. However, they are still 

poor results that do not improve those obtained with the rigid body minimization 

of unbound structures (see Figure 4.9-C, Figure 4.9-D).  

 

Figure 4.12. Efficiency of normal modes (NM) based minimization of near-native docking 
models from the protein-protein docking benchmark 4, in terms of change in Cα-LigRMSD 
with respect to the corresponding reference native structure, before and after minimization. 
Docking models were generated with FTDock starting from unbound subunit structures. NM-
based minimization was performed by using pyDockLite as the function to optimize with van 
der Waals weight set to (A) 0.1, or (B) 1.0. 

4.3.2.2 Energy landscape with and without minimization 

Figure 4.13 represents the Cα-LigRMSD and energy behavior for the first 100 

docked poses of case 1GPW after minimization with normal modes. Minimization 

with normal modes improved the docking energy, but not the Cα-LigRMSD of 

the docking poses. All 4 near-native solutions generated by FTDock remained 

with Cα-LigRMSD below 10 Å after minimization regardless of the van der Waals 

weight value of the scoring function. When the weight is set to 0.1, a new near-

native solution is found with pose 8418, which Cα-LigRMSD decreases from 16 to 

8 Å after minimization. However, none of the near-native structures are ranked 

within the top 10 ranked poses. On the contrary, most of the ranks of near-native 

solutions improved with a van der Waals weight of 1.0, with 3 near-native poses 

within the top 10 solutions (see Table 4.6). None of the optimized docking poses 

end up with docking energy closed to that of the native complex. This could 

indicate that in addition to backbone flexibility, we should consider side-chain 

flexibility when modeling protein conformational changes upon binding. 
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 Before NM-based minimization After NM-based minimization 

Pose RMSD 
(Å) 

Rank 
0.1vdwa 

Rank 
1.0vdwb 

RMSDc 
(Å) 

Rank 
0.1vdwa 

RMSDd 
(Å) 

Rank 
1.0vdwb 

5721 1.9 7 19 3.3 14 1.9 5 

904 2.2 69 88 6.0 51 5.8 33 

2227 3.4 12 8 4.9 11 3.7 3 

3362 8.8 5 15 8.1 12 8.6 10 

8418 16.1 54 62 7.0 24 15.7 23 

 

Table 4.6. Cα-LigRMSD and ranks of near-native poses for the complex with PDB code 
1GPW, between HISF protein (PDB code 1THF) and Amidotransferase HISH (PDB code 
1K9V], before and after NM-based minimization of docking models generated from unbound 
structures. We have tested the performance of the minimization algorithm with pyDockLite 
as optimization function with two different van der Waals (VDW) weights: 0.1 and 1.0. a Rank 
with pyDockLite VDW weight set to 0.1. b Rank with pyDockLite VDW weight set to 1.0. c 
Cα-LigRMSD of minimized poses with pyDockLite VDW weight set to 0.1. d Cα-LigRMSD of 
minimized poses with pyDockLite VDW weight set to 1.0. 

 

Figure 4.13. Cα-LigRMSD vs. docking energy for the complex with PDB code 1GPW, between 
HISF protein (PDB code 1THF) and Amidotransferase HISH (PDB code 1K9V). The plot 
represents pyDock top 100 docking poses from (A) unbound structures after NM-based 
minimization, with pyDockLite VDW weight set to 0.1, (B) unbound structures after NM-
based minimization, with pyDockLite VDW weight set to 1.0. The native complex is shown 
for comparison (red cross). 

4.3.2.3 Flexible minimization: little effect on docking success rates 

Even though the minimization with normal modes does not improve the ligand 
Cα-LigRMSD of the complex models, Figure 4.14 shows that the success rates 
slightly improved. Top 10 success rates of the minimized scoring functions were 
19% and 20% with the van der Waals weight set to 0.1 and 1.0, respectively. 
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Figure 4.14. Predictive success rates for top 100 docking models generated by pyDock on 
unbound cases of protein-protein docking benchmark 4, after: scoring by pyDockLite with van 
der Waals weight set to 0.1 (dotted-black), scoring by pyDockLite with van der Waals weight 
set to 1.0 (dashed-black), NM-based minimization with pyDockLite van der Waals weight set 
to 0.1 (solid-green), and NM-based minimization with pyDockLite van der Waals weight set 
to 1.0 (solid-red). 

We checked if improvement of the success rates could depend on the flexibility of 

the cases. We classified the cases according to the conformational variation of its 

subunits, measured as the interface RMSD of the Cα atoms (Cα-IntRMSD) in the 

bound and unbound conformations as defined in the protein-protein docking 

benchmark 4 (Hwang et al. 2010). The resulting categories were the following: 

rigid (Cα-IntRMSD < 0.5 Å), low-flexible (0.5 Å < Cα-IntRMSD < 1.0 Å), 

medium-flexible (1.0 Å < Cα-IntRMSD < 2.0 Å), flexible (2.0 Å < Cα-IntRMSD 

< 3.0 Å) and highly-flexible (Cα-IntRMSD > 3.0 Å). Success rates slightly 

improved after minimization only for the medium-flexible and flexible groups (see 

Figure 4.15). 
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Figure 4.15. Predictive success rates for top 100 docking models generated by pyDock on 
unbound cases of protein-protein docking benchmark 4, after: scoring by pyDockLite with van 
der Waals (VDW) weight set to 0.1 (dotted-black), scoring by pyDockLite with VDW weight 
set to 1.0 (dashed-black), NM-based minimization with pyDockLite VDW weight set to 0.1 
(solid-green), and NM-based minimization with with pyDockLite VDW weight set to 1.0 
(solid-red) for cases identified according to the Cα-IntRMSD as (A) rigid, (B) low-flexible, 
(C) medium-flexible, (D) flexible, and (E) highly-flexible cases.  

4.3.3 pyDock and SCWRL: Side-chain optimization 

In section 4.3.2 we described the inclusion of normal modes into our minimization 

algorithm to model backbone flexibility and improve the performance of our 

docking protocol. In that approach, side chains were treated as rigid bodies fixed 

to the backbone atoms. In this section, we will add side-chain flexibility in our 

docking procedures. Under the rigid-body paradigm, the docking poses generated 

in the sampling phase keep the side chain conformations of the unbound subunits. 

Many groups have developed a refinement protocol to optimize the side chain 

positions within the context of the complex model. We adopted a similar strategy 

and combined FTDock, pyDock and SCWRL (Krivov, Shapovalov, and Dunbrack 

2009). Specifically, the steps we followed for a given case were: 1) generate 10,000 

docking poses with FTDock, 2) for each docking pose, optimize the side chains of 

the interface residues with SCWRL4. We defined as interface residues all residues 

with at least one non-hydrogen atom within 10 Å of any non-hydrogen atom of 

the complementary subunit, 3) evaluate the optimized docking poses with pyDock 

scoring function. It is worth noting that backbone atoms will remain fixed during 

the process. Therefore, the Cα-LigRMSD of the poses will not change, but we 
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could expect an improvement in the scoring by removing false positives and false 

negatives. We ran the protocol over a subset of cases of protein-protein docking 

benchmark 4. We filtered out all those complexes with more than two chains, 

ending up with a total of 118 cases. Figure 4.16 shows the results we obtained. 

The optimized protocol did not increase pyDock top 10 success rate, but improved 

top 100 success rate achieving a 46%, while pyDock top 100 success rate was 38%.  

 

Figure 4.16. Success rates of SCWRL-based side chain optimization of docking models 
generated for unbound cases of protein-protein docking benchmark 4 constituted by only two 
chains (solid black line). For comparison, results by pyDock are also shown (green dashed 
line). 

4.4 Ensemble-based description of docking 
landscapes 

Most protein-protein docking protocols uses scoring functions to evaluate docking 

poses and discriminate between good, i.e., near-native, and bad conformations. 

The implicit assumption is that the different energetic minima forming the 

docking energy landscape are represented by single docking poses, being rigid-

body or flexible conformations, which are scored individually. In this thesis, we 

have analyzed the concept that each energetic minima of the docking energy 

landscape can be formed by ensembles of docking orientations or conformations, 

and we have explored the consequences of scoring each minimum on the basis of 

such ensembles, i.e., not just relying on a single docking pose or conformation. To 

further develop this rationale, we present here different methodological 

approaches in which ensembles of poses are generated and scored. First, we 

describe a method that creates the ensembles by clustering the rigid-body docking 

poses generated in the sampling phase. In the second approach, we generate the 
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ensembles by applying restricted molecular dynamics to the original docking 

poses. Finally, we present the results we obtain when we combine both 

approaches.  

4.4.1 Rigid-body docking ensembles by clustering docking 
poses 

In protein-protein docking, several conditions are required to obtain near-native 

solutions. On the one hand, the structures of the docked subunits should be 

appropriate, i.e., sufficiently similar to the bound structures. On the other hand, 

the subunits must be correctly oriented in space. Rigid-body docking algorithms 

keep the structural conformation of the subunits fixed and vary their orientation 

in their search for protein complex models. Since in a realistic case, the docked 

subunits are not bound, but unbound structures, the algorithms cannot always 

identify correctly oriented poses as their best-scored solutions due to incorrect 

conformations of interface residues. Nevertheless, based on the assumption of the 

existence of funnel-like docking landscapes, it is reasonable to think that, on 

average, algorithms will score conformations around the correct orientation higher 

than conformations far from the correct orientation. Based on this idea, we 

developed a protocol that first divides the conformational space into clusters or 

ensembles of docking poses and later searches near-native solutions in those 

ensembles with better scores. A similar clustering approach applied to docking 

has been recently published (Pfeiffenberger et al. 2017). Here, we employed 

pyDock and MODELLER zDope as scoring functions and used protein-protein 

docking benchmark 4 to evaluate its applicability. More specifically, the steps we 

followed were 1) run pyDock over the 176 cases of benchmark 4 structures, 2) 

sort the final docking models according to their docking energy, 3) select the first 

500 ranked scored poses and cluster them, 4) for each cluster of docking poses, 

compute the mean and best values of pyDock and zDope and use these values to 

score the ensembles, 5) for each ensemble select a representative pose and evaluate 

the performance of the protocol (see Figure 4.17). 
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Figure 4.17. Schematic overview of the method. 1) Run FTDock to generate 10,000 docking 
poses. 2) Evaluate the docking poses with pyDock scoring function. Select the first 500 ranked 
docking poses. 3) Cluster the selected poses with gromos and a 10 Å cutoff. Rank clusters 
according to the ‘independent’ and consensus scores derived from the mean and best 
(minimum) values of pyDock energy and zDope per cluster. Select a cluster representative 
based on its pyDock energy and zDope score. 

4.4.1.1 Cluster size 

Clustering is a technique commonly applied in protein-protein docking to remove 

similar solutions and improve scoring. In this work, we have used the clustering 

algorithm gromos (Daura et al. 1999) to discretize the conformational space in 

clusters or ensembles of docking poses with Cα-LigRMSD between them below 10 

Å and then rank these ensembles according to the aggregated values of pyDock 

and MODELLER zDope applied to its members.  

The average number of clusters per case was 245±74, with a mean number of 

poses per cluster of 2.03±2.30. Interestingly, we observed that clusters with near-
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native solutions are, on average, bigger (6.21±7.13 average size) than clusters 

without near-native solutions (2.00±2.18 average size), (Welch test p-value: 

1.49E-145). However, the significant variability in size among clusters precludes 

the use of this parameter to identify the near-native clusters. 

