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BACKGROUND 

The results presented in this thesis were acquired in close collaboration with other 

national and international research entities. Retoderm technological platform included 

the IQAC-CSIC as well as two other companies from the dermatological field such as 

Almirall S.A and Draconis Pharma S.L. One of its main objectives was the study of skin 

absorption process with different in silico and in vitro methodologies to be used on the 

permeation prediction of new synthetized drugs. Moreover, collaboration with the 

Center of Experimental and Applied Cutaneous Physiology of Berlin was settled to 

exchange techniques and expertise on the drug skin penetration by confocal Raman 

microscopy. For such reason it is important to state that part of the presented results 

have been obtained using their infrastructure, expertise and assistance. 

After a brief look on the skin structure and function, this thesis will present different 

methods to study the skin absorption. Then, these methods will be experimentally 

applied for better understanding of their respective advantages and limitations. Added 

at the end of this thesis (Annex) the publications and patents that arise from this 

dissertation are compiled.  
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1. INTRODUCTION 

Understanding of skin absorption processes is needed not only for assessment of the 
safety aspects of chemicals, other xenobiotics, or cosmetic formulations but also to 
determine drug release of substances to the different skin strata and further to 
systemic circulation.  
 
 In the field of pharmaceutical sciences, drug delivery to the skin is gaining more and 
more interest, owing to the high acceptance by patients. In this regard, two different 
cases have to be distinguished: local delivery to selected skin layers (e.g., antimycotics) 
and systemic delivery (e.g., hormones). In the context of bioavailability assessment, 
knowledge on the absorption behavior of the active compound is essential. For ethical 
reasons, fundamental skin absorption data can normally not be obtained by 
conducting in vivo studies. Therefore, other techniques must be used to obtain the 
desired information. One option to obtain these data is the use of in vitro penetration 
and permeation models[1–3].   

1.1. Structure and Function of the Skin 

The skin is a complex organ and a living membrane. This constitutes one of the largest 
interfaces between the body and the environment[4]. The function of the skin include 
from the one hand protection against chemical, physical and microbial injury. On the 
other hand it is involved in the regulation of body temperature and water loss, defense 
and repair. The functionality of the skin depends on its highly differentiated structure, 
with the main barrier function being located in the outermost skin layer, the Stratum 
Corneum[5].  

1.1.1. Anatomical Structure of Human Skin 

The multitude of different functions of the human skin can only be achieved by a 
unique anatomical structure of the different skin layers (Figure 1). These are as 
follows: 

― epidermis consisting of 

 Stratum Corneum (outermost layer) 

 Viable epidermis 

― dermis 

― subcutis or subcutaneous fatty tissue 
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Figure 1 Schematic picture of the native sub-classified into three main compartments: 

epidermis, dermis and subcutis (hypodermis). Skin appendices like hair with sebaceous 

glands, sweat glands as well as blood vessels are embedded in the skin. Image taken from 

Mathes et al.[6] 

1.1.1.1. Epidermis 

Human epidermis comprises about 5% of full-thickness skin and is generally divided 

into two main layers: the Stratum Corneum and the viable epidermis. 

The Stratum Corneum (SC) is the outermost cornified layer consisting of cells 

(corneocytes) that have lost their nucleus and all capacity for metabolic activity. 

Corneocytes are embedded in a lipid matrix or intercellular lipid lamellae. This 

structure is also known as the the brick (corneocytes) and mortar (lipids) structure 

(Figure 2). The SC is usually 10-25µm thick (excepting the soles of the feet and palms) 

and is crucial for the barrier function of the skin. Owing the relative impermeability of 

the cornified envelope to most compounds, the major route of penetration across the 

SC has been identified as the tortuous pathway between the corneocytes, implying 

that the lipid lamellae plays a key role in the skin barrier function. The hydrophobic 

lipids present in the intercellular spaces of the SC are 45-50% ceramides, 25% long 

chain free fatty acids (mostly chain lengths C22 and C24), and 5% of other lipids 

(cholesterol sulfate, cholesterol esters, ...) [7,8]. Some ceramide families are believed 

to play a different roles in skin properties[9]. Moreover, the free fatty acids cause the 

skin barrier to have a pH of 5.5, which affects the ionization state of the topically 

applied substances. 
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The intercellular lipids are arranged in layers (lamellae)(Figure 2) with two coexisting 

lamellar phases. These lamellar phases have a repeat distance of 6 nm (referred to as 

the SPP) or 13 nm (referred to as the LPP) [10–12]. There are three possible 

arrangements of the lipids: a very dense, ordered orthorhombic organization; a less 

dense, ordered hexagonal organization; and a disordered liquid organization. In 

healthy skin, lipids are mainly packed in an orthorhombic packing, while a small 

fraction of lipids adopts hexagonal packing [13–15]. In some inflammatory diseases, a 

higher fraction of the intercellular lipids assembles in a hexagonal packing, such as in 

atopic dermatitis[16]. This less dense lipid organization is associated with a reduced 

skin barrier function [17,18]. Also surfactants and organic solvents applied on the skin 

surface disrupt the barrier function of the skin an alter the lipid composition and 

organization [19].  

  

Figure 2 Lamellar and lateral organization in human Stratum Corneum. (1) Stratum 

Corneum containing corneocytes embeded in a lipid matrix. (2) Intercellular lipids 

arranged in layers (lamellae). (3) Coexisting lamellae phases. Image obtained from 

Janssens et al.[16] 

The viable epidermis is made of several non-vascularized layers: the stratum 

germinativum (or basal layer), followed by the stratum spinosum, the stratum 

granulosum and the stratum lucidum which is only present at the sole of the food and 

the palm of the hand (Figure 1). Over a 28 days cycle, cells originated in the stratum 
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germinativum migrate to the skin surface undergoing different differentiation states. 

The cells in doing so discharge lipids into the intercellullar space (stratum granulosum) 

lose their nuclei and get flattened and cornified building up the SC brick and mortar 

structure. Furthermore, the viable epidermis contains melanocytes, which produce 

melanin for light protection and Langerhans cells responsible for the immune 

response. 

1.1.1.2. Dermis 

The dermis provides the nutritional support for the avascular epidermis (Figure 1). The 

dermis consists of a matrix of connective tissue composed of collagen, elastin and 

reticulin interspersed by skin appendages pilosebaceous units and hair follicles. The 

dermis is the locus of sensory nerves, blood vessels and lymphatics. It contains the 

inner segments of the sweat glands and pilosebaceous units. Both can be responsible 

for systemic drug absorption by acting as sinks and keeping the concentration in the 

dermis low. 

1.1.1.3. Subcutis or subcutaneous fatty tissue 

This layers acts mainly as a heat insulator, a mechanical cushion and stores high energy 

chemicals. It consists primarily of loose connective tissue and lobules of fat. It contains 

larger blood vessels and nerves than those found in the dermis. 

1.1.2. Skin Absorption pathways 

Skin absorption pathways (Figure 3) can be divided into the transport (a) across the 

intact Stratum Corneum and (b) along using skin appendages. The physicochemical 

properties of the compound, as well as the used formulation, are the main factors 

influencing the choice of pathway. 
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Figure 3 Skin absorption pathways from Filon et al.[20] 

The Transappendageal Route 

The transappendageal route consists of the glandular and the follicular pathways 

(Figure 3), with the latter one being the more important. The chemicals bypass the 

corneocytes, entering the shunts provided by the hair follicles, sweat glands, and 

sebaceous glands.  

The follicular pathway is recently gaining importance.  Anatomically, the hair follicle 

embodies an invagination of the epidermis resulting in an increased surface area 

available for absorption of drugs[21]. Moreover, these invaginations are surrounded by 

numerous blood capillaries that facilitate the systemic absorption[22]. The presence of 

antigen presenting cells in the hair follicles is of special interest with regard to 

immunological therapy. Furthermore, recent studies showed that the hair follicle can 

be a long-term drug reservoir for up to 10 days[23,24]. 

 However, since appendages cover only 0.1% of the whole skin surface area, these 

pathways do not contribute significantly to dermal absorption during steady-state 

conditions of skin absorption. In contrast, in the initial stages of a skin absorption 

process and in the case of large hydrophilic compounds and ions, invasion through the 

appendages may play a considerable role. Recent studies also report that the 

appendages route may be involved in the absorption of liposomes, nanoparticles, and 

cyclodextrin-inclusion complexes[24,25]. 

Transport across the intact Stratum Corneum.  

Generally, the SC is considered to be the rate limiting layer of the skin with regard to 

transdermal drug absorption. Drug permeation across the SC depends on the 
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interaction between the skin, the drug and the other components within the 

formulation. 

Originating from the structure of the SC, two permeation pathways are possible: (a) 

the intercellular route and (b) the intracellular route (Figure 3).  

In the intracellular route, the chemical is transferred through the keratine-packed 

corneocytes by partitioning into and out of the cell membrane. It is not considered as 

the preferred way of dermal invasion, the reason being the very low permeability 

through the corneocytes and the obligation to partition several times from the more 

hydrophilic corneocytes into the lipid intercellular layers in the SC and vice versa. The 

intracellular pathway can gain in importance when a penetration enhancer is used, 

which may modify the corneocytes protein structure and hence changing their 

permeability. 

The intercellular route is the major route of penetration to most compounds, 

especially when steady-state conditions in the SC are reached. In this case the chemical 

is transferred around the corneocytes in the lipid-rich extracellular regions within the 

SC.  

Permeation of a chemical through the SC is basically a diffusion process in which active 

transport plays no role. For many compounds, the lipophilic SC is the rate-limiting 

barrier. However, diffusion through epidermis and dermis can be rate limiting for very 

lipophilic materials and/or when the SC is damages or affected by disease. 

Although this pathway is very tortuous and therefore much longer in distance than the 

overall thickness of the SC, the intercellular route is considered to yield much faster 

absorption due to the high diffusion coefficient of most drugs within the lipid bilayer. 

Resulting from the bilayer structure, the intercellular pathway provides hydrophilic and 

lipophilic regions, allowing more hydrophilic substances to use the hydrophilic and 

more lipophilic substances to use the lipophilic route. In addition, it is possible to 

influence this pathway by certain excipients in the formulation[26].  

1.2. Skin absorption methodologies 

Predicting human skin permeability of chemical actives efficiently and accurately is 

useful for developing dermatological medicines and cosmetics. The evaluation of 

percutaneous permeation of molecules is one of the main steps in the initial design 

and later evaluation of dermal or transdermal drug delivery. In vivo skin absorption 

studies are intrinsically rare, due to ethical, economical, and analytical concerns. 

Therefore, great efforts have been given to developing and validating alternative in 

vitro test methods[2,27,28]. A comprehensive compilation of literature data, 
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comparing the permeability of chemicals across animal and human skin in vivo, as well 

as in vitro, has been published by the European Centre for Ecotoxicology and 

Toxicology of Chemicals (ECETOC)[29]
.
 The diversity of existing in vitro and in vivo 

techniques shows the difficulties of comparing results between different methods, 

species, ages, as well as healthy and diseased skin. Howes et al.[30]
 
introduced a 

hierarchy of frequently applied in vitro methods for measuring percutaneous 

absorption which considers the resemblance to the in vivo situation (Figure 4). This 

knowledge can be very helpful when comparing different results of skin absorption 

studies. 

 

Figure 4 Hierarchy of commonly applied methods for studying percutaneous absorption 

considering their resemblance to the in vivo situation (adapted from Howes et al[30]) 

From the different scientific alternatives to investigate the percutaneous absorption 

phenomena it is now widely accepted that the transport processes of drugs in skin can 

be described by Fick’s first law[31]. This equation assumes that diffusion occurs in 

favor of the concentration gradient, in other words, from higher to lower 

concentration. This principle is applied in recent mathematical models used to 

describe the dermal absorption through the SC[32].The permeability constant (𝐾𝑝) is 

defined as the steady-state flux of chemical across the skin ( 𝐽𝑠𝑠) normalized by the 

concentration gradient (∆𝐶𝑣) and allows to compare results for different substances 

with reasonable accuracy (Equation 1).  

In vivo 

Perfused skin 

Viable full-thickness 
skin 

Non-viable full thickness 
skin 

Dermatomed skin 

Isolated stratum corneum 

Reconsituted skin 

Mathematical models 
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Equation 1 

𝐾𝑝 =
𝐽𝑠𝑠 

∆𝐶𝑣

 

For such reason the assessment of the permeability constant (𝐾𝑝) has been the main 

focus of permeation models.  

An introduction of the scientific knowledge of the different methods experimentally 

assayed in this doctoral thesis are presented as follows. 

1.2.1. In silico approaches/Mathematical models (QSPR) 

Quantitative structure permeability relationship (QSPR) models try to find a 

relationship between the logarithm of the permeability coefficient (log 𝐾𝑝) and 

molecular features (descriptors). Many data sets for skin permeability models employ 

the collection of the logarithms of permeability coefficients by Flynn[33] or subsets 

thereof. Despite that its reliability has been repeatedly questioned, the Flynn data set 

is still the most important source for developing QSPR models. 

A number of empirical models were proposed to relate the experimental permeability 

data, the octanol-water partition coefficient and the molecular weight of 

molecules[34–36]. Potts and Guy[37] took advantage of the Flynn’s large compilation 

to generate a widely cited equation (P-G)(Table II), in which Kow accounts for solute 

octanol-water partition coefficient, MW for molecular weight and 𝐾𝑝  for skin 

permeability coefficient. 

Other models predict the skin permeability by directly taking into account the diffusion 

pathway. Significant progress was made only very recently when Mitragotri (Mi)[38] 

presented a scaled particle theory on solute partition and diffusion across lipid 

bilayers. Relating the solute molecular radius to the molecular weight, Lian et al.[39] 

established that the equation formulated by Mitragotri can also be read as the Mi 

equation from Table II  in section 4.1.  

The Potts and Guy and the Mitragotri models have been widely reported in the 

literature; nonetheless, the Barratt model [40] was also selected because diverse 

physico-chemical properties were considered. Other attempts have been made to re-

model the permeability data by dividing them into smaller subsets. Following the 

removal of distinct classes, steroids were identified as outliers to QSPR models for 

permeability[40]. Further parameters were included to describe effects such as 

hydrogen bonding[41] and melting point[40]. The selected Barratt equation (Bar) is 

presented in Table II, and this equation represented the behavior of the largest 
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number of molecules in their current dataset (which included 60 non-hydrocortisone 

molecules)[40].  

Finally, it has to be considered that transdermal penetration prediction through 

mathematical models based on structure-permeability of many compounds generally 

indicate their reliability for small subsets[39]. Therefore, these models predict the 

permeability of low molecular weight compounds and a mean lipophilicity. This is not 

the case for high hydrophilic compounds (particularly charged molecules) or for high 

lipophilic compounds[42].  

1.2.2. In vitro approaches 

Percutaneous penetration in man warrants in vivo experiments in humans. These 

experiments are often morally undesirable, expensive and time consuming. 

Additionally, high inter- and intra-individual variability is found in the data. Therefore, 

alternatives to in vivo studies in humans are sought. The suitability of the different in 

vitro permeability models using excised skin (human or animal) to mimic the in vivo 

studies has been widely reviewed[43,44], but obtaining a sufficient supply of excised 

human and animal skin is often a challenge and tends to be costly. 

There have also been attempts to create synthetic membranes that may be used as 

human skin models to investigate the transdermal diffusion properties of 

pharmaceutical and cosmetic compounds and formulations. The FDA has encouraged 

the use of porous synthetic membranes to evaluate the performance of topical 

products because they act as a support without posing a rate-limiting barrier[45]. 

Unlike skin, these membranes are inert and do not introduce biological variations. 

Moreover, the variability subjected to the anatomical site, age, race of the skin donor 

and skin-biopsy preparation and storage can be overtaken.  

In vitro skin permeation studies have been used for many years for the assessment of 

skin penetration drugs from topical or from transdermal products. Following the in 

vitro methodologies used in this thesis are described. 

1.2.2.1. Franz diffusion cells with skin biopsies or synthetic membranes  

The Franz diffusion cell is one of the most widely used systems for in vitro skin 

permeation studies[46]. With this methodology, any type or determinate amount of 

formulation (within the capacity of the donor chamber) may be applied to the skin or 

to synthetic membranes. Then the amount of drug that diffuses across the skin or 

membrane can be determined. Franz-type diffusion cell systems are relatively simple 

in design (Figure 5), with static diffusion cells that consist of the following two main 

parts: a receptor and a donor chamber. The membrane/skin is inserted between these 
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two compartments. The dose of the tested agent is applied into the donor chamber on 

the epidermal skin surface. An agent that permeates through the skin is accumulated 

in the receptor chamber (under the dermal skin surface), which is filled with the 

appropriate solution (receptor fluid in our case). After the exposure time, the skin 

sample can be processed to obtain the different skin layers. In that way, the 

distribution of the study compound can be determined.  

Because of its simplicity and cost-effectiveness, in this thesis Franz diffusion cells will 

be employed to study the drugs diffusion in a variety of membranes but also in pig skin 

in which the drug disposition in different skin layers could be studied. 

 

Figure 5 Details of Franz diffusion cell. Extracted from Ses-GMBH.  

Ex vivo porcine skin 

A wide range of animal models has been used as alternatives to human skin to 

evaluate percutaneous permeation of substances. These include pig, mouse, rat, 

guinea pig, and snake models.  

Porcine skin is histologically similar to human skin[47,48] with a comparable SC 

thickness of 21–26 μm[23,49] and when studying their Raman and infrared spectra 

they are found to be highly similar[50–52]. In addition, the average hair-follicle density 

in porcine ear skin is 20/cm
2
 compared to 14–32/cm

2
 in human forehead skin[23]. As 

well as being similar to human skin, porcine ear skin is also convenient to obtain and 

has been widely used in skin-permeation studies[53]. In a range of studies using both 

lipophilic[54,55] and hydrophilic[56] permeants, the permeability of pig skin was found 

to be similar to that of human skin, but to differ to a greater extent from dog or rodent 

skin. Sato et al.[56] attributed the similarity in permeability to the similar SC lipids, 

barrier thickness, and morphological aspects of pig and human skin. 
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The dermatomization technique may be used for harvesting skin, as well as for 

reduction of the dermal thickness. The recommended thickness is 400-700µm for pig 

skin[43] and normally is from the dorsal area. Samples comprise epidermis including 

SC, as well as part of the dermis (Figure 6). Although the dermatome will cut through 

hair follicle, the holes will readily close during incubation in aqueous media, due to 

swelling of the tissue. For such reason when the absorption through the hair follicle 

wants to be studied, non dermatomed skin (normally ear skin) should be employed. 

 

Figure 6 Scheme of different skin thickness used for dermal aborption studies  

 

Polymeric synthetic membranes 

Polymeric synthetic membranes are composed of a thin sheet of polymeric 

macromolecules that can control the passage of components through them. They may 

be composed of synthetic polymers (e.g., polysulfone and polycarbonate) or semi-

synthetic cellulose polymers (e.g., cellulose acetate and cellulose nitrate). These 

membranes can contain different structures and polymers that attempts to mimic the 

skin structure (Figure 7). Such membranes are then used in diffusion cells as skin 

surrogates. Despite their high reproducibility and simplicity, one of their restraints is 

the weaker barrier function compared to the skin, especially because of the difficulty 

to mimic the SC lipidic structure[19].  

The first efforts to study synthetic membranes and compare to skin absorption were 

carried out by Landmann in 1984[57]. More recently, Anwar and colleagues[58] 

developed a simplified model that should serve to a bridge gap between the more 

realistic but complex model systems and the simple models. The challenge here is to 

develop models that lend themselves to both molecular-level experiments and 

simulations. 

Dermatomed skin 

Full thickness skin 
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In this thesis, a new approach based on the polymeric synthetic membranes is 

proposed to create better skin surrogates. In a similar strategy than in skin-PAMPA in 

which ceramides and cholesterol are employed (section 1.2.2.2) lipidic components 

can be added to polymeric synthetic membranes to emulate the lipidic matrix. Due to 

the similarity with the SC composition, lanolin was selected and the obtained lanolin-

models were then evaluated. 

 

Figure 7 Cross section of a synthetic membrane (Strat-M®) and diagram of human skin. 

The Strat-M emulates in its structure three different layers of human skin. Image is 

extracted from Haq et al.[59] 

 

1.2.2.2. Skin Parallel Artificial Membrane Permeability Assay  

The Skin Parallel Artificial Membrane Permeability Assay (Skin-PAMPA) is an in vitro 

assay for skin penetration measurements. The skin-PAMPA membrane (Figure 8) was 

created by using cholesterol, free fatty acid and a ceramide along-analog compound 

that mimics the features of ceramides in the lipid matrix. The ceramide-analogue 

compound has been extensively used and its properties have been found to be 

suitable for PAMPA membrane.    

Based on a 96-well microtiter plate format, this system allows to screen compounds 

and to effectively predict their permeability by calculating the effective permeability 

coefficients (Pe). Testing compounds are applied in the donor solution to diffuse to the 

acceptor solution through the PAMPA membrane for a period of time (t) (Figure 8). 

Calculus are performed when concentrations in the acceptor well (CA)  and the donor 

well (CD) are determined[60]. 

 

Tight “skin” layer 

(SC in the skin) 

Polyether sulfone 

substructure 
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Figure 8 Skin-PAMPA methodology overview. Image taken from Discovery Analytical 

Consulting©. 

 

This assay can predict transdermal penetration, establishing good correlation with 

human skin penetration[61,62] and hence allows a high throughput screening of a 

large number of drugs and pre-formulations at low cost. 

1.2.3. In vivo tape stripping technique 

In this technique SC is sequentialy substracted with adhesive tape strips (Figure 9).  

The skin-stripping approach was based on the concept that time profiles of the drug 

concentration in the outermost part of the epidermis, the SC, could characterize drug 

absorption (uptake) into the SC and drug elimination out of the SC into the deeper 

layers of the epidermis and dermis below, where clearance by the capillary loops of 

the circulatory system would occur[63]. The relevance of sampling the SC as a general 

way to evaluate topical bioequivalence was that differences in the rate and extent of 

the active moiety at nearby sites of action deeper in the epidermis or dermis were 

assumed to arise from differences in drug concentration profiles in the SC[64]. There is 

substantial evidence that supports this assumption. For example several studies with 

different products containing betamethasone dipropionate, betamethasone valerate, 

or triamcinolone acetonide[65–68] found a good correlation between the drug 

concentrations in the SC and the pharmacodynamic vasoconstriction (skin blanching) 

response produced by these glucocorticoids within the dermis, where the dermal 

vasculature resides. 

Taken collectively, there are several strengths of skin stripping as a pharmacokinetics-

based approach to evaluate the bioequivalence of topical dermatological drug 

products. Sampling of the SC by skin stripping is based on fundamental principles that 
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are rational and analogous to principles that are accepted for traditional 

pharmacokinetics-based bioequivalence assessments for systemically delivered drugs.  

In conclusion, tape stripping of the SC, is another commonly used technique that is 

minimally invasive so it can yield the concentration profiles of topically applied 

compounds in vivo after the tape strips quantification analysis.  

 

Figure 9 Removal of a layer of Stratum Corneum with an adhesive tape strip. Extracted 

from Au et al.[68]  

1.2.4. Spectroscopic techniques 

Over the last years, there has been an exponential increase in the use of Raman (RS) 

and Fourier transform infrared (FTIR) spectroscopic techniques in skin science and 

dermatology. Both provide a wealth of information on the cellular and molecular level 

from solid and liquid specimens without using external agents such as dyes, stains or 

radioactive labels [24-28]. These techniques are gaining more importance as valuable 

tools for the drug delivery, diagnose or clinical applications[69–71]. Both techniques 

detect molecular vibrations that depend on the composition and structure of the 

samples 

FTIR is a form of vibrational spectroscopy (Figure 10) that relies on the absorbance, 

transmittance or reflectance of infrared light. FTIR measures how much light is 

absorbed by the bonds of a vibrating molecule; that is, the remaining energy from the 

original light source after being passed through the substance. In comparison, Raman 

spectroscopy is based on Raman scattering, which is described as inelastic scattering of 

incident light from a sample and frequency shift by energy of its characteristic 

molecular vibrations (50–3500 cm
−1

 range) (Figure 10). The variation of energy during 

scattering is attributed to the interactions between chemical bonds involved in the 
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samples and the photon. The specific peaks originate from particular chemical bonds, 

allowing the application of RS technique in the semi-quantitative analysis. 

 

Figure 10 Diagram showing transitions occurring between energy levels during infrared 

absorption and Raman scattering phenomena. Extracted from Sulé-suso et al.[72] 

RS and FTIR differ in some key fundamental ways. RS depends on a change in 

polarizability of a molecule, whereas IR spectroscopy depends on a change in the 

dipole moment. RS measures relative frequencies at which a sample scatters radiation, 

unlike FTIR spectroscopy which measures absolute frequencies at which a sample 

absorbs radiation. In spite of the weak intensity of Raman phenomena, it has two 

major advantages. Firstly, water, commonly present in biological samples, shows only 

slight Raman scattering and very strong FTIR absorption. Secondly, since in Raman and 

FTIR spectra the same vibrational states are assessed, Raman spectra are composed of 

narrower bands than FTIR spectra. Overall, despite their differences, both techniques 

serve the purpose of identifying unknown substances. Molecules that cannot be 

detected with the one method can be easily detected with the other, and that leads 

researchers to use them both in a complementary way. 

In this doctoral thesis different techniques based on FTIR and RS are employed: 

confocal Raman microscopy, attenuated total reflection Fourier transform infrared 

spectroscopy and Synchrotron-Based Fourier Transform Infrared microspectroscopy. 

