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We prove for any pure three-quantum-bit state the existence of local bases which allow one to build
a set of five orthogonal product states in terms of which the state can be written in a unique form. This
leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely
characterized by the five entanglement parameters. It leads to a complete classification of the three-
quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all

entanglement between the other two parties.
PACS numbers: 03.67.—a, 03.65.Bz

The Schmidt decomposition [1,2] allows one to write
any pure state of a bipartite system as a linear combination
of biorthogonal product states or, equivalently, of a non-
superfluous set of product states built from local bases.
For two quantum bits (qubits) it reads

[¥) = cosf|00) + sind|11), 0=6=au/4. (1)

Here |ii) = |i)a ® |i)p, both local bases {|i)}4 p depend
on the state |¥), the relative phase has been absorbed
into any of the local bases, and the state |00) has been
defined by carrying the larger (or equal) coefficient. A
larger value of # means more entanglement. The only
entanglement parameter, 6, plus the hidden relative phase,
plus the two parameters which define each of the two
local bases are the six parameters of any two-qubit pure
state, once normalization and global phase have been
disposed of.

Very many results in quantum information theory have
been obtained with the help of the Schmidt decomposition:
its simplicity reflects the simplicity of bipartite systems as
compared to N-partite systems. Much of its usefulness
comes from it not being superfluous: to carry one entan-
glement parameter one needs only two orthogonal product
states built from local bases states, no more, no less.

The aim of this work is to generalize the Schmidt de-
composition of (1) to three qubits. It is well known [2]
that its straightforward generalization, that is, in terms of
triorthogonal product states, is not possible (see also [3]).
Nevertheless, having a minimal canonical form in which
to cast any pure state, by performing local unitary trans-
formations, will provide a new tool for quantifying entan-
glement for three qubits, a notoriously difficult problem.
It will lead to a complete classification of exceptional states
which, as we will see, is much more complex than in the
two-qubit case. The generalization to N quantum dits
(d-state systems) is not completely straightforward and
will be given elsewhere.

Linden and Popescu [4] and Schlienz [S] showed that
for any pure three-qubit state the number of entangle-
ment parameters is five and, using repeatedly the two-qubit
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Schmidt decomposition, proved the existence for any pure
state of a reference form in terms of six orthogonal prod-
uct states built from local bases. The five entanglement
parameters are one phase (all others can be absorbed) and
four moduli of the six coefficients, so that a further con-
straint beyond the normalization exists. In other words,
exactly as (1) shows that local unitary transformations al-
low one to make two of the four components vanish (cor-
responding to |[01) and |10)) for a two-qubit pure state,
Linden and Popescu and Schlienz proved that, also for a
three-qubit system two of the, now eight, components can
be made zero. However, the set of six states is superflu-
ous in the sense that its coefficients require a constraint to
lead to a unique representative of any pure state. It is not
clear whether this is the best one can do, i.e., whether the
set is minimal. We will now prove that indeed, combin-
ing adequately the local changes of bases corresponding
to U(1) X SU(2) X SU(2) X SU(2) transformations, one
can always do with five terms, which precisely can carry
only five entanglement parameters, leading thus to a non-
superfluous unique representation.

Notice that a straightforward counting of parameters
shows that a nonsuperfluous set will have five states, i.e.,
three vanishing coefficients. There exist three inequivalent
sets of five local bases product states

{1000y, |001), |010), |100), |111)},
{1000, [001), [110), [100), [111)}, (2)
{1000), [100), [110), [101), [111)}.

Whereas the first set is symmetric under permutation of
parties, the other two are not.

The nonequivalence of the three sets follows from the
different degrees of orthogonality between the five states
within each set. One can also readily check that all three
sets can carry exactly five entanglement parameters, four
moduli, and one phase, and are thus nonsuperfluous. This
is of course no proof that any state can always be written as
a linear combination of the five states of one and the same
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set. We will now prove that it can always be done for
the last two sets, or their versions obtained by permuting
parties.

As an introduction let us first present a one-line proof
of the Schmidt decomposition of a two-qubit state, Eq. (1).
Writing any state in a basis of product states built from any
two local bases,

W) = > i), 3)
i.j

calling T the matrix of elements #;;, and recalling that
for any T there always exist two unitary matrices which
diagonalize it,

U\ TU, =D, 4)
the Schmidt decomposition follows at once. Note that U,
and U, correspond to the local basis changes necessary for

casting the original state into its Schmidt form.
For a three-qubit state the proof goes as follows: from

W)y = > rjelijk), (5)

i.j.k

one introduces the matrices T and 7; with elements
(Ti)jr = tijk - (6)

Consider now the unitary transformation on the first qubit,
T =D T, ()
J
such that

detT} = 0. ®)

Notice that (8) has always two solutions. The matrix ob-
tained from T} after diagonalization following (4), which
corresponds to unitary transformations on the last two
qubits, has at least three zeros,

(Dy)or = (D{)10 = (DY)11 = 0. 9)

This finishes the proof that any pure state of three qubits
can always be written as a linear superposition of the five
states of the last set of (2).
The generalization to three qubits of the Schmidt de-
composition, i.e., one more zero for one more qubit, thus
| reads

[¥) = 1l000) + A1€'¢[100) + A5[101) + A3|110) +

where we have chosen the second coefficient to carry the
only relevant phase, whose range, to be proven later, is also
given. Notice that we have singled out party A in obtaining
(10), but we could have chosen any of the three parties.