4.4.1.2 Combining several scoring functions in consensus scores 

improves performance 

We used two different scoring functions to evaluate the docking poses in the 

cluster ensembles. PyDock (P) (T. M.-K. Cheng, Blundell, and Fernandez-Recio 

2007) is a combination of three energetic terms, while zDope (Z) (Shen and Sali 

2006) is a statistical potential developed within the MODELLER package to 

assess the quality of structural models. We computed the mean and best values 

of these scoring functions for all docking poses within a given cluster, i.e., Pmean 

and Pbest for pyDock, Zmean and Zbest for zDope, and used these values to rank the 

clusters. Combining the cluster ranks of these four independent scores, we 

developed consensus scores that we also applied to evaluate the clusters. For 

instance, the consensus score “Pmean,Pbest” was computed by summing up, for each 

cluster, its Pmean and Pbest ranks. This way, we built five different consensus 

scores: “Pbest,Zbest”, “Pmean,Pbest”, “Pmean,Zmean”, “Zmean,Zbest” and 

“Pmean,Pbest,Zmean,Zbest”. As cluster representative, we chose the model with the 

best pyDock energy “pose(Pbest)”, the best zDope “pose(Zbest)” or the model with 

the best consensus score “pose(P, Z)”. Figure 4.18 shows the top10 success rates 

obtained for the different scoring strategies. We can compare these results with 

the top 10 ‘standard’ success rates, i.e., those we obtained if we scored the docking 

poses, without the clustering framework, according to their pyDock energy (Ppose), 

zDope score (Zpose) or consensus score (Ppose,Zpose) which are 18%, 18%, and 20%, 

respectively (see Figure 4.19). While Pbest and Zbest slightly outperformed the 

standard scoring schemes Ppose and Zpose, the clustering ‘independent’ scores based 

on computing the mean cluster values Pmean and Zmean obtained worse success 

rates. However, when these mean cluster values were combined into the clustering 

consensus score “Pmean,Zmean” the performance significantly improved. The method 

applied to select the cluster representative does not seem to have as much 

influence in the results as the strategy to score the clusters. Selecting the pose 

with best zDope within each cluster appears to be the best method, but the 

differences with the other two methods are small. 
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Figure 4.18. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for several clustering scoring schemes. For each scoring scheme, the 
figure shows the strategy used to score the clusters/ensembles (x-axis), and the strategy used 
to pick the cluster/ensemble representative (y-axis).  

 

Figure 4.19. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for the best-performing clustering scoring schemes, based on independent 
scoring (green bars) or consensus scoring (red bars). For comparison, scoring of the original 
FTDock docking poses according to pyDock (P) and MODELLER zDope (Z) are shown (grey 
bars), as well as scoring of the original FTDock docking poses according to the consensus score 
of pyDock and MODELLER zDope (blue bar).  
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4.4.2 Flexible conformational ensembles by restricted 
molecular dynamics 

In the previous section, we generated docking ensembles by clustering rigid-body 

docking poses and analyzed different strategies for scoring them. Here we explore 

the use of docking ensembles generated by conformational variability. With this 

purpose, we have generated conformational ensembles with MODELLER (Sali 

and Blundell 1993), a software extensively applied for homology modeling of 

protein structures by the satisfaction of spatial restraints. Here, we used it to 

generate, from each pyDock docking pose, ensembles of 50 conformers. We ran 

MODELLER with the default parameters. Each model was first optimized with 

the variable target function method (VTFM) with conjugate gradients (CG) and 

then refined using molecular dynamics (MD) with simulated annealing (SA). We 

expected this method would improve the conformational and energetic description 

of the different minima forming the docking landscape. On the one hand, it 

explicitly models the flexibility of backbone and side-chains, departing from the 

rigid-body paradigm. On the other hand, each docking pose is going to be 

described by an ensemble of 50 models, instead of by a single structure.  

Additionally, these conformers are generated by a protocol that includes the 

optimization of an energy function as one of its steps. We have already mentioned 

that within the rigid-body approximation near-native conformations can be 

wrongly discarded because of the backbone and side-chains differences between 

the unbound and the bound state. Here, as each docking pose generates 50 

optimized models we expected both false-positive and false-negative to be 

identified. The protocol steps were the following: 1) run pyDock over the 176 

cases of benchmark 4 structures, 2) sort the final docking models according to 

their docking energy, 3) select the first 500 ranked scored poses for further 

processing, 4) run MODELLER to generate an ensemble of 50 conformers from 

each selected docking pose, 5) for each ensemble compute the mean and best 

values of pyDock and zDope and use these values to score the ensembles, 5) for 

each ensemble select a representative structure and evaluate the performance of 

the protocol (see Figure 4.20). 

We applied similar independent and consensus scores as the ones we described in 

the previous section, with the only difference that this time we used them to 

evaluate ensembles of conformers instead of clusters of docking poses. Similarly, 

as ensemble representative we chose the conformer with best pyDock energy 

“conformer(Pbest)”, best zDope “conformer(Zbest)” or the conformer with best 

consensus score “conformer(Pbest, Zbest)”. Additionally, we also used as ensemble 
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representative the docking pose from which the ensemble had been generated 

“pose”. 

 

Figure 4.20. Schematic overview of the method. 1) Run FTDock to generate 10,000 docking 
poses. 2) Evaluate the docking poses with pyDock scoring function. Select the first 500 ranked 
docking poses. 3) For each selected pose, generate an ensemble of 50 conformers with 
MODELLER. Rank ensembles according to the independent and consensus scores derived 
from the mean and best (minimum) values of pyDock energy and zDope per ensemble. Select 
an ensemble representative based on its pyDock energy and zDope score. 

As Table 4.7 shows, we did not find any significant improvement in the Cα-

LigRMSD or the zDope scores of the conformers with respect the original docking 

poses. Conversely, the pyDock energy of the conformers improved with respect to 

the original docking poses. More interestingly, both the mean and the best pyDock 

ensemble energies showed significantly greater improvement (Welch test p-value: 

1.01E-36) in ensembles from near-native solutions than in ensembles from non-

near-native solutions. For example, the mean pyDock energy decreased on average 

-2.51±3.27 in ensembles from non-near-native solutions and -4.48±3.72 in 

ensembles from near-native solutions (see Table 4.7 and Figure 4.21). This could 

indicate that the method is able to explore the energy wells around the native 

solutions, which in principle should have lower energy than the non-native energy 

minima. 
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 Alla Near-nativeb Non-near-nativec 

ΔligRMSD (Å) -0.06 ± 2.52 0.11 ± 2.38 -0.07 ± 2.52 
ΔzDope 0.40 ± 0.26 0.42 ± 0.24 0.40 ± 0.26 
ΔpyDock -2.52 ± 3.28 -4.48 ± 3.72 -2.51 ± 3.27 

 

Table 4.7. Cα-LigRMSD, zDope and pyDock average changes of the conformer structures with 
respect to the original docking poses. Average computations have been performed for a all 
conformers, b conformers generated from near-native docking poses, c conformers generated 
from non-near-native docking poses. 

 

Figure 4.21. Average differences in pyDock energy of MODELLER ensembles with respect to 
the original docking pose, for ensembles from near-native or non-near-native docking solutions. 

The results indicate that all the independent scores achieved higher top 10 success 

rates than the ‘standard’ docking (see Figure 4.22 and Figure 4.23). The 

independent scores based on pyDock (Pmean and Pbest) obtained better results than 

those based on zDope (Zmean and Zbest). Consensus scores improved the top 10 

success rates as long as they included ‘independent’ scores based on both pyDock 

and zDope, i.e., the consensus scores “Pmean,Pbest“ and “Zmean,Zbest“ achieved 

discrete results compare to “Pmean,Zmean“, “Pbest,Zbest“ or “Pmean,Zmean,Pbest,Zbest “.  
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Figure 4.22. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for several scoring schemes using ensembles obtained with restricted 
molecular dynamics: Strategy used to score the clusters/ensembles (x-axis), strategy used to 
pick the cluster/ensemble representative (y-axis). 

As in the previous section, the method chosen to select the ensemble 

representative does not alter the results much. Notably, selecting as ensemble 

representative the pose from which the ensemble has been generated seems to be 

slightly better than choosing the conformers with best pyDock energy, zDope 

score or consensus score. This could be in line with the previously expressed idea 

that the Cα-LigRMSD of the conformers does not significantly improve with 

respect to the docking pose, but the pyDock energy description does. As a result, 

scoring ensembles with Pbest or Pmean improve the success rates while the best 

representative structure for the ensembles is the rigid-body docking model before 

conformational sampling instead of the conformers. 
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Figure 4.23. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for the best-performing ensemble-based scoring schemes, based on 
independent scoring (green bars) or consensus scoring (red bars). For comparison, scoring of 
the original FTDock docking poses according to pyDock (P) and MODELLER zDope (Z) are 
shown (grey bars), as well as scoring of the original FTDock docking poses according to the 
consensus score of pyDock and MODELLER zDope (blue bar). 

4.4.3 Combining clustering and flexible conformational 
ensembles by restricted molecular dynamics 

We further investigate whether we could improve docking scoring performance by 

combining clustering and conformational ensembles.  

There is an implicit hierarchy between the ensembles we have defined in the 
previous sections. Each cluster is a set of docking poses, and each pose generates 
an ensemble of 50 conformers. Therefore, for each cluster of poses, we can create 
a cluster ensemble of conformers by merging all the conformers generated from 
its docking poses. Then we can compute the conformers mean and best values of 
pyDock and zDope and use these values to score the clusters. In summary, the 
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approach is similar to that described in section 4.4.1 but using conformers instead 
of docking poses (see Figure 4.24). 

 

Figure 4.24. Schematic overview of the method. 1) Run FTDock to generate 10,000 docking 
poses. 2) Evaluate the docking poses with pyDock scoring function. Select the first 500 ranked 
docking poses. 3) Cluster the selected poses with gromos and a 10 Å cutoff. For each selected 
pose, generate an ensemble of 50 conformers with MODELLER and generate e-clusters 
(ensemble clusters). Rank e-clusters according to the ‘independent’ and consensus scores 
derived from the mean and best (minimum) values of pyDock energy and zDope per e-cluster. 
Select an e-cluster representative based on its pyDock energy and zDope score. 

To score the clusters we used the same independent and consensus scores as the 

ones we described in the previous section, now applied to all the conformers of 

each cluster. As cluster representative we selected any of the following models:  

 conformer within the cluster with best pyDock energy “conformer(Pbest)” 

or zDope score “conformer(Zbest)”,  

 docking pose that generated the conformer within the cluster with best 

pyDock energy “pose(ensemble(Pbest))” or zDope score 

“pose(ensemble(Zbest))”, 

 docking pose that generated the ensemble of conformers with better mean 

pyDock energy “pose(ensemble(Pmean))”, or mean zDope score 

“pose(ensemble(Zmean))”,  
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 docking pose that generated the ensemble of conformers with better 

consensus score: “pose(ensemble(Pmean,Pbest))”, 

“pose(ensemble(Pmean,Zmean))”, “pose(ensemble(Pbest,Zbest))”, 

“pose(ensemble(Zmean,Zbest))”, “pose(ensemble(Pmean,Zmean,Pbest,Zbest))”.  

This strategy slightly improved the previous approaches based separately on 

clustering or conformational ensembles, achieving a top 10 success rates of 28% 

when clusters were sorted according to “Pmean,Zmean” and the representative was 

the pose that generated the ensemble with the conformer with the best zDope 

score. This is around 10 percentage points higher than the top 10 success rate 

achieved by standard pyDock. 

In Figure 4.25 we can see how the differences between the best ‘independent’ 

score “Pbest” and the best consensus score “Pmean,Zmean” were smaller than in 

previous strategies. On the contrary, the method to choose the cluster 

representative seems to have a more significant impact on the final results than 

before. In general, those scoring schemes including pyDock energetic terms 

behaved better than zDope-based metrics for scoring the ensemble clusters, while 

the latter seemed to identify the cluster representative more successfully. 

Even though the combination of clustering and conformational ensembles 

described above achieved good results, we must be aware of the important 

computational cost associated with it. For each docking pose, 50 models must be 

generated and evaluated. To reduce this cost, we devised a second protocol. After 

clustering the original top 500 docking poses, we sorted the clusters by the best 

pose zDope, which is the metric that achieved the best top 100 success rate. Then, 

we select the docking poses of the first 100 clusters for further processing. From 

each one of the selected poses, we generated 50 conformationally different models 

with MODELLER and repeated the procedure described above for this reduced 

set of conformers. 