In confocal Raman microscopy (CRM) a confocal microscope is added to a Raman 

spectrometer allowing the acquisition of spectra with high spatial resolution in the z 

dimension (depth line), in x-z dimension (depth slice) and also in x, y and z dimensions 

(tridimensional data). Then 2D or 3D images of the relative abundance of biomolecules 

can be determined based in the intensity of Raman bands or in powerful spectroscopic 
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analysis. The technique bears tremendous potential for diverse skin applications 

ranging from the analysis of physiological component distribution in skin tissue and the 

diagnosis of pathological states up to biopharmaceutical investigations such as drug 

penetration kinetics within the different tissue layers[73].   

Attenuated total reflection Fourier transform infrared (ATR-FTIR) offers another way in 

FTIR to record spectra from non-transparent biomedical samples. At the interface 

between an ATR crystal of high refractive index and the sample of lower refraction 

index, an evanescent wave penetrates a few micrometers into the sample. The 

spectrum collected represents then the average signal from the area of the sample 

that the light passed through.  

Synchrotron-Based Fourier Transform Infrared microspectroscopy (µFTIR) is a 

conventional infrared spectrometer with very little modifications to be adapted to the 

synchrotron infrared source and to a microscope. These modifications represent a 

significant enhancement over the conventional IR. Through a 10-μm pinhole, the 

brightness of a synchrotron source is 100–1000 times higher than a conventional 

thermal (globar) source. Accordingly, the improvement in spatial resolution and in 

spectral quality to the diffraction limit has led to a plethora of applications that is just 

being realized. Some authors studied simultaneously skin composition, structure and 

molecule penetration[74]. Others have been used µFTIR to study the effect of 

penetration enhancers on SC lipidic structure and to follow exogenous molecule 

penetration[75]. 

The spectral analysis is a crucial step to extract conclusions of the experiments in RS 

but also in FTIR. To extract information of the spectra many mathematical calculus can 

be performed: baseline, normalization, second derivative, principal component 

analysis, etc. 

Moreover when the spectral contribution of a substance wants to be determined other 

methods arise. In this thesis peak fitting, classical least squares (CLS) and multivariate 

curve resolution-alternative least squares (MCR-ALS) analysis will be performed. 

Peaks and spectral bands are usually studied with peak fitting method. Experimentally 

measured bands or peaks are fitted with theoretical models that create individual 

peaks from a spectrum that, when added together, match the original data. Then, the 

peak parameters like amplitude, intensity or the peak position can be easily 

determined and subsequently studied in detail.  

To apply the classical least squares regression (CLS)[76] to the spectral data, the pure 

compound spectrum of each constituent (loadings) is required. Then the contribution 
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(scores) of each loading in the dataset can be calculated. These scores are used to 

create a map showing the distribution of each reference spectrum.  

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)[77] has been 

widely used for different applications of Raman-based hyperspectral imaging[78] and 

determination of skin penetration of substances[79]. Similarly to CLS, MCR-ALS can 

recover the concentration and pure spectra of analytes of interest and can additionally 

estimate the spectra of possible interferences. This method has proved to be 

particularly useful in cases, where spectra of the pure substances were not 

available[80–83]. However, with this method, known reference spectra can be also 

used as a starting point for the calculation. Similar to CLS, the algorithm will calculate 

the scores and loadings of each component to create a 2D image. 

In the present thesis CRM, ATR-FTIR and µFTIR techniques will be used not only to 

study the molecular disposition and penetration within the skin, but also to study the 

absorption of substances and the molecular changes that the actives or the vehicles 

may promote in the different skin layers. 
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2. AIMS  

The main aim of this work is to evaluate different in silico, in vitro and in vivo methods 

to asses skin permeability of active molecules, to select in the future the appropriate 

ones to be included in screening cascades of novel drugs. To this end a group of topical 

molecules for different indication and with diverse physico-chemical properties were 

selected. Correlation of methodologies was sought also to increase understanding of 

active penetration through the skin.  

This main aim can be split into the following specific objectives:  

― To seek for correlation on permeability behavior of in silico Quantitative 

structure permeability relationship (QSPR) models and in vitro skin-PAMPA and 

Franz diffusion cells with synthetic membranes and pig skin respectively. 

― To determine the effect of vehicles on skin permeation using Franz diffusion cells 

with pig skin to be related with their physicochemical properties and clinical 

efficacy. 

― To demonstrate the enhancer effect of propylene glycol based on skin 

modification. 

― To design and obtain new synthetic membranes containing lanolin with improved 

membrane barrier to better emulate mammal skin on in vitro permeation 

models.  

― To validate the Franz diffusion cells with pig skin with in vivo stripping results. 

― To improve the confocal Raman spectroscopy methodology to achieve 

quantitative analyses to be correlated with Franz diffusion cell results. 

― To demonstrate the suitability of confocal Raman microscopy to study structural 

skin layer modifications and the follicular penetration of actives.  
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3. MATERIALS  

3.1. Porcine skin 

In accordance with an approved Institutional Animal Care and Use Committee 

protocol, unboiled porcine skin was obtained from the dorsal area (dermatomed skin) 

or the ear (non-dermatomed skin) of weanling female white/Landrace pigs weighing 

30-40 kg. The skin was provided by the Clinic Hospital of Barcelona. Following 

euthanasia of the pigs, the bristlers were removed carefully with an animal clipper and 

were subsequently gently washed with water.  

If dermatomed skin was needed, the hair-clipped skin was dermatomed with a 

Dermatome GA630 (Aesculap, Germany) to a thickness ranging from 500±50 µm, cut in 

appropriate pieces (2.5 cm inner diameter) and then sealed and stored under vacuum 

at -20ºC until their use. 

3.2. Synthetic membranes 

The Skin-PAMPA™ sandwiches were purchased from Pion INC (precoated permeability 

plates; P/N 120691) and were used after an overnight hydration with hydration 

solution (Pion P/N 120706). The full set up process is described in section 4.2. 

Two different polymeric membranes were employed as surrogates for creating a new 

synthetic membranes containing lanolin: StratM® (Merck Milipore, Germany) and 

Nuclepore® (Sigma-Aldrich, USA).  

3.3. Actives  

A vast number of topical actives were employed in this thesis to study and compare 

the different permeation models. Table I contains a list of the actives as well as some 

other characteristics to show the high diversity of the subset. 
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Table I Compound (abbreviation), CAS number, manufacturer, main indication and 

ionization state of the selected substances. 

Compound 
(Abbreviation) 

CAS Number Manufacturer Indicaction Ioniz. State 

Azelaic acid (Az) 123-99-9 Sigma Acne  Acid 

Betamethasone 
dipropionate (Bet) 

5593-20-4 Sigma Inflammation Neutral 

Bexarotene (Bex) 153559-49-0 Selleck Lymphoma Acid 

Caffeine (Caf) 58-08-2 Merck, USA 
Anticellulite and 
antioxidant 

Basic 

Calcipotriol 
monohydrate (Cal) 

147657-22-5 MatTek Psoriasis Neutral 

Clindamycin (Cli) 18323-44-9 Axon Medchem Antibacterial acne  Basic 

Clobetasol propionate 
(Clo) 

25122-46-7 AK Scientific Inflammation Neutral 

Dapsone (Dap) 80-08-0 Fluka Antibacterial Neutral 

Diclofenac sodium 
(Dic) 

15307-79-6 Sigma Actinic keratosis Acid 

Diphenhydramine 
(Dip)  

58-73-1 Pacific Pruritus Basic 

Eflornithine (Efl)  70052-12-9 
Chem-Impex 
International 

Facial hirsutism Zwitterion 

Finasteride (Fin)  98319-26-7 Fluka Alopecia Neutral 

Fluorouracil (Fo) 51-21-8 Sigma Actinic keratosis Neutral 

Flurandrenolide (Fra) 1524-88-5 Sigma Eczema, psoriasis Acid 

Glycopyrrolate (Gly) 596-51-0 
Spectrum 
Chemical 

Hyperhidrosis 
Quaternary 
salt 

Imiquimod (Imi) 99011-02-6 Ak Scientific Actinic keratosis Neutral 

Ketoconazole (Ket) 65277-42-1 Intex Quimica Fungal infection Neutral 

Lidocaine (Lid) 137-58-6 Sigma Pain Basic 

Nicotine (Nic) 22083-74-5 Tocris, UK Smoking addiction Basic 

Resveratrol (Res) 501-36-0 Sigma , USA Antioxidant Neutral 

Salicylic acid (Sal) 69-72-7 Sigma Acne , psoriasis Acid 

Tacrolimus 
monohydrate (Tac)   

109581-93-3 LC Laboratories Atopic dermatitis Neutral 

Tazarotene  (Taz) 118292-40-3 Sigma 
Psoriasis 
Acne 

Neutral 

Terbinafine (Ter) 91161-71-6 Selleck Onychomicosis Basic 

Tofacitinib (Tof) 477600-75-2 MedChem Express Psoriasis Neutral 
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4. METHODS  

4.1. In silico skin permeability models: QSPR 

Three mathematical models were used to predict the skin permeability coefficient (𝐾𝑝 

in cm/s) or the facility of the compound to permeate across the skin (Table II). The 

Potts and Guy equation (P-G) and the Mitragotri equation (Mi) take into account the 

molecular weight (MW) and the solute octanol-water partition coefficient (Kow). The 

third mathematical model was the Barratt equation (Barr), which, in addition to the 

octanol-water partition coefficient, takes into account MV as the molecular volume 

and MP for the melting point.  

Table II Mathematical Models for Predicting Skin Permeability; Mitragotri (Mi), Potts and 

Guy (P-G) and Barratt (Bar) models 

Model Equation 

P-G Equation[37] 𝑙𝑜𝑔 𝐾𝑝 = 0.71 𝑙𝑜𝑔 𝐾𝑜𝑤 −  0.0061𝑀𝑊 − 6.3  

Mi Equation[38,39] 𝑙𝑜𝑔𝐾𝑝 = 0.7 𝑙𝑜𝑔 𝐾𝑜𝑤 − 0.0722 𝑀𝑊
2
3 − 5.2518 

Bar Equation[40] 𝑙𝑜𝑔 𝐾𝑝 = 0.82 𝑙𝑜𝑔 𝐾𝑜𝑤 − 0.0093 𝑀𝑉 − 0.039𝑀𝑃 − 2.36 

 

The three models consider the substance lipophilicity, an important parameter that 

affects skin permeation. To study the permeability in our subset of compounds, the 

calculus for log 𝐾𝑝 was performed with the distribution coefficient (log 𝐷) at pH 5.5 

(skin surface pH) where the molecules can be ionized. 

Two different software platforms, ChemAxon algorythm (Chemaxon, Hungary) and 

BIOVIA PipelinePilot (Accelrys, USA) were employed to obtain the distribution 

coefficient at pH=5.5 (log 𝐷 pH 5.5) and the molecular weight (MW). The molecular 

volume was obtained from the BIOVIA PipelinePilot application software. 

The melting points (MP) of pure compounds were measured in a Büchi B-540 in 

Almirall R&D Centre. The melting point was calculated with the medium value 

obtained between the temperature in which a visual modification of the solid form 

was observed and the final temperature in which the transition was completed. The 

increment of the temperature was approximately 1ºC/min. 
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4.2. Skin Parallel Artificial Membrane Permeability Assay (skin-

PAMPA) 

Skin-PAMPA is a high throughput screening in vitro assay used to study the 

transcellular permeation of compounds. Active permeabilities were studied when they 

were solved in a solution at the physiological skin surface pH (5.5) and in propylene 

glycol (PG) which is a commonly employed cosolvent-enhancer. Assays were 

performed in Almirall R&D Centre. Each active was diluted in propylene glycol (Sigma 

Aldrich, USA) or a buffer solution (Pion, No. P/N 110151 50 mL) at 20 µM. In both 

cases, a 2% v/v of dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA)  was employed.   

Before forming the sandwich (Figure 8), the bottom (donor) plate was filled with 200 

µL of the previously described solution. The acceptor plate was filled with 200 µL of 

fresh Prisma HT Buffer at pH 7.4 and containing 2% v/v DMSO. The resultant sandwich 

was incubated for 5 h at room temperature. After the permeation time, the PAMPA 

sandwich was separated, and 100 µL of both the donor and acceptor compartments 

was transferred to UPLC plates.  The analytical procedure followed for their analysis is 

detailed in section 4.6.2. 

4.3. Permeation studies with Franz diffusion cells 

The absorption penetration profile was studied with the Franz cell assay. Such assay 

was widely employed in this thesis and allows not only the study of absorption through 

membranes or through skin biopsies. Moreover when working with skin, the amounts 

of substance can be determined in different layers.  

Static Franz diffusion cells (Lara-Spiral, Courtenon, France) with a nominal surface area 

of 1.86 cm
2
, and the receiver compartment capacity with approximately 3 mL were 

employed. The OECD Guidelines[84] and the published opinions of the Scientific 

Committee on Cosmetic Products and Non-Food Products[85] were closely adhered to 

during this study. Additionally, several other classical and updated principles of 

percutaneous absorption were considered[86]. 

The employed membrane/skin was thawed and mounted with the top/SC side facing 

the donor compartment. The receptor chamber was filled with receptor fluid (RF), 

Dulbecco phosphate-buffered saline at pH 7.4 (Sigma, St. Louis MO, USA) in MiliQ 

water with the addition of 0.04% (w/v) and gentamicin sulfate salt (Sigma, USA). 

Nevertheless in the case of poorly hydrophilic substances its solubility within the 

receptor fluid can be an impediment for its diffusion. To overtake this impediment, a 

5% (w/v) of bovine serum albumin (Sigma, USA) was also added following the 

recommendations of OECD2010 to increase the uptake of lipophillic compounds[87]. 
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Air bubbles were carefully removed between the skin and the RF. The RF was agitated 

with a magnetic stirring bar. 

The assembled Franz-type cell was placed in a thermostatically controlled water bath 

maintained at 37ºC containing a magnetic stirring device, and the skin surface 

temperature was maintained at approximately 32ºC. To eliminate the damaged skin, 

the transepidermal water loss value (TEWL) was measured with a Tewameter TM210 

(Courage & Khazaka, Cologne, Germany) at the moment of the formula application, 

considering correct TEWL values under 15 g/m
2
/h. 

At this point, 20 µL of each formulation was applied to the top of the membrane/skin 

delimited by the upper cell. At 24 h, receptor fluid was collected and extracted) was 

transferred to a 5-mL volumetric flask and stored at -20ºC until analysis. 

 In the case of skin, the different skin layers were separated as follows. Skin surface 

was washed and wiped with a cotton bud to remove any remaining formulation. Then, 

8 strippings were carried out on the surface horny layers of the SC with strips of 

adhesive tape (D-Squame, Cuderm Corporation, Dallas, USA) applied under controlled 

pressure. Lastly, the epidermis was separated from the dermis after heating the skin at 

80ºC for several seconds.  

The extractor employed solvents were different depending on whether the analysis 

was carried out by UPLC-MS/MS (section 4.6.2) or HPLC-DAD (section 4.6.1). The wash 

and the cotton bud were extracted into 10 mL of solvent (W). The strips were 

extracted into 2 mL. The Stratum Corneum value (SC), epidermis (E) and dermis (D) 

were appropriately extracted into 1 mL extractor solvent. The different skin samples 

were extracted appropriately in 1 mL of extractor solvent. 

4.4. Design new lanolin synthetic membranes  

The addition of lanolin is proposed as a strategy to emulate the lipidic matrix and 

therefore increase the permeation similarity between normal skin and synthetic 

membranes to be applied to in vitro permeation methodologies previously described. 
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Figure 11 Lanolin addition to polymeric synthetic membranes and Franz-cell assembly 

Lanolin was extracted from Spanish merino sheep’s using the WDS process which is 

detailed in the LIFE 11 ENV/ES/588 project[88]. In brief, the wool was scured with 

hexane, to remove dust impurities the hexane solution was centrifuged and lanolin’s 

recovered from the hexane with distillation at 35ºC. Finally lanolin was desiccated to 

remove the residual water. 

Addition of lanolin was performed to the Strat-M  and Nuclepore membranes (Figure 

11). In Strat-M membranes, 100 µL of lanolin 5% in hexane:ethanol 96% (2:1) solution 

was applied three times on the top of the membranes under N2 flow. Next, these Strat-

M-lanolin membranes were stored at 85°C for 10 minutes to fix the lipids and dry the 

membrane. Lanolin was also added to the Nuclepore membranes following the more 

complex procedure for lipid fixation previously detailed by Pullmannová et al.[89], 

wherein the membranes were hydrated in hexane:ethanol 96% (2:1) and then dried at 

room temperature. Under N2, 100 µL of lanolin 5% in hexane:ethanol 96% (2:1) was 

applied on the top. The membranes were stored at 2-6°C in a vacuum desiccator for 24 

h. Finally, the membranes were placed at 85°C for 10 minutes and, after 3 h at room 

temperature, the membranes were ready to use.  

Each studied membrane was mounted in a Franz-type cell following the method of 

section 4.3. TEWL, as an indicator of the membrane integrity/barrier function, was 

acquired after system stabilization and nine replicates for every model were evaluated 

during 24h. Once the results were obtained, the Kruskal-Wallis test was performed to 

detect significant differences between the pig skin and the different models. So then, 

the barrier function improvement and similarity against porcine skin after the lanolin 

addition could be discussed. 

Lanolin 

Lanolin-based membrane 

Polymeric membrane 
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4.5. In vivo tape stripping methodology 

Six volunteers (all women) with no history of dermatological disease participated in 

this study, which was approved by the Ethics Committee (IQAC-CSIC, Barcelona, Spain). 

Specific information of the study was given to the participants, and their written 

consents were obtained. The median age of the volunteers was 33 years, ranging 

between 25 and 42 years, and phototypes II, III and IV were included[90]. The treated 

sites (2 × 1 cm) were the non-hairy areas of the ventral forearm surface. The 

administration involved application of 10 µL/cm
2
 of active solution, according to 

reported guidelines[84]. This amount represents 500 µg of the total amount of active 

per area (cm
2
). The application was non-occlusive. 

The active permeation profile across the SC was determined with the widely detailed 

[91,92] stripping method. After an application time of 24 h, a sequential removal of the 

outer skin layers from each volunteer was carried out by tape stripping (D-Squame™ 

tapes, ø = 22 mm, CuDerm, Dallas, USA). Each tape was fixed to the skin surface using a 

specific device that exerted a constant pressure of 80 g/cm
2
 for 5s, and the tape was 

removed from the test area with a gentle movement. For each repeated strip, the tear-

off direction was varied to obtain homogeneous removal of the SC cell layers. A total 

of ten tape strips were used on all the treated sites. 

4.6. Extraction and analysis 

The quantification of the actives in the different samples was done with two different 

devices: HPLC-DAD and UPLC-MS/MS. Actives were quantified and extracted 

accordingly with the different experiments. The extractor solvent for compounds 

analysed with HPLC-DAD are detailed on Table III (section 4.6.1) while ACN-TFA was 

the extractor solvent of all compounds analyzed with UPLC-MS/MS (section 4.6.2).  

In both cases after the analysis, the results were presented as normalized amounts (%) 

of permeated substance with their standard deviation. The permeated amounts (ABS)  

in the case of skin was considered the sum of the epidermis, dermis and receptor fluid. 

For the rest of the membranes, the amounts were found to be equivalent to those in 

the receptor fluid.  

4.6.1. High performance liquid chromatography (HPLC-DAD) 

Before the HPLC analysis, all the extracts were sonicated 15minutes and filtered with a 

0.45µm Nylon filter (Cameo, USA). The amount of active in the samples was 

determined by HPLC methodology validated according to ICH Q2 (R1) guidelines in 

terms of linearity, accuracy and precision[93]. The HPLC system consisted of a WVR-

Hitachi HPLC with a CM5430 DAD detector, L-2130 Pump, L-2200 Autosampler, and an 
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Interfase. The flow rate was 1 mL/min under isocratic conditions, and the injection 

volume was 20 μL. The columns, wavelengths and mobile phases as well as calibration 

curve for every active are compiled in Table III. 

Table III HPLC analytical conditions for lidocaine (Lid), diclofenac sodium (Dic), 

betamethasone dipropionate (Bet), caffeine (Caf) and Resveratrol (Res). Employed 

abbreviations: Excitation wavelength (λ) in nanometers; Retention time (Tr) in minutes; 

0.5% of trifluoroacetic acid in acetonitrile (ACN-TFA) 

Active 
Extractor 
Solvent 

Column λ(nm) 
Tr 

(min) 
Mobil phase 

Linear regression equation 

(R2) 

Lid 
ACN-TFA 

0.5% 

LiChrocart® 125-4 

Lichrosphere® 
100RP-18 

5µm 

205 14 

70% buffer 
phosphate pH 7 

30% ACN 

𝐴 = 414046[𝐿𝑖𝑑] − 68532 

(0.9999) 

Dic Methanol 

LiChrocart® 250-4 

Lichrosphere® 
100RP-18 

5µm 

254 18 

66% methanol 

34% phosphoric 
acid 0.7% 

𝐴 = 80050[𝐷𝑖𝑐] − 2484 

(0.9997) 

Bet Methanol 

LiChrocart® 250-4 

Lichrosphere® 
100RP-18 

5µm 

239 11 
73% methanol 

27% water 

𝐴

= 1811416[𝐵𝑒𝑡] + 47781 

(0.9999) 

Caf 

Phosphate 
saline 

buffer  pH 
7.6 

LiChrocart® 125-4 

Lichrosphere® 
100RP-18 

5µm 

271 13 
75% water 

25% methanol 

𝐴 = 17608[𝐶𝑎𝑓] − 1048.8 

(0.9999) 

Res  Methanol 

LiChrocart® 250-4 

Lichrosphere® 
100RP-18 

5µm 

303 4.5 

52% methanol 
5% acetic  

48% water 

𝐴 = 52321[𝑅𝑒𝑠] − 21132 

(0.9998) 

 

4.6.2. Ultra performance liquid chromatography-tandem mass spectrometer 

(UPLC-MS/MS) 

Wash, D-Squame tapes, epidermis and dermis samples were extracted with 

acetonitrile (Sigma, USA) with 0.5% of trifluoroacetic acid (Sigma, USA) (ACN-TFA 0.5%) 

and diluted with water 1:3 (v/v) before the analysis by UPLC-MS/MS. Receptor fluid 

sample levels were determined by UPLC-MS/MS after protein precipitation with ACN-

TFA 0.5%, centrifugation at 4000 rpm for 10 min (4ºC) and dilution of the supernatant 

with water 1:3 (v/v).  

All the UPLC-MS/MS analysis were performed in Almirall R&D center. The MS detector 

used was Waters XEVO TQS. The column used was a Waters Acquity UPLCTM BEH C18 
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(1.7 µm, 2.1x50 mm), and it was maintained at 40ºC. The autosampler temperature 

was 8ºC. The mobile phase A contained 0.05% HCOOH+2.5 mM of NH3 (pH 3), and the 

mobile phase B was acetonitrile (ACN). The flow remained stable at 0.400 µL/min for 

all the compounds. The analytical conditions for the actives are detailed in Table IV. 

Table IV Analytical UPLC conditions. Employed abbreviations: Time 0 (i); Cone voltage 

(CV) in V; Collision energy in eV (EC); Excitation wavelength (λ) in nanometers; Retention 

time (Tr) in minutes 

Active 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

CV 

(V) 

EC 

(eV) 
% Phase A (time) λ (nm) Tr (min) 

Aze 187.10 125.0 25 20 85 (i)- 55 (1 min)- 5 (1.10 min)- 85 (1.70 min) NA* 1.15-1.2 

Bet 505.25 279.1 20 20 55 (i)-  5 (1 min)- 55 (1.70 min) 254 1.05 

Bex 347.21 186.0 50 - 20 (i)- 5 (1 min)- 20 (1.70 min) 258 0.99 

Cal 395.1 105 15 35 85 (i)- 5 (2 min)- 85 (2.20 min) 265 1.85 

Cli 425.18 126.0 45 25 85 (i)- 55 (1 min)- 5 (1.10 min)- 85 (1.70 min) 200-400 1.04 

Clo 467.19 278.0 50 25 20 (i)- 5 (1 min)- 1.70 (20 min) 246 1.07 

Dap 249.06 92.0 30 20 85 (i)- 60 (1 min)- 5 (1.10 min)- 85 (1.70 min) 295 1.10 

Dic 296.02 215.1 20 20 65 (i)- 5 (1 min)- 65 (1.70 min) 277 1.08 

Dip 255.16 167.1 30 20 85 (i)-35 (1min)- 5 (1.10 min)-85 (1.70 min) 220 1.08 

Efl 183 120 20 30 5 (i)- 95 (3 min)- 5 (3.10 min) NS** 1.82 

Fin 373.28 57 45 40 65 (i)- 20 (1 min)- 5 (1.10  min)- 65 (1.70 min) 204 1.0 

Fo 129 86 35 15 5 (i)- 95 (3 min)- 5 (3.20 min) 266 0.4 

Fra 437.3 361 5 15 62(i)- 45 (0.70 min)- 5 (1.10 min)- 62 (1.20 min) NS** 0.6 

Gly 319.21 116.1 40 25 20 (i)- 5 (1 min)- 20 (1.70min) 237 1.14 

Imi  241.14 185.1 50 20 85 (i)- 55 (1min)- 5 (1.10 min)- 85 (1.70 min) 245 1.14 

Ket 531.15 82 40 25 75 (i)- 40 (1 min)- 5 (1.10 min)-75 (1.70 min) 243 1.07 

Lid 235.17 86.1 40 20 95 (i)- 60 (1 min)- 5 (1.10 min)- 95 (1.70 min) 277 1.08 

Nic 163 132 30 20 85 (i)- 35 (4.10 min)- 5 (4.20 min) 260 1.10 

Sal 137 93 45 20 95 (i)- 44 (3 min)- 10 (3.10 min)- 95 (3.20 min) 301 1.86 

Tac 804.48 768.0 35 20 45 (i)- 5 (1 min)- 45 (1.70 min) 200-400 1.23 

Taz 352.3 324.1 50 25 71 (i)- 88 (0.70 min)- 95 (0.80)- 71 (1.20 min) NS** 0.60 

Ter 292.2 141 30 20 65 (i)- 5 (1 min)- 65 (1.70 min) 284 0.98 

Tof 313.3 149 45 25 95 (i)- 75 (1 min)- 5 (1.10 min)- 95 (1.70 min) 290 1.21 

*NA: not applicable **NS: no signal  

4.7. Confocal Raman microscopy 

Two different measurements were employed in this doctoral thesis with confocal 

Raman microscopy. From one side, in the depth profiling (Figure 12A), the Raman 
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spectra were obtained measuring the treated skin in the z-axis (depth). From the other 

side in the imaging the Raman spectra were acquired in the x-y axis in a skin cross-

section so an image of the spectral information can be obtained (Figure 12B). 