An immediate and important consequence of this de-
composition is that there always exists for any state |'¥)
and any (genderless) party X a state |0)x such that x{0 | ¥)
is a product state of the other two parties (unless party X is
not entangled with the other two parties). That is, party X,
knowing | W), can perform a local measurement which, for
one outcome, allows it to be sure that the other two parties
share no entanglement whatsoever. Note that when (8) dis-
plays two different solutions, two such states exist. This
property suggests some applications to quantum informa-
tion processing. It also leads to an efficient algorithm for
computing the A’s and ¢.

There is one small hitch left: as (8) has generically
two different solutions, any state can be written in the
form of (10) with two different sets of coefficients. Let
us dispose generically of this redundancy. Recall that after
diagonalization of Ty we are left with the matrices

_ 5 )\0 0 _ eit’p)t] )\2
MO—DO—(O o) M, = ao)
1D

for one solution of Eq. (8) and
o }\0 0 o €i¢)~ll ;\2
M0_<0 O>7 Ml _< ;13 ;\4>’ (12)
for the other solution. Of course, both solutions can be

related by a U(1) X SU(2) X SU(2) X SU(2) transforma-
tion:

MY 4 =0,0=¢=m, u=2 D p=1,
" (10)
| . .
~Mo = ?’wU1(M00Mo + uo1M)U>, (13)
My = " “Ui(—ug My + ugoM;)U,,
and the inverse
My = e‘i“’Uf(u(”;oMo — uo M) U3,
M, = e_i“’UlJr(uélMo + uooMl)UzT. (1
The condition detM, = detM, = 0 leads to
U = —d/\e(:i‘\? uo1 Ugy = % uoi - (15)

It is tedious, but straightforward, to solve the previous
equations. Here we need only the following results:

AoAs = Ao, Uy, = —uor (16)
which, from Eq. (15), imply
detM, = (detM;)". (17)
From here it follows that
I<op<meam<o<2rT, (18)
O<op<mem<e<2rT.

so that one can always choose the solution for which

O=9¢p=m,

19)

which explains the range of ¢ given in Eq. (10).
Let us mention here that by performing a unitary trans-
formation on the third qubit,

1 :
- (A1€'210) + Ao|1)),

0) = =
NI

(20)
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the decomposition for the second set of (2) is obtained.
In the remainder we will use the first decomposition (10),
which is physically and mathematically more convenient.

A generalization of the Schmidt decomposition is thus
given by (10); any state can be written in this minimal
form, generically in a unique way. The explicit algorithm
for constructing this canonical form follows from the set of
Egs. (5)-(8). However, particular states can be obtained
for different values of the five entanglement parameters.
It is thus useful to have five independent invariants for the
classification of states which we will obtain from (10). We
will take here the five minimal polynomial invariants of
[6].

Defining A = |[A;A4e’® — A,A3]? we find

%sIIETrp§=1—2M0(1—,LL0—M1)§1,
1
5=L=Tp:=1-2u(l — wo — p1 — p2)
—2A =1,
1 _ 2 _
5s13=TrpC—1—2,uo(1—Mo_M1 _:U~3)
—2A =1, (21)
1
1 =1, ="Tr(ps ® pppas)
=1+ wolpops — pipa — 22 — 3pu3 — 3u4)
- 2= oA =1,
0 < Is = |Hdet(t;)I* = udui = %’
where
= Tr-|W) (¥ = Tryug| V) (¥
PAB C| >< | pPcC AB| >< | (22)

pa = Trppas pe = Trapag,

and Cayley’s hyperdeterminant, Hdet(;;), can be found
in [7] and corresponds to the three-tangle of [6,8].

Although these five invariants are computationally
simple and physically meaningful, as they give local
information, it can be convenient to trade them, recalling
> m; = 1, for algebraically simpler ones:

()S]]EASl

4
1
0=J2= pop2 = 3,
1
0=Js=pous =3, (23)
1
0=Js= pops = 3,

Js = po(A + pops — pipa).
The invariants J4 and Js are symmetric under permutation
of parties, while J(J;, J3) is symmetric under exchange of
parties B and C (A and C, A and B).
We can now proceed with the complete classification
of nongeneric three-qubit states with the help of Eqgs. (10)
and (23): |

|100>> + (

/\1 /\46“0 - )\2)\3
A

V) = <A0|000> + :
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Type 1 (product states): J; = 0 for i 1,2,3,4,5.