Figure 4.26 shows the results obtained with this variant. Although the top 10 

success rates virtually did not improve, the total number of conformers to evaluate 

was reduced by around 40%. 
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Figure 4.25. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for several scoring schemes combining clustering and ensembles obtained 
with restricted molecular dynamics. For each scheme, the strategy used to score the 
clusters/ensembles (x-axis), and the strategy used to pick the cluster/ensemble representative 
(y-axis) are shown. 
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Figure 4.26. Docking success rates for the top 10 predicted models on the protein-protein 
docking benchmark 4 for several scoring schemes combining clustering and ensembles obtained 
with restricted molecular dynamics, after selecting docking poses of the first 100 clusters sorted 
by “best pose zDope”. For each scheme, the strategy used to score the clusters/ensembles (x-
axis), and the strategy used to pick the cluster/ensemble representative (y-axis) are shown.  

4.5 Analysis of docking energy at the residue level 
Using pyDock docking methodology, with the new scoring approaches developed 

here, we are able to explore the docking energy landscapes efficiently, and we can 

describe the different energy minima as ensembles of docking solutions. However, 

in some circumstances, we might want to have a more detailed description, at the 

level of residue or atoms, of the docking energy of the different states conforming 

the docking landscapes. In the following sections, we will first describe how we 

can partition pyDock docking energy at the residue level. Then we will use this 

partitioned energy to estimate changes in binding affinity upon mutation to 

alanine, i.e., as an in-silico alanine scanning mutagenesis predictor.  
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4.5.1 pyDock energy partition: description and examples 

Next, we will explain the steps we have followed to partition the three energetic 

terms of pyDock scoring function: electrostatics, desolvation and van der Waals. 

4.5.1.1 pyDock electrostatic term 

We could rearrange equation Eq. 3.2 and express Eele as a sum of the individual 

electrostatic interactions of the receptor atoms as 

𝐸௘௟௘ = ෍ 𝐸௘௟௘
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௜
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where the individual electrostatic energy for a receptor atom i is  
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Now, it is straightforward to regroup the terms and express the total electrostatic 

energy as a sum of the electrostatic energies of the residues 
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where res_rec is the number of residues in the receptor. 

In the same way, we could express the total electrostatic energy, Eele, as a sum of 

the individual electrostatic interactions of the ligand atoms 
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or a sum of the individual electrostatic energies of the ligand residues 
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4.5.1.2 pyDock van der Waals term 

We can follow the same reasoning and express pyDock total van der Waals energy 

(see Eq. 3.6) as a sum of atomic interactions 
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or a sum of residue interactions 
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Moreover, the same argument applies to the atoms and residues of the ligand. 

4.5.1.3 pyDock desolvation term 

Partitioning desolvation energy may be trickier than partitioning electrostatics or 

van der Waals terms. We have previously seen that the electrostatics and var der 

Waals potentials of a given atom depend on an intrinsic property of the atom, 

namely, the charge. We will see that the desolvation energy we have defined is 

not only a function of the atom types upon which it is calculated but also of the 

environment of these atoms. This situation allows devising two different 

approaches to partition the desolvation energy.  

4.5.1.3.1 Residue protein desolvation 

Equation Eq. 3.3 already provides the total desolvation energy as a function of 

the individual desolvation energies of the atoms of receptor and ligand.  

From equations Eq. 3.3 and Eq. 3.5 we can define the atom protein desolvation 

(atomProtDesolv) of a given atom i as 
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𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௜ = 𝐴𝐷𝑃௜ ⋅ Δ𝐴𝑆𝐴௜ = 𝐴𝐷𝑃௜ ⋅ 𝐵𝑆𝐴௜  Eq. 4.13 

From here, it is trivial to express the total desolvation energy as a sum of the 

residue protein desolvations (resProtDesolv) energies by grouping the individual 

atomProtDesolv. 

𝐸ௗ௘௦௢௟௩ = 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣ଵ + ⋯ + 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௞ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥௘௦௉௥௢௧஽௘௦௢௟௩ೝ೐೎భ

+ ⋯ + 

+ 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௟ + ⋯ + 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௔௧௢௠_௥௘௖ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ +

௥௘௦௉௥௢௧஽௘௦௢௟ ೝ೐ೞ_ೝ೐೎

 

+ 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣ଵ + ⋯ + 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௠ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥௘௦௉௥௢௧஽௘௦௢௟௩೗೔೒భ

+ ⋯ + 

+ 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௡ + ⋯ + 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௔௧௢ _௟௜௚ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥௘௦௉௥௢௧஽௘௦௢௟௩ೝ೐ೞ_೗೔೒

= 

= ෍ 𝐸ௗ௘௦௢௟௩
௜

௥௘௦_௥௘௖

௜

+ ෍ 𝐸ௗ௘௦௢௟௩
௝

௥௘௦_௟௜௚

௝

 

Eq. 4.14 

 

It is worth noting that in Eq. 4.14 the total desolvation energy is the sum of the 

partial protein desolvation energies of receptor and ligand. This is different to 

what we saw when partitioning electrostatics or van der Waals, where the total 

energy could be computed by summing up the residue energies of a single subunit, 

either the receptor or the ligand (see equations Eq. 4.6, Eq. 4.8 and Eq. 4.12). 

4.5.1.3.2 Residue binding desolvation 

We can devise a second approach for partitioning pyDock desolvation energy. As 

we mentioned before, the first approach described in the last subsection could 

reproduce pyDock desolvation energy values separately for receptor or ligand 

residues but did not include specific contributions from the partner residues. As 

we have previously mentioned, the BSA variable we defined in Eq. 3.4 is a 

function of the environment where atoms are located. We can clearly see this in 

the simple system of two atoms represented in Figure 4.1. The BSA of atoms is 

a function of the distance between them. While the accessible surface area of atom 

1 is reduced by the proximity of atom 2, atom 1 also alters the accessible surface 

area of atom 2 and therefore will contribute to BSA-based desolvation energy 

"caused" by atom 1. Under this point of view, BSA-desolvation of a given atom 

would depend not only on its own type and BSA but also on that of their neighbor 

atoms (environment). Therefore, for a given atom we should account for its own 

BSA but also for the changes in BSA that its presence has in its environment, 
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what we can call the induced BSA of the atom in its environment. With this 

assumption, we could express the atom binding desolvation of an atom i as 

𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௜ = 𝐴𝐷𝑃௜ ⋅ 𝐵𝑆𝐴௜ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௜௡ௗ௜௩௜ௗ௨௔௟

+ ෍ 𝐴𝐷𝑃௜
௝

⋅ 𝐵𝑆𝐴௜
௝

௖௟௢௦௘௦௧

௝ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௜௡ௗ௨௖௘ௗ

 Eq. 4.15 

 

If we recall Eq. 4.13, we can rewrite this equation as 

𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௜ = 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௜ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௜௡ௗ௜௩௜ௗ௨௔௟

+ ෍ 𝑎𝑡𝑜𝑚𝑃𝑟𝑜𝑡𝐷𝑒𝑠𝑜𝑙𝑣௜
௝

௖௟௢௦௘௦௧

௝ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
௜௡ௗ௨௖௘ௗ

 Eq. 4.16 

 

Therefore, we can express the atomBindDesolv of a given atom i as the sum of 

its atomProtDesolv and the atomProtDesolv energies of the atoms of the 

complementary subunit that has atom i as closest atom.  

Then, the total desolvation energy could be expressed as the sum over all the 

atomBindDesolv energies of the receptor or ligand atoms, because either set of 

values for receptor or ligand atoms already includes the contribution to 

desolvation from the atoms of the complementary subunit. 

𝐸ௗ௘௦௢௟௩ = ෍ 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௜

௔௧௢௠_௥௘௖

௜

= ෍ 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௝

௔௧௢௠_௟௜௚

௝

 Eq. 4.17 

 

We could also rearrange the terms, as we have done previously, to express the 

total desolvation energy as the sum of the resBindDesolv energies of the residues 

of receptor or ligand 

𝐸ௗ௘௦௢௟௩ = 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣ଵ + ⋯ + 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௞ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥௘௦஻௜௡ௗ஽௘௦௢௟௩ೝ೐೎భ

+ ⋯ + 

+ 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௟ + ⋯ + 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௔௧௢௠_௥௘௖ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ =

௥௘௦஻௜௡ௗ஽௘௦௢ ೝ೐ೞ_ೝ೐೎

 

= ෍ 𝑟𝑒𝑠𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௜

௥௘௦_௥௘௖

௜

 

Eq. 4.18 
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𝐸ௗ௘௦௢௟௩ = 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣ଵ + ⋯ + 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௠ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥௘௦஻௜௡ௗ஽௘௦௢௟௩೗೔೒భ

+ ⋯ + 

+ 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௡ + ⋯ + 𝑎𝑡𝑜𝑚𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௔௧௢௠_௟௜௚ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ =

௥௘௦஻௜௡ௗ஽௘௦௢௟௩ೝ೐ೞ_೗೔೒

 

= ෍ 𝑟𝑒𝑠𝐵𝑖𝑛𝑑𝐷𝑒𝑠𝑜𝑙𝑣௝

௥௘௦_௟௜௚

௝

 

Eq. 4.19 

 

The definition of resBindDesolv allows us to express the total desolvation energy 

as the sum of the residue binding energies of either the receptor or the ligand 

subunits, as we did when partitioning electrostatics or van der Waals (see 

equations Eq. 1.6, Eq. 1.8 and Eq. 1.12). 

By partitioning pyDock energy, we can estimate the contribution of each residue 

to the total energy. In the following sections, we will show that this new feature 

has applications in the identification of critical residues in the formation of 

complexes, i.e., hot-spots residues, or in the prediction of the effects of mutations 

in protein binding. 

4.5.2 pyDock energy partition can identify important 
residues for binding affinity 

We have extensively applied pyDock residue energy to identify key residues in 

protein-protein interactions. As an example, Figure 4.27 shows MEK1 and BRAF 

interface characterization by pyDock residue energy and in-silico alanine 

scanning. In-silico alanine scanning is considered an accurate technique. It 

combines molecular dynamics simulations and binding energy calculations with 

the MM-GBSA method (Miller et al. 2012)(see section 3.4.1). Both methods 

require the structure of the complex, in this case, protein complex with PDB ID 

4MNE, to make their predictions. The amount of computational resources 

required by these methods varies a lot. At one end of the spectrum, pyDock 

residue energies can be computed in seconds. At the other end, in-silico alanine 

scanning may require many hours, even days, to obtain the results (see section  

3.4.1). We can note in Figure 4.27 that pyDock residue energy and in-silico 

alanine scanning have similar results and agree with experimentally determined 

crystal structures. This is remarkable since the amount of resources required to 

compute pyDock residue energy are negligible compared to those required by in-

silico alanine scanning. 
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Figure 4.27. MEK1-BRAF interface characterization. MEK1 and BRAF interface 
characterization (first and second line, respectively) using different computational techniques: 
pyDock binding energy decomposition and binding free energy change (ΔΔG) estimated by 
in-silico alanine scanning. 

4.5.3 Estimating side-chain contribution to binding affinity 

As mentioned in the introduction, alanine scanning mutagenesis is an 

experimental technique widely used to determine the energetic contribution of the 

side chain of a specific residue to the binding energy of a given protein complex. 

The method aims to determine the binding affinity differences between the wild-

type and alanine mutated complexes. As this is a time-consuming method many 

alternative, computational approaches have been developed. 