 

 

Figure 12 A. Depth profiling: Raman spectra are recorded along a z-directed line, peak 

intensities are depicted as intensity profiles against depth. B. Imaging: Raman spectra are 

acquired in the x–y direction; intensities are represented by color in a two dimentional 

picture Figure is adapted from Franzen et al. [94] 

 

4.7.1. Depth profiling of substances into the skin 

Confocal Raman microscopy (CRM) allows the study of the diffusion through the skin 

of substances by studying the skin spectral changes when going in depth (z-axis) into a 

sample, especially with substances with bands that are not overlapped with the skin 

spectra. This semi-quantitative technique has been optimized to achieve a quantitative 

assay, both methodologies are described below.  

Raman spectra acquisition 

Raman spectra were acquired using a Renishaw (Gloucestershire, UK) Model inVia 

confocal Raman microscope in Almirall R&D Centre. Excitation (approximately 100 mW 

at the sample) was provided by a 532 nm diode laser. The exciting laser radiation was 

coupled to the microscope through a wavelength-specific mode optical fiber. The 

incident laser beam was collimated via a lens and passed through a holographic band 

pass filter before it was focused onto the sample through the objective of the 

microscope. A Leica 50x/0.75 NA objective was used in this study. Spectra were 
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acquired using a 1 s exposure time, 3 accumulations and an 1800 line/mm grating. The 

spectral resolution was approximately 1 cm
-1

, and the spectral window ranged from 

190 to 1950 cm
-1

. 

Quantitative detection 

For the quantitative detection with CRM, different biopsies of tissue were incubated at 

different active concentrations and then analyzed with Raman. Therefore, when a 

specific band of the substance is observed, its intensity can be related to the solution 

concentration. Finally when analyzing the sample at different depths, the obtained 

intensities can be correlated with the different concentrations. 

The active was solved in phosphate buffered saline solution at pH 7.6 (Sigma-Aldrich, 

St. Louis, MO, USA) to reach solutions containing a wide range of concentrations (see 

results of caffeine in section 5.4.1). 

For incubation experiments, epidermis (Ep) was separated from the dermis after heat 

dry treatment at 80ºC for few seconds. Each Ep sample was weighted previous 

immersion in a specific solution. The mean of weight of Ep samples was 10.84 ± 1.57 

mg. Ep samples were completely immersed in 3 mL of each solution by triplicate, 

during 20h. Afterwards, the Ep was removed and dried between two filter papers 

under controlled pressure (80g/cm² for 10 seconds). The content of active from Ep was 

analysed by confocal Raman microscopy (CRM) (detailed above) and quantified by 

HPLC-DAD (section 4.6.1). 

4.7.2. Imaging of transfollicular penetration of caffeine with Confocal Raman 

microscopy  

Confocal Raman microscopy (CRM) was here used to image the follicular penetration 

of caffeine vehiculized in nanoparticles (Caf-NP) and aqueous solution (Caf-Aq). 

Cryosections of porcine skin applied with each formulation are analyzed with CRM. The 

obtained spectra are analyzed with different spectroscopic methods to create 2D 

images of caffeine distribution. 

All the different processes described in this section were performed in the Center of 

Experimental and Applied Cutaneous Physiology (CCP) placed in Berlin. 

Skin sample preparation 

A test area of 2×3 cm were marked on non dermatomed porcine ear skin (section 3.1) 

using window color (Marabu GmbH & Co KG, Tamm, Germany) for every formulation 

and one for non-treated skin (NT). 10 µL/cm
2
 of caffeine formulation were applied on 

the surface of the test area. In order to simulate the in vivo situation, the selected 

areas were massaged 2 min using a massage applicator (Minivibrator RFM, Rehaforum 
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Medical GmbH, Elmshorn, Germany) after topical application of the formulation. The 

formulations were allowed to penetrate for 30 min.  

After 30 min of penetration time, biopsies of the treated and the non-treated areas 

were taken using a scalpel. Cryospray (Cryo-Spray, SLEE medical GmbH, Mainz, 

Germany) was applied to facilitate separation of the skin samples from the underlying 

tissue. The biopsies were flattened between two glass slides, again fixed with 

cryospray and finally placed in liquid nitrogen and subsequently stored in a freezer at -

20 °C until further use. The cross-sectional tissue samples of the biopsies were 

prepared using a cryomicrotome (Cryostat Microm HM 560, Microm International 

GmbH, Walldorf, Germany). 

Each biopsy was embedded in Tissue freezing medium (Leica Biosystems Nussloch 

GmbH,  Germany) on a metal sample holder inside the cryomicrotome at -30°C. The 

embedded skin was sectioned into 30 µm slices by microtome blades before being 

placed onto Superfrost glass slides (Carl Roth GmbH + Co KG, Karlsruhe, Germany) and 

for later analysis stored at -20 °C. For the subsequent measurements, the sections on 

hair follicles were selected. 

CRM mapping acquisition 

Measurements of cross-sections were performed using a Labram HR800 Evolution 

CRM (Horiba Jobin Yvon, France) in the fingerprint region (400–2500 cm
-1

) with 

excitation at 473 nm and 6.1 mW optical power on the sample surface and a spectral 

resolution of <4 cm
-1

. The following settings were employed: grating of 600 g/mm, 

100× objective, spot of 0.85 µm and 5 s of exposure time per spectrum. The 

microscopic images of the hair follicles were collected with a 10× objective. 

The Autofocus reflection mode integrated in the Labspec software (Horiba Jobin Yvon, 

France) was employed for the detections of the sample surface for every position. The 

autofocus setup was established individually for both hair follicles according to the 

following procedure: by visually focusing on the sample, a z-value of 0 µm was 

assigned to the lowest point of the sample (glass cover-slide), then the z-value of the 

highest point of the sample was obtained (normally placed on the hair). Thereby, the 

setup range for the autofocus was established, which was scanned in 1 µm steps for 

the surface determination in both mappings.  

Reference components spectra  

The CLS and MCR-ALS methods (briefly explained in section 1.2.4) use reference 

spectra of pure substances to determine the distribution of the compound in the hair 

follicle. The non-treated cryosections were employed to obtain reference spectra of 

Stratum Corneum (SC), epidermis, dermis, glass substrate, Cryospray drops and 
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caffeine, which proved to result in high sensitivity. Franzen et al.[95] used reference 

spectra of Sebum, Epidermis, Dermis and hair. The reference spectrum of the active 

was obtained by measurements of the pure compound. 

Except for the five times increased accumulation time, all the reference measurements 

were performed on the same settings, as employed for the mapping acquisition. 

Data Analysis 

All spectra were pre-processed using the Labspec software. After cosmic spike 

removal, a polynomial fit was used to subtract the fluorescence background. In order 

to evaluate the distribution of caffeine in the hair follicle, the following methods were 

employed. 

The peak fitting module is integrated in the Labspec software. The caffeine-based 

Raman peak at 555 cm
-1

 was approximated using non-linear regression of a Gaussian 

function. This peak was chosen for analysis due to its prominence in caffeine and the 

minor overlapping with the main skin Raman bands. For each measured position, the 

peak amplitude at 555 cm
-1 

was plotted as a false color intensity image overlaid on the 

microscopic image. 

The CLS fitting section of the Labspec software was used to perform multivariate CLS 

regression on the multidimensional array of spectra using a set of reference 

component spectra (caffeine, Stratum Corneum, epidermis, dermis, hair, glass and 

cryospray). The scores and the reference spectra were normalized and restricted to 

non-negativity. Finally, all scores of the different component were plotted in false color 

intensity images, overlain on the microscopic images. As each Raman spectrum is a 

fingerprint of the chemical composition of the sample, the distribution of different 

substances can be analyzed. Using the reference spectra of the substances, the relative 

contribution of the reference spectra at each measurement point is calculated. By 

assigning the spectrum of each chemical substance to a color, the distribution of all the 

reference spectra within the examined section can be indicated giving a color coded 

image of the scanned area.  

The recorded spectra were also analyzed using the MCR-ALS algorithm. This was 

implemented in self programmed software based on Matlab R2016a (the MathWorks, 

Inc., Natick, MA, USA) and incorporated the graphical user interface MCR-ALS GUI 2.0 

developed by Tauler et al.[96] Reference spectra of seven different components were 

applied to the analyses as initial estimates (caffeine, Startum Corneum, epidermis, 

dermis, glass and cryospray). The only constraint applied for the optimization process 

was non-negativity of the resolved scores and loadings. Semi-quantitative parameters 

were calculated from the scores by dividing the caffeine score by the sum of all scores 
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for every measured position, according to Vajna et al. [97] The final scores for caffeine 

were plotted superimposed in red to the microscopic image.  

4.8. Infrared spectroscopy 

Two techniques based on the Fourier transform infrared (FTIR) spectroscopy (Figure 

13) are used in this doctoral thesis. From one side, attenuated total reflection in 

conjuction with a FTIR (ATR-FTIR) was used to evaluate the lipidic conformation. On 

the other side, a synchrotron-based Fourier transform infrared microspectroscope was 

used in a similar way than CRM in section 4.7.2 to acquire FTIR spectra in the x-y axis in 

a skin cross section. 

 

Figure 13 A. Spectra acquisition in ATR-FTIR. B. Scheme of the µFTIR: synchrotron light 

(red line) irradiates the sample (in blue); each analyzed position means one spectra; 

combining the spectral information with the spatial information, 2D images can be 

created. Figure is adapted from Franzen et al. [94] 

4.8.1. Evaluation of the lipidic conformation of lanolin synthetic membranes 

by ATR-FTIR 

Lipidic conformation can be studied with ATR-FTIR (Figure 13A). The infrared spectra 

were obtained using the 360-FTIR spectrophotometer Nicolet Avatar (Nicolet 

Instruments, Inc., Madison, WI) equipped with an attenuated total reflection (ATR) 

accessory that used a diamond with an angle of incidence of 45° in a horizontal 

orientation. 

Before analysis, the samples were placed with the SC/lanolin side facing the ATR 

diamond. To ensure reproducible contact between the sample and crystal, a pressure 
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of 10 kPa was applied to the samples. All analyzed spectra represented an average of 

32 scans obtained with a resolution of 4 cm
−1

, and the wavenumber range used was 

4000–700 cm
−1

. The peak positions were determined with the aid of OMNIC software 

version 7.3 (Nicolet, Madison, WI) using a Gaussian-Lorentzian peak fitting and 

baselined spectra. Two different peaks were studied: 2850 cm
−1

 and 2920 cm
−1

, which 

are assigned to the CH2 symmetric and asymmetric stretching vibration, respectively. 

Analysis of every sample was made in triplicate. 

4.8.2. Imaging of skin cross-sections with Synchrotron-Based Fourier 

Transform Infrared microspectroscopy 

Synchrotron-Based Fourier Transform Infrared microspectroscopy (µFTIR) can be used 

to map skin cryosections (Figure 13B). When a sample area is analyzed, many 

measurements in each map position are performed. Each position means one 

spectrum. By combining the spatial information with the spectral information 2D 

images can be created.  

µFTIR sample preparation 

The same day of slaughter, 10µL/cm
2
 of substance were applied and gently spread 

over the skin surface (treated skin section)(section 3.1). The incubation of the skin was 

performed at room temperature (20-25ºC) on a Petri plate with wet paper filter to 

avoid drying of the skin. After 30min of exposure, a biopsy from the treated area 

covered with aluminum foil to avoid interferences was embedded in CRYO-M-BED 

(Bright, UK), frozen in nitrogen liquid and stored at -30ºC. For the preparation of the 

non-treated samples (Blank skin section), a biopsy of skin was taken and then treated 

as explained for the PG sample. The day before the FTIR analysis, the skin blocks were 

cut at 6µm thickness and mounted in a CaF2 window. 

µFTIR experiments 

Synchrotron-Based Fourier Transform Infrared microspectroscopy was performed at 

the MIRAS beamline at ALBA synchrotron (Cerdanyola del Vallès, Spain)[98].  CaF2 

windows containing the cross-sections  were placed in a Hyperion 3000 microscope 

(Bruker, USA) coupled to Vertex 70 spectrometer (Bruker, USA). The employed 

detector was a 50 µm HgCdTe (MCT) Detector (10000-600 cm
-1

). 

The infrared spectra were acquired at room temperature in transmission mode. The 

data were recorded using an aperture size of 10 µm x 10 µm. Spectra were collected in 

the 4000–800 cm
-1

 mid-infrared range at a spectral resolution of 4 cm
-1 

with 128 co-

added scans per spectrum. 
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µFTIR data treatment and statistical analysis 

To extract spectral information, the OPUS software (Bruker, USA) was used.  The 

obtained data was processed as follows: the spectra with higher intensities than 1.5 

cm
-1 

were excluded for the calculations due to the lack of spectral quality and the 

presence of saturated regions. Then each spectra was manually grouped considering in 

which layer was acquired (epidermis or dermis) and if it was untreated (NT) or treated 

with propylene glycol (PG).  

The peak positions were determined with the aid of OMNIC software version 7.3 

(Nicolet, Madison, WI) using a Gaussian-Lorentzian peak fitting after baseline and 

normalization. Analysis of every spectrum was made and the average and the standard 

deviations calculated in every sample.  

To compare the different spectra groups the principal component analysis (PCA) was 

performed using the Unscrambler® (CAMO software, Norway).  

 



 

63 

 

  

 

 

 

 

 

RESULTS AND 

DISCUSSION 



 

64 

 



RESULTS AND DISCUSSION 

65 

5. RESULTS AND DISCUSSION 

5.1. Comparative study between in silico and in vitro models for 

prediction the permeability of topical actives  

In this section, the permeability of topical active agents with very different physico-

chemical properties was investigated with different methodologies. Three in silico 

models (Potts and Guy, Mitragotri and Barratt) and two in vitro models (skin-PAMPA 

and Franz cells) were applied to determine percutaneous absorption profiles. 

Permeability in Franz cells was determined for compounds formulated in propylene 

glycol and for some of the compounds in the commercial formulas to evaluate the 

fundamental vehicle effect. 

As it can be seen on Figure 14 the selected set of actives comprises a wide chemical 

diversity, including: 1 quaternary salt, 1 zwitterion, 5 acids, 5 bases and 11 neutral 

compounds. Following the results of the different applied methodologies are 

discussed.  

 

Figure 14 Selected topical actives with their molecular weight and lipophillicity ranked 

according their chemical nature 

5.1.1. In silico skin permeability models (QSPR)  

The physico-chemical properties of the actives were determined to be applied to the 

three selected in silico models from Table II (section 4.1).  
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The obtained physicochemical properties are compiled in Table V. All three models 

take into account the lipophilicity as the main parameter of the active. It must be kept 

in mind that the lipophilicity of a substance can be influenced by the pH of the 

environment. For this reason, the octanol-water distribution coefficients (log 𝐷) were 

determined at pH 5.5 (pH of Stratum Corneum from skin). The different models also 

take into account other properties of the actives, such as molecular weight, molecular 

volume and melting point. 

Table V Theoretical physico-chemical properties. Molecular weight (MW), Molecular 

volume (MV), Melting point (MP), Octanol-water distribution coefficients (𝐥𝐨𝐠 𝑫) at pH 

5.5. 

Name MW MV MP (ºC) 
𝐥𝐨𝐠 𝑫 

pH 5.5 

Azelaci acid (Aze) 188.22 162.92 110 -0.16 

Betamethasone dipropionate (Bet) 504.59 411.59 187 3.96 

Bexarotene (Bex) 348.48 307.32 225 5.5 

Calcipotriol monohydrate (Cal) 412.61 372.49 114 3.84 

Clindamycin phosphate (Cli) 424.98 350.54 108 -1 

Clobetasol propionate (Clo) 466.97 367.35 199 4.18 

Dapsone (Dap) 248.3 180.41 173 1.27 

Diclofenac sodium (Dic) 296.15 212.31 276 2.75 

Diphenidramine (Dip) 255.36 225 171 0.52 

Eflornithine (Efl) 182.17 140.97 241 -4.66 

Finasteride (Fin) 372.54 327.9 258 3.07 

Fluorouracil (Fo) 130.08 84.37 285 -0.66 

Flurandrenolide (Fra) 436.51 355.69 215.5 1.56 

Glycopirrolate (Gly) 318.43 274.74 194 -1.41 

Imiquimod (Imi) 240.3 203.05 301 2.4 

Ketoconazole (Ket) 531.43 405.76 151 3.65 

Lidocaine (Lid) 234.34 214.37 69 0.61 

Nicotine (Nic) 162.23 143.03 91 -1.96 

Salicylic acid (Sal) 138.12 100.49 161 -0.67 

Tacrolimus (Tac) 804.02 692.51 129 5.59 

Tazarotene (Taz) 351.46 290.17 104 5.22 

Terbinafine (Ter) 291.43 269.25 42 2.36 

Tofacitinib (Tof) 312.37 252.79 113.7 -0.25 
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These physico-chemical properties showed that the selected actives cover a wide 

range of molecular weight between 130.08 g/mol for fluorouracil and 804.02 g/mol for 

tacrolimus. As the molecular volume value is closely related to the molecular weight, a 

wide range of molecular volumes was also obtained. Additionally, a wide spectrum of 

melting points was observed. The range of the melting points fluctuates between 42ºC 

(terbinafine) and 301ºC (imiquimod).   

Additionally, a vast range of lipophilicities was obtained. The lower distribution 

coefficients are the ones for eflornithine, indicating the most hydrophilic compound, 

whereas the maximum values for the distribution coefficients are for bexarotene and 

tacrolimus, as the most hydrophobic compounds.  

Mathematical models that consider different physico-chemical properties are able to 

predict the skin permeability constant (log 𝐾𝑝). Values of the different properties of 

the chosen topical actives were obtained. Then, the three selected models (Potts and 

Guy, Mitragotri and Barratt) were applied, and three permeability constants per active 

were obtained (Table VI). It should be kept in mind that the skin surface pH is 

approximately 5.5; for this reason, the log 𝐷 at this pH was employed in the three 

models. 

The mathematical equations of the three models are quite similar, especially between 

the Mitragotri and the Potts and Guy models. The first terms of the three equations 

have a linear relationship between them. The lipophilicity is multiplied for a factor 

from 0.7-0.82 in all equations. The second terms of the three equations refer to the 

“molecular size” effect represented as the molecular weight (Mitragotri and Potts and 

Guy) or the molecular volume (Barratt). Even though their values are different, the 

second terms for the three models have a strong linear correlation in our subset of 

actives. However, the Barratt equation includes the melting point value, which is 

responsible for the main differences between models. 
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Table VI in silico Log 𝑲𝒑 (cm/s) predictions using Mitragotri (Mi), Potts and Guy (P-G) and 

Barratt (Bar) models applying 𝐥𝐨𝐠 𝑫 at pH 5.5. In vitro log Pe  values using Skin-PAMPA in 

buffer (pH 5.5) and in PG. 

 in silico QSPR models 

 Log 𝑲𝒑  (cm/s) 

Mi 

Log 𝑲𝒑 (cm/s) 

P-G 

Log 𝑲𝒑 (cm/s) 

Bar 

Azelaci acid (Aze) -7.74 -7.56 -8.31 

Betamethasone dipropionate (Bet) -7.05 -6.56 -10.23 

Bexarotene (Bex) -4.98 -4.52 -9.47 

Calcipotriol monohydrate (Cal) -6.56 -6.09 -7.13 

Clindamycin phosphate (Cli) -10.03 -9.60 -10.67 

Clobetasol propionate (Clo) -6.67 -6.18 -10.11 

Dapsone (Dap) -7.22 -6.91 -9.74 

Diclofenac sodium (Dic) -6.54 -6.16 -12.85 

Diphenidramine (Dip) -7.79 -7.49 -10.69 

Eflornithine (Efl) -10.83 -10.72 -16.90 

Finasteride (Fin) -6.84 -6.39 -12.93 

Fluorouracil (Fo) -7.57 -7.56 -14.82 

Flurandrenolide (Fra) -8.31 -7.85 -12.79 

Glycopirrolate (Gly) -9.60 -9.24 -13.64 

Imiquimod (Imi) -6.36 -6.06 -14.02 

Ketoconazole (Ket) -7.43 -6.95 -9.04 

Lidocaine (Lid) -7.57 -7.30 -6.53 

Nicotine (Nic) -8.77 -8.68 -8.86 

Salicylic acid (Sal) -7.65 -7.62 -10.14 

Tacrolimus (Tac) -7.58 -7.23 -9.26 

Tazarotene (Taz) -5.19 -4.74 -4.85 

Terbinafine (Ter) -6.78 -6.40 -4.58 

Tofacitinib (Tof) -8.75 -8.38 -9.35 

 

In general, lower Kp values were obtained in the Barratt model, whereas the Potts and 

Guy and Mitragotri models present very similar values. Log Kp values obtained with 

the different models of the different compounds are represented in Figure 15.  

A linear relationship occurs between the Potts and Guy and Mitragotri models, as 

expected (r
2
=0.99). Both models have the same underlying assumption that the 
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tortuous lipid matrix is the pathway for transdermal permeation and predict skin 

permeability from the lipophilicity and the molecular weight. Even though the 

relationship between the Barratt values and the Potts and Guy values has a slope close 

to 1, the values are very dispersed, obtaining a regression factor of only 0.213. Much 

higher permeability was obtained for lidocaine and terbinafine with low melting points 

and lower permeability for diclofenac, eflornithine, finasteride, fluorouracil, 

flurandrenolide and imiquimod, all with melting points higher than 240ºC. On the 

other hand, all the models predicted the highest permeability for tazarotene and the 

poorest permeability for eflornithine. Their degrees of permeability are mainly due to 

their lipophilic properties. 
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Figure 15 Linear correlation of LogKp obtained with Potts and Guy against Mitragotri’s 

(black dots and solid line) and Barratt’s (gray cross and discontinuous line) permeability 

constants. 

5.1.2. In vitro skin permeability models 

Two in vitro skin permeability models have been applied in the present work using 

synthetic membranes (skin-PAMPA, detailed in section 4.2) or pig excised skin (section 

3.1) mounted in Franz cells (detailed in section 4.3) 
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5.1.2.1. Permeabilities of topical actives studied with skin-PAMPA 

The actives selected with the QSPR models (Table V) were also studied with the skin-

PAMPA methodologies. Actives were all formulated in propylene glycol and in a buffer 

solution at pH 5.5 (section 4.2). Permeation assay was performed following the 

amounts in each compartment were obtained with UPLC-MS/MS (section 4.6.2), the 𝑃𝑒 

was calculated following the procedure detailed by Ottaviani et al. [60]. 

The 𝑃𝑒 gives us information about the intrinsic facility of each compound for diffusing 

across the PAMPA membrane. The results in both experiments (PG and buffer 5.5) are 

compiled in n Table VII. 
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Table VII Skin-PAMPA log Pe values (cm/s) for buffer and PG 

 Skin-PAMPA (Buffer pH5.5) Skin-PAMPA (PG) 

 log Pe (cm/s) log Pe (cm/s) 

Azelaci acid (Aze) -7.28 -6.7 

Betamethasone dipropionate (Bet) -5.98 -7.7 

Bexarotene (Bex) -5.4 -7.7 

Calcipotriol monohydrate (Cal) -5.6 -8.8 

Clindamycin phosphate (Cli) -9.07 -7.6 

Clobetasol propionate (Clo) -5.64 -7.6 

Dapsone (Dap) -6.5 -8.9 

Diclofenac sodium (Dic) -4.39 -7.3 

Diphenidramine (Dip) -8.07 -7.2 

Eflornithine (Efl) -7.09 -6.9 

Finasteride (Fin) -6.17 -7.3 

Fluorouracil (Fo) -6.73 -5.2 

Flurandrenolide (Fra) -6.2 -7.4 

Glycopirrolate (Gly) -9.29 -8.2 

Imiquimod (Imi) -9.34 -8.1 

Ketoconazole (Ket) -6.24 -9.3 

Lidocaine (Lid) -6.07 -6.3 

Nicotine (Nic) -7.02 -7.5 

Salicylic acid (Sal) -6.5 -7.2 

Tacrolimus (Tac) -9.71 -8.9 

Tazarotene (Taz) -8.63 -9.3 

Terbinafine (Ter) -6.93 -9.1 

Tofacitinib (Tof) -7.3 -7.4 

 

The results showed the high influence of the vehicle on the distribution across the 

PAMPA membrane. In Figure 16, the different actives are labelled considering their log 

Pe: high permeability in green (log Pe <-6), medium permeability in yellow (log Pe 

between -6 and -8) and low permeability in red (log Pe >-8). When the buffer at pH 5.5 

was employed, our set of actives showed a high rank of permeability constants (-10 to 

-5) (solid pattern in Figure 16). In contrast, when the substances were vehiculazed in 

propylene glycol, the permeability constants ranged from -9 to -7 (dotted pattern in 

Figure 16). The substances with a high permeability in the buffer solution reduced their 
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permeability when the propylene glycol was employed, whereas the opposite effect 

was observed in the actives with lower permeability constants in the buffer. This effect 

could be due to the influence of the propylene glycol by diminishing the barrier 

properties of the membrane which may modulate the active permeabilities. The 

influence of propylene glycol on the skin structure will be studied in depth on section 

5.1.5. 