Type 2a (biseparable states): J; = 0 except J(J2,J3)
when party A(B, C) is not entangled with the other two
parties. They carry only bipartite entanglement and depend
on one parameter.

Type 2b (generalized GHZ states): J; = 0 except Ja.
They include the standard GHZ states [9] and depend on
one parameter.

Type 3a (tri-Bell states): w; = pu4 = 0. Itimplies J4 =
0, J1Jo + J1Jz + JoJs = JJ1JoJ3z = They depend
on two parameters.

Type 3b (extended GHZ states): u; = ux = 0, for
J.k €{1,2,3}and j # k. It implies J; = J, = J5 = 0.
They depend on two parameters and correspond to the slice
states of [10].

Type 4a: pq4 = 0. It follows J4, = O and \/J1J2J3 = %
They depend on three parameters.

Type 4b: M2 = 0 (,LL3 = 0) Then, J2 = .15 =0 (J3 =
Js = 0). They depend on three parameters.

Type 4¢c: wy = 0. Then, J1(Jo + J3 + Jy) + JoJ3 =
JIihJs = J—25 and they depend on three parameters.

Notice that the type number indicates how many of the
five states of (10) characterize the states of that type. Be-
cause of the asymmetric character of the decomposition
(10), some of the states included in type 5 can be written
in terms of four states, had we singled out party B or C
[11]. Notice also that, in some sense, the J;’s are indica-
tors of entanglement: only when all of them vanish there
is no entanglement at all, J;(J/5,J3) indicate bipartite en-
tanglement, and J4 indicates GHZ entanglement.

Let us further exploit our previous results. An alterna-
tive generalization of the Schmidt decomposition could be
writing the state as a superposition of two nonorthogonal
product states which are not built from local bases,

5

5 -

| ) = alabe) + Bla'b'c’y, (24)
with @ and B real.

Beside the trivial cases of type-1 and type-2a states, this
decomposition is always possible except for a familly of
states depending on three parameters [12]. Our decompo-
sition allows one to reproduce this result and shows that
(24) is not possible when Is = 0 (corresponding to type-
3a and type-4a states). It can be proved that when Is = 0
the two solutions of (8) coincide. The same happens had
we chosen to single out any of the other parties. There-
fore, for any party X, there is only one state |0)x such that
x{0| W) is a product state of the other two parties. Since
(24) implies two such states, e.g., |a )4 and |a’ )4, it fol-
lows that type-3a and type-4a states cannot be written as
a sum of two nonorthogonal product states. When the de-
composition (24) is possible, our results give the construc-
tive method to obtain it. From (10), the second coefficient
can be split into two terms,

A2z

X (25)

1100) + A2|101) + A3|110) + )\4|111>>.
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It is easy to see that (25) corresponds to the sum of two
nonorthogonal product states as (24) with coefficients

1
a = )\—\/Jl + Js,
4

1
B = A_\/Mzm + palps + po + p3).
4

(26)

This decomposition is unique. The states that appear in
(24) are orthogonal to the ones that allow each party to
destroy the entanglement between the other two parties
with some nonvanishing probability.

A final consequence of (10) is that, by using the bipartite
Schmidt decomposition, any pure state can be written as
a superposition of a product state and a biseparable state,
ie.,

| W) = cosf|000) + sind|1)(cosw|0'0") + sinw|1'1")),
(27)

which is the minimal decomposition in terms of orthog-
onal product states. It exhibits explicitly two of the five
entanglement parameters. The other three are hidden in
the moduli of the scalar products (0|0’) and (0]0"), and
in one phase absorbed by one of the local bases. It is also
a nonsuperfluous form, though not built from local bases.

In this work we have found the minimal decomposition
of any pure three-qubit state in terms of orthogonal product
states built from local bases. It generalizes the Schmidt de-
composition and leads to a complete classification of pure
three-qubit states, which fine grains the fully inseparable
states class of the general entanglement classification of
mixed three-qubit states [13]. Our decomposition shows
that any party can, performing a clever local measurement,
kill the entanglement between the other two parties with
nonvanishing probability. A decomposition in terms of the
minimal number of orthogonal product states has also been
found.

Finally, we have explored whether a pure three-qubit
state can be written as a sum of two nonorthogonal prod-
uct states, which can be thought of as an alternative gener-

alization of the Schmidt decomposition. We have verified
that only a subfamily depending on three parameters can-
not be expressed in this form [12], corresponding to states
with Is = 0.
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