In the previous section, we saw how we could decompose the docking energy of a 

protein complex as the sum of the energies of its atoms. Once we have this atomic-

level decomposition, it is straightforward to estimate the energetic side-chain 

contributions of all residues of the complex. Namely, the side-chain contribution 

for a given residue i is 

𝐸௣௬஽௢௖௞_௦௜ௗ௘௖௛௔௜௡
௜ = ෍ 𝐸௣௬஽௢௖௞

௝

௦௜ௗ௘௖௛௔௜௡

௝

 Eq. 4.20 

 



Analysis of docking energy at the residue level 

  97 

where the summation extends to the side-chain atoms of residue i. It is important 

to remark that to mimic alanine scanning mutagenesis we do exclude Cβ carbon, 

and its bonded hydrogens, from this summation. 

Finally, we can easily relate the docking energy of the side-chain atoms with 

binding affinity changes upon mutation to alanine 

𝐸௣௬஽௢௖௞_௦௜ௗ௘௖௛௔௜௡
௜ = ෍ 𝐸௣௬஽௢௖௞

௝

௦௜ௗ௘௖௛௔௜௡

௝

= −ΔΔ𝐺(𝑟𝑒𝑠𝑖𝑑𝑢𝑒௜) Eq. 4.21 

 

4.5.4 pyDock side-chain energy can estimate binding affinity 
changes in mutations to alanine  

We wanted to test whether pyDock sidechain energy was a good proxy to estimate 
experimental changes in binding affinity upon mutation to alanine. To this end, 
we compared the in-silico predictions with experimental data contained in 
SKEMPI database (Moal and Fernández-Recio 2012b). First, we selected all the 
single mutations to alanine stored in SKEMPI. Then, we discarded mutations 
with i) undefined wild-type or mutant binding affinity values, ii) no detectable 
binding or unfolded mutants or iii) undefined experimental temperature. We also 
removed from the data set all mutations with Gly as wild-type residue since our 
approach cannot model the “missing” side-chain in a Gly to Ala mutation. We 
evaluated the possibility of removing mutations with Pro as wild-type residue. 
Even though Pro and Ala residues have both a carbon beta (Cβ), Pro residues 
have a distinctive cyclic side-chain that confers specific properties like high 
conformational rigidity compared to other amino acids. Finally, we decided to 
keep them assuming that their predictions should be considered with caution. We 
ended up with a total of 635 experimental mutations. As Figure 4.28 reflects, the 
wild-type residues were not uniformly distributed within the data set: mutations 
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from Arg, Glu or Lys were overrepresented with more than 60 items, while 
mutations from Cys and Met were underrepresented with less than 10. 

 

Figure 4.28. Number of experimental mutations in the data set grouped by wild-type residue. 

Based on the wild-type complex structures, we evaluated the different pyDock 

energetic terms for the side-chain atoms of the experimentally mutated residues. 

In order to compare our predictions with a reference in-silico method, we also 

computed the binding affinity changes upon mutation with FoldX (Guerois, 

Nielsen, and Serrano 2002). 

From the analysis of the results showed in Figure 4.29 we can conclude that, 

among the pyDock energy terms, the van der Waals component achieved the 

highest correlation with experimental data, with a Pearson correlation score of 

0.52. On the other side was the desolvation term with a modest 0.07. We obtained 

this correlation value by partitioning the desolvation term following the protein 

desolvation approach described in section 4.5.1.3.1. We also tested the 

performance of the binding desolvation method described in section 4.5.1.3.2, but 

we obtained similar results. The discrete correlation of pyDock desolvation term 

had already been reported by Pallara et al. (Pallara et al. 2013) where it was 

argued that although desolvation could play a key role in rigid-body docking, 

maybe as a means of compensating for inaccuracies introduced by electrostatic 

and van der Waals contributions, it was not so crucial for binding affinity 

predictions computed from complex structures. Based on these results, we devised 

a new descriptor consisting in the sum of the electrostatics and van der Waals 

side-chain contributions that from now on we name pyDockSCele+vdw. This new 

descriptor outperformed the prediction capabilities of the rest of scoring terms, 

showing a Pearson correlation of 0.57 between predicted and experimental values. 

For comparison, the correlation between FoldX predictions and the experimental 
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values for the same set of mutations to alanine was 0.27 (see Figure 4.29 and 

Figure 4.30). 

 

Figure 4.29. Correlation between experimental binding affinity changes upon mutation to 
alanine and the predicted values obtained by different scoring functions: pyDock electrostatics 
of side-chain atoms (ele-sc), pyDock desolvation of side-chain atoms (desolv-sc), pyDock van 
der Waals of side-chain atoms (vdw-sc), pyDock energy of side-chain atoms with van der Waals 
weight set to 0.1 (pyDockSC (0.1vdw)), pyDock energy of side-chain atoms with van der Waals 
weight set to 1.0 (pyDockSC (1.0vdw)), pyDock electrostatics plus pyDock van der Waals of 
side-chain atoms (pyDockSCele+vdw) and FoldX.  

 

Figure 4.30. Comparison between experimental and predicted ΔΔG for mutations to alanine. 
Values predicted by: A) pyDockSCele+vdw,B) FoldX. Data from SKEMPI.  

This correlation is not uniform for all residue types. As Figure 4.31 shows, Arg, 

Asp, His, Lys, and Thr showed the highest correlation between predicted and 

experimental values, with Pearson correlation coefficients of 0.63, 0.65, 0.63, 0.74 

and 0.75, respectively. This suggests that our scoring function reasonably 

described alanine mutations of charged residues. The correlation was negative for 
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Met and Pro. The low correlation found for proline is not surprising, given its 

unique properties. In the case of methionine, we should consider the small number 

of methionine mutations available in the data set and be cautious when 

interpreting the results. 

 

Figure 4.31. Pearson correlation between experimental ΔΔG for single mutations to alanine 
from SKEMPI and the predicted values obtained by combining pyDock electrostatics and van 
der Waals energies for side-chain atoms, pyDockSCele+vdw (dark-grey), for the different types 
of mutated residues. For comparison, the correlation with the predicted values obtained by 
FoldX (white) is shown. 

We have explored whether the technique used to obtain the experimental ΔΔG 

values has some effect on the resulting values, as it was previously found for 

binding affinity estimations (Kastritis and Bonvin 2010).  

Figure 4.32 shows that some experimental techniques like SFPF and RA showed 

higher correlations regardless of the in-silico technique applied, i.e., 

pyDockSCele+vdw or FoldX. Others, like ELFA, achieved discrete correlations of 

0.27 with pyDockSCele+vdw and 0.08 with FoldX. We should also note the 

particular cases of EMSA and IAGE that got acceptable correlations with 

pyDockSCele+vdw, but negative correlations with FoldX (see Table 4.8 to identify 

the experimental technique associated to each acronym).  
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Acronym Experimental technique 

ELFA 
Enzyme-linked functional 
assay 

EMSA Electrophoretic mobility shift 
FL Fluorescence 
IAFL Fluorescence inhibition assay 
IAGE Agarose gel inhibition assay 
IARA Radioligand inhibition assay 
IASP Spectroscopic inhibition assay 

ITC 
Isothermal titration 
calorimetry 

SP Other spectroscopic methods 
RA Radioactive ligand binding 
SFFL Stopped-flow fluorescence 

SFPF 
Stopped-flow 
spectrophotometry 

SPR Surface plasmon resonance 
 

Table 4.8. Experimental techniques. 

Additionally, we can also analyze the slope values of the linear regression models 

between ΔΔG and pyDockSCele+vdw for the different experimental techniques (see 

Figure 4.33). While the slope value is between 1 and 1.5 for 8 experimental 

techniques, it is between 2 and 3 for the remaining 4 techniques, which are found 

among the highest ones regarding correlation. In summary, this analysis indicates 

that not all experimental techniques may have the same degree of reliability and 

that they may not even share the same scale. These are important points that 

should be considered in the development and evaluation of in-silico predictors of 

binding affinity changes upon mutation.  
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Figure 4.32. Pearson correlation between experimental ΔΔG for single mutations to alanine 
and the values predicted by pyDockSCele+vdw (dark-grey) or FoldX (white), grouped by the 
experimental technique used. 

 

Figure 4.33. Slope and Pearson correlation coefficient of the linear regression model between 
pyDockSCele+vdw and experimental ΔΔG for the different experimental techniques applied to 
SKEMPI single mutations to alanine. The size of the experimental technique circles is 
proportional to the number of mutations analyzed. 

It is also interesting to analyze the predictive capabilities of our function case by 

case. Figure 4.34 shows the correlation plot between pyDockSCele+vdw predictions 

and experimental values of changes in binding affinity upon mutation to alanine 

for seven complexes with the largest number of entries of single mutations to 

alanine in SKEMPI database.  
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Figure 4.34. Experimental ddG vs. pyDockSCele+vdw prediction for the seven cases with the 
largest number of experimental binding affinity values for mutations to alanine in SKEMPI. 
The cases shown correspond to the complexes with the following PDB IDs: A) 1BRS, B) 
2WPT, C) 1EMW, D) 1JTG, E) 1A22, F) 1JRH and G) 1DAN. 

The correlation values vary a lot depending on the case. This could be due to 

uncertainties within our model, but it might also be explained by the intrinsic 

nature of the protein binding mechanism, highly dependent on the particular 

system (Kastritis and Bonvin 2010). These results invite us to reflect on whether 

it makes sense to evaluate ΔΔG prediction methods using global tests that 

include many cases and a substantial heterogeneity in experimental techniques, 

different binding mechanisms and types of complexes, or if on the contrary, 

predictive models should be evaluated case by case considering more carefully all 

possible experimental and/or biological conditions. 
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4.5.5 Modeling binding affinity changes in mutations to 
other residues 

4.5.5.1 Prediction of binding affinity changes upon mutation: an 

initial exploration in CAPRI  

In recent years, the protein-protein docking community is increasingly interested 

in applying existing docking methods to understand the thermodynamics of 

protein-protein interactions, and as a consequence to predict protein-protein 

binding affinity. As a good example of this, in CAPRI round 26, participants were 

asked to predict the effects of mutations on protein-protein interaction affinity. 

In this CAPRI round, the experimental data set was generated by Baker’s group 

as part of their research for developing influenza inhibitors (Whitehead et al. 

2012). Starting from two de-novo designed binders (HB36 and HB80) to influenza 

hemagglutinin (HA), single point mutant libraries were created, corresponding to 

all 20 amino acids in 53 and 45 different positions of HB36.4 and HB80.3, 

respectively. After using yeast display and fluorescence-activated cell sorting 

(FACS), the pre-sort and enriched libraries were sequenced with an Illumina GA-

II sequencer. The enrichment value, an estimation of the effect of a given mutation 

on binding, was computed for each mutation as the base 2 logarithm of the ratio 

of the amino acid frequencies in the enriched library to that of the unenriched 

library. 

Two prediction rounds were defined. In the first one, participants were provided 

with the structures of the binders HB36 (PDB ID 3R2X) and HB80 (PDB ID 

4EEF), the positions at which mutations had been made and a description of how 

the experimental data had been generated. In the second round, participants were 

also provided with experimental data of the enrichment values for half of the 

mutations, corresponding to 9 randomly selected amino acids at each mutated 

position plus the wild-type residue. With this information, participants had to 

classify each mutation as beneficial, neutral or deleterious and rank them 

according to a score ranging from 0 (most deleterious) to 1 (most beneficial). 

Experimental data was also classified as beneficial (enrichment ratio > +2), 

deleterious (enrichment ratio < -2) or neutral (-2 ≤ enrichment ratio ≤ +2). 

The quality of the predictions significantly varies along the 22 groups that 

participated in the experiment. The best-performing groups achieved a precision 

of around 0.1 with a coverage between 0.25 and 0.40. Clearly, these results show 

that there is considerable room for improvement. Nevertheless, they were three 

times better than what could be expected by random. Deleterious mutations were 
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easier to predict than beneficial ones. It was also observed that the affinity 

changes were predicted better for apolar to polar mutations than for polar to 

polar and polar to apolar mutations, which were overestimated. This could 

suggest the incorrect treatment of electrostatics at the interfaces. Most of the top 

performing groups optimized the side-chains and backbones of mutant structures, 

including the residues surrounding the mutated amino-acid.  