 

Figure 16 Skin-PAMPA log Pe (cm/s) values in buffer solution at pH 5.5 (solid pattern) and 

in propylene glycol solution (dotted pattern). Actives are classified in high (green), 

medium (yellow) and low (red) permeability and ordered from lowest to highest log Pe  in 

buffer. 
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5.1.2.2. Permeability and skin absorption of topical actives by Franz 

diffusion cells 

Then, another in vitro assay was performed to study the prediction helpfulness of the 

in silico models. Franz diffusion cell (section 1.2.2.1) with dermatomed porcine skin 

was employed following the corresponding method described in section 4.3 for 

percutaneous absorption determination. 

The use of Franz diffusion cells makes possible to determine the actual amount of drug 

that diffuses across the skin. The distribution in the various skin compartments and in 

the receptor fluid, mimicking the systemic compartment of the selected compounds 

was determined by UPLC-MS/MS (section 4.6.2). Moreover, the effect of the 

commercial vehicle comparing the penetration profiles in propylene glycol versus the 

respective commercial cream will be discussed. 

Therefore, this in vitro system has been used to compare the skin penetration profiles 

of each compound in different formulations, PG solutions, and some of their 

corresponding commercial creams (Table VIII).  

Table VIII Formulations, concentration, manufacturer and abbreviation used in the Franz 

cell assays.  

 Formulation  Concentration Formulation manufacturer Abreviation 

Bet 
Betamethasone dipropionate PG Sol.  0.5 mg/g Self-prepared Bet-PG 

Diproderm® cream  0.5 mg/g MSD Bet-cre 

Clo 
Clobetasol PG Sol.  0.5 mg/g Self-prepared Clo-PG 

Clovate® cream  0.5 mg/g IFC Clo-cre 

Fo 
Fluorouracil PG Sol. 50 mg/g Self-prepared Fo-PG 

Efudix® cream 50 mg/g Meda Pharmaceuticals Ltd. Fo-cre 

Fra Flurandrenolide PG Sol. 0.5 mg/g Self-prepared Fra-PG 

Gly Glycopirrolate PG Sol.  5 mg/g Self-prepared Gly-PG 

Ket 
 Ketoconazole PG Sol. 20 mg/g Self-prepared Ket-PG 

Fungarest® crema  20 mg/g Janssen, Belgium Ket-cre 

Lid 
Lidocaine PG Sol. 20 mg/g Self-prepared Lid-PG 

Dermovagisil® cream  20 mg/g Laleham health, UK Lid-cre 

Tac Tacrolimus PG Sol. 1 mg/g Self-prepared Tac-PG 

Taz Tazarotene PG Sol. 1 mg/g Self-prepared Taz-PG 

Tof Tofacitinib PG Sol.  10 mg/g Self-prepared Tof-PG 

 

The retention of the actives in the skin was first evaluated from solution in a pure 

solvent, such as propylene glycol, with the objective to keep the formulation as simple 
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as possible, having in mind that PG is a solvent used in many topic formulations, and 

that it is able to solubilize most compounds. Moreover, to avoid permeability 

differences caused by concentration, the propylene glycol solutions were formulated 

at the same concentration as the corresponding commercial formulation for most of 

the employed actives. This, however, implies in some cases that different amounts of 

different actives were applied; moreover, the important drag effect caused by the 

active saturation degree in each formulation was not considered. It is also important to 

remark that the receptor fluid was chosen to be the same for all actives (section 4.3) 

even though the great differences in lipophillicity for all actives. Despite the addition of 

bovine serum albumin, the capacity of the receptor fluid to solve lipophillic 

compounds may play an important role to explain permeability differences between 

the tested actives. 

The resulting recovery was acceptable (100±25%) for all the tested formulas. The 

compounds were recovered from the skin surface (W), Stratum Corneum (SC), 

epidermis (E), dermis (D) and receptor fluid (RF)(Table IX). The concentrations retained 

by the SC were not absorbed by the skin and did not contribute to the systemic dose. 

However, the concentrations found in the epidermis and dermis could be absorbed 

and reach the systemic level[46]. Therefore, the amount of percutaneous absorption 

(ABS) is normally assumed to be the sum of the concentrations in the epidermis, 

dermis and receptor fluid. Moreover for many of the selected actives their receptors 

are located in the epidermis and the dermis tissue (E+D), so the amounts founded in 

such layers are important to know. The amounts of actives in every layer are 

represented in  Table IX and Figure 17 for the actives formulated in propylene glycol 

(PG) and in Table X  and Figure 18 for the commercial creams. To better compare the 

different formulations, the absorbed amounts are compiled in Table XI. 
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Table IX Distribution of compounds in pig skin expressed as % of substance for each 

sample: surface excess (W), Stratum Corneum (SC), epidermis (E), dermis (D) receptor 

fluid (RF), percutaneous absorption (ABS). 

  
Conc. 
(mg/g) 

W (%) SC (%) E (%) D (%) RF (%) D+E (%) ABS (%) 

Bet- PG 0.5 88.36±3.90 5.24±1.87 3.87±1.34 0.56±0.43 1.96±1.38 4.43 6.39 

Clo-PG 0.5   88.12±1.75 5.00±2.75 3.79±1.60 2.39±1.81 0.71±0.41 6.18 6.89 

Fo-PG 50   83.73±3.08 10.41±2.81 4.22±1.82 0.78±0.47 0.86±0.75 5.00 5.86 

Ket-PG  20    91.66±2.15 3.25±1.74 3.32±1.23 0.63±0.39 0.50±0.13 3.95 4.45 

Lid-PG  20   32.36±10.79 4.28±1.04 1.01±0.57 2.32±0.45 60.02±10.64 3.33 63.35 

Fra-PG  0.5   89.99±4.06 4.25±2.14 1.94±0.61 1.33±1.85 1.64±2.31 3.27 4.91 

Gly-PG  5   77.12±3.59 7.51±3.79 7.27±2.12 2.04±2.12 4.56±2.45 9.31 13.87 

Tac- PG  1   77.51±5.51 13.40±1.57 6.37±1.56 1.76±0.56 0.96±0.40 8.13 9.09 

Taz-PG 1   94.85±1.20 2.48±0.84 1.37±0.86 0.99±0.59 0.31±0.12 2.36 2.67 

Tof-PG 10   71.00±6.00 19.2±4.3 7.2±2.8 2.1±0.81 0.25±0.32 9.3 9.55 

 

 

Percutaneous absorption of the 10 evaluated actives in PG shows a similar behavior, 

the active is distributed following the order W>SC>E>D. To sum up our data from the 

PG solutions, a relation between a high retention in W and less permeation was found 

for most of the actives. The compounds were found to have a reduced distribution 

when going in depth through the skin.  

As it can be seen, Taz is highly found in the W and partially retained in the SC; 

therefore, it is the lowest absorbed compound (Table XI). Although the absorption 

behavior of Taz differs from the skin permeation predicted by its physical-chemical 

properties, others authors demonstrated its limitation of percutaneous absorption 

when Taz was topically applied [99].  
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Figure 17 Cumulative amounts (%) found in the Stratum Corneum (SC), epidermis (E), 

dermis (D) and receptor fluid (RF). 

 

Bet, Clo, Fo, Ket and Fra are compounds with medium permeabilities (from 4.45% to 

6.89%) when they are formulated in PG. The results also show that low amounts of 

substance are found in the W for Gly, Tac and Tof, but at the same time, they show 

high retention in the SC. These three substances are also more retained in the 

subsequent skin layer (E) than the rest of the compounds. As a consequence, Gly, Tac 

and Tof have high percutaneous absorption (Table X). 

Surprisingly, Lid presents a different profile. The compound is scarcely retained in the 

W and SC, but that it is mainly detected in the receptor fluid (60%). Moreover, when 

the E and D layers are observed, more lidocaine is found in D than in E, whereas in all 

the other PG solutions, the amounts obtained in E are always higher than those in D. 

Lidocaine is a basic molecule with a hydrophilic value at pH 5.5 but this changes to 

lipophilic at pH 7 due to its pKa[100]. The pH gradient at the SC depth and the change 

of hydrophilic to lipophilic property of Lid may influence its high diffusion. 

Commercial creams of 5 of these actives were also evaluated with the Franz cell assay. 

In general, most of the other creams maintain the compound distribution explained 

before for PG solutions (W>SC>E>D) (Figure 18). The obtained order of the 

percutaneous absorption was Li>Clo>Ket  Bet>Fo (Table XI). 
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Table X Distribution of compounds in pig skin expressed as % of substance for each 

sample: surface excess (W), Stratum Corneum (SC), epidermis (E), dermis (D) receptor 

fluid (RF), percutaneous absorption (ABS) 

  
Conc. 

(mg/g) 
W (%) SC (%) E (%) D (%) RF (%) D+E (%) ABS (%) 

Bet- cre 0.5  97.32±0.75 1.35±0.76 0.85±0.28 0.35±0.22 0.14±0.12 1.2 1.34 

Clo-cre  0.5  95.91±4.62 0.99±1.64 0.86±0.91 1.17±1.78 0.07±0.02 2.03 2.1 

Fo-cre 50  97.09±0.13 1.42±1.11 0.61±0.21 0.13±0.06 0.04±0.03 0.74 0.78 

Ket-cre 20   94.89±2.26 2.33±2.56 0.62±0.28 0.17±0.06 0.83±0.18 0.79 1.62 

Lid-cre 20  90.55±3.83 3.10±0.38 0.29±0.11 0.66±0.24 5.40±3.67 0.95 6.35 

 

Lidocaine showed a similar distribution when it was applied as a cream. As previously 

detailed, Lid-PG was mainly found in the RF, and in contrast to the other formulations, 

the amounts in D are greater than those in E. Such a situation is also repeated in Lid-

cre; high absorption and dermis accumulation of the compound was detected. 

However, it should be noted that the great diminution of penetration of lidocaine in all 

skin strata is due to an important percutaneous absorption of 6.3%; that is, however, 

ten times lower than the same active in PG. 
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Figure 18 Cumulative amounts (%) found in the Stratum Corneum (SC), epidermis (E), 

dermis (D) and receptor fluid (RF). 

The vehicle effect on the compound skin distribution can be compared, considering 

that the PG solutions are formulated at the same concentration as the commercial 

formulations. A common feature for the PG solutions is that in every skin layer (SC, E 

and D), the different actives are much more retained than in creams. This leads to the 

higher absorption observed for PG solutions than creams since the absorbed averages 

are the sum of E, D and RF (Table XI).  
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Table XI Absorbed amounts (%) calculated from the sum of epidermis, dermis and 

receptor fluid normalized amounts. 

Active (concentration) PG solutions Creams 

Betamethasone dipropionate (0.5 mg/g) 6.39 1.34 

Clobetasol propionate (0.5 mg/g) 6.89 2.1 

Fluorouracil (50 mg/g) 5.86 0.78 

Ketoconazole (20  mg/g) 4.45 1.62 

Lidocaine (20  mg/g) 63.35 6.35 

Flurandrenolida (0.5 mg/g) 4.91 - 

Glycopyrrolate (5 mg/g) 13.87 - 

Tacrolimus (1 mg/g) 9.09 - 

Tazarotene (1 mg/g) 2.67 - 

Tofacitinib (10 mg/g) 9.55 - 

 

Summarizing the effect of the vehicles studied , it can be concluded that PG solutions 

show, in general, the highest amounts in all the different layers of the skin (SC, E, D), 

and that the observed compound distribution (W>SC>E>D) is generally maintained in 

PG and cream formulations.  The observed enhancer effect of PG in the skin has been 

widely described [101]. In this thesis an additional study based on the effect of PG on 

the skin lipids by IR has been performed (section 5.1.5). It must be noted that our 

study does not consider the effect of the compound saturation degree in its 

formulation and that the steady state of the system cannot be assumed after 24 h of 

exposition in all the formulations. 

5.1.3. Correlations between models 

In silico vs skin-PAMPA 

One of the objectives of this work was to study the relationship between the different 

predictive assays of topical exposure.  Log Pe by skin-PAMPA of all compounds at pH 

5.5 and in PG were related to the Log Kp obtained with the three models applying 

log 𝐷 at pH 5.5. Linear correlations between the two Pampa lists of values and the 

three in silico models were very low. The best correlation was found between Potts 

and Guy and Mitragotri models with skin-PAMPA values at pH 5.5 with slopes of 

approximately 0.4 and correlation coefficients of approximately 0.1 (Figure 19). 

Therefore, a very poor linear correlation was found between this in vitro model with 

the three in silico models for the actives studied. 

Most of the studies carried out to obtain the in vitro models present a log 𝐾𝑝 deducted 

from more than 50 actives, and the linear regression is obtained from bulk data in 
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which the individual actives do not always match[102]. In the present work, only 23 

actives were studied, and in Figure 19, it is clear that several compounds give different 

results using the in silico methodology rather than the skin-PAMPA. In particular, 

compounds with marked hydrophobic character, such as bexarotene, imiquimod, 

tacrolimus, and specially, tazarotene, present a lower permeation than the one 

expected by the in silico models. In contrast, eflornithine, the most hydrophilic 

compound assayed, presents higher permeation than expected by the models. 
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Figure 19 Linear correlation of log Pe (cm/s) from the skin-PAMPA assay at pH 5.5 against 

𝐥𝐨𝐠 𝑲𝒑 (cm/s) obtained by the Potts and Guy and Mitragotri model. 

Skin-PAMPA vs Franz diffusion cells 

The Franz data were also correlated with the ones obtained by skin-PAMPA. It is 

important to have in mind that results obtained for the Franz cells account only for 10 

actives when formulated in PG and 5 actives in creams. When the Franz cell data are 

compared against the skin-PAMPA also low correlations are obtained in our set of 

actives. However, the permeability constant from the PAMPA assay at pH 5.5 was 

better compared with the percutaneous absorption obtained with Franz cell assays of 

the actives in creams (Figure 20). Even though a low correlation coefficient is observed 

when related to percutaneous absorption, it increases when correlated with E+D 

amount. Lid shows a high absorption due to its high amounts found in the RF. 
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Therefore, when the log Pe skin-PAMPA pH 5.5 is compared with E+D without RF, the 

correlation factor increases.  
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Figure 20 Linear correlation of log Pe (cm/s) from the skin-PAMPA assay at pH 5.5 against 

log Kp (cm/s) obtained by the Potts and Guy and Mitragotri model. 

The results obtained in this work underline the role of the formulation in skin 

penetration and retention of compounds. It was found that skin uptake of a drug is 

strictly related to solvent uptake, suggesting the relevance of the solvent drag effect in 

skin delivery for the tested actives. Then, the effect of vehicles on skin penetration has 

been studied in more detail in the next section 5.1.4. 

 

Sumarizing sections 5.1.1, 5.1.2 and 5.1.3. A comparative study of percutaneous 

absorption with Franz diffusion cells with propylene glycol solutions and some of their 

commercial creams was presented. Higher absorption rates were observed in the 

propylene glycol solutions compared with the cream formulas, due to the widely 

reported enhancer effect of propylene glycol. The fundamental effect of the vehicle in 

the permeability of topical actives is apparent. 

The results of the skin-PAMPA assay at pH 5.5 and the amount of the compound in the 
epidermis and dermis of the Franz cell data of the cream formulations were better 
correlated. This correlation indicates the effectiveness of the two in vitro assays at 
assessing the formulation and the detrimental effect of PG on the skin or on the 
membrane with lipids from skin. Mathematical models and in vitro models are good 
prediction methodologies to determine permeation for some but not all topical 
actives. Franz cell diffusion permeation is important not only to determine total 
permeation but also to settle the amounts of actives in each skin layer, which is 
fundamental for topical skin treatments. 



RESULTS AND DISCUSSION 

81 

A research paper entitled “Comparative study between in silico and in vitro models for 

predicting the permeability of topical actives” based on the results of sections 5.1.1, 

5.1.2 and 5.1.3 is at the moment under preparation 

 

5.1.4. Effect of vehicle on skin penetration  

Glucocorticoids (GCs) are actives widely used in the treatment of skin diseases. The 

efficacies of topical GCs are linked to their availability to reach their receptors. The 

affinity between the receptor and the steroid as well as its cellular uptake and 

residence time, determines the clinical effect[103–105]. All these processes are highly 

influenced by the physicochemical properties of the drug as well as the 

vehicle[65,106–109]. Moreover steroids potency can also differ depending on the 

vehicle in which they are formulated. Hence, to modulate their effects they are 

available in a wide range of preparations including gels, creams, ointments, foams, 

lotions, oils and sprays[110].  

The aim of this section is to study the relationship between the skin absorption, the 

substance lipophilicity and the effect of the vehicle of glucocorticoids. Therefore, a 

study is presented using the static diffusion cells of betamethasone dipropionate (Bet), 

clobetasol propionate (Clo) and flurandrenolide (Fra). Three different vehicles are 

assayed including commercial creams, their respective ointments and propylene glycol 

solutions (Table XII). The three compounds are all formulated at the same 

concentration as in their commercial formulations.  

Table XII Formulations, concentration, manufacturer and abbreviation used in the Franz 

cells assay 

 Formulation  
Conc. 

(mg/g) 
Formulation manufacturer Abreviation 

Bet 

Betamethasone dipropionate PG Sol.  0.5   Self-prepared Bet-PG 

Diproderm® cream  0.5   MSD Bet-cre 

Diproderm® ointment 0.5   MSD Bet-oin 

Clo 

Clobetasol PG Sol.  0.5   Self-prepared Clo-PG 

Clovate® cream  0.5   IFC Clo-cre 

Declobán® ointment  0.5   Teofarma Clo-oin 

Fra 

Flurandrenolide PG  0.5   Self-prepared Fra-PG 

Cordran® SP Cream 0.5   Oclassen Pharmaceuticals Inc Fra-cre 

Cordran® SP ointment 0.5   Oclassen Pharmaceuticals Inc Fra-oin 
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It should be noted that although each formulation has the same concentration of the 

active ingredient, each formulation will have a different degree of saturation in each 

vehicle, which highly influences the absorption of substances through the skin[111]. 

One of the important parameters that influences the high affinity of a GC for its 

receptor (and therefore its glucocorticoid effect) is the lipophilicity of the molecule 

which are compiled in Table V for the three actives.  Fra is the least potent of the 

selected drugs, which is in accordance with its low log 𝐷 value. In the cases of Bet and 

Clo, it has to be considered that betamethasone dipropionate is a prodrug of the free 

form, betamethasone. After topical administration, the drug is hydrolysed by esterase 

enzymes primarily in the skin. Then, after the hydrolysis of the molecule, the 

lipophilicity and log D values are much lower. Therefore, the most potent substance 

(Clo) has the highest log D value. 

Besides the affinity of a substance for its receptor, the efficacy of a topically applied 

substance is linked to its availability to contact the target/receptor. Glucocorticoid 

receptors are known to be located in epidermal and dermal cells[103,112]. Therefore, 

in Table XIII, in addition to the compound distribution in the different layers, the 

amount of compound in E+D and the percutaneous absorption (E+D+RF) are also 

described. 

In general, the three compounds in all of the formulations have a common penetration 

profile, in which the amount of substance found in each layer decreased when 

increasing in depth (SC>E>D). Only Clo-oin and Clo-cre have similar amounts in all 

three skin strata. The amount found in the receptor fluid is clearly dependent not only 

on the substance but also on the vehicle.  
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Table XIII Distribution of compounds in pig skin expressed in µg and % for each sample: 

surface excess (W), Stratum Corneum (SC), epidermis (E), dermis (D), receptor fluid (RF), 

and the total amount in µg 

    W (%) SC (%) E (%) D (%) RF (%) D+E (%) ABS (%) 

 

Bet- PG 88.85 ± 3.90 5.21 ± 1.87 3.78 ± 1.34 0.48 ± 0.43 1.75 ± 1.38 4.26 6.01 

Bet Bet-cre  97.30 ± 0.75 1.43 ± 0.76 0.87 ± 0.28 0.33 ± 0.22 0.13 ± 0.12 1.2 1.33 

  Bet-oin  96.32 ± 0.70 2.06 ± 0.32 0.95 ± 0.39 0.49 ± 0.12 0.18 ± 0.13 1.43 1.61 

 

Clo-PG 88.12 ± 1.75 4.94 ± 2.75 3.84 ± 1.60 2.39 ± 1.81 0.71 ± 0.41 6.21 6.91 

Clo Clo-cre  95.91 ± 4.62 0.99 ± 1.64 0.86 ± 0.91 1.17 ± 1.78 0.07 ± 0.02 2.03 2.1 

  Clo-oin   89.72 ± 3.40 2.53 ± 3.10 2.12 ± 0.91 2.65 ± 1.53 3.03 ± 2.08 4.77 7.8 

 

Fra-PG 89.99 ± 4.06 4.25 ± 2.14 1.94 ± 0.61 1.33 ± 1.85 1.64 ± 2.31 3.27 4.91 

Fra Fra-cre  90.98 ± 0.40 1.77 ± 0.02 0.77 ± 0.02 0.69 ± 0.02 5.79 ± 0.22 1.46 7.25 

  Fra-oin  93.08 ± 3.06 1.69 ± 2.16 1.45 ± 0.84 0.80 ± 0.65 1.28 ± 0.17 2.25 3.53 

*ABS is the absorbed amount and represents the sum of E+D+RF 

 

For Bet, when it is applied in PG solution, the amount found in the receptor fluid is 

quite significant, whereas in the cream and ointment, the amount decreases. This is 

probably due to the enhancement effect of PG. Therefore, higher amounts of both E+D 

and E+D+RF for Bet are obtained for the PG formulation.  

Clo has a similar lipophilicity to that of Bet but a lower MW, and it is the most retained 

compound in the E and D as well as in the E+D+RF in all of the employed formulations. 

This higher accumulation of the substance agrees with the higher potency of Clo 

compared to Fra and Bet. The glucocorticoid receptors are located in the E and D, and 

hence, high amounts of Clo in both tissues can lead to a higher efficacy of this 

corticoid.  

Fra is the most hydrophilic compound and showed less affinity for the E and D. For 

example, the three formulations of Fra show higher amounts of the substance in the 

RF than in the upper layer, the D. This is clearly more marked for Fra-cre. This special 

behaviour is consistent in the three formulations and can be explained by the presence 

of the acetonide group in the D ring, which enhances the penetrability and the 

percutaneous absorption of this type of corticoid[113]. In summary, in Clo, Bet and Fra, 

the retention in the tissue (E+D) is always greater when PG is employed. Fra-cre 

contains a high amount of analyte in the RF, which leads to high absorption (E+D+RF) 

with higher systemic exposure. 

Therefore, comparing the drug penetration profiles and their physico-chemical 

properties, it can be concluded that the more hydrophobic compounds (Clo and Bet) 
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are present in higher amounts in the E+D, while the hydrophilic compound (Fra) is 

mostly present in the receptor fluid, which leads to higher percutaneous absorption. 

Additionally, it is important to note the effect of the vehicle. The main components of 

the commercial formulations are water, cetostearyl alcohol and other oily components 

for creams[114–116]and paraffin along with waxes without any water content for 

ointments[117]. Besides, it is important to note that Clo-cre, Clo-oin and Fra-cre also 

contain PG.   

The three compounds showed great differences when they were applied in the 

different formulations, proving that the vehicle is critical in regards to percutaneous 

absorption (Figure 21). Higher amounts of the substance are obtained in the epidermis 

and dermis when ointments are employed compared to creams. This is consistent with 

the general rule that the highest glucocorticoid efficacy is fulfilled with ointments 

compared to creams[118]. This fact is also related to the absence of water content and 

the presence of the waxes and petrolatum of ointments, which is believed to enhance 

the penetration of the substance due to the occlusive effect[119]. In view that oily 

formulations enhance the GC effect/penetration, ointments are mostly used in cases 

of severe dermal diseases and/or on areas with a large SC (such as the palms of the 

hands or soles of the feet).  

On the other hand the enhancement effect of propylene glycol can be discerned. For 

the three PG solutions, the distribution patterns are similar. The SC retains the highest 

amount of substance (about 5%); moreover, the amounts found in the E were also 

higher than with the other vehicles. This is not so clear for the amount in the dermis. It 

could be noted that the PG solutions show the highest amounts of corticoid in the E+D 

when compared with creams and ointments, mainly due to the important amount in 

the E. However, the influence that the degree of saturation may induce in the 

percutaneous absorption of the different vehicles, which has not been considered in 

this work, should be investigated. 
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Figure 21 Normalized amounts of betamethasone (Bet), clobetasol (Clo), flurandrenolide 

(Fra) applied in different formulations: propylene glycol solutions (PG), ointments (oin) 

and creams (cre).  

Results obtained in sections 5.1.2, 5.1.3 and 5.1.4 indicated the effect of PG acting as 

an enhancer of skin permeation. In the next section the effect of propylene glycol on 

skin modification is studied by ATR-IR to understand this fact. 