Interestingly, in the first predicted round, three different approaches were applied 

by the top 3 performing groups: machine learning techniques (Bates group and 

our own group), atom-level energy functions (Weng group), and coarse-grained 

models (Dehouck group). However, in the second predicted round, machine 

learning approaches achieved the best results, being those that better exploit the 

additional experimental information. Regardless of the overall strategy applied, 

packing metrics seemed to be the best performing features. For example, the 

highest performing groups included terms such as Lennard-Jones potentials, 

statistical contact and distance scores like OPUS_PSP group potential or Tobi 

coarse-grained potential. Additionally, most of the top performing groups also 

included electrostatics and desolvation terms in their scoring functions.  

 Our group was one of the top performing groups in both rounds. Our approach 

was purely based on machine learning. For both rounds, mutant structures were 

generated with FoldX (Guerois, Nielsen, and Serrano 2002). In the first round, a 

database of 930 experimental changes in binding affinity upon mutation, later 

made publicly available as SKEMPI (Moal and Fernández-Recio 2012b), was used 

to train six regression models using 85 descriptors including contact and distance 

potentials, H-bonding potentials, desolvation models, entropy and folding stability 

scores and terms of several scoring functions like FoldX (Guerois, Nielsen, and 

Serrano 2002), PyRosetta (Chaudhury, Lyskov, and Gray 2010), FireDock 

(Andrusier, Nussinov, and Wolfson 2007), PyDock (T. M.-K. Cheng, Blundell, 

and Fernandez-Recio 2007), SIPPER (Pons et al. 2011), CHARMM (Brooks et 

al. 2009) and NIP/NSC (Mitra and Pal 2010). The regression predictions and the 

descriptors were subsequently used to train five classifiers: a random forest, a 

decision table construction algorithm, a Bayesian net, logistic regression and an 

alternating decision tree. The final predictions were computed as the mean 

confidence values of these five classifiers applied to the mutations of HB36 and 

HB80. The approach in the second round was similar. This time the regression 

predictions and the descriptors were used as features to train log2 ratio models. 

Several polynomial descriptors including the residue type of the mutated amino 

acid and the physical and chemical characterization of the wild-type and mutant 

amino acids were added to the features set. Three learners based on random forest 
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(Matlab RFreg), decision trees (WEKA M5Rules) and linear regression (WEKE 

Wlinreg) were first trained over the set of mutations with enrichment values 

provided by the organizers and then applied to the mutations with unknown log2 

ratios. For each mutation, the predicted mutation type was computed as the mean 

prediction value of the three learners with two thresholds set to 0.0 and -1.5 to 

define beneficial (50) and neutral (203) mutations, respectively. The remaining 

727 mutations were classified as deleterious.  

4.5.5.2 Use of flexible conformational ensembles 

In a previous section, we have described a new approach to estimate the binding 

affinity changes upon mutation to alanine by partitioning pyDock docking energy. 

As it cannot model the mutation at the atomic level, this method cannot compute 

ΔΔG of mutations to residues other than alanine, or mutations from glycine to 

alanine. In this section, we will present our new approach to try to overcome these 

limitations. The method is based on pyDock scoring function to estimate binding 

energies of complexes and uses MODELLER to model mutant structures. For a 

given mutation, the method applies restricted molecular dynamics with 

MODELLER and the algorithm described in Feyfant et al. (Feyfant, Sali, and 

Fiser 2007) to generate an ensemble of 144 mutant models. Each of these models 

is evaluated with pyDock scoring function and MODELLER zDope. Then, the 

mean pyDock energy of the 144-mutant ensemble is computed. The ΔΔG value 

is estimated from the difference between the mean ensemble pyDock energy and 

the pyDock energy of the wild-type complex. We explored the possibility of 

computing the energy of the wild-type complex from an ensemble of conformers 

as we did with the mutant, but we found the results were better if we consider 

the native wild-type complex structure instead. We tested the protocol by 

comparing the in-silico predictions with experimental data contained in the 

SKEMPI database. We selected all the single mutations stored in SKEMPI. Then, 

we discarded mutations with i) undefined wild-type or mutant binding affinity, 

ii) no detectable binding or unfolded mutants or iii) undefined experimental 

temperature, iv) entries associated to the trypsin-BPTI complex whose binding 

affinity data have been questioned (Krowarsch et al. 1999). We evaluate 1416 

mutations in total. The global Pearson correlation coefficient between the 

predicted and the experimental ΔΔGs was 0.38 (see Figure 4.35). If we compare 

the predicted and the experimental values for the subset of mutations to alanine, 

i.e., the mutations that we could estimate with pyDockSCele+vdw, the Pearson 

correlation coefficient raises to 0.46 (see Figure 4.36). This value improves to 0.53 

if we drop the desolvation term from the scoring function leaving the electrostatics 

and van der Waals terms alone. In any case, both results are below the correlation 
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values obtained with pyDockSCele+vdw. One possibility is that MODELLER does 

not correctly model the structural changes introduced by the mutations. Then, 

we could test different modeling methods and check if their performance improves 

that of MODELLER. The other possibility is that MODELLER structures are 

accurate enough but pyDock scoring function does not evaluate them properly. 

In that case, including additional, subtler energetic terms like hydrogen bonding, 

entropic contributions, etc. could be the way to go to benefit from the structural 

improvements. 

 

Figure 4.35. Correlation plot between experimental ΔΔG (x-axis) and ΔΔpyDock (y-axis) 
for 1416 mutations from SKEMPI database. PyDock energy was computed with van der Waals 
weight set to 1.0. 

 

Figure 4.36. Correlation plot between experimental ΔΔG (x-axis) and ΔΔpyDock (y-axis) 
for the subset of single mutations to alanine in SKEMPI. PyDock energy was computed with 
van der Waals weight set to 1.0. 
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Figure 4.37 represents the Pearson correlation coefficients between the different 

scoring function predictions and experimental ΔΔG for single mutations to 

alanine, discriminating by wild-type residue type. We can check that, in general, 

pyDock based scoring functions behave better than FoldX. This is especially clear 

when the wild-type residue is isoleucine, threonine, tyrosine, and valine. The 

exception are mutations from methionine to alanine, for which pyDock based 

scoring functions obtained correlations close to 0, while FoldX predictions had a 

correlation of 0.61. However, we must keep in mind that the number of mutations 

from methionine to alanine in the dataset was small. Therefore, we should 

probably extend the analysis to more cases to confirm this observation. 

 

Figure 4.37. Pearson correlation coefficients between experimental ΔΔG and predictions from 
several scoring functions for mutations to alanine, as a function of the different types of 
mutated residues. The results of the following prediction functions are shown: pyDockSCele+vdw 
(black), modeling mutation with MODELLER and evaluation with pyDock with van der Waals 
weight set to 1.0 (dark grey), modeling mutation with MODELLER and evaluation with 
pyDock electrostatics and van der Waals terms (light grey), FoldX (white). 

Regarding the two approaches based on pyDock, it is not clear which one achieves 

the best results. For some residues like tryptophan, tyrosine or valine, it pays to 

apply pyDockSCele+vdw, for others like cysteine or glutamine the evaluation of 

MODELLER structures obtains slightly better results. For mutations from serine 

to alanine the methods that combined MODELLER and pyDock got negative 

correlations, closed to 0, while pyDockSCele+vdw achieved a Pearson correlation of 

0.37. Interestingly, the FoldX Pearson correlation for mutations from serine to 

alanine was 0.32, pointing out that FoldX may be modeling this type of mutations 

better than MODELLER. 
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4.6 Protein-RNA docking 
Our interest to improve the structural and energetic description of protein-protein 

docking landscapes have been extended to other protein interactions, such as 

those between proteins and RNA molecules. We have explored here how to extend 

the application of pyDock to model protein-RNA complexes. Given the structural 

differences between proteins and RNA, we wanted to determine if rigid body 

sampling was a valid method to study protein-RNA interactions. We also checked 

the validity of the different pyDock energetic terms to score protein-RNA docking 

models. We used the data compiled in a protein-RNA benchmark developed 

within our group (Pérez-Cano, Jiménez-García, and Fernández-Recio 2012) to 

perform this research. This comparative study of protein-protein and protein-

RNA interactions allowed us to identify shared and specific characteristics of each 

type of complexes. 

4.6.1 Rigid body sampling in bound and unbound protein-
RNA docking 

 The overall performance of a docking algorithm strongly depends on the ability 

to generate near-native solutions in the sampling stage. Therefore, we checked the 

number and quality of the near-native solutions generated by the sampling 

method, FTDock 2.0. The analysis was conducted in optimal conditions, i.e., using 

the bound structures of protein and RNA molecules, and in realistic conditions, 

i.e., with the unbound structures instead. 

In optimal conditions, out of the 106 cases of protein-RNA docking benchmark 

v1.0 (Pérez-Cano, Jiménez-García, and Fernández-Recio 2012), FTDock was able 

to generate acceptable solutions in 95% of the cases and high-accuracy solutions 

in 84% of the cases. Within the set of difficult cases without high-accuracy 

solutions, we found that 53% of them had a buried surface area (BSA) smaller 

than 800 Å2. On the contrary, this percentage reduced to 18% in the cases with 

high-accuracy solutions. We hypothesized the difficulties in finding high-accuracy 

solutions could be related to smaller interface sizes, which are generally associated 

with lower binding affinity or less specific binding. Finally, we tested that 

increasing the sampling, generating up to 100,000 docking poses by running 

FTDock with different initial random rotations for the interacting molecules, did 

not help to find high-accuracy solutions for the problematic cases.  

In realistic conditions, tested on the smaller set of ‘unbound’ cases of the 

benchmark, FTDock generated acceptable solutions in 44% of the cases, 

corresponding to 3 easy (out of 6), 6 medium (out of 13) and 2 difficult (out of 6) 
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cases. It should be highlighted that FTDock was unable to find any high-quality 

solution within the set, reflecting the fact that conformational sampling could be 

one of the most challenging aspects in blind protein-RNA docking. 

4.6.2 Scoring capabilities in bound protein-RNA docking 

 We further studied the performance of different energy terms and functions in 

the scoring of docking poses (see Figure 4.38-A). We limited our analysis to those 

bound docking cases for which FTDock had generated at least one high-accuracy 

solution. The desolvation energy term (see section 3.5.1) showed the lowest 

performance, followed by the pairwise propensities term (see section 3.5.2) with 

only around 16% cases with a predicted high-accuracy solution within the top 10 

predictions. On the contrary, the terms related to shape or structural 

complementarity, i.e., FTDock scoring function (SCscore) and van der Waals 

energy term, obtained the best results, with 54% ad 67% successful cases, 

respectively. We should also note that electrostatics scoring was significantly 

poorer than FTDock and van der Waals, with 40% cases with a predicted high-

accuracy solution within the top 10 predictions. 

In the light of these results, we devised a new protein-RNA scoring function 

combining the scoring terms with best results, i.e., FTDock SCscore, van der 

Waals and electrostatics (Eq. 3.13). The new scoring function obtained the highest 

success rate, with 72% successful cases within the top 10 predictions. Interestingly, 

the combined function outperformed pyDock’s protein-protein scoring function, 

which is a combination of electrostatics, desolvation and a small contribution of 

van der Waals energy (see Eq. 3.1). 
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Figure 4.38. Predictive success rates for different scoring functions on docking poses generated 
for bound protein-RNA (A), and protein-protein (B) benchmarks data sets. For each scoring 
function, the percentage of cases with high-accuracy docking solutions within the top N 
number of predictions is shown. The following scoring functions are shown: FTDock-SCscore 
(magenta), residue-ribonucleotide statistical propensities (red), electrostatics (yellow), 
desolvation (green), van der Waals (brown), combined scoring (cyan), pyDock (grey), random 
(black). Only those cases in which FTDock generated at least one high-accuracy solution were 
considered. 

4.6.3 Relationship between scoring performance and quality 
of sampling 

The performance of a docking scoring function strongly depends on the ability of 

the sampling algorithm to produce near-native conformations. We analyzed the 

relationship between the success rate of our combined scoring function and the 

quality of the best near-native solutions generated by FTDock. We found that 

the scoring success rate of the function strongly depended on the presence of high-

quality models within the set of 10.000 protein-RNA models produced by FTDock 

(see Figure 4.39-A). The combined scoring function identified a near-native 

solution within the top 10 predictions in around 80% of the cases with excellent-

accuracy docking poses within the docking pool. The performance remained at 

good levels when the best near-native solutions were high-accuracy poses. 

However, the success rate drastically decreased to 20% in those cases where the 

best quality solutions were classified as acceptable.  

We also evaluated the role of the number of high-accuracy solutions generated by 

FTDock. As Figure 4.39-B shows, we found that the success rates drastically 

decreased in those cases in which a single high-accuracy solution was produced. 
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Figure 4.39. Success rates of the combined scoring function for protein-RNA docking poses as 
a function of the quality of the near-native docking models contained in the docking sets. (A) 
Percentage of cases in which a near-native solution is found within the top 1, 5 or 10 
predictions considering only the cases with excellent accuracy docking solutions (magenta), 
high-accuracy or worse (blue), medium-accuracy (yellow) or acceptable (green). (B) 
Percentage of cases in which a high-accuracy docking solution is found within the top 1, 5 or 
10 predictions among the cases containing a total of one (yellow), between one and five (blue), 
or more than five (magenta) high-accuracy docking solutions. 

4.6.4 Relationship between scoring performance and protein 
flexibility 

We analyzed the relationship between the performance of the scoring functions 

and the flexibility of the RNA-binding proteins (see Figure 4.40). To this end, we 

classified the 89 benchmark cases with at least one high-accuracy docking solution 

generated by FTDock in three groups, according to the Cα-RMSD between the 

unbound and bound protein structures, i.e., the rigid set was composed of cases 

with Cα-RMSD below 2.5 Å, the medium set contained cases with Cα-RMSD 

between 2.5 and 5 Å, and the flexible set included cases with Cα-RMSD greater 

than 5 Å. Unexpectedly, the combined scoring function achieved better results in 

the medium flexible group than in the rigid and highly flexible cases. To study 

these results in more detail, we analyzed the performance of each of the energetic 

terms of the combined scoring function depending on protein flexibility. We found 

that the electrostatics term showed higher success rates for highly flexible cases 
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(see Figure 4.40-B). Interestingly, FTDock SCscore success rates were worse for 

highly flexible cases than for rigid or medium cases (see Figure 4.40-C). Van der 

Waals energy term showed similar behavior, although it was not as dependent on 

protein flexibility as FTDock SCscore. We could not perform a similar analysis 

on RNA flexibility since we only had the structure, or a good model, of the 

unbound RNA for 25 of the 106 benchmark cases.  

 

Figure 4.40. Success rates for different scoring functions on the benchmark cases as grouped 
according to the unbound-to-bound conformational flexibility of the protein. (A) Combined 
score. (B) Electrostatics. (C) FTDock SCscore. (D) Van der Waals. Results for rigid proteins 
(blue), medium flexible proteins (red), and highly flexible proteins (green) are shown. Only 
those cases in which FTDock generated at least one high-accuracy solution were considered. 

4.6.5 Scoring performance on the unbound docking set 

When tested on the 25 cases of the unbound docking set, FTDock generated 

acceptable solutions in 11 of the cases and medium-accuracy solutions in 2 cases. 

For its part, the combined scoring function could identify an acceptable solution 

within the top 10 predictions only in one case. This case (PDB 1EFW) could be 

considered as the easiest one, according to the unbound-to-bound conformational 

flexibility of the interacting molecules, since it was the only case in which both, 

the protein and RNA molecules had unbound-to-bound RMSDs below 2 Å. 
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Also, we tested NPDock (Tuszynska et al. 2015), a protein-RNA docking server, 

on the 25 cases of the unbound docking set. In line with the bad results we had 

previously obtained, NPDock was unable to identify a near-native solution within 

the final (up to 3) docking solutions provided by the server. Overall, these results 

reflect the inherent difficulties of the unbound protein-RNA docking problem. 
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5 Discussion 

5.1 Rigid-body docking: state-of-the-art and current 
limitations 

Protein-protein docking algorithms have experienced a significant development in 

the last years. One of the elements that has proved to be most useful in this 

development is CAPRI, the Critical Assessment of Predicted Interactions (Janin 

et al. 2003). CAPRI has been instrumental in setting-up a docking community 

and reinforcing the communication channels between the different docking groups 

spread around the world. It has also served as a valuable tool to gauge the state-

of-the-art in the protein-protein docking field, identifying achievements and 

challenges that still need to be solved. Finally, it has suggested new research 

directions that the docking community can follow. 

In the last years, a great variety of targets have been presented to CAPRI 

participants. Besides regular protein-protein complex targets, new challenges have 

been proposed such as interface water molecule prediction (Lensink et al. 2014), 

protein-peptide and protein-carbohydrate complex modeling and binding affinity 

estimations (Fleishman, Whitehead, Strauch, et al. 2011; Moretti et al. 2013; 

Lensink and Wodak 2013b). We should also highlight the first join CASP-CAPRI 
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prediction experiment that took place in the summer of 2014, bringing together 

the two communities in an effort to integrate different computational approaches 

for modeling macromolecular complexes (Lensink et al. 2016).   

We can derive several discussion points from the global results obtained in the 

latest CAPRI rounds in which we have participated, as part of this thesis work. 

Following, we explain, with a little more detail, the most relevant ones. 

5.1.1 Protein-protein docking performance depends on the 
complex to model  

Despite the general improvement experienced in the last years, protein-protein 

docking performance highly depends on the specific complex to resolve. The 

performance of protein-protein docking protocols is good when the size of the 

complex interface is between 1000 and 1500 Å2, there is no need to model the 

complex subunits, and there are no significant changes between the bound and 

unbound subunit structures. We could assume that in these easy cases proteins 

interact as rigid-body or by involving small induced-fit binding. Conversely, 

protein-protein docking performance drops in cases where interfaces are small, 

proteins are flexible, any of the subunits is required to be modeled, or the complex 

to reproduce is a higher order oligomer. 

It also seems that protein-protein docking performance is higher for homodimers 

than for heterocomplexes. For example, in previous CAPRI rounds, about 10 to 

15% of the heterocomplex submitted models were correct, while in the first CASP-

CAPRI round 25% of the homodimer targets were successfully predicted. It has 

been reported that homodimer interfaces are often larger and more hydrophobic 

than those of heterocomplexes. This characteristic could explain why they are 

easier to predict. 

5.1.2 Protein-protein docking and higher order oligomers 

As we mentioned above, protein-protein docking performance drops in the case of 

higher order oligomers. On the one hand, higher order oligomers like tetramers 

often involve small interfaces, which protein-protein docking algorithms find 

challenging to model. Additionally, it is very complicated to limit the propagation 

of errors that may arise from small inaccuracies in the structures of the individual 

subunits and increase uncertainty during the modeling procedure when 

successively adding the different subunits forming the complex. 

Despite the discrete performance on high order oligomers, current protein-protein 

docking methods have proved to be useful tools for discriminating the correct 
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oligomer state of protein complexes. As an example, several CASP-CAPRI targets 

like T70 and T74, identified initially as tetramers by computational tools like 

PISA (Krissinel and Henrick 2007) were later reclassified by more accurate 

experimental techniques. Interestingly, docking results pointed in the same 

direction, already suggesting that the initial oligomer state was wrongly assigned.  

5.1.3 CAPRI scorers performance is better than predictors 
performance 

It has been reported the higher performance of CAPRI scorers over predictors 

(Lensink and Wodak 2010a, 2013a). This is interesting since scorer predictions 

are based on a subset of predictors models. Therefore, scorers seem to identify 

proper solutions from the pools of models generated by predictors more often than 

predictors themselves. It has been reasoned that since scorers have to evaluate a 

much smaller number of structures (in the order of a few thousands) than 

predictors (hundreds of thousands), it is easier for them to discriminate between 

good and wrong solutions (Feliu and Oliva 2010; Lensink et al. 2016). 

Nevertheless, the differences between the scoring schemes applied by both groups 

must also play a role. In this regard, meta-analysis strategies frequently used by 

scorers such as the clustering of docking conformations, or the refinement of 

selected poses may explain part of the improvements in scorer performances. 

Therefore, if the use of sampling algorithms that generate good complex models 

is undoubtedly important, it is also necessary to rely on scoring functions and 

meta-analysis strategies capable of discriminating those good models from the 

majority of incorrect ones.    

5.1.4 The quality of subunit models affects protein-protein 
docking performance 

We have already mentioned that quite often the unbound structures of the 

complex subunits are not available, and they need to be modeled. Not 

surprisingly, the accuracy of the final complex model will depend on the quality 

of the individual subunit models.  Interestingly, groups that used several subunit 

models for a given target had, on average, better results than groups that consider 

a single subunit model per target. Some groups created the ensemble of models 

by considering up to five different templates. Others started from a single 

template that was lately modified by loop optimization and energy refinement. 

Notably, the schemes that obtained better results were those that perform the 

optimization in the context of the highest ranked models. In summary, it seems 
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that those groups that consider ensembles of conformations get better results than 

groups that work with single models. This observation has been determinant when 

exploring this strategy in our docking developments. 

5.1.5 Integrating additional information improves 
performance 

It has been observed that using additional biological information coming from 

oligomeric templates or homologous complex templates in the PDB was another 

critical element contributing to improving the prediction performance. For 

instance, in the CAPRI-CASP context, even though most of the predictor groups 

performed ab-initio protein-protein docking, two of the top three ranking groups 

(Seok and Guerois) mostly run template-based modeling strategies, pointing out 

the potential of using comparative modeling in the docking field. Moreover, the 

groups that performed ab-initio docking guided their algorithms or filtered their 

solutions based on structural information from homologous oligomers. That said, 

it has also been observed the notable improvement experienced by automatic 

servers, some of which obtained results close to the human groups, which generally 

integrate additional biological information while the servers do not. 

5.2 The challenge of considering protein flexibility 
in docking 

The final goal of protein-protein docking algorithms is to reproduce the structure 

of a complex target from the structures of its components. To achieve their goal, 

docking algorithms must find the proper structural conformation of the subunits 

and their correct orientation. In Figure 4.9 we saw how the rigid-body 

minimization algorithm that we developed could find the native structure, the 

global energy well, when the subunits were in their bound state but was unable 

to do it when the subunits were in their unbound state. We can draw conclusions 

from this and apply it to the protein-protein binding process. Namely, protein 

flexibility plays a key role in protein-protein binding and should be included in 

protein-protein docking protocols to improve their performance. To this goal, in 

this thesis work, we have followed several approaches. For instance, the 

development of pyDockLite (section 4.2), a simplified scoring function derived 

from pyDock, allowed us to introduce normal modes in our minimization protocol 

to model backbone flexibility (section 4.3.2). We also implemented pyDockLite as 

one of the scoring functions of LightDock (section 4.2.3), a docking framework 

based on the Glowworm Swarm Optimization (GSO) algorithm recently 
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developed within our group. Even though the scheme based on the normal modes 

minimization did not systematically improve the quality of the original docking 

conformations (in terms of Cα-LigRMSD from the native reference structure) we 

observed a small improvement in the general predictive success rates. Moreover, 

when we grouped the docking cases according to their flexibility, the top 10 

success rates mostly improved for the medium-flexible cases, for which the Cα-

IntRMSD between the bound and unbound conformations is in the range of 1 to 

2 Å. Top 20 success rate also improved for flexible cases for which Cα-IntRMSD 

ranged between 2 and 3 Å. These results are in line with those obtained with 

LightDock-pyDockLite on protein-protein benchmark 5 that outperformed 

pyDock for the medium-flexible cases (see Figure 4.8). That is, we got similar 

performances using different optimization algorithms and a common force field. 