 

Summarizing, the influence of PG on the maximum amounts of the analyte in the SC 

and E and similar amounts of the analyte in the D for PG and ointments, with level 

being much lower for creams, should be pointed out. The penetration enhancement 

for Clo-oin and for Fra-cre in the receptor fluid is also observed.  This could be due to 

the presence of PG in these vehicles. 

Since the aim of these glucocorticoids is to act at the E and D, this study confirms the 

higher corticoid efficacy of Clo due to its higher presence in these skin layers. 

Additionally, propylene glycol and the ointments applied induced a higher penetration 

into these layers than the corresponding creams. 

The results compiled in section 5.1.4 are part of a work published in “Drug Testing and 

Analysis”  entitled  “In vitro penetration through the skin layers of topically applied 

glucocorticoids” (Annex 1) 

 

5.1.5. µFTIR study of skin propylene glycol disrruption. 

Propylene glycol (PG) has been used as a common solvent for many drugs in this 

thesis. PG acts changing the solubility of the compound in the formulation, but it may 

also act as a fluidizer of the intercellular lipid matrix, acting as skin enhancer.  
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Non treated skin and skin treated with PG with synchrotron-Based Fourier Transform 

Infrared microspectroscopy (µFTIR)(section 4.8.2) with the aim to study the skin 

alterations when submitted to propylene glycol. Non dermatomed porcine skin was 

cross sectioned and analysed with µFTIR after PG exposure as detailed in section 4.8.2.  

Skin spectrum is displayed in Figure 22. The two strong absorption bands at around 

1650 cm
−1

 (amide I) and 1550 cm
−1

 (amide II) are typical protein bands which arise 

mainly from C-O stretching and N–H bending vibrations, respectively, of amide groups 

of the peptide backbone in proteins[120]. The absorption bands from 3000 to 2800 

cm
−1

 are due to the C–H stretching motions of the alkyl groups present in both proteins 

and lipids. The signal linked to proteins is a broad band, rather weak compared to the 

lipids absorption which exhibits four fine peaks at around 2850 cm
−1

 (CH2 symmetrical 

stretching), 2920 cm
−1

 (CH2 asymmetrical stretching), 2870 cm
−1

 (CH3 symmetrical 

stretching) and 2955 cm
−1

 (CH3 asymmetrical stretching)[121]. A prominent band at 

1745 cm
-1

 related to the C-O stretching band of phospholipids, esters and 

glycerides[122] has been also detected. 

 

 

Figure 22 Baselined FTIR spectrum of skin. Lipidic region (3000-2800 cm
-1

) and the C-O 

stretching band (1745 cm
-1

) are shaded. 

 

Study of the 2800-3000 region 

The Area under the curves (AUCs) were calculated in the 2800-3000 cm
-1

 region in all 

the spectra to study how lipids are distributed in both cryosections (NT and PG). 

Combining the AUC values with the spatial information, the 2D images of the AUC 

distribution were reconstructed (Figure 23). 
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Figure 23 Spatial distibution of area under the curve between (AUC2800-3000) in non-treated 

(NT) and treated with propylene glycol (PG) skin cross sections 

Our data shows that for NT and PG, the AUCs are higher in the right part of the images 

which corresponds to the outermost part of the skin. This agrees with the described 

higher presence of lipids in the Stratum Corneum. Comparison of the NT images are 

compared against the PGs indicates that the treatment of propylene glycol in the skin 

increased the AUCs not only in the outermost region but also in the deeper layers.  

Moreover, the position and the band width of the lipid stretching bands at 2850 and 

2920 are sensitive markers of their chain conformational order (see section 1.1.1.1): 

the increased rotational motion of the alkyl chains during the orthorhombic–hexagonal 

transition and the introduction of gauche defects in the chains during the hexagonal–

liquid transition lead to broadening of the band and its shift to higher wavenumbers. 

To study the position shifts within our samples different studies were performed. 

The spatial information taken with this µFTIR was used to create images of the position 

shifts in the NT and PG samples. With this purpose in mind, the peak fitting method 

(section 1.2.4) was applied at 2850 (νS(CH2)) and at 2920 (νAS(CH2)) positions for all the 

spectral data to detect the respective position shifts.    
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Figure 24 Upper images contain 2850 cm
-1

 position variations for blank and PG mapped 

areas. Lower images contain 2920 cm
-1

 position variation for blank and PG mapped areas 

In Figure 24, the increasing position shift at 2850 cm
-1

 and 2920 cm
-1

 after propylene 

glycol treatment can be observed. The NT position values fluctuate between 2850 

(predominant in the outermost region) until 2855 (in the deeper regions) which is in 

accordance with the increasing lipid disorder in the dermis described in other works. 

When PG is applied the position values are mainly at 2855 and in some regions raise 

upon 2858. Moreover after PG treatment no progression of lipid disorder can be so 

clearly observed when going in depth into the skin. Similar information can be 

extracted regarding the position shift at 2920 in both samples. In the Blank values 

between 2923 are predominant in the image and smaller regions with values of 2926 

are observed. The PG treatment clearly increases the position shift to higher values, 

being values between 2926 and 2928 predominant in all the mapped area. 

To specifically study the position shifts in the SC, E and D, the CLS method (section 

1.2.4) was applied. Taking under consideration the microscopic image, one spectrum 

for each skin layer were taken as a reference spectrum and loaded for the CLS score 

calculations.  

The obtained scores, with values from 0 to 100, indicate the similarity between each  

sample spectrum against the three loaded reference spectra. Plotting these scores as 

NT 

NT 

PG 

PG 
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an image and overlying it with the microscopic image the distribution of each skin layer 

can be distinguished (Figure 25).  

 

  

Figure 25 CLS scores ploted in green (Stratum Corneum), red (epidermis) and blue 

(dermis) for the non treated (NT) and propylene glycol treated (PG) samples.  

In green, the Stratum Corneum is distributed in a narrow area on the outermost part 

of the skin. Epidermis (in red) meant a wider region under the Stratum Corneum. 

Finally, a small portion of the dermis was recognized in both cases (blank and PG) in 

the deepest region of the analyzed area. Both samples seemed to present the three 

layers reasonably distributed if considering the microscopic image. 

Hence, in view that the reference spectra were correctly assigned, the loaded 

reference spectra were analyzed to see their differences and to relate them with 

increased lipid fluidity caused by propylene glycol.  

The position shifts at 2920 and 2850 for all the 6 spectra: Stratum Corneum, epidermis 

and dermis for blank and PG samples; were analyzed using the peak fitting (Figure 26).  

NT PG 
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Figure 26 Classical least squares (CLS) loaded spectra of stratum corneum (green), 

epidermis (red) and dermis (blue) and the positions at 2850 and 2920. 

The results confirmed the shifts to higher values after PG treatment. Both positions 

were sensitive to the PG treatment and also were different between the different skin 

layers. In the three skin layers, when comparing PG against Blank, positions at 2850 

and 2920 increased. Moreover the increasing shifts are observed within each sample 

when going in depth: SC values are lower than E and D. Nevertheless, it is important to 

state that even that the different components were correctly assigned, to have more 

robustness in our results, more spectra should be studied.  

Hence, the spectra of the mapped areas were manually assigned to E or D comparing 

with the microscopic image. After elimination of the spectra with low quality, 69 

spectra were assigned to dermis treated with PG, 95 to epidermis with PG, 72 dermis 

non-treated and  101 to epidermis non-treated. Peak positions at 2850 and 2920 were 

obtained using a gaussian-lorentzian peak fitting in every spectrum. Then, averages 

and standard deviations of every sample were calculated and compiled in Table XIV. It 

is important to remark the increasing frequencies for the two bands at 2850 (νS(CH2)) 

and at 2920 (νAS(CH2)) indicating and increasing disorder of the lipids not only in the 

epidermis, but also more remarked in the dermis when the skin is treated with PG. 
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Table XIV Peak position at CH2 symmetrical stretching (νS(CH2)) and CH2 asymmetrical 

stretching (νAS(CH2)) and standard deviations of epidermis and dermis in treated  with 

propylene glycol (PG) and non-treated (blank) samples. 

 

Epidermis Dermis 

 
νS(CH2) νAS(CH2) νS(CH2) νAS(CH2) 

Blank 2852.35 ±2.74 2924.44 ±2.96 2852.58 ±3.53 2924.63 ±2.33 

PG  2853.31 ±2.54 2925.36 ±2.28 2854.33 ±2.13 2925.36 ±1.08 

 

We confirmed here the results observed in Figure 26. Increasing frequencies at both 

positions indicate increasing disorder of lipids not only in epidermis but also in the 

dermis after PG treatment. 

C-O stretching band at 1745 cm
-1

 

The peak analyzed at 1745 cm
-1

 corresponding to C-O stretching of lipids seemed to be 

predominant after the PG treatment in dermis and in epidermis. Not much information 

was found in this particular band and the effect that PG may cause. Therefore further 

analysis was performed. 

 

Figure 27 Spatial distibution of area under the curve between 1780-1700 (AUC1780-17000) in 

non treated (NT) and treated with propylene glycol (PG) skin cross sections 

The region between 1780-1700cm
-1

 was baselined and normalized (section 4.8.2). AUC 

for this band are calculated and plotted in Figure 27. Similar distributions than in 

Figure 23 were observed. As this specific band is related with the lipid content and the 

PG exposure, in both cases (NT and PG) the outermost region of the skin contains the 

highest AUC values. NT compared with PG showed that after PG treatment all the AUC 

values increased in all the skin depth. 
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This dataset was also handled by principal component analysis (PCA) for epidermis 

(Figure 28a) and dermis (Figure 28b). This technique is commonly used for data 

classification. It reduces the dimension of the data and extracts only the relevant 

information. The resulting principal components (PCs) represent the variance in the 

data set with decreasing order (PC1 means larger variance than PC2 and so on). The 

scores represent the original data in the new dimensional space spanned by the PCs. 

Hence, when plotting PC-1 against PC-2 the each spectrum is displayed as a score 

which carries information about the sample. 

 

 

Figure 28 Principal component analysis of epidermis (a) and dermis (b) at 1745 cm
-1

. 

Spectra are colored in red (non treated) and blue (PG). Upper part contains the 

representation of PC-1 against PC-2 of all the spectra. The spectra used for the PCA 

calculation are also displayed in the lower part. 

 

In our case, the PC-1 explained more than the 95% of the variation of our data in both 

cases. When representing the PC-1 against the PC-2, in epidermis and dermis it could 

be observed that the treated (blue) and the non-treated (red) groups were clearly 

sorted using the PC-1. This means than in this region we can clearly distinguish 

differences when skin is treated with propylene glycol. This fact can be also observed 

when the spectra of PG and NT samples are displayed together. We could observe that 

the 1745cm
-1

 band was more present after propylene glycol treatment and allowed 
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the differentiation of most of the treated or the non-treated in the epidermis (a) and 

moreover in the dermis (b) spectra. 

 

To sum up the alteration of the barrier function of propylene glycol includes affecting 

bilayer structure of the intercellular lipids. Based on numerous experiments[123], the 

action of solvents such as PG was attributed to a pure cosolvent effect. Maximizing the 

thermodynamic activity of a drug in the vehicle PG contributes to increased drug 

uptake into the skin [124]. However it is unlikely that only one mechanism is 

responsible for the enhancement of drug penetration, particularly for small molecules. 

The present study indicates not only an increase in disorder of lipid in epidermis and 

dermis after treatment with propylene glycol but modification of the C-O band 

attributed to phospholipids, glycerides and esthers in the upper regions of the skin but 

also in depth. 

The work carried in the synchrotron ALBA was possible thanks to a grant from the  

Consortium for the Construction, Equipping and Exploitation of the Synchrotron Light 

Sources (CELLS). 

 

5.2. Design of new lanolin synthetic membranes for in vitro 

methodologies 

Results obtained in section 5.1.3 demonstrate a very poor correlation between 

penetration of actives with different in silico and in vitro models. The key of these 

methodologies is the membrane used to obtain the permeation parameters. 

Therefore, membranes with permeability properties similar to the skin are seek. 

The structure of lanolin, which mimics the lipidic matrix of the SC by having a similar 

chemical composition, may offer a suitable strategy to achieve accurate modeling of 

the skin barrier properties by combination with synthetic membranes. It has been 

demonstrated that lanolin shares some lipidic compounds with the human SC such as 

cholesterol and its derivatives or some free fatty acids[125,126]. The presence of 

ceramides in lanolin fractions was reported[127]. Moreover, other physical properties 

are common such as the presence of lipids in the solid and liquid state at physiological 

temperature[128]. It is important to note that, with the WDS process[88], the resulting 

lanolin has more polar lipids with much human resemblance[129]. 

The main aim of this section is to obtain lanolin-based synthetic membranes to be used 

in skin permeation studies as models of mammalian skin. Lipid structural IR evaluation 
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and water permeation and penetration assays of three topical actives will be 

performed to determine the effect of lanolin on the membrane skin models. 

Lanolin synthetic membranes were formed with Strat-M and Nuclepore membranes 

with lanolin deposition as described in section 4.4. Permeation assays were performed 

to be compared against the original synthetic membranes (Strat-M and Nuclepore) and 

to the skin. 

5.2.1.  Membrane structural properties and permeability to water  

The lipidic conformation for pure lanolin, porcine skin, Nuclepore-lanolin and Strat-M-

lanolin was studied using ATR-FTIR spectroscopy (section 4.8.1). This technique is a 

non-invasive technique with a depth penetration of 1 µm that makes it suitable to 

investigate lanolin or SC without isolation from other layers. For this study, of 

particular interest are the bands associated with the alkyl chain of the lipids. 

Information about the conformational order-disorder of the skin lipids can be 

extracted by the analysis of the 2920 and 2850 cm
-1

 stretching bands. In the case of 

symmetric CH2 stretching, vibrations of 2849 cm
-1

, 2850 cm
-1

 and 2852 cm
-1

 indicate 

orthorhombic, hexagonal and liquid crystalline, respectively. An increase in the 

vibrational frequency generally indicates an increase in the disorder. A similar behavior 

was observed for the asymmetric CH2 stretching at 2920 cm
-1

, although the symmetric 

stretching is more sensitive to the conformation changes.  

In our case, the peak position in all the replicates was determined, and their average 

and standard deviation were calculated (Table XV). 

Table XV ATR-FTIR of CH2 symmetric and asymmetric stretching modes of pure lanolin, 

Nuclepore-lanolin, Strat-M-lanolin and pig skin. 

 
Lanolin Nuclepore-lanolin Strat-M-lanolin Pig skin 

λCH2 St. Sym (cm-1) 2848.5±0.01 2848.5±0.10 2848.5±0.03 2849.4±0.03 

λCH2 St.Asym (cm-1) 2917.9±0.07 2917.9±0.19 2916.3±0.03 2916.9±0.08 

 

All the analyzed samples have a vibrational frequency of approximately 2849 or less 

corresponding in all cases to orthorhombic conformations. Low standard deviations 

were obtained in all the samples. These values agree with the ones corresponding to 

the natural lipidic packaging of pig healthy skin. Therefore, the two proposed synthetic 

models present a highly ordered lipidic structure that could emulate the lipidic 

package of the SC. 

The transepidermal water loss (TEWL) is commonly used to measure membrane/skin 

barrier function permeability and integrity. The loss of water across the membrane is a 
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valuable clue to determine whether a membrane is suitable to test the skin absorption 

(section 4.3). In this work, the TEWL values and their respective standard deviation 

have been calculated for each membrane (n=9) before the formula application (Figure 

29). 
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Figure 29 Transepidermal water loss (TEWL) measured on skin, Strat-M, Strat-M-lanolin, 

Nuclepore and Nuclepore-lanolin. (*) indicates a P value ≤ 0.001 from the Kruskal Wallis 

test 

A low standard deviation was obtained in all the different membranes, including the 

skin. This is an important detail considering that it may imply homogeneity and 

stability not only on the skin biopsy but also on the commercial membranes (Strat-M 

and Nuclepore) and the presented lanolin-containing membranes from this work 

(Strat-M-lanolin and Nuclepore-lanolin). 

The skin biopsies are considered appropriate to be tested on Franz cell diffusion 

studies when values are equal to or below 15 g/m
2
/h [130]. Observing the values 

obtained from the commercial models, the TEWL values for Strat-M are lower than 

those for Nuclepore, indicating a better barrier function for Strat-M. However, their 

permeability is far away from the maximum accepted for the OECD guidelines. The 

TEWL results of Strat-M-lanolin and Nuclepore-lanolin indicate that the addition of 

lanolin brings an important reduction of the TEWL values, making the values 

comparable to those from the skin. Then, by adding lanolin to the original synthetic 

membrane, a significant reduction is observed, implying an increase in barrier 

function.  
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5.2.2. In vitro diffusion with Franz cell assembly of membranes 

In order to study the potential of the membranes to mimic the skin absorption, 

permeabilities of StratM, Nuclepore, Strat-M-lanolin and Nuclepore-lanolin and 

porcine skin are determined for three actives: Lidocaine, diclofenac sodium and 

betamethasone 17,21-dipropionate using the in vitro Franz cell diffusion methodology 

(section 4.3). 

These three actives were employed considering that they are commonly used in 

topical formulations as they were stated in section 5.1. Moreover, they have a 

different chemical nature (basic, acid and neutral respectively) and a different 

lipophilicity. The distribution coefficient (log 𝐷) at pH 7.4 and 5.5, as well as their 

molecular weight, were calculated in silico using the Pipeline Pilot software (Table XVI).  

Table XVI Molecular weight (MW) and octanol water distribution coefficients (𝐥𝐨𝐠 𝑫) at pH 

5.5 and 7.4 obtained from the Pipeline Pilot software  

Active (acidic nature) log 𝐷 at pH 5.5 log 𝐷 at pH 7.4 MW (g/mol) 

Lidocaine (basic) 0.61 2.33 234.34 

Diclofenac sodium (acid) 2.75 1.10 318.14 

Betamethasone 17,21-dipropionate (neutral) 3.96 3.96 504.59 

 

Log 𝐷 was determined at pH 5.5 because it is the pH of the skin surface, and log 𝐷 was 

determined at pH 7.4 because it is the pH of the receptor fluid and blood. As shown in 

Table XVI, betamethasone dipropionate, as a neutral active, showed no changes in 

log 𝐷 at the different pH values. By contrast, lidocaine (base) and diclofenac sodium 

(acid) showed opposite behaviors. At lower pH, the increase in the ionized form of the 

lidocaine caused a decrease in  log 𝐷, resulting in higher hydrophilicity. In the opposite 

case, the log 𝐷at pH 5.5 for diclofenac sodium was higher than that at pH 7.4 because 

the non-ionized form is predominant at acidic pH. This implies that, at pH 5.5, the 

log 𝐷 range is, from highest to lowest is betamethasone dipropionate> diclofenac 

sodium> lidocaine, with lidocaine the most hydrophilic compound. However, at pH 7.4, 

the log 𝐷 range is betamethasone dipropionate> lidocaine> diclofenac sodium, with 

diclofenac sodium the most hydrophilic compound. This could be important to predict 

or explain permeation of these actives through the different membranes. 

The three actives were formulated in propylene glycol at 2%, 0.5% and 1%. The passive 

diffusion of these three formulations was studied in Franz-cells systems  onto pig skin 

biopsies, lanolin-free synthetic membranes (Strat-M and Nuclepore) and lanolin 

synthetic membranes (Strat-M-lanolin and Nuclepore-lanolin). Table XVII contains 

normalised amounts after the HPLC analysis (4.6.1). 
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When pig skin biopsies were used, the amount of actives was evaluated in the Stratum 

Corneum (SC), epidermis (E), dermis (D) and receptor fluid (RF). Skin permeation (ABS) 

is considered the summed amounts from the epidermis, dermis and receptor fluid 

(Table XVII). 

When the actives were applied on the skin, lidocaine shows the highest permeation 

rates followed by diclofenac sodium. Betamethasone dipropionate was the less 

absorbed compound. As explained previously, log 𝐷 is an important parameter when 

studying diffusion across membranes. In the case of skin, log 𝐷 at pH 5.5 must be 

considered because this is the physiological pH in this tissue. When observing the 

log 𝐷 at pH 5.5 and molecular weight for the three actives, the absorption through the 

skin seems to be promoted by low molecular weights and low log 𝐷 values. Lidocaine 

(highly absorbed) is small and the most hydrophilic compound, followed by diclofenac 

sodium with a medium value of log 𝐷 and molecular weight. Betamethasone 

dipropionate is a lipophilic and heavy molecule poorly absorbed across the skin (Table 

XVII and Figure 30).  

 

Table XVII Normalized amounts (%) found in the Stratum Corneum (SC), epidermis (E) 

dermis (D) and receptor fluid (RF). In the case of artificial membranes, ABS belong to the 

amounts found in the receptor fluid. 

Normalized amounts (%) 
Lidocaine 

2% 

Diclofenac sodium 

0.5% 

Betamethasone 

dipropionate 

1% 

Skin 

SC 5.02±4.56 9.70±4.25 13.60±3.37 

E 4.61±3.63 7.34±2.22 4.30±1.58 

D 2.94±0.96 1.84±1.53 0.00±0.01 

RF 50.02±10.05 11.68±6.17 0.00±0.00 

ABS  57.58±7.63 20.86±9.24 4.30±1.57 

Strat-M ABS 26.48±8.14 49.19±4.23 0.78±1.36 

Strat-M-lanolin ABS 68.40±6.50 45.22±9.36 4.03±0.59 

Nuclepore ABS 98.37±2.10 94.56±0.45 8.69±2.16 

Nuclepore-lanolin ABS 90.81±2.84 29.58±9.78 10.54±0.99 

*ABS: the absorbed amount through the skin is considered to be the sum of epidermis, dermis and receptor 

fluid 

The permeation obtained using the commercial membranes confirms the deductions 

made when observing the TEWL values. We observed higher values of TEWL on 
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Nuclepore than in Strat-M that could imply higher permeation on Nuclepore. Hence, 

the three different actives were more permeated in Nuclepore rather than in Strat-M. 

These differences were hardly seen on betamethasone dipropionate because the lack 

of solubility in the acceptor fluid limits its diffusion through the membrane (Figure 30).  

When observing the actives absorption rank in Strat-M, unlike on skin, diclofenac 

sodium was more permeated than lidocaine. Similar results can be deduced for 

Nuclepore, but its low barrier (demonstrated observing the TEWL values) does not 

allow the differentiation between lidocaine and diclofenac sodium. These permeability 

changes between diclofenac sodium and lidocaine can be explained observing their 

respective log 𝐷. As discussed previously, the pH at the skin is 5.5, whereas the pH at 

the commercial membranes is that of the receptor fluid, pH 7.4. Observing their 

respective log 𝐷, diclofenac sodium was demonstrated to be more hydrophilic than 

lidocaine at pH 7.4. Therefore, the same deduction observed when the actives were 

applied on the skin can be extracted: the most hydrophilic compound, which, in this 

case is diclofenac sodium, is more permeated than lidocaine. Betamethasone 

dipropionate with the highest log 𝐷 remains the less permeated compound. 
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Figure 30 Normalized absorbed amounts (%) in skin, Strat-M, Strat-M-lanolin, Nuclepore, 

Nuclepore-lanolin for lidocaine(a), diclofenac sodium (b) and betamethasone 

dipropionate (c) 

 

In summary, the lanolin layer was added to Strat-M and Nuclepore synthetic 

membranes. Comparing their TEWL values against those from the lanolin-containing 

membranes, an increment of the barrier function as a result for the lanolin addition 

was observed. The permeation results obtained for the three actives showed this 

barrier enhancement. The addition of lanolin promotes the reduction in the absorption 

of the three substances.  

Lanolin addition to the artificial membranes caused a reduction of TEWL and a 

modulation of permeation of the three different compounds, leading to results much 
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similar those obtained with the skin. Lanolin previously demonstrated its ability to 

reinforce SC lipids, leading to improved skin barrier function in in vivo topical 

studies[129]. This work confirms its suitability regarding its use as an artificial 

membrane for permeation or percutaneous absorption models. 

Part of the studies to prove similarity between the lipid matrix and lanolin wich are 

published in ”Skin Pharmacology and Physiology” entitled as “Solvent-Extracted Wool 

Wax Thermotropic Properties and Skin Efficacy” (Annex 2) 

The results from section 5.2 have been published as a research paper called “Lanolin-

Based Synthetic Membranes as Percutaneous Absorption Models for Transdermal Drug 

Delivery” in Pharmaceutics-MDPI (Annex 3). 

Besides these membranes and results  have been protected with a Patent (Annex 4) 

 

5.3. Comparison of in vivo stripping, in vitro permeation study and 

confocal Raman spectroscopy of resveratrol 

The objective of the present work is to examine and compare the skin penetration of 

an antioxidant such as resveratrol (Res) using in vivo and in vitro methodologies and 

applying also a spectroscopic technique such as confocal Raman microscopy with the 

same purpose.  

In a previous work, the in vitro percutaneous penetration using Franz diffusion cells 

was evaluated to assess compound delivery into the different layers of the skin (SC, 

epidermis and dermis) as well as into the receptor fluid when the compound applied 

topically on porcine skin[131]. Then, two other methodologies are presented in this 

doctoral thesis to study permeability of Res; An in vivo assay minimally invasive in 

which the SC in sequentially substracted with adhesive strips (section 1.2.3) and a 

confocal Raman microscopy (CRM) (section 4.7.1). These techniques were used to 

determine the penetration profile of resveratrol to be compared with the results of an 

ex vivo dermatomed porcine skin mounted in a Franz diffusion cell for 20h (section  

4.3).  