On the other hand, LightDock-pyDockLite reported worse results than pyDock 

for the rigid cases. Interestingly, the normal modes minimization also had worse 

results than pyDock when the van der Waals weight of pyDockLite was set to 0.1 

but achieved performance comparable to that of pyDock when using a van der 

Waals weight of 1.0. Given that in the pyDockLite scoring function implemented 

in LightDock (LightDock-pyDockLite) the van der Waals weight is set to 0.1, it 

would be interesting to evaluate the results of LightDock-pyDockLite with the 

van der Waals weight set to 1.0. This suggests that it might be better if the force-

fields used in docking and minimization algorithms are different. 

In addition to studying backbone flexibility, we have also modeled side-chain 

flexibility through rotamer optimization with SCWRL. The combination of 

SCWRL and pyDock matched the top 10 success rate obtained with pyDock alone 

but improved the performance for higher rank thresholds. For example, the top 

100 success rate was 46% if we modeled side-chain flexibility compared to 38% if 

proteins were treated as rigid bodies. 

Overall, these results are promising and indicate that by considering the flexibility 

of proteins we may significantly increase the performance of our docking 

algorithms. However, there is still plenty of room for improvement. Coupling 

backbone and side-chain flexibility and developing new functions to be optimized 

during the minimization are two possible paths to explore.   

5.3 Exploring the docking landscape: regions vs. 
single points  

As above discussed, we know that proteins are in continuous movement, sampling 

its conformational space. However, the performance of protein-protein docking 
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algorithms is usually assessed by comparing the resulting models to a single 

structure of the target complex, which has been obtained experimentally, usually 

by x-ray crystallography. Therefore, when we measure the quality of the docking 

algorithms, we are ignoring protein flexibility. By omitting the dynamic 

component of proteins, we are not only neglecting an essential aspect of its nature, 

but we may also be contributing to decreasing the effectiveness of our docking 

protocols and limiting the amount of useful information they can provide. 

pyDock standard output consists of a list of 10,000 docking poses, their 

coordinates in the rotational and translational space, and their computed docking 

energies. Namely, pyDock provides information about points of the docking 

landscapes. The ensemble-based description that we have developed allows us to 

analyze regions of the docking landscapes instead. We have shown that by scoring 

ensembles/regions instead of docking poses/points the results of our docking 

protocols improved. It is worth considering the docking output as a distribution 

of related docking poses, instead of a list of independent conformations. The 

ensembles/clusters of rigid-body docking poses explore regions in the rotational-

translational space, while the ensembles of MODELLER conformers explore 

regions in the proteins conformational space. We have not detected significant 

differences in the performances of these two ensemble methods. In both cases, we 

observed that pyDock scoring yielded better results than zDope. For example, 

Pbest scoring obtained top 10 success rates of 20% and 22% with the clustering 

and conformational ensembles, respectively. However, the results really improved 

when using the combination of pyDock and zDope in consensus scores, with top 

10 success rates of 27% and 26% for the clustering and conformational ensembles, 

respectively. These values are several percentage points higher than those 

obtained when scoring docking poses with standard pyDock (18%), zDope (18%) 

or their consensus score (20%). Table 4.5 shows that MODELLER conformers, 

on average, have not lower Cα-LigRMSD with respect the complex structure than 

the original docking poses. However, their docking energies improve those of the 

original docking poses and, remarkably, this improvement is greater for near-

native conformers than non-near-native conformers. Interestingly, in a previous 

study, MODELLER-based conformational ensembles generated from the unbound 

subunits before docking (Pallara et al. 2016) did not find a significant correlation 

between the docking energy of the conformers in the native orientation and their 

structural similarity with the bound complexes. They even found that, in some 

cases, the conformers with best docking energy were even farther from the bound 

structure than the unbound one. They suggested that this could be due to 

MODELLER performing a limited sampling, insufficient to explore the vicinity 
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of the bound state. In those circumstances, they argue, small approaches toward 

the bound state are not related to improvements in binding energy. We ran the 

same default protocol to generate MODELLER conformers as Pallara and 

coworkers. Table 4.5 confirms that MODELLER sampling may be quite limited. 

Therefore, we believe that the results obtained here could be improved if we 

increased the conformational variability of our sampling, either with new tools or 

by modifying the minimization protocol we have used with MODELLER. In this 

regard, it is worth to recall that we achieved the highest top 10 success rates when 

we increased the conformational variability of the ensembles by merging the 

rotational-translational ensembles with the conformational ensembles. 

5.4 An ensemble-based description of docking 
energy landscapes  

As above discussed, the ensemble-based description of docking energy landscapes 

has advantages in the identification of the near-native docking regions. For 

example, the ensemble methods we presented in section 4.4 are developed to 

generate as output a sorted list of ensemble representatives. For that, the scoring 

is divided into two phases. In the first phase, the clusters/ensembles are sorted 

according to the aggregate value, i.e., mean, minimum, of a given metric like 

pyDock energy of MODELLER zDope. In the second phase, the structure 

representative of each cluster/ensemble is selected. Many times, the structure 

selected as cluster representative has not the best Cα-LigRMSD of the cluster. In 

fact, we may select a not near-native structure as representative of a cluster with 

near-native solutions. These mistakes decrease the measured success rates of our 

docking algorithms. Figure 5.1 shows the top 10 success rates that the different 

ensemble methods would obtain if we were able to assign as ensemble 

representative, the structure of the ensemble with lowest Cα-LigRMSD. According 

to these values, we may be losing 3-4 percentage points due to the incorrect 

identification of the ensembles representatives. 

Additionally, when we limit the output of our algorithms to the cluster 

representatives, we are removing information that could be useful to understand 

the binding mechanism, propose new experiments or interpret experimental 

results. We have seen that by using ensembles of conformers instead of single 

conformations we can improve the performance of our docking method due to a 

better representation of the docking energy landscapes. Similarly, we think that 

this ensemble-centric view could be exploited for other applications like interface 

prediction, identification of hot-spots residues, etc. 
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Figure 5.1. Optimal docking success rates for the top 10 predicted models on the protein-
protein docking benchmark 4 for several scoring schemes using: A) clustering ensembles, B) 
conformational ensembles obtained with restricted molecular dynamics, C) combining 
clustering and conformational ensembles and D) combining clustering and conformational 
ensembles from docking poses of the first 100 clusters sorted by “best pose zDope”. These 
success rates are theoretical, in the best possible conditions, that is, assuming that we are able 
to identify as clusters/ensemble representative the structure (pose, conformer) of lowest Cα-
LigRMSD. 

5.5 Docking energy description and binding affinity 

5.5.1 The role of the different energetic terms in pyDock 
scoring function  

pyDock scoring function heavily undercuts the van der Waals interaction term to 

avoid penalizations of near-native models due to clashes. This decision is 

justifiable when the docking involves unbound structures. However, we have 

verified that its use with bound structures can be very beneficial. For example, 

when we performed the rigid-body minimization with bound structures in section 

4.3.1 the term that contributed the most to identify near-native solutions correctly 

was van der Waals.  

Additionally, in the minimization including normal modes (section 4.3.2), we 

observed that, in general, when we changed the van der Waals weighting factor 

from 0.1 to 1.0 the scoring function could improve the ranking of near-native 

solutions. This could open the way to the development of scoring functions in 
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which the van der Waals weight is variable, depending on whether the atoms 

might have potential clashes or not. Furthermore, there are other energetic terms, 

like hydrogen bonding, whose inclusion does not seem necessary when performing 

rigid-body docking of unbound conformations but could have a positive 

contribution in flexible docking or when the structures of the subunits are similar 

to the bound conformations.  

The development of pyDockLite has shown that pyDock performance does not 

seem to be especially sensitive to the range of action of the energetic terms. We 

have increased pyDock computation speed by decreasing the distance at which 

the effects of the energetic terms are noticeable, reducing the number of atoms 

that are included in the computations. Despite this reduction, that in the case of 

the desolvation term restricts the interaction to the closest atom, the performance 

of pyDockLite does not significantly worsen the results obtained with pyDock but 

increases the computation speed tenfold. This improvement will allow studies that 

until now were not feasible for pyDock like cross-docking, docking of higher order 

oligomers and a much more detailed exploration of the docking landscape.   

5.5.2 Binding affinity 

We have discussed above the different sampling and scoring schemes developed 

in this thesis to improve the identification of the near-native docking structures. 

Protein complex structures are defined by the interaction energies among the 

atoms of its subunits, and thus, any docking scoring function aiming to identify 

near-native solutions must include an implicit description of the interaction 

energy landscape. In this context, we have followed the trends of the docking 

community, which has shown a recent interest in exploring whether the docking 

functions can estimate, for example, the experimental binding affinity of the 

complex or changes in such binding affinity upon mutation. We have developed 

two different methods to estimate changes in binding energy upon mutation 

(ΔΔG). The first method was based on partitioning pyDock energy at its atomic 

and residual level, which could describe mutations to alanine. The second 

approach combined MODELLER and pyDock to model the structural changes 

induced by the mutation. None of them has the accuracy required to make 

quantitative predictions of ΔΔG values. However, they can be applied to obtain 

a qualitative description of residue energies and identify, for instance, hot-spots 

residues (see section 4.5.2). We must keep in mind that pyDock scoring function 

has been designed as part of a rigid-body protein-protein docking algorithm, with 

requirements that are not always in line with those of a ΔΔG predictor, i.e., 

resilience to clashes, limited use of computational resources, etc. Nevertheless, the 
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results we obtained are on a par with those of other tools specifically focused on 

free energy calculations. That said, we should also notice that both problems, i.e., 

protein-protein docking and free energy calculations, should ideally be solved by 

a common scoring function. That is, if we had a scoring function capable of 

estimating free energy reliably, it is very likely that we could also use it to 

correctly identify the near-native structures from a pool of docking poses. 

Including additional terms such as hydrogen bonding, salt bridges and entropy 

could improve the results achieved by pyDock-derived scoring functions. All these 

developments should be in parallel to improvements of the sampling algorithms 

to obtain better quality models. In this regard, we should make efforts to enhance 

current methods to model the structural changes upon mutation. The results we 

have obtained suggest that it is beneficial to represent the different minima of the 

docking energy landscape as ensembles of models instead of single models. We 

have studied how the correlation between experimental and predicted ΔΔG 

values depend on the number of models included on the ensembles.  We also 

tested two different strategies to select the ensemble models among the 144 

conformers originally generated with MODELLER (see section 4.5.5.2): i) select 

the best-ranked models according to their MODELLER zDope value or ii) select 

the models randomly. As Figure 5.2 shows, the pyDock+MODELLER method 

achieved only slightly higher correlation values if we selected the best zDope 

models instead of choosing them randomly. More interestingly, the correlation 

values reached a plateau soon, with a small number of models. This suggests that 

we could significantly decrease the computational cost of the 

pyDock+MODELLER protocol by considering ensembles of 10 conformers 

instead of the 144 that were initially computed. The correlation values of FoldX, 

by contrast, are almost constant regardless of the number of models we use. 
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Figure 5.2. Correlation between experimental and predicted ΔΔG as a function of the number 
of models used to represent the mutated complex. (Blue) Predictions by pyDock+MODELLER 
when choosing the models randomly, (green) predictions by pyDock+MODELLER choosing 
the models with best zDope, (red) predictions by FoldX choosing the models randomly. 

To improve the performance of our ΔΔG predictors, we must also increase the 

quality of the structural and affinity data we have available. Experimental data 

is essential for training and testing our models and predictors. Nowadays, 

SKEMPI is probably the largest database of experimental binding free energy 

changes upon mutation and has become an invaluable tool in the development of 

new methods. Since SKEMPI data have been collected from the literature, it 

reflects the interests of the experimentalists who obtained them. Therefore, the 

data show bias towards specific residues, types of mutations, spatial locations, 

binding sites, proteins and protein families (Moal and Fernández-Recio 2012b). 

Moal and co-workers identified these biases and proposed a cross-validation 

scheme based on simultaneously holding out interactions at the same, or 

homologous, binding sites to avoid overestimating the predictive power of the 

developed methods. One of the best ways to check for overfitting is external 

validation by which the models are tested against an independent dataset that 

has not been used for training the models and tuning their hyperparameters.  We 

performed an external validation of our method based on combining MODELLER 

and pyDock and a second well-known predictor called mCSM (Pires, Ascher, and 

Blundell 2014). mCSM is a machine-learning based method that reported a 

Pearson correlation coefficient of 0.80 with a standard error of 1.25 Kcal/mol, 

after applying 10-fold cross-validation over 2317 single-point mutations (150 

different proteins) taken from SKEMPI. We built the external validation dataset 

from the mutations reported in Gärdsvoll et al. (Gårdsvoll et al. 2006) and Kiel 

et al. (Kiel and Serrano 2014). We ended up with 140 mutations corresponding 
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to 5 different PDB structures that were neither protease-inhibitor nor antigen-

antibody complexes, two of the more overrepresented complex families in 

SKEMPI. The Pearson correlation coefficients for MODELLER+pyDock and 

mCSM on the external dataset were 0.30 and 0.32, respectively. These values 

represent a decrement from the reported correlations when the methods were 

tested with SKEMPI data, 0.38 for MODELLER+pyDock, and 0.80 for mCSM. 

The decrease is much more pronounced in the case of mCSM, suggesting possible 

overfitting and generalization issues. The above example shows that to take 

advantage of SKEMPI, it is critical to be aware of the biases contained in its data 

and adopt the validation schemes proposed by its authors, or similar ones. Only 

this way we can avoid our models to learn patterns in the data that are originating 

from noise.  

The experimental ΔΔG data we have available is, in fact, very noisy. Figure 4.32 

already pointed out that not all experimental techniques seem to be equally 

reliable. Variables like temperature, pH or salt concentrations may have an 

important influence on the experimental values obtained. As the noise in 

experimental data may contribute to decreasing the performance of the models 

we develop it would be essential to develop a program to collect ΔΔG data 

systematically. The program should define a set of standards, i.e., experimental 

methods and conditions, as well as a list of systems that accurately represent the 

diversity of protein interactions. This effort would foster improvement of the 

performance of ΔΔG predictors by increasing the quality and quantity of 

experimental data at their disposal, currently too scarce, heterogeneous and 

redundant. 

5.6 Protein-RNA docking 

5.6.1 Comparison of the different energetic terms for 
protein-RNA and protein-protein docking 

We performed a comparative analysis of the behavior of several energetic terms 

in protein-RNA and protein-protein docking. Interestingly, our results indicate an 

essential and distinctive role of shape and structural complementarity in protein-

RNA association. Concretely, our results suggest that the FTDock score and van 

der Waals energy, when considered individually, had significantly better 

predictive rates for protein-RNA bound docking than for protein-protein docking 

(see Figure 4.38). Indeed, the FTDock score capabilities for protein-RNA docking 

were previously suggested on a much more limited set of cases (Pérez-Cano et al. 
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2010). On the other hand, electrostatics had slightly better predictive rates for 

the scoring of protein-RNA docking poses, while the desolvation energy term 

showed much better success rate for protein-protein docking. We also observed 

that the set of protein-RNA pairwise propensities developed within our group 

previously (Pérez-Cano et al. 2009) had a very low predictive value even in bound 

docking conditions (see Figure 4.38). One possible explanation is that for a given 

amino acid type, the binding propensities were not significantly different among 

the four ribonucleotides types (see Figure 3.2). Therefore, while pairwise 

propensities can be used to identify the RNA binding sites on proteins correctly, 

they are too noisy to distinguish different orientations of RNA molecules that are 

bound to the correct binding site. By contrast, residue-residue pairwise 

propensities achieved a better scoring performance in protein-protein docking, 

indicating a higher specificity in the residue-residue contacts than in the residue-

ribonucleotide ones. 

5.6.2 The role of electrostatics in protein-RNA binding 
depends on protein flexibility  

We found that the role of electrostatics in protein-RNA bound docking strongly 

depends on the unbound-to-bound conformational flexibility of the RNA-binding 

proteins. As shown in Figure 4.40-B electrostatics was especially successful for the 

highly flexible cases. We hypothesized that in highly flexible cases the 

electrostatics contribution to binding affinity should be much more important 

than in rigid or medium flexible cases. This would be consistent with a situation 

in which highly flexible proteins would have a higher enthalpic contribution to 

compensate for the larger conformational entropy penalization. Electrostatics 

could provide this general enthalpic gain since it is more tolerant to 

conformational flexibility as compared to other terms like van der Waals or 

hydrogen bonding. To confirm this, we analyzed the number and type of charged 

residues at the RNA-binding sites in proteins, according to their flexibility. We 

defined the interface net charge as the difference between the number of 

positively-charged Arg/Lys and negatively-charged Asp/Glu protein residues that 

are found within 5 Å from the RNA molecule. Figure 5.3 shows the distribution 

of the interface net charge values for the different groups of proteins according to 

unbound-to-bound flexibility. As much as 81% of the highly flexible proteins have 

RNA-binding interfaces with larger positive net charge (i.e.,> +5), as compared 

to 52% of the medium flexible or rigid proteins. Interestingly, although rigid 

proteins have less positive interfaces in average, the range of the distribution is 

broader, with a few extreme cases, from the most positively charged (1C9S and 
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2GIC, both involving large protein oligomers) to the more negatively charged ones 

(1EIY, a tRNA-synthetase from Thermus thermophilus). The higher percentage 

of positively charged interfaces in the flexible proteins were not caused by a larger 

interface size since flexible proteins had in general smaller interfaces than the rigid 

ones (see section 5.6.3). All these findings are in line with the above-mentioned 

hypothesis that protein-RNA interfaces involving flexible proteins are more 

electrostatic. 

 

Figure 5.3. Distribution of interface net charge of native protein-RNA interfaces according to 
the unbound-to-bound conformational flexibility of the protein. The histogram bar values show 
the normalized population for each range of interface net charge values. A smoothed curve 
representing the values has been added for a clearer visualization. 

Figure 5.4 shows two examples of protein-RNA complexes involving rigid and 

highly flexible proteins. The case with greater flexibility has a higher proportion 

of Arg/Lys residues, which yields a more positive interface and more favorable 

electrostatics. 
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Figure 5.4. Location of positively (blue) and negatively (red) charged residues at protein-RNA 
interfaces in two examples. (A) A rigid case: PDB code 1N78 (interface net charge +2). (B) 
A highly flexible case: PDB code 1OOA (interface net charge +8). 

5.6.3 RNA-binding sites of flexible proteins are smaller and 
have less surface complementarity 

We also found that the role of structural complementarity (as defined by SCscore) 

in protein-RNA bound docking is strongly dependent on the unbound-to-bound 

conformational flexibility of the RNA-binding proteins. Indeed, the SCscore 

yielded much worse scoring for the highly flexible cases than for the rigid or 

medium flexible cases, despite using the bound coordinates of the protein and 

RNA components (see Figure 4.40-C). Perhaps highly flexible proteins, which rely 

more on long-range electrostatics interactions as above described, do not need to 

form highly complementary interfaces, which would involve a significant entropy 

penalization. Indeed, the SCscore values obtained for the native interfaces of 

protein-RNA complexes involving highly flexible proteins were less favorable in 

average (246.4 ± 66.2 a.u.) than those of the complexes involving medium flexible 

(270.4 ± 86.1 a.u.) or rigid proteins (285.6 ± 163.2 a.u.). This could indicate that 

protein-RNA interfaces involving highly flexible proteins were in average less 

packed than those of rigid or medium flexible proteins. Consistently, we found 

that none of the highly flexible proteins had a large interface (i.e. BSA > 1500 

Å2). On the contrary, 12% of the medium flexible proteins, and 28% of the rigid 

ones had such large interfaces, with a few rigid proteins showing the largest 

interface size among all cases (e.g., 1C9S and 2GIC, both involving large protein 

oligomers). Accordingly, scoring by van der Waals energy alone was also worse 

for cases involving highly flexible proteins (see Figure 4.40-D). However, the 
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difference in performance according to unbound-to-bound conformational 

flexibility was not as significant as that yielded by SCscore scoring (Figure 4.40-

C), perhaps due to the noisier character of the van der Waals scoring. 

5.6.4 Present and future challenges in protein-RNA docking 

We found that a combination of structural complementarity and electrostatic 

parameters is successful for the scoring of easy protein-RNA docking cases. 

However, given that most of the known protein-RNA complexes involve 

significant local and global conformational changes (Dominguez et al. 2011; 

Hyeon, Dima, and Thirumalai 2006; Ke and Doudna 2004), further improvement 

in the sampling and scoring methodology is much needed. One possibility is that 

scoring functions could integrate more coarse-grained parameters to deal with 

inaccuracies derived from sub-optimal conformational sampling in unbound 

protein-RNA docking. Although we have found here that the use of low-resolution 

(or residue- level) pairwise propensities are noisy, other previously reported 

medium resolution propensities could be more effective (Setny and Zacharias 

2011; Tuszynska and Bujnicki 2011) and it remains to be seen whether they could 

complement the energy terms described in this work. 

We also found that scoring (either atomic or coarse-grained) becomes extremely 

challenging for evaluating solutions that differ more than 5 Å RMSD from the 

bound structures. One of the future major challenges for protein-RNA docking 

will be modeling the flexibility of the protein or RNA molecules. The challenge is 

even greater if we consider that modeling the flexibility of RNA molecules requires 

different parameterization than that used for proteins (Fulle and Gohlke 2008) 

and involves two main difficulties: the non-ergodic behavior of RNA and the 

strong influence of ion molecules on the dynamic processes (Al-Hashimi and 

Walter 2008). 
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6 Conclusions 
1. The analysis of our participation in CAPRI shows that protein-protein 

docking is still challenging when interacting proteins are flexible or need to 
be modeled, or when the complex to reproduce is a higher order oligomer. 
For these challenges, more accurate docking and faster scoring tools are 
needed. 

2. We have developed pyDockLite, a simplified scoring function derived from 
pyDock which is up to 10 times faster at comparable performance. The new 
distance-based desolvation term therein drastically reduces the computation 
time required to calculate the desolvation contribution to pyDock docking 
energy. 

3. Based on pyDockLite, we have developed a fast rigid-body minimization 
algorithm, which is very efficient when the subunits are in their bound 
conformation. 

4. The introduction of normal modes in the minimization algorithm to model 
backbone flexibility showed an improvement in the success rates, especially 
for the medium-flexible and flexible cases. 

5. A new ensemble-based description of the docking landscapes, integrating 
clustering, conformational sampling and consensus scoring, can improve 
docking performance. The observed improvement was related to a better 
energetic description rather than to increase the structural similarity with 
the bound state. 
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6. A new method to compute pyDock docking energy per residue can be used 
to identify energetically relevant residues in the binding process (hot-spots) 
and to estimate binding affinity changes upon mutation to alanine. 

7. Regarding mutations to other residues, we have developed a new method to 
predict binding affinity changes upon mutation by combining MODELLER 
and pyDock. Results are in line with previous methods when tested on an 
external validation dataset. 

8. A new scoring function combining FTDock score and pyDock electrostatics 
and van der Waals energy terms can be used to evaluate docking models of 
protein-RNA complexes. 

9. The energetic analysis of protein-RNA complexes suggests a dependence of 
RNA recognition mechanism on the protein flexibility. Electrostatics may 
play a major role in highly flexible RNA-binding proteins, while structural 
complementarity is more important in rigid RNA-binding proteins. 
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