5.3.1. Percutaneous penetration of resveratrol by in vivo stripping 

In this work, the percutaneous penetration of resveratrol was determined in vivo on 

human skin. For these experiments, an aqueous-ethanolic solution (70:30) was 

selected as the simple application vehicle to dissolve the resveratrol to be used at the 
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5% (w/v) concentration. The in vivo penetration of resveratrol into the human skin was 

obtained using the stripping methodology (section 1.2.3), based on the successive 

extraction of the SC layers by consecutive stripping with adhesive tapes[132] described 

in section 4.5. 

The content of Res removed with the tape strips was quantified by triplicate with HPLC 

measurements (section 4.6.1) after methanol extraction of the combined groups of 

strips from 1–5 and 6–10 strips. The concentration of resveratrol obtained in the 

combined tapes, as a function of the strip number, is shown in Figure 31(expressed in 

percentage) and Table XVII (expressed in µg/cm
2
), along with the mean values. 

 

Figure 31 Concentration profiles of resveratrol (Res) from strips 1 to 5 and 6 to 10 in the 

SC in vivo, expressed as a percentage of the applied dose detected 

Table XVIII Amount of resveratrol detected in the combined tapes for each volunteer, 

expressed in µg/cm
2
 

Volunteer 1 2 3 4 5 6 Mean ± SD 

Strips 1–5 3.99 12.17 1.89 8.61 8.24 19.72 9.10 ± 6.35 

Strips 6–10 1.06 3.11 0.83 3.45 3.63 0.83 2.15 ± 1.38 

Total amount (µg/cm2) 5.05 15.28 2.72 12.06 11.86 20.55 11.25 ± 6.56 

  

Taking into account the differences observed among the volunteers from Figure 31, 

the mean resveratrol recovery was 4.27 ± 3.35% (11.25±6.56 µg/cm
2
), and the majority 

was present on strips 1–5.  

The amount of SC extracted by the adhesive tape strips was dependent on a variety of 

factors [92], such as the anatomical site, subject age, and time of year. The quantity of 
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cells in the layers[133] and the thickness of the SC[134] change with the anatomical 

zone, corresponding to the changes in the composition and amount of lipids. External 

factors can also influence the quantity of the SC extracted by the stripping method. 

The mode of extraction from the skin, the pressure time on the forearm skin and the 

presence of topically applied substances are external factors[135] to take into account. 

In this work, efforts were made to control the intrinsic variability by carrying out the 

assays during the same time of year (over 2 days) for the group of volunteers and by 

using only the same area of the arm (the volar forearm). To take the external factors 

into consideration, the adhesive strips were attached to the skin surface with constant 

pressure and all the assays were carried out by the same technician. Despite 

considering the above factors, the amount of Res obtained showed a high variability. 

Moreover, the major amount (77%) of the penetrated resveratrol was localized to the 

upper layer of the SC (strips 1–5), and the compound detection decreased with the SC-

depth because smaller amounts of resveratrol were extracted and less SC tissue were 

removed by the tape strips from the deeper layers. 

5.3.2. In vivo stripping and in vitro Franz diffusion cells correlation results 

In vivo studies are essential assays for a more realistic evaluation of the skin 

permeation of topical applications. However, the usage of skin biopsies  with in vitro 

Franz diffusion cells is an alternative to in vivo methods. This in vitro method has been 

fully described in the previous sections (1.2.2.1). In a previous study[131], a specific in 

vitro percutaneous absorption was carried out to obtain the percutaneous profile of 

Res in the porcine skin. Figure 32 shows the comparison of the mean values from the 

in vivo study with the percutaneous absorption in vitro, expressed as a percentage of 

the applied amount recovered (%). 
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Figure 32 Percutaneous absorption of resveratrol in vitro expressed as a percentage of the 

amount detected in the different skin layers [Stratum Corneum (SC), epidermis (E), dermis 

(D)] and the receptor fluid (RF). The results were compared to the mean value obtained 

from the SC layer by the stripping method 

The results indicated that Res was located mainly in the SC layer and the viable 

epidermal layer. Resveratrol is immediately metabolized in the body[136]; thus, a 

topical administration could be an efficient option for its application to benefit the skin 

while avoiding the systemic presence of the compound. Other authors had established 

the permeation data of Res using different topical formulations[137]. The results 

obtained also indicated higher amounts of the compound in the skin than are observed 

from delivery at the systemic level. Therefore, the low capacity of percutaneous 

penetration observed for Res (0.6% skin absorbed[131]) may confirm its use as an 

ingredient in cosmetic products. 

The results obtained in vivo demonstrate that Res penetrates the SC layers, 

corroborating the results obtained in vitro. The percentage of Res obtained in the SC 

layer from the in vivo permeation (4.27 ± 3.35% of the applied dose) was similar to 

(not significantly different) that in vitro (3.36 ± 2.51% of the applied dose). 

5.3.3. Percutaneous penetration of resveratrol by CRM 

The CRM (section 4.7.1) technique was applied to obtain the spectra of Res and the 

non-treated porcine skin. Both spectra are compiled in Figure 33 and were obtained in 

the 100–3200 cm
−1

 region. 
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Figure 33 Raman spectra (100–3200 cm
−1

) of untreated pig skin acquired at the skin 

surface (a) and Res (b) 

The spectrum of the porcine membrane shows different bands that are distinctive for 

the lipids and proteins of SC layer, for example, the ring-breathing mode in Phe is 

shown at 1004 cm
−1

, amide I at 1650 cm
−1

, lipids at 2820 cm
−1

 and protein (keratin) at 

2940 cm
−1

. In Figure 35, the band at 995 cm
−1

, and the overlapped 1610/1640 cm
−1

 

pair detected in the spectrum of Res, can be used to follow Res permeation into the 

skin. The other peaks from Res, such as the ones in the 1003 cm
−1

 region, are as a 

result of the aromatic ring-breathing mode, and the ones in the 1610 cm
−1

 region are 

due to conjugated C=C bonds and ring-stretching modes. 

Res was topically applied to dermatomed pig skin mounted in a Franz-type cell (section 

4.3). After 24 h of exposure five tape strips were used to remove the excess compound 

from the skin surface. Afterwards, successive confocal Raman spectra from the applied 

skin were obtained every 7 µm to a final depth of 49 µm in the 600–2300 cm
−1

 region. 

The spectral series are shown in Figure 34. 
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Figure 34 Illustration of spectral changes obtained from the pig skin following the 

application of Res, at different depths. The top spectrum was collected at the surface of 

the skin, while the bottom one was collected 49 µm below the surface 

The spectral signals from both the skin and the applied Res compound are shown. The 

perception of the peaks in the 1610/1640 cm
−1

 region from the SC surface to a depth 

of ~49 µm demonstrated the penetration of Res to 49 µm into the skin. Modifications 

in the C=C peak regions and amplitudes are noted with the depth, as shown in Figure 

34. The results show the presence of Res in the SC compartment and in the viable 

epidermis. Relative Res concentrations were obtained from the Raman profiles, 

following the method described by Caspers et al. [138]. To rectify the variability of the 

absolute Raman intensity, which diminishes at the deeper levels of the skin, the 

corresponding coefficients were normalized to the Raman keratin signal (~2940 cm
−1

). 

Normalization to the Raman Phe ring peak from the SC layer (~1004 cm
−1

) was not 

considered because the intensity of this band increases due to the contribution of the 

vibration of Res at 995 cm
−1

 giving a signal that is superimposed with the skin Phe ring 

breathing[139]. The normalization approach revealed the amount of Res in the SC and 

viable epidermis relative to the amount of keratin. The depth concentration profiles of 

Res are presented in Figure 35. The highest concentration of the compound was 

obtained near the skin surface. The concentration decreased at a depth of 

approximately 20 µm. It can be observed that Res concentration was constant 

between the depths of 20–49 µm, corresponding to the viable epidermis. 



RESULTS AND DISCUSSION 

106 

 

Figure 35 Representative distribution profiles of Res in the porcine skin from 7 to 49 µm 

 

In this section 5.3, different in vitro and in vivo methodologies were used to assess the 

skin permeation of the antioxidant resveratrol after topical application. A depth 

concentration profile of resveratrol was obtained by CRM. The presence of bands in 

the 1610 cm−1 zone indicated that resveratrol permeated to a minimum of 50 µm. The 

results demonstrated that the percentage of resveratrol obtained from the in vivo 

permeation assay was similar to that obtained in vitro using the Franz cell system. 

The findings reported in the present study indicate the suitability of Raman microscopy 

and in vitro/in vivo percutaneous absorption procedures for the evaluation of 

resveratrol skin permeation. The active compound retained within the skin, especially 

in the SC, after topical administration may be an effective treatment for the mitigation 

of free radical exposure. 

This work is part of a research publication published in the Archives of Dermatological 

Research entitled “Skin permeation and antioxidant efficacy of topically applied 

resveratrol” (Annex 5) 

 

5.4. Confocal Raman spectroscopy of caffeine penetration on skin  

The combination of Raman spectroscopy with confocal microscopy (confocal Raman 

microscopy) is an optical technique to provide qualitative information about the 

biochemical composition of the skin, such as the lipid and water contents and the 

effects of moisturising factors [22, 23] . Moreover, the permeation profile of an active 

through the skin layers and its possible interactions with endogenous skin components 

can be studied with this technique (section 1.2.4). 

https://static-content.springer.com/image/art:10.1007/s00403-017-1740-5/MediaObjects/403_2017_1740_Fig4_HTML.gif
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Following, two CRM studies are described to obtain a quantitative evaluation of 

caffeine in SC and epidermis (section 5.4.1) and to evaluate the distribution of caffeine 

in the hair follicles using different mapping methodologies (section 5.4.2). Caffeine was 

chosen because it is one of the standard models commonly used as a hydrophilic 

tracer to evaluate skin absorption and penetration via traditional in vitro and in vivo 

methods[140,141] as well as in CRM studies[142]. 

 

5.4.1.  Percutaneous penetration of caffeine by CRM  

The present study seeks to optimize a methodology for completely quantitative 

measurement of the amount of caffeine (Caf) at different depths. A semi-quantitative 

depth profile was obtained with normalization of the Raman intensities. These ratios 

of Raman intensities were correlated with the caffeine concentration using an external 

calibration curve. The calibration curve was carried out with porcine skin incubated in 

different concentrations of caffeine; afterwards, each skin sample was analyzed by 

CRM and HPLC-DAD to determine the relation between the Raman signal intensity and 

the caffeine concentration per skin mass and to create a depth profile. These 

correlation curves allow full quantification of the caffeine in skin from Raman intensity 

ratios at different depths. Raman data acquisition and quantitative detection of 

caffeine are described in section 4.7.1. 

 

5.4.1.1. Quantitative CRM methodology optimization 

The porcine skin was incubated with different caffeine solutions and the skin samples 

were analyzed by CRM. Then skin samples were extracted and analyzed by HPLC to 

obtain correlation between the two techniques. 

Analysis of caffeine in epidermis by HPLC 

Caffeine (Caf) was extracted from epidermis (Ep) samples after 20 hours of incubation 

in solutions at different Caf concentrations. The extracted samples were analysed by 

HPLC-DAD (section 4.6.1) and the results are shown in Table XIX. As it can be seen, the 

percentage of absorbed caffeine per tissue mass is very similar in all the samples. The 

mean percentage of Caf recovery per mass of Ep (mg) was 0.100 ± 0.009%/mg Ep, 

demonstrating the low variability in caffeine absorption due to its similar penetration 

into tissues from different donors. 
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Table XIX Amounts of caffeine absorbed in the extraction of Ep after 20h incubation into 

caffeine solutions (expressed as µg Caf/mg Ep) and percentage of caffeine absorbed 

Solution of Caf concentration (µg/mL) µg Caf/ mg Ep  % Caf absorbed per mg Ep 

10.2 12.648 0.083 

5.0 7.711 0.104 

3.1 4.481 0.104 

1.7 2.497 0.105 

0.71 1.025 0.098 

Mean ± SD   0.100 ± 0.009 

 

Analysis of caffeine in epidermis by CRM 

To monitor a compound by CRM analysis, it is necessary to identify the Raman bands 

of the exogenous compound in the matrix correctly. Skin is a complex tissue containing 

multiple components that present Raman signals. Porcine skin was used in this CRM 

work as a substitute tissue for human skin because of similar permeability. Raman 

studies demonstrated the same band assignments in both types of skin, indicating the 

similar spectra of porcine and human skin[50,142]. The endogenous Raman peaks of 

skin can interfere with detection of the tested compound. The caffeine molecule 

presents defined Raman bands that permit its differentiation from skin components. 

Figure 36 presents the Raman spectra of caffeine (Caf), Ep incubated in caffeine 

solution (Ep+Caf) and untreated porcine Ep. 
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Figure 36 Raman spectra of caffeine (Caf), Ep incubated in caffeine solution (Ep+Caf) and 

untreated porcine Ep. 

The Ep spectrum shows various bands that are specific to skin, for example, the CC 

vibration mode of aromatic amino acids (AA) at 1004 cm
-1

 and the NC=O deformation 

in amide I (AI) at 1660 cm
-1

[142]. The caffeine band at 555 cm
-1

, assigned to the O=CN 

deformation mode, was selected as a marker because it has enough intensity and does 

not overlap with other bands from skin components. The spectrum of Ep with caffeine 

confirms the detection of the compound in the skin due to the clear identification of 

the Raman peak. The caffeine band at 1331 cm
-1

 was dismissed because of its overlap 

with the Raman bands of skin, as shown in the Ep+Caf sample (Figure 36).  

The variability in Raman spectra was estimated in the different Ep donors (data not 

shown). Despite the inter-individual variability in the intensity of the Caf peak in the 

spectra, the results did not indicate any significant differences between donors, as in 

previously investigations[143]. The absolute intensity of Raman bands decreases at the 

deeper levels of skin because of the lower resolution inside the sample. To rectify this 

Raman variability, the selected band of a compound can be normalised to a skin peak 

as an internal reference. Skin presents different peaks that can be used as a 

reference[138,142]. In this study, the caffeine peak of Ep samples (555 cm
-1

) was 

correlated to the aromatic amino acids and the amide I peaks (1004 cm
-1

 and  1650  

cm
-1

, respectively). Normalisation of the Caf peak to the Raman band of skin at 1290-

1311 cm
-1

 was not considered because the intensity of this skin band is compromised 

by the contribution of the caffeine vibration at 1305 cm
-1

. The variability of the 

normalised data from Raman signals was analysed along the depth. Figure 42 shows 

the ratio of the peak of caffeine (555 cm
-1

) with the two skin reference peaks (AA and 

AI) acquired at different depths. 
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Figure 37 Ratio peaks of caffeine (CAF) with the two internal references: aromatic amino 

acids (AA) at 1004 cm
-1

 and amide I (AI) at 1660 cm
-1

 at different skin depths 

The Ep surface position in spectral data was selected considering the aromatic amino 

acid peak at 1004 cm
-1

, which had the maximum intensity[144]. The Raman peak ratios 

of Caf vs aromatic amino acids and amide I remained constant at various Ep depths for 

each concentration of caffeine. This horizontal correlation demonstrated that the peak 

ratio is independent of the Ep depth, counteracting the attenuation in the Raman 

intensity. Low variability was associated with the normalised data of CAF/AA and 

CAF/AI ratios at each depth for all concentrations, as shown in Figure 37.  

 

Correlation of caffeine from HPLC/CRM analysis 

The ratio intensities (CAF/AA and CAF/AI) could be related to the concentration of Caf 

quantified by HPLC. The relation between both experimental data values permits a 

correlation between the CRM data and the quantitative amount of the compound. To 

establish a correlation between the normalised ratios and the caffeine concentration, 

Raman ratios were plotted versus the amount of caffeine (µg Caf/mg Ep) determined 

by HPLC analysis. The correlation is shown in Figure 38 for both cases. 
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Figure 38 Correlation between the Raman peak ratios obtained by CRM versus caffeine 

amount per mass of E determined by HPLC in different E depths 

Despite the dispersion in the plotted results due to the intrinsic variability of the skin 

samples, a mean linear correlation was obtained for both ratios. Linear regression 

equations for the experimental data were obtained with a good correlation, 

demonstrating that the relation for both signals was independent of Ep depth. 

Linear regression between the normalised ratios of caffeine and the amount of 

compound (µg Caf) contained in the Ep samples at different caffeine concentration 

enables quantification of the compound with skin profile data. Our study analysed 

caffeine in the SC and viable epidermis at depths up to 35 µm. These results 

corroborate the findings of Franzen et al.[143], even though those authors detected 

the compound only in an isolated SC. The obtained linear regression results were used 

to evaluate the penetration profile of Caf in an in vitro percutaneous study. 

 

5.4.1.2. Percutaneous penetration of caffeine determined by CRM 

For in vitro percutaneous penetration experiments, 20 µL of aqueous-ethanolic 

solution containing 5 % caffeine was applied to dermatomed porcine skin deposited in 

a Franz static diffusion cell. After 20 hours, the excess compound on the skin surface 

was removed with gently pressing of a tape strip. Afterwards, successive confocal 

Raman spectra were obtained every 5 µm to a final depth of 35 µm. The spectral series 

is shown in Figure 39. As in the Ep sample, the skin surface was considered the point at 

which the signal intensity of aromatic amino acids at 1004 cm
-1

 was maximal. 
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Figure 39 Illustration of spectra obtained of pigskin following the application of caffeine 

solution, at different depths (0 to 35µm). The top spectrum was collected at the surface of 

the skin, while the bottom one was collected 35 µm below the surface of the skin 

The presence of the peak at 555 cm
-1

 corresponding to caffeine demonstrated the 

penetration of this compound. The results show the presence of caffeine in the SC and 

in the viable epidermis. Relative caffeine concentrations were determined from Raman 

data using the aromatic amino acid and amide I bands of skin. The relative 

concentrations as a function of the skin depth represent the qualitative penetration 

profile of caffeine in skin. The semi-quantitative penetration profile of caffeine is 

plotted in Figure 40. 

 

 

Figure 40 Semi-quantitative penetration profiles of caffeine into the pig skin determined 

by CRM. Profiles were obtained for each internal skin reference 

As can be seen, the highest concentration of compound was detected close to the skin 

surface. The concentration appeared to level off at a depth of approximately 10 µm. 

The results showed that the caffeine concentration was constant between 10 and 35 
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µm, which are the depths corresponding to the viable epidermis. The two semi-

quantitative profiles obtained from the two internal skin references are qualitatively 

similar, but have different peak ratio levels due to the variability in the Raman band 

intensities of caffeine and skin components.  

The use of CRM for quantitative measurements requires a correlation between the 

Raman signal and the concentration of caffeine to convert the semi-quantitative data 

to quantitative data. In the previous experiment, we established a linear correlation 

between caffeine detected by CRM and the caffeine concentration quantified by HPLC. 

The semi-quantitative data of caffeine can be transformed to a quantitative 

penetration profile by applying the linear correlations for the Raman ratios and Caf 

concentration shown in Figure 38. The use of the CAF/AA and CAF/AI ratios in each 

linear regression equation provides the absolute value of caffeine at the different 

depths. Figure 41 presents the profiles for the absolute amount of caffeine in pig skin 

considering both internal skin references in the Raman data. As can be seen, the 

quantitative profile obtained from the CAF/AA ratio is close to the profile from the 

CAF/AI ratio, equalising the effect of the Raman signal. 

 

Figure 41 Quantitative penetration profiles of caffeine obtained from semi-quantitative 

data and linear correlation Raman-Caf concentration 

Until now, most studies carried out using the CRM technique presented semi-

quantitative results. Active compounds of dermo-pharmaceutical formulations applied 

in vivo can be analysed by CRM, a non-invasive method. Quantitative determination of 

compounds could be envisaged after in vivo evaluation following the CRM protocol 

presented in this work. More investigations are necessary with a wide range of 

compounds and experimental conditions in order to establish the correct and specific 

protocol for each case.  
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Summarizing, an experiment has been carried out to validate the use of confocal 

Raman microscopy to obtain a quantitative profile of the skin penetration of caffeine. 

A linear correlation between Raman signal ratios (ICAF/ISKIN) and the Caf concentration 

(µg Caf/mg Ep) obtained by HPLC was determined. Next, a semi-quantitative and even 

a quantitative depth profile of the Caf penetration in porcine skin was obtained by this 

technique. The transformation to quantitative data permits equalisation of the 

fluctuation of Raman data, providing a representative absorption profile.  

The presented procedure relates the Raman data and the caffeine concentration per 

skin mass. The findings provide further support for the application of CRM to the study 

of the drug disposition in skin via this non-invasive technique for direct quantification 

of a drug in skin. 

The results from section 5.4.1 are now under revision in the Archives of Dermatological 

Research entitled as “Caffeine delivery in porcine skin: a confocal Raman study”  

 

5.4.2. Imaging of follicular penetration of caffeine 

The trans follicular route for drug administration into the skin has gained attention 

mainly driven by the advent of nanoparticle-based delivery systems that facilitates the 

absorption into the hair follicle. Nevertheless, the study of the follicular penetration is 

challenging as it requires high spatial resolution and molecular sensitivity to the 

applied drugs. A suitable technique to fulfill this need is confocal Raman microscopy 

(CRM), which can combine the spectral and the spatial information in order to be used 

for hyperspectral imaging. Besides the spectroscopic analysis of the individual chemical 

composition, CRM offers the possibility of imaging by scanning the sample, thus, 

facilitating the visualization of spatially resolved component distribution.  

Comparison of the usefulness of Gaussian-peak fitting, classical least-squares (CLS) and 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) models to provide 

semi-quantitative and spatially resolved information about the distribution of caffeine 

into the hair follicle is presented. Moreover, the differentiation of different 

constituents existing in the cryosections is achieved. 

Caffeine is applied to the non-dermatomed ear skin in two different formulations: 5% 

w/v in water: ethanol solution (50:50) (Caf-Aq) and 1.4mg/mL of caffeine nanoparticles 

coated with PVP in water (Caf-NP). Cross-sections containing a hair follicle of Caf-NP 

and Caf-Aq treated skin as well as a non-treated were studied. The followed procedure 

is detailed in section 4.7.2. 
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5.4.2.1. Reference component spectra 

Several components are observed in the mapped cryosections. First, their spectra were 

acquired. Figure 42 and Figure 43 show the pre-processed spectra of the reference 

components such as intrinsic and extrinsic skin components.  

Noticeable differences between the different tissue spectra (SC, hair, epidermis and 

dermis) can be observed. A major difference recognized in the hair spectrum is the 

Sulphur content, which is indicated by the relatively higher intensities of the S–S-

related band around 510–530 cm
-1

. This higher amount of sulfur is due to the higher 

amounts of sulfur-containing amino acids (cysteine) from the hair’s hard keratins. In 

the hair, 7–8% of the amino acids are cysteine, whereas in the SC (another highly 

keratinized tissue) it represents only the 0.5%[145]. The higher content of keratin in 

the hair is also disclosed by the higher amide I band at 1650 cm
-1

 compared to the 

other spectra. 

The SC shows some particularities compared to the hair, not only on the lower 

intensities of the bands related to the sulfur content previously detected (505 and 

1650 cm
-1

), but also for the presence of a prominent bank at 1064 cm
-1

 related to the 

skeletal C–C stretch of lipids[146]  

The dermis spectrum can be differentiated from that of the epidermis by the two 

double bands in the 815-850 and 920-940 cm
-1

 range. This pattern is representative for 

collagen[147], which is localized in the dermis in significantly higher quantities than in 

other tissue regions[148]. On the other hand, the amide I band associated to keratin 

(1650 cm
-1

) is higher for the epidermis than for the dermis, probably because of the 

higher keratinization of the tissue. 

The selected caffeine labelling band as in the previous section (5.4.1) is 555 cm
-1

 which 

is assigned to the δ C=O–N deformation modes[149](Figure 43). Regrettably, this band 

is slightly overlaid with one prominent band at 550 cm
-1

 attributed to Si-O-Si bending 

vibrations from the microscope slide glass. This band overlapping may cause difficulties 

to assign the spectral differences in this region to the presence of caffeine or glass if no 

further spectral analysis is performed. 
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Figure 42 Collected reference spectra of hair (blue), SC (green), epidermis (red) and 

dermis (purple) 

 

Figure 43. Collected reference spectra of caffeine (green), glass cover slide (blue) and 

cryospray (red) 
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5.4.2.2. Mapping methodologies for caffeine distribution 

After the discussion of the spectral differences from the different cross-section 

components, Peak fitting, CLS and MCR-ALS spectral analysis are studied to follow  the 

caffeine distribution within the mapped area. 

Peak fitting methodology 

The peak fitting methodology was used in the 555 cm
-1

 position to study the caffeine 

distribution in both hair follicles. Combining the amplitude values with the spatial 

information, images of the amplitudes within the sample are obtained. No trace of 

caffeine were apparently detected in in Caf-Aq (Figure 44) or treated with Caf-NP 

(Figure 45) hair follicles.  Large and uniform regions with high values of amplitude are 

detected in both hair follicles. When comparing with the microscopic images,  these 

bands are easily be attributed to the glass. The peak fitting in this region seems to be 

useless to detect caffeine’s distribution. Caffeine’s band at 555 cm
-1

 is partially 

overlapped with glass wider band at 550 cm
-1

, therefore the peak amplitudes of glass 

interfere caffeine’s detection with this method. 

 

Figure 44. Peak amplitude labelling at 555 cm
-1

for the Caf-Aq treated hair follicle 

 

Figure 45. Peak amplitude labelling at 555cm
-1

 for the Caf-NP treated hair follicle 
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Classical least-squares regression methodology (CLS) 

After processing the spectral data with CLS to identify the component distribution, a 

false color Raman image is obtained, allocating each pixel with a color representing the 

contribution of the reference Raman spectra. For both of the analyzed hair follicles all 

spots with spectra representing the dermis are shown in red, epidermis in yellow, hair 

in brown, SC in green, cover-slide glass in navy blue, caffeine in pink and cryospray 

drops in light blue. 

The loaded reference spectra were pre-processed as described in section 4.7.2. This 

approach displays differences in intensity scores and allows the spatial association of 

multiple components simultaneously in one pixel. Therefore this procedure facilitates 

a more detailed depiction of the distribution of the different components.  

 

Figure 46 CLS scores for the Caf-Aq treated hair follicle. Scores are plotted in: (red), 

epidermis (yellow), hair (brown), SC (green), cover-slide glass (navy blue), caffeine (pink) 

and cryospray drops (light blue) 

 

Figure 47. CLS scores for the Caf-NP treated hair follicle. Scores are plotted in: (red), 

epidermis (yellow), hair (brown), SC (green), cover-slide glass (navy blue), caffeine (pink) 

and cryospray drops (light blue) 

 

Comparing Figure 46 and Figure 47 with Figure 48 and Figure 49, respectively, the hair 

is correctly assigned in both cryosections. The epidermis and the dermis can be clearly 

differentiated in two different layers. The distributions of the three compounds (hair, 
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epidermis and dermis) fit the distribution in the microscopic image when compared 

side by side. 

The CLS analysis has more difficulties to correctly map the distribution of the SC. In 

Figure 46, the obtained scores are distributed not only on the skin surface, but also 

scattered on the hair and on the deepest region of the hair follicle (left side in Figure 

46). The SC is correctly marked in the infundibulum and external SC. After the 

infundibulum, the scores of the SC are rather discontinuous and less intense in both 

cryosections. One possible explanation could be that whereas in the upper 

infundibulum the epitelious is covered by intact SC, the barrier of the lower 

infundibulum is interrupted as the differential patter switches from epidermal to 

tricholemmal differentiation[22]. Therefore, the collected spectra in these regions are 

gradually changing to more “epidermis-like” features. The SC scores are also plotted 

broadly nearby the cryospray drops, in the deeper area of the mapped area. It should 

be remarked, that in this area also other components are not well allocated. The 

scores of hair, SC and glass are mapped in this region but none of these components 

are observed nearby in the microscopic image. Therefore, it seems that the cryospray 

drops may interfere the measurements, clogging up the correct component 

identification in this area. The caffeine is observed mainly surrounding the upper part 

of the hair in the image but also accumulated in the SC of the outer part of the follicle. 

It should be noted that the hair follicle was applied with a caffeine solution in water. 

Hereby, the absence of permeation enhancer in the formulation would suggest that 

caffeine will have strong difficulties to go through the skin or the hair follicle. 

Therefore no significant amounts of caffeine are expected in the deeper layers of the 

skin. 

On the other hand, in the Caf-NP treated hair follicle Figure 47 the epidermis and 

dermis are well assigned. The SC is also distributed near the infundibulum and the skin 

surface. Nevertheless, some areas are difficult to interpret, especially on the upper-left 

side of the image. No considerable amounts of caffeine are detected surrounding the 

hair, the main caffeine contributions are located in the formulation drop on the right 

side of the image. 
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Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

The same areas analyzed by CLS are also analyzed with MCR-ALS. The resulting caffeine 

scores are plotted in red superimposed to their respective acquired microscopic 

images (Figure 48 and Figure 49). The spectrums of glass, dermis, epidermis, SC, hair, 

caffeine and cryospray drops were employed as starting estimates for the calculations.  

When the caffeine scores of the Figure 48 are examined, similar conclusions 

concerning the caffeine distribution are observed comparing to the CLS scores. The 

caffeine scores for the MCR-ALS analysis show that the caffeine is mostly allocated 

surrounding the outer part of the hair. Also the caffeine is distributed near the upper 

infundibulum and the outermost SC from the skin surface. Moreover the diffusion of 

caffeine from the SC to the deeper layers of the dermis can be observed. In regards to 

the caffeine scores nearby the cryospray drops this area showed previous 

misidentification therefore they can be considered as artifacts. 

 

Figure 48. MCR-ALS scores for caffeine (red) in the Caf-Aq treated hair follicle, overlaid on 

2 subsequently recorded stitched microscopic images with 10× magnification. 

 

Figure 49. MCR-ALS scores for caffeine (red) in the Caf-NP treated hair follicle 

Relating to Figure 49, the higher values of MCR-ALS caffeine scores are distributed in 

the formulation drop and in one thinly area from the stratum corneum. These caffeine 

scores  distribution is also coincident with the scores obtained in the CLS analysis.  
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To sum up, different spectroscopic analysis to study caffeine’s distribution into the hair 

follicle when vehiculized in two different formulations were applied. Cross sections of 

the tissue were mapped and analyzed with CRM. CLS and MCR-ALS analysis give to a 

similar distribution of caffeine into the hair follicle with much better resolution than 

peak fitting. Both methodologies seemed to be useful when the active and the skin 

bands are overlapped. Nevertheless, the spectroscopic analysis should be further 

studied to ensure that the resulting distribution is linked only to the active and not to 

areas with noise or higher fluorescence. 

The work from section 5.4.2 was carried out during a 8 month stay in the “Center of 

Experimental and Applied Cutaneous Physiology” leaded by Prof. Jürgen Lademann in 

the Universitätsmedizin of Berlin 

One publication related with confocal Raman microscopy entitled “Surface 

determination of 3D confocal Raman microscopy imaging of the skin” was published in 

the Laser Physics Letters (Annex 8) 
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6. CONCLUSIONS 

― The selected in silico methods (Potts and Guy, Mitragotri and Barratt) predicted 

the permeability constant (log 𝐾𝑝) of the substances, taking into account their 

respective physico-chemical properties. In general, lower Kp values were 

obtained using the Barrat model for the compounds with higher melting points. 

However, all the models agreed that tazarotene had the highest permeability and 

that eflornithine had the poorest permeability mainly based on their lipophilic 

properties 

― The in vitro assay Skin-PAMPA with artificial membranes was performed with 23 

actives using aqueous buffer at pH 5.5 or propylene glycol. When the buffer was 

employed, the actives showed a high range of permeability constant (from -10 to 

-5), which diminishes (from -9 to -7) when the substances are vehiculated in 

propylene glycol. This solvent, which is well known as a skin enhancer, modulates 

permeability by increasing the permeability of compounds with poor 

permeability and diminishing the permeability of actives with high permeability.  

― Percutaneous absorption with pig skin on Franz diffusion cells was performed on 

10 actives and the commercial creams of five of them. The active amounts in the 

different skin strata (Stratum Corneum, epidermis and dermis) and the receptor 

fluid were determined. Distribution of compounds was in general found to 

decrease when going in depth through the skin.  

― The five creams evaluated tend to decrease the permeability, with lower 

amounts of active in all the skin layers (SC, E and D), but maintaining the 

compound distribution in the different strata. Results indicate that, in general, 

creams have lower permeation rates than PG solutions alone. 

― The role of the formulation in skin penetration and retention of compounds was 

studied in depth with three corticoids formulated in propylene glycol, and 

commercial creams and ointments. The influence of PG on the maximum 

amounts of analyte in the SC and E and similar amounts in the D for PG and 

ointments with a much lower level of creams was found. This suggests the 

relevance of the solvent drag effect in skin delivery for the tested actives. 

― Correlations between permeation models indicate very poor results. Linear 

correlations between the two Pampa lists of values and the three in silico models 

were very low. However, the results of the skin-PAMPA assay at pH 5.5 and the 

amount of the compound in the epidermis and dermis of the Franz cell data of 

the cream formulations were better correlated. This correlation indicates the 



CONCLUSIONS 

 

126 

effectiveness of the two in vitro assays at assessing the formulation and the 

detrimental effect of propylene glycol. 

― Structural lipid modification due to propylene glycol used on formulations was 

performed by ATR-IR. Epidermis and dermis were found to be modified not only 

altering the lipidic order of the bilayer structure but also changing the C-O band 

attributed to phospholipids, glycerides and esthers. This could be one of the 

reasons of the poor correlation between permeation methodologies when 

actives are formulated with PG. 

― Lanolin was added to synthetic membranes to mimic the lipids from the skin for 

permeation studies. Their highly lipidic order as an orthorhombic structure 

significantly reduces the TEWL values, similar to the porcine skin levels. Besides a 

modulation of the permeation of three different compounds, were similar to 

those obtained with the skin. In conclusion, combining synthetic membranes 

with lanolin may be a useful approach to mimic the absorption of topical actives. 

― Percutaneous penetration of resveratrol was also determined by in vivo 

stripping, based on the successive extraction of the SC layers by consecutive 

stripping with adhesive tapes. A good correlation was obtained with the use of 

pig skin with Franz diffusion cells. 

― Confocal Raman Spectroscopy was optimized to determine the skin penetration 

of Caffeine. A quantitative analyses was achieved until 35µm depth at the 

epidermis. Moreover the mapping methodologies for caffeine distribution shows 

the allocation of the active surrounding  the outer part of the hair with much 

better map distribution using MCR-ALS and CLS calculations. Nevertheless further 

studies should be carried out to optimize caffeine detection  and avoid 

interferences. 

Summarizing, the in silico models gives only a rough idea about actives 

penetration. The Skin-PAMPA needs an improvement of the lipidic membrane, 

therefore an approach was suggested with the use of lanolines. The influence of 

vehicles on skin penetration was determined with Franz diffusion cells with pig 

skin and the lipid skin modification of propylene glycol was demonstrated with 

µFTIR. Results of all these methodologies were combined with a poor correlation 

between them. However, the in vivo stripping approach was successfully 

correlated with the Franz diffusion cells one. Quantitative permeation 

determination and mapping resolution obtained by CRM provides further 

confidence to study drug disposition directly on the skin.  



 

127 

 

 

 

 

 

 

 

BIBLIOGRAPHY 



 

128 

 



BIBLIOGRAPHY 

129 

7. BIBLIOGRAPHY 
1.  Narishetty, S. T. K.; Panchagnula, R. Transdermal delivery of zidovudine: Effect of terpenes and 

their mechanism of action. J. Control. Release 2004, 95, 367–379, 
doi:10.1016/j.jconrel.2003.11.022. 

2.  Moody, R. P.; Nadeau, B.; Chu, I. In vitro dermal absorption of pesticides: VI. In vivo and in vitro 
comparison of  the organochlorine insecticide DDT in rat, guinea pig, pig, human and tissue-
cultured skin. Toxicol. In Vitro 1994, 8, 1225–1232. 

3.  Scott, R. C.; Batten, P. L.; Clowes, H. M.; Jones, B. K.; Ramsey, J. D. Further validation of an in Vitro 
method to reduce the need for in Vivo studies for measuring the absorption of chemicals through 
rat skin. Toxicol. Sci. 1992, 19, 484–492, doi:10.1093/toxsci/19.4.484. 

4.  Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J. C.; Wong, J. K. The dynamic anatomy and 
patterning of skin. Exp. Dermatol. 2016, 25, 92–98, doi:10.1111/exd.12832. 

5.  Trommer, H.; Neubert, R. H. H. Overcoming the stratum corneum: the modulation of skin 
penetration. A review. Skin Pharmacol. Physiol. 2006, 19, 106–21, doi:10.1159/000091978. 

6.  Mathes, S. H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug 
Deliv. Rev. 2014, 69–70, 81–102. 

7.  Law, S.; Wertz, P. W.; Swartzendruber, D. C.; Squier, C. A. Regional variation in content, 
composition and organization of porcine epithelial barrier lipids revealed by thin-layer 
chromatography and transmission electron microscopy. Arch. Oral Biol. 1995, 40, 1085–1091, 
doi:10.1016/0003-9969(95)00091-7. 

8.  Madison, K. C. Barrier Function of the Skin: ‘“La Raison d”Etre" of the Epidermis. J. Invest. 
Dermatol. 2003, 121, 231–241, doi:10.1046/j.1523-1747.2003.12359.x. 

9.  Kessner, D.; Ruettinger, A.; Kiselev, M. A.; Wartewig, S.; Neubert, R. H. H. Properties of ceramides 
and their impact on the stratum corneum structure: A review - Part 2: Stratum corneum lipid 
model systems. Skin Pharmacol. Physiol. 2008, 21, 58–74. 

10.  Bouwstra, J.; Pilgram, G.; Gooris, G.; Koerten, H.; Ponec, M. New aspects of the skin barrier 
organization. Skin Pharmacol. Appl. Skin Physiol. 2001, 14 Suppl 1, 52–62, doi:10.1159/000056391. 

11.  Madison, K. C.; Swartzendruber, D. C.; Wertz, P. W.; Downing, D. T. Presence of Intact Intercellular 
Lipid Lamellae in the Upper Layers of the Stratum Corneum. J. Invest. Dermatol. 1987, 88, 714–
718, doi:10.1111/1523-1747.ep12470386. 

12.  Groen, D.; Gooris, G. S.; Bouwstra, J. A. New insights into the stratum corneum lipid organization 
by X-ray diffraction analysis. Biophys. J. 2009, 97, 2242–2249, doi:10.1016/j.bpj.2009.07.040. 

13.  Damien, F.; Boncheva, M. The extent of orthorhombic lipid phases in the stratum corneum 
determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010, 130, 611–614. 

14.  Pilgram, G. S. K.; Engelsma-Van Pelt, A. M.; Bouwstra, J. A.; Koerten, H. K. Electron diffraction 
provides new information on human stratum corneum lipid organization studied in relation to 
depth and temperature. J. Invest. Dermatol. 1999, 113, 403–409, doi:10.1046/j.1523-
1747.1999.00706.x. 

15.  de Jager, M. .; Gooris, G. .; Dolbnya, I. .; Bras, W.; Ponec, M.; Bouwstra, J. . The phase behaviour of 
skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids 2003, 124, 123–134, 
doi:10.1016/S0009-3084(03)00050-1. 



BIBLIOGRAPHY 

130 

16.  Janssens, M.; van Smeden, J.; Gooris, G. S.; Bras, W.; Portale, G.; Caspers, P. J.; Vreeken, R. J.; 
Hankemeier, T.; Kezic, S.; Wolterbeek, R.; Lavrijsen, A. P.; Bouwstra, J. A. Increase in short-chain 
ceramides correlates with an altered lipid organization and decreased barrier function in atopic 
eczema patients. J. Lipid Res. 2012, 53, 2755–2766, doi:10.1194/jlr.P030338. 

17.  van Smeden, J.; Janssens, M.; Kaye, E. C.; Caspers, P. J.; Lavrijsen, A. P.; Vreeken, R. J.; Bouwstra, J. 
A. The importance of free fatty acid chain length for the skin barrier function in atopic eczema 
patients. Exp.Dermatol. 2014, 23, 45–52. 

18.  Ishikawa, J.; Narita, H.; Kondo, N.; Hotta, M.; Takagi, Y.; Masukawa, Y.; Kitahara, T.; Takema, Y.; 
Koyano, S.; Yamazaki, S.; Hatamochi, A. Changes in the ceramide profile of atopic dermatitis 
patients. J. Invest. Dermatol. 2010, 130, 2511–2514. 

19.  Yang, L.; Mao-Qiang, M.; Taljebini, M.; Elias, P. M.; Feingold, K. R. Topical stratum corneum lipids 
accelerate barrier repair after tape stripping, solvent treatment and some but not all types of 
detergent treatment. Br. J. Dermatol. 1995, 133, 679–85, doi:10.1111/j.1365-
2133.1995.tb02738.x. 

20.  Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: 
New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. 

21.  Lademann, J.; Knorr, F.; Richter, H.; Blume-Peytavi, U.; Vogt, A.; Antoniou, C.; Sterry, W.; Patzelt, A. 
Hair follicles--an efficient storage and penetration pathway for topically applied substances. 
Summary of recent results obtained at the Center of Experimental and Applied Cutaneous 
Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol. Physiol. 2008, 21, 150–
155, doi:10.1159/000131079. 

22.  Blume-Peytavi, U.; Vogt, A. Human hair follicle: Reservoir function and selective targeting. Br. J. 
Dermatol. 2011, 165, 13–17. 

23.  Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. 
Porcine ear skin: an in vitro model for human skin. Ski. Res Technol 2007, 13, 19–24, 
doi:10.1111/j.1600-0846.2006.00179.x. 

24.  Lademann, J.; Richter, H.; Schaefer, U. F.; Blume-Peytavi, U.; Teichmann, A.; Otberg, N.; Sterry, W. 
Hair follicles - A long-term reservoir for drug delivery. Skin Pharmacol. Physiol. 2006, 19, 232–236, 
doi:10.1159/000093119. 

25.  Alvarez-Román, R.; Naik, A.; Kalia, Y. N.; Guy, R. H.; Fessi, H. Skin penetration and distribution of 
polymeric nanoparticles. J. Control. Release 2004, 99, 53–62, doi:10.1016/j.jconrel.2004.06.015. 

26.  Samaras, E. G.; Riviere, J. E.; Ghafourian, T. The effect of formulations and experimental conditions 
on in vitro human skin permeation - Data from updated EDETOX database. Int. J. Pharm. 2012, 434, 
280–291. 

27.  Narishetty, S. T. K.; Panchagnula, R. Transdermal delivery system for zidovudine: in vitro, ex vivo 
and in vivo evaluation. Biopharm. Drug Dispos. 2004, 25, 9–20, doi:10.1002/bdd.381. 

28.  Yu, X. Z.; Jin, X. P.; Yin, L.; Shen, G. Z.; Lin, H. F.; Wang, Y. L. Influence of in vitro methods, receptor 
fluids on percutaneous absorption and validation of a novel in vitro method. Biomed. Environ. Sci. 
1994, 7, 248–258. 

29.  Carmichael, N. European Centre for Ecotoxicology and Toxicology of Chemicals. In Encyclopedia of 
Toxicology: Third Edition; 2014; pp. 547–548 ISBN 9780123864543. 

30.  Howes, D.; Guy, R.; Hadgraft, J.; Heylings, J.; Hoeck, U.; Kemper, F.; Maibach, H.; Marty, J. P.; Merk, 
H.; Parra, J.; Rekkas, D.; Rondelli, I.; Schaefer, H.; Täuber, U.; Verbiese, N. Methods for Assessing 



BIBLIOGRAPHY 

131 

Percutaneous Absorption the Report and Recommendations of ECVAM Workshop 13. In ATLA 
Alternatives to Laboratory Animals; 1996; Vol. 24, pp. 81–106. 

31.  Maibach, H. Dermatological formulations: Percutaneous absorption. By Brian W. Barry. Marcel 
Dekker, 270 Madison Avenue, New York, NY 10016. 1983. 479 pp. 16 × 23.5 cm. Price $55.00 (2070 
higher outside the US. and Canada). J. Pharm. Sci. 1984, 73, 573–573, 
doi:10.1002/jps.2600730442. 

32.  Fitzpatrick, D.; Corish, J.; Hayes, B. Modelling skin permeability in risk assessment--the future. 
Chemosphere 2004, 55, 1309–14, doi:10.1016/j.chemosphere.2003.11.051. 

33.  Flynn Principles of Route-toRoute Extrapolation for Risk Assessment; Elsevier B.V.: Amsterdam, 
1990; 

34.  Wilschut, A.; ten Berge, W. F.; Robinson, P. J.; McKone, T. E. Estimating skin permeation. The 
validation of five mathematical skin permeation models. Chemosphere 1995, 30, 1275–1296. 

35.  Abraham, M. H.; Martins, F.; Mitchell, R. C. Algorithms for skin permeability using hydrogen bond 
descriptors: the problem of  steroids. J. Pharm. Pharmacol. 1997, 49, 858–865. 

36.  Anderson, B. D.; Higuchi, W. I.; Raykar, P. V Herterogeneity Effects of permeability-partition 
coefficient relationships in human stratum corneum. Pharm. Res. 1988, 566. 

37.  Potts, R. O.; Guy, R. H. Predicting skin permeability. Pharm Res 1992, 9, 663–669. 

38.  Mitragotri, S. A theoretical analysis of permeation of small hydrophobic solutes across the stratum 
corneum based on Scaled Particle Theory. J Pharm Sci 2002, 91, 744–752. 

39.  Lian, G.; Chen, L.; Han, L. An evaluation of mathematical models for predicting skin permeability. J 
Pharm Sci 2008, 97, 584–598, doi:10.1002/jps.21074. 

40.  Barratt, M. D. Quantitative structure-activity relationships for skin permeability. Toxicol Vitr. 1995, 
9, 27–37. 

41.  Potts, R. O.; Guy, R. H. A predictive algorithm for skin permeability: the effects of molecular size 
and hydrogen bond activity. Pharm. Res. 1995, 12, 1628–1633. 

42.  Toropov, A. A.; Toropova, A. P.; Cappellini, L.; Benfenati, E.; Davoli, E. QSPR analysis of threshold of 
odor for the large number of heterogenic chemicals. Mol. Divers. 2017, doi:10.1007/s11030-017-
9800-5. 

43.  Abd, E.; Yousef, S. A.; Pastore, M. N.; Telaprolu, K.; Mohammed, Y. H.; Namjoshi, S.; Grice, J. E.; 
Roberts, M. S. Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 2016, 
8, 163–176. 

44.  Waters, L. J. Recent developments in skin mimic systems to predict transdermal permeation. Curr. 
Pharm. Des. 2015, 21, 2725–2732, doi:10.2174/1381612821666150428124733. 

45.  CDER Semisolid Dosage Forms Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and 
Controls; In Vitro Release Testing and In Vivo Bioequivalence Documentation Available online: 
https://www.fda.gov/downloads/drugs/guidances/ucm070930.pdf. 

46.  Epa Dermal Exposure Assessment : Principles and applications. 1992, 1–388. 

47.  Gray, G. M.; Yardley, H. J. Lipid compositions of cells isolated from pig, human, and rat epidermis. J. 
Lipid Res. 1975, 16, 434–440. 



BIBLIOGRAPHY 

132 

48.  Wester, R. C.; Melendres, J.; Sedik, L.; Maibach, H.; Riviere, J. E. Percutaneous absorption of 
salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic 
acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicol Appl Pharmacol 
1998, 151, 159–165, doi:10.1006/taap.1998.8434. 

49.  Wester, R. C.; Maibach, H. I. In vivo methods for percutaneous absorption measurements. J. 
Toxicol. - Cutan. Ocul. Toxicol. 2001, 20, 411–422. 

50.  Choe, C.; Lademann, J.; Darvin, M. E. Analysis of Human and Porcine Skin in vivo/ex vivo for 
Penetration of Selected Oils by Confocal Raman Microscopy. Skin Pharmacol. Physiol. 2015, 28, 
318–330, doi:10.1159/000439407. 

51.  Kong, R.; Bhargava, R. Characterization of porcine skin as a model for human skin studies using 
infrared spectroscopic imaging. Analyst 2011, 136, 2359, doi:10.1039/c1an15111h. 

52.  Zhu, Y.; Choe, C.-S.; Ahlberg, S.; Meinke, M. C.; Alexiev, U.; Lademann, J.; Darvin, M. E. Penetration 
of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, 
Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Opt. 2015, 20, 
51006-1–8, doi:10.1117/1.JBO.20.5.051006. 

53.  Lademann, J.; Richter, H.; Meinke, M.; Sterry, W.; Patzelt, A. Which skin model is the most 
appropriate for the investigation of topically applied substances into the hair follicles? Skin 
Pharmacol. Physiol. 2010, 23, 47–52. 

54.  Dick, I. P.; Scott, R. C. Pig ear skin as an in-vitro model for human skin permeability. J Pharm 
Pharmacol 1992, 44, 640–645, doi:10.1111/j.2042-7158.1992.tb05485.x. 

55.  Singh, S.; Zhao, K.; Singh, J. In vitro permeability and binding of hydrocarbons in pig ear and human 
abdominal skin. Drug Chem. Toxicol. 2002, 25, 83–92, doi:10.1081/DCT-100108474. 

56.  Sato, K.; Sugibayashi, K.; Morimoto, Y. Species differences in percutaneous absorption of 
nicorandil. J. Pharm. Sci. 1991, 80, 104–107, doi:10.1002/jps.2600800203. 

57.  Landmann, L. The epidermal permeability barrier. Comparison between in vivo and in vitro lipid 
structures. Eur. J. Cell Biol. 1984, 33, 258–264. 

58.  Ghonaim, H. M.; Periasamy, N.; Noro, M. G.; Anwar, J. Towards a simplified model membrane of 
skin lipids: Preparation and characterisation of a ternary lipid mixture. Int. J. Pharm. Pharm. Sci. 
2014, 6, 148–152. 

59.  Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane properties for 
permeability testing: Skin versus synthetic membranes. Int. J. Pharm. 2018, 539, 58–64, 
doi:10.1016/j.ijpharm.2018.01.029. 

60.  Ottaviani, G.; Martel, S.; Carrupt, P.-A. Parallel artificial membrane permeability assay: a new 
membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 2006, 49, 
3948–3954, doi:10.1021/jm060230+. 

61.  Mensch, J.; Melis, A.; Mackie, C.; Verreck, G.; Brewster, M. E.; Augustijns, P. Evaluation of various 
PAMPA models to identify the most discriminating method for the prediction of BBB permeability. 
Eur. J. Pharm. Biopharm. 2010, 74, 495–502, doi:10.1016/j.ejpb.2010.01.003. 

62.  Markovic, B. D.; Vladimirov, S. M.; Cudina, O. a.; Odovic, J. V.; Karljikovic-Rajic, K. D. A PAMPA assay 
as fast predictive model of passive human skin permeability of new synthesized corticosteroid C-21 
esters. Molecules 2012, 17, 480–491, doi:10.3390/molecules17010480. 

63.  Chen, M. L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; 



BIBLIOGRAPHY 

133 

Lazor, J.; Huang, S. M.; Hare, D.; Lesko, L.; Sporn, D.; Williams, R. Bioavailability and 
bioequivalence: An FDA regulatory overview. Pharm. Res. 2001, 18, 1645–1650. 

64.  Raney, S. G.; Franz, T. J.; Lehman, P. A.; Lionberger, R.; Chen, M. L. Pharmacokinetics-Based 
Approaches for Bioequivalence Evaluation of Topical Dermatological Drug Products. Clin. 
Pharmacokinet. 2015, 54, 1095–1106. 

65.  Pershing, L. K.; Silver, B. S.; Krueger, G. G.; Shah, V. P.; Skelley, J. P. Feasibility of Measuring the 
Bioavailability of Topical Betamethasone Dipropionate in Commercial Formulations Using Drug 
Content in Skin and a Skin Blanching Bioassay. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1992, 
9, 45–51, doi:10.1023/A:1018975626210. 

66.  Pershing, L. K.; Corlett, J.; Jorgensen, C. In vivo pharmacokinetics and pharmacodynamics of topical 
ketoconazole and miconazole in human stratum corneum. Antimicrob Agents Chemother 1994, 38, 
90–95. 

67.  Pershing, L. K.; Bakhtian, S.; Poncelet, C. E.; Corlett, J. L.; Shah, V. P. Comparison of skin stripping, in 
vitro release, and skin blanching response methods to measure dose response and similarity of 
triamcinolone acetonide cream strengths from two manufactured sources. J. Pharm. Sci. 2002, 91, 
1312–1323, doi:10.1002/jps.10147. 

68.  Au, W. L.; Skinner, M.; Kanfer, I. Comparison of tape stripping with the human skin blanching assay 
for the bioequivalence assessment of topical clobetasol propionate formulations. J. Pharm. Pharm. 
Sci. 2010, 13, 11–20. 

69.  Swain, R. J.; Stevens, M. M. Raman microspectroscopy for non-invasive biochemical analysis of 
single cells. Biochem. Soc. Trans. 2007, 35, 544–549, doi:10.1042/BST0350544. 

70.  Ellis, D. I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: biomedical applications of 
infrared and Raman spectroscopy. Analyst 2006, 131, 875, doi:10.1039/b602376m. 

71.  Krafft, C.; Sergo, V. Biomedical applications of Raman and infrared spectroscopy to diagnose 
tissues. Spectroscopy 2006, 20, 195–218, doi:10.1155/2006/738186. 

72.  Sulé-Suso, J.; Forsyth, N. R.; Untereiner, V.; Sockalingum, G. D. Vibrational spectroscopy in stem 
cell characterisation: Is there a niche? Trends Biotechnol. 2014, 32, 254–262. 

73.  Falcone, D.; Uzunbajakava, N. E.; Varghese, B.; De Aquino Santos, G. R.; Richters, R. J. H.; Van De 
Kerkhof, P. C. M.; Van Erp, P. E. J. Microspectroscopic Confocal Raman and Macroscopic 
Biophysical Measurements in the in vivo Assessment of the Skin Barrier: Perspective for 
Dermatology and Cosmetic Sciences. Skin Pharmacol. Physiol. 2015, 28, 307–317. 

74.  Dumas, P.; Miller, L. The use of synchrotron infrared microspectroscopy in biological and 
biomedical investigations. In Vibrational Spectroscopy; 2003; Vol. 32, pp. 3–21. 

75.  Cotte, M.; Dumas, P.; Besnard, M.; Tchoreloff, P.; Walter, P. Synchrotron FT-IR microscopic study of 
chemical enhancers in transdermal drug delivery: Example of fatty acids. J. Control. Release 2004, 
97, 269–281, doi:10.1016/j.jconrel.2004.03.014. 

76.  Vyumvuhore, R.; Tfayli, A.; Manfait, M.; Baillet-Guffroy, A. Vibrational spectroscopy coupled to 
classical least square analysis, a new approach for determination of skin moisturizing agents’ 
mechanisms. Ski. Res. Technol. 2014, 20, 282–292, doi:10.1111/srt.12117. 

77.  Jaumot, J.; de Juan, A.; Tauler, R. MCR-ALS GUI 2.0: New features and applications. Chemom. Intell. 
Lab. Syst. 2015, 140, 1–12, doi:10.1016/j.chemolab.2014.10.003. 

78.  Felten, J.; Hall, H.; Jaumot, J.; Tauler, R.; De Juan, A.; Gorzsás, A. Vibrational spectroscopic image 



BIBLIOGRAPHY 

134 

analysis of biological material using multivariate curve resolution-alternating least squares (MCR-
ALS). Nat. Protoc. 2015, 10, 217–240, doi:10.1038/nprot.2015.008. 

79.  Bonnist, E. Y. M.; Gorce, J. P.; MacKay, C.; Pendlington, R. U.; Pudney, P. D. A. Measuring the 
penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal raman 
spectroscopy. Skin Pharmacol. Physiol. 2011, 24, 274–283, doi:10.1159/000328729. 

80.  Tres, F.; Treacher, K.; Booth, J.; Hughes, L. P.; Wren, S. A. C.; Aylott, J. W.; Burley, J. C. Real time 
Raman imaging to understand dissolution performance of amorphous solid dispersions. J. Control. 
Release 2014, 188, 53–60, doi:10.1016/j.jconrel.2014.05.061. 

81.  Veselinović, A. M.; Nikolić, R. S.; Nikolić, G. M. Application of multivariate curve resolution-
alternating least squares (MCR-ALS) for resolving pyrogallol autoxidation in weakly alkaline 
aqueous solutions. Cent. Eur. J. Chem. 2012, 10, 1942–1948, doi:10.2478/s11532-012-0125-z. 

82.  Ando, M.; Hamaguchi, H. Molecular component distribution imaging of living cells by multivariate 
curve resolution analysis of space-resolved Raman spectra. J. Biomed. Opt. 2013, 19, 11016, 
doi:10.1117/1.JBO.19.1.011016. 

83.  Noothalapati, H.; Sasaki, T.; Kaino, T.; Kawamukai, M.; Ando, M.; Hamaguchi, H.; Yamamoto, T. 
Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve 
Resolution Analysis. Nat. Publ. Gr. 2016, 6, 27789, doi:10.1038/srep27789. 

84.  Oecd Guidance document for the conduct of skin absorption studies. Env / Jm / Mono 2004, 1–31, 
doi:10.1787/9789264078796-en. 

85.  European Commission THE SCCS NOTES OF GUIDANCE FOR THE TESTING OF COSMETIC 
INGREDIENTS. SCCS 2016, 1564, 151, doi:10.2772/47128. 

86.  Schaefer, H.; Redelmeier, T. E.; Schaefer, H.; Redelmeier, T. E. Skin barrier: Principles of 
percutaneous absorption; 1996; ISBN 3-8055-6326-4. 

87.  Bronaugh, R. L.; Stewart, R. F.; Congdon, E. R. Methods for in vitro percutaneous absorption 
studies II. Animal models for human skin. Toxicol. Appl. Pharmacol. 1982, 62, 481–488, 
doi:10.1016/0041-008X(82)90149-1. 

88.  Wooldryscouring (WDS) - Eco-Efficient Dry Wool Scouring with total by-products recovery 
Available online: 
http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_
proj_id=4254#RM. 

89.  Pullmannová, P.; Pavlíková, L.; Kováčik, A.; Sochorová, M.; Školová, B.; Slepička, P.; Maixner, J.; 
Zbytovská, J.; Vávrová, K. Permeability and microstructure of model stratum corneum lipid 
membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 
2017, 224, 20–31, doi:10.1016/j.bpc.2017.03.004. 

90.  GOLDSMITH, L. A.; KATZ, S. I.; GILCHREST, B. A.; PALLER, A. S.; LEFFELL, D. J.; WOLFF, K. Fitzpatrick’s 
Dermatology in General Medicine Eighth Edition. McGraw-Hill 2012, 150, 22, 
doi:10.1017/CBO9781107415324.004. 

91.  Rougier, A.; Dupuis, D.; Lotte, C.; Roguet, R.; Schaefer, H. In vivo correlation between stratum 
corneum reservoir function and percutaneous absorption. J. Invest. Dermatol. 1983, 81, 275–278, 
doi:10.1111/1523-1747.ep12518298. 

92.  Lademann, J.; Jacobi, U.; Surber, C.; Weigmann, H.-J.; Fluhr, J. W. The tape stripping procedure – 
evaluation of some critical parameters. Eur. J. Pharm. Biopharm. 2009, 72, 317–323, 
doi:10.1016/j.ejpb.2008.08.008. 



BIBLIOGRAPHY 

135 

93.  Ich ICH Topic Q2 (R1) Validation of Analytical Procedures : Text and Methodology. Int. Conf. 
Harmon. 2005, 1994, 17, 
doi:http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step
4/Q2_R1__Guideline.pdf. 

94.  Franzen, L.; Windbergs, M. Applications of Raman spectroscopy in skin research - From skin 
physiology and diagnosis up to risk assessment and dermal drug delivery. Adv. Drug Deliv. Rev. 
2015, 89, 91–104. 

95.  Franzen, L.; Mathes, C.; Hansen, S.; Windbergs, M. Advanced chemical imaging and comparison of 
human and porcine hair follicles for drug delivery by confocal Raman microscopy. J. Biomed. Opt. 
2013, 18, 61210, doi:10.1117/1.JBO.18.6.061210. 

96.  Jaumot, J.; Gargallo, R.; De Juan, A.; Tauler, R. A graphical user-friendly interface for MCR-ALS: A 
new tool for multivariate curve resolution in MATLAB. Chemom. Intell. Lab. Syst. 2005, 76, 101–
110, doi:10.1016/j.chemolab.2004.12.007. 

97.  Vajna, B.; Patyi, G.; Nagy, Z.; Bódis, A.; Farkas, A.; Marosi, G. Comparison of chemometric methods 
in the analysis of pharmaceuticals with hyperspectral Raman imaging. J. Raman Spectrosc. 2011, 
42, 1977–1986, doi:10.1002/jrs.2943. 

98.  Benseny-Cases, N.; Álvarez-Marimon, E.; Castillo-Michel, H.; Cotte, M.; Falcon, C.; Cladera, J. 
Synchrotron-Based Fourier Transform Infrared Microspectroscopy (μFTIR) Study on the Effect of 
Alzheimer’s Aβ Amorphous and Fibrillar Aggregates on PC12 Cells. Anal. Chem. 2018, 90, 2772–
2779, doi:10.1021/acs.analchem.7b04818. 

99.  Menter, A. Pharmacokinetics and safety of tazarotene. J. Am. Acad. Dermatol. 2000, 43, S31–S35, 
doi:10.1067/mjd.2000.108321. 

100.  Lazar, A.; Lenkey, N.; Pesti, K.; Fodor, L.; Mike, A. Different pH-sensitivity patterns of 30 sodium 
channel inhibitors suggest chemically different pools along the access pathway. Front. Pharmacol. 
2015, 6, doi:10.3389/fphar.2015.00210. 

101.  Williams, A. C.; Barry, B. W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012, 64, 128–137, 
doi:10.1016/j.addr.2012.09.032. 

102.  Tsakovska, I.; Pajeva, I.; Al Sharif, M.; Alov, P.; Fioravanzo, E.; Kovarich, S.; Worth, A. P.; Richarz, A. 
N.; Yang, C.; Mostrag-Szlichtyng, A.; Cronin, M. T. D. Quantitative structure-skin permeability 
relationships. Toxicology 2017, 387, 27–42, doi:10.1016/j.tox.2017.06.008. 

103.  Ponec, M.; Polano, M. K. Penetration of various corticosteroids through epidermis in vitro. Arch. 
Dermatol. Res. 1979, 265, 101–104, doi:10.1007/BF00412706. 

104.  Korting, H. C.; Kerscher, M. J.; Schafer-Korting, M. Topical glucocorticoids with improved 
benefit/risk ratio: do they exist? J. Am. Acad. Dermatol. 1992, 27, 87–92, doi:10.2165/00002018-
199614060-00003. 

105.  Ponec, M.; Kempenaar, J. A. Biphasic entry of glucocorticoids into cultured human skin 
keratinocytes and fibroblasts. Arch. Dermatol. Res. 1983, 275, 334–344. 

106.  Cross, S. E.; Magnusson, B. M.; Winckle, G.; Anissimov, Y.; Roberts, M. S. Determination of the 
effect of lipophilicity on the in vitro permeability and tissue reservoir characteristics of topically 
applied solutes in human skin layers. J. Invest. Dermatol. 2003, 120, 759–764, doi:10.1046/j.1523-
1747.2003.12131.x. 

107.  Caron, D.; Queille-Roussel, C.; Shah, V. P.; Schaefer, H. Correlation between the drug penetration 
and the blanching effect of topically applied hydrocortisone creams in human beings. J. Am. Acad. 



BIBLIOGRAPHY 

136 

Dermatol. 1990, 23, 458–462, doi:10.1016/0190-9622(90)70240-I. 

108.  Stoughton, R. B. Are generic formulations equivalent to trade name topical glucocorticoids? Arch. 
Dermatol. 1987, 123, 1312–4, doi:10.1001/archderm.1987.01660340074023. 

109.  Noon, J. P.; Evans, C. E.; Haynes, W. G.; Webb, D. J.; Walker, B. R. A comparison of techniques to 
assess skin blanching following the topical application of glucocorticoids. Br. J. Dermatol. 1996, 
134, 837–42, doi:10.1046/j.1365-2133.1996.114849.x. 

110.  Mitra, A.; Wu, Y. Topical delivery for the treatment of psoriasis. Expert Opin. Drug Deliv. 2010, 7, 
977–992, doi:10.1517/17425247.2010.503953. 

111.  Moser, K.; Kriwet, K.; Naik, A.; Kalia, Y. N.; Guy, R. H. Passive skin penetration enhancement and its 
quantification in vitro. Eur. J. Pharm. Biopharm. 2001, 52, 103–112. 

112.  Ponec, M.; Kempenaar, A.; De Kloet, E. R. Corticoids and cultured human epidermal keratinocytes: 
Specific intracellular binding and clinical efficacy. J. Invest. Dermatol. 1981, 76, 211–214, 
doi:10.1111/1523-1747.ep12525761. 

113.  Katz, M.; Gans, E. H. Topical corticosteroids, structure-activity and the glucocorticoid receptor: 
Discovery and development - A process of planned serendipity. J. Pharm. Sci. 2008, 97, 2936–2947. 

114.  Merck Sharp & Dohme de España, S. . Diproderm 0,5 mg/g crema Summary of Product 
Characteristics 1–7. 

115.  Industrial farmacéutica Cantabria, S. . Clovate 0,5 mg/g crema Summary of Product Characteristics; 

116.  Pharmaceuticals, A. Cordran ® SP Cream and Cordran ® Ointment Summary of Product 
Characteristics; 

117.  Teofarma Srl Decloban 500 microgramos/g pomada Summary of Product Characteristics; 

118.  Wiedersberg, S.; Leopold, C. S.; Guy, R. H. Bioavailability and bioequivalence of topical 
glucocorticoids. Eur. J. Pharm. Biopharm. 2008, 68, 453–466. 

119.  Pflugshaupt, C. [Basic principles in local dermatologic therapy]. Ther. Umsch. 1998, 55, 470–477. 

120.  Jackson, M.; Mantsch, H. H. The Use and Misuse of FTIR Spectroscopy in the Determination of 
Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120, 
doi:10.3109/10409239509085140. 

121.  Golden, G. M.; Guzek, D. B.; Harris, R. R.; McKie, J. E.; Potts, R. O. Lipid thermotropic transitions in 
human stratum corneum. J. Invest. Dermatol. 1986, 86, 255–259, doi:10.1111/1523-
1747.ep12285373. 

122.  Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A. ATR-IR study of skin 
components: Lipids, proteins and water. Part I: Temperature effect. Spectrochim. Acta - Part A 
Mol. Biomol. Spectrosc. 2018, 188, 37–49, doi:10.1016/j.saa.2017.07.001. 

123.  Moghadam, S. H.; Saliaj, E.; Wettig, S. D.; Dong, C.; Ivanova, M. V.; Huzil, J. T.; Foldvari, M. Effect of 
chemical permeation enhancers on stratum corneum barrier lipid organizational structure and 
interferon alpha permeability. Mol. Pharm. 2013, 10, 2248–2260, doi:10.1021/mp300441c. 

124.  Goodman, M.; Barry, B. W. Action of penetration enhancers on human skin as assessed by the 
permeation of model drugs 5-fluorouracil and estradiol. I. Infinite dose technique. J. Invest. 
Dermatol. 1988, 91, 323–327, doi:10.1111/1523-1747.ep12475655. 



BIBLIOGRAPHY 

137 

125.  López-Mesas, M.; Christoe, J.; Carrillo, F.; Crespi, M. Supercritical fluid extraction with cosolvents 
of wool wax from wool scour wastes. J. Supercrit. Fluids 2005, 35, 235–239, 
doi:10.1016/j.supflu.2005.01.008. 

126.  Boncheva, M.; Damien, F.; Normand, V. Molecular organization of the lipid matrix in intact Stratum 
corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta - Biomembr. 2008, 1778, 1344–
1355, doi:10.1016/j.bbamem.2008.01.022. 

127.  Coderch, L.; Fonollosa, J.; Marti, M.; Parra, J. Ceramides from wool wax. J. Am. Oil Chem. 2004, 81, 
897–898, doi:10.1007/s11746-004-0998-0. 

128.  Elias, P. M.; Mao-Qiang, M.; Feingold, K. R. The Epidermal Barrier: Effects of Physiologic and Non-
physiological. The lanolin Book; Hoppe, U., Ed.; Beiersdorf, 1999; 

129.  Barba, C.; Carrer, V.; Marti, M.; Iglesias, J.; Coderch, L. Solvent-extracted wool wax: thermotropic 
properties and skin efficacy. Ski. Pharmacol. Press. 

130.  Hafeez, F.; Chiang, A.; Hui, X.; Zhu, H.; Kamili, F.; Maibach, H. I. Stratum corneum reservoir as a 
predictive method for in vitro percutaneous absorption. J. Appl. Toxicol. 2016, 36, 1003–1010, 
doi:10.1002/jat.3262. 

131.  Alonso, C.; Rubio, L.; Touriño, S.; Martí, M.; Barba, C.; Fernández-Campos, F.; Coderch, L.; Luís 
Parra, J. Antioxidative effects and percutaneous absorption of five polyphenols. Free Radic. Biol. 
Med. 2014, 75, 149–155, doi:10.1016/j.freeradbiomed.2014.07.014. 

132.  Shah, V. P.; Flynn, G. L.; Yacobi, A.; Maibach, H. I.; Bon, C.; Fleischer, N. M.; Franz, T. J.; Kaplan, S. 
A.; Kawamoto, J.; Lesko, L. J.; Marty, J. P.; Pershing, L. K.; Schaefer, H.; Sequeira, J. A.; Shrivastava, 
S. P.; Wilkin, J.; Williams, R. L. Bioequivalence of topical dermatological dosage forms - Methods of 
evaluation of bioequivalence. In Pharmaceutical Research; 1998; Vol. 15, pp. 167–171. 

133.  Ya-Xian, Z.; Suetake, T.; Tagami, H. Number of cell layers of the stratum corneum in normal skin - 
relationship to the anatomical location on the body, age, sex and physical parameters. Arch. 
Dermatol. Res. 1999, 291, 555–559, doi:10.1007/s004030050453. 

134.  Schwindt, D. A.; Wilhelm, K. P.; Maibach, H. I. Water diffusion characteristics of human stratum 
corneum at different anatomical sites in vivo. J. Invest. Dermatol. 1998, 111, 385–389, 
doi:10.1046/j.1523-1747.1998.00321.x. 

135.  Löffler, H.; Dreher, F.; Maibach, H. I. Stratum corneum adhesive tape stripping: Influence of 
anatomical site, application pressure, duration and removal. Br. J. Dermatol. 2004, 151, 746–752, 
doi:10.1111/j.1365-2133.2004.06084.x. 

136.  Baur, J. A.; Sinclair, D. A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug 
Discov. 2006, 5, 493–506. 

137.  Hung, C.-F.; Lin, Y.-K.; Huang, Z.-R.; Fang, J.-Y. Delivery of Resveratrol, a Red Wine Polyphenol, from 
Solutions and Hydrogels &lt;i&gt;via&lt;/i&gt; the Skin. Biol. Pharm. Bull. 2008, 31, 955–962, 
doi:10.1248/bpb.31.955. 

138.  Caspers, P. J.; Lucassen, G. W.; Carter, E. A.; Bruining, H. a; Puppels, G. J.; Caspers; Lucassen; 
Carter; Bruining; Puppels In vivo confocal Raman microspectroscopy of the skin: noninvasive 
determination of molecular concentration profiles. J. Invest. Dermatol. 2001, 116, 434–42, 
doi:10.1046/j.1523-1747.2001.01258.x. 

139.  Tfaili, S.; Josse, G.; Angiboust, J. F.; Manfait, M.; Piot, O. Monitoring caffeine and resveratrol 
cutaneous permeation by confocal Raman microspectroscopy. J Biophotonics 2013, 
doi:10.1002/jbio.201300011. 



BIBLIOGRAPHY 

138 

140.  Rubio, L.; Alonso, C.; López, O.; Rodríguez, G.; Coderch, L.; Notario, J.; de la Maza, A.; Parra, J. L. 
Barrier function of intact and impaired skin: percutaneous penetration of caffeine and salicylic 
acid. Int. J. Dermatol. 2011, 50, 881–889, doi:10.1111/j.1365-4632.2010.04819.x. 

141.  Rubio, L.; Alonso, C.; Coderch, L.; Parra, J. L.; Martí, M.; Cebrián, J.; Navarro, J. A.; Lis, M.; 
Valldeperas, J. Skin Delivery of Caffeine Contained in Biofunctional Textiles. Text. Res. J. 2010, 80, 
1214–1221, doi:10.1177/0040517509358798. 

142.  Tfaili, S.; Josse, G.; Angiboust, J. F.; Manfait, M.; Piot, O. Monitoring caffeine and resveratrol 
cutaneous permeation by confocal Raman microspectroscopy. J. Biophotonics 2014, 7, 676–681. 

143.  Franzen, L.; Anderski, J.; Windbergs, M. Quantitative detection of caffeine in human skin by 
confocal Raman spectroscopy - A systematic in vitro validation study. Eur. J. Pharm. Biopharm. 
2015, 95, 110–116, doi:10.1016/j.ejpb.2015.03.026. 

144.  Tfayli, A.; Piot, O.; Pitre, F.; Manfait, M. Follow-up of drug permeation through excised human skin 
with confocal Raman microspectroscopy. Eur. Biophys. J. 2007, 36, 1049–1058, 
doi:10.1007/s00249-007-0191-x. 

145.  Williams, A. C.; Edwards, H. G. M.; Barry, B. W. Raman spectra of human keratotic biopolymers: 
Skin, callus, hair and nail. J. Raman Spectrosc. 1994, 25, 95–98, doi:10.1002/jrs.1250250113. 

146.  Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman spectroscopy for identification of 
epithelial cancers. Faraday Discuss. 2004, 126, 141, doi:10.1039/b304992b. 

147.  Frushour, B. G.; Koenig, J. L. Raman spectroscopic study of mechanically deformed poly‐L‐alanine. 
Biopolymers 1974, 13, 455–474, doi:10.1002/bip.1974.360130303. 

148.  Silveira, L.; Silveira, F. L.; Bodanese, B.; Zângaro, R. A.; Pacheco, M. T. T. Discriminating model for 
diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected 
biochemicals. J. Biomed. Opt. 2012, 17, 77003, doi:10.1117/1.JBO.17.7.077003. 

149.  Baranska, M.; Proniewicz, L. M. Raman mapping of caffeine alkaloid. Vib. Spectrosc. 2008, 48, 153–
157, doi:10.1016/j.vibspec.2007.12.016. 

 

 

  



 

139 

 

  

 

 

 

 

 

ANNEX 



 

140 

 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

141 

ANNEX  

Annex 1. In vitro penetration through the skin layers of 

topically applied glucocorticoids 

 

 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

142 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

143 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

144 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

145 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

146 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

147 



Annex 1. In vitro penetration through the skin layers of topically applied 
glucocorticoids 

148 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

149 

Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties 

and Skin Efficacy 

 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

150 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

151 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

152 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

153 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

154 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

155 



Annex 2. Solvent-Extracted Wool Wax Thermotropic Properties and Skin Efficacy 

156 

 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

157 

Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous 

Absorption Models for Transdermal Drug Delivery 

 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

158 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

159 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

160 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

161 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

162 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

163 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

164 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

165 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

166 



Annex 3. Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for 
Transdermal Drug Delivery 

167 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

168 

Annex 4. Patent of lanolin-based synthetic membranes as a 

skin model.  

 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

169 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

170 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

171 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

172 



Annex 4. Patent of lanolin-based synthetic membranes as a skin model. 

173 

 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

174 

Annex 5. Skin permeation and antioxidant efficacy of topically 

applied resveratrol 

 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

175 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

176 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

177 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

178 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

179 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

180 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

181 



Annex 5. Skin permeation and antioxidant efficacy of topically applied resveratrol 

182 

 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

183 

Annex 6. Surface determination of 3D confocal Raman 

microscopy imaging of the skin 

 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

184 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

185 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

186 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

187 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

188 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

189 



Annex 6. Surface determination of 3D confocal Raman microscopy imaging of the skin 

190 

 

 


