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Abstract 

 

The building sector is one of the highest energy consumers representing around 30% of total 

energy use. One of the recommendations of the IEA (International Energy Agency) to reduce 

energy consumption in buildings is to enhance the thermal performance of building envelopes. 

In the present study, PCM (Phase Change Material) gypsum materials have been manufactured 

using three different PCM inclusion methods and a thin layer of gypsum without PCM is added 

as external layer with the aim of improving the fire reaction behaviour. By performing a detailed 

physical, mechanical and thermal characterization, the suitability of the materials to be 

implemented in the building envelope as inner coating is demonstrated. Results show that also 

the thermal properties are improved in the three cases by the addition of PCM. Moreover, the 

negative effect of adding paraffin wax PCM into gypsum against flame can be easily reduced by 

the addition of a thin gypsum layer, which is a low tech and cheap solution without extra 

environmental impact. 
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1. Introduction 

 

Building greenhouse gas emissions have doubled since 1970, representing 25% of total GHG 

(Greenhouse gasses) emissions [1]. Furthermore, the building sector is also the responsible of 

30% black carbon emissions (caused by the incomplete combustion of fossil fuels, biofuels and 

biomass) and, from 1/8 to 1/3 of Fluorinated gas emissions depending on the data source used.    
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The building sector is one of the highest energy consumers representing around 30% of total 

energy use. Focusing on the energy used in the building sector, space heating of residential and 

commercial subsectors represented 32-34%, respectively, in 2010 [1]. It means that a lot of 

energy is spent in space conditioning of buildings and, therefore, an enhancement of the thermal 

performance of buildings is required in order to reduce the energy demand. As Cabeza et al. 

(2010) [2] experimentally determined, the energy consumption can be reduced up to 64% in 

summer and 37% in winter in Mediterranean continental climate by the use of insulation. 

Therefore, it has been demonstrated that the implementation of insulation is crucial to decrease 

the energy demand in buildings.  

 

In addition, Behzadi et al. (2014) [3] highlighted the necessity of insulation in buildings but also 

remarked the importance of the thermal mass of buildings, which can vary significantly 

depending on the materials used. PCM (Phase Change Material) can be used to increase the 

thermal mass of buildings during melting and solidification process and hence, they can reduce 

inner temperature oscillations or even eliminate the need of mechanical air conditioning in some 

climates [4]. 

 

Thermal response of gypsum with PCM has been extensively studied during the past years [5 - 

[13], experimentally or by using numerical models, and successful results were achieved. 

Nevertheless, physical and mechanical characterization is also important [14, [15] in order to 

evaluate the PCM homogeneity, the porosity of the material, and the variation of compressive 

and flexural strength, among others. In Oliver (2012) [5], the author concluded that mechanical 

and physical properties required by regulations can be maintained when 44.5% in weight of 

PCM is added into gypsum with additives. In contrast, although minimum physical and 

mechanical properties established in regulations are reached in Oliver-Ramirez et al. (2011) 

[16], bending and compressive strength is substantially decreased by the addition of 45% in 

weight of PCM in gypsum panels.  

 

A wide range of PCMs have been investigated and used, including paraffin wax, salt hydrates, 

fatty acids, and ester compounds [3]. However, the most common PCM used is paraffin wax 

because they are cheap and abundant with enough thermal storage densities (up to 200 kJ/kg), 

negligible subcooling, chemically inert and stable with no phase segregation [17]. However, as 

it is well known and some studies demonstrate, paraffin has poor behaviour against fire. For 

example, as Asimakopoulou et al. (2015) [18] stated, PCM paraffin wax evaporates, escapes 

andignites increasing the effective fire load. Some fire retardants (such as magnesium 

hydroxide, aluminium hydroxide, expanded graphite, ammonium polyphosphate, 

pentaerythritol, and treated montmorillonite [19]; or high density polyethylene, intumescent 
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flame retardant and iron [20]) are added into the material to improve fire behaviour of PCM 

paraffin wax. In contrast, they increase the cost of the material and have a potential 

environmental impact after the building has been demolished.  

 

In the present study, multi-layered PCM gypsum materials have been manufactured and tested 

with the aim of improving fire reaction behaviour without the addition of additives. To reach 

this goal an external thin layer of common gypsum (low tech and cheap solution without extra 

environmental impact) has been added in the outer face of the coating. Three types of PCM 

inclusion methods have been used in order to add 10% in weight of PCM into common gypsum 

E-35. Some relevant physical, mechanical and thermal properties as the PCM distribution 

among gypsum, water absorption in low pressure conditions, modulus of elasticity, compressive 

and flexural strength as physical and mechanical properties are tested. Moreover, thermal 

conductivity, thermal transmittance and heat capacity as thermal properties are evaluated to 

determine the suitability of the material to be implemented in the building envelope as inner 

coating.  

 

2. Materials 

 

Hemihydrate gypsum with high purity E-35, commercialized by PlacoSaintGobain® and 

supplied by Joaquim Closas Sabadell, minimum flexural resistance of 3.5 N/mm2 [21], without 

fire contribution (Euroclass A1) according to 89/106/CEE Directive was used during the 

experimentation procedure of this study. 

 

Approximately 10% in weight of PCM paraffin wax was added into E-35 using three different 

methods: in the first one, microencapsulated PCM Micronal® DS5008 from BASF is used, and, 

in the other two compositions, non-encapsulated RT-21 PCM from Rubitherm is added into the 

formulations. In the first method microencapsulated PCM and gypsum powders are first mixed 

and afterwards the water is added. In the second method a suspension mixture of the required 

water to hydrate the gypsum and the PCM in liquid phase is done before powder gypsum 

addition. Finally, in the third method PCM is added into hardened gypsum samples using 

vacuum impregnation. 

 

According to manufacturers, RT-21 has around 21 ºC melting point and 155 kJ/kg melting 

enthalpy, and Micronal DS5008 has a melting point around 23 ºC and its melting enthalpy is 

100 kJ/kg.  
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The nomenclature and sample formulations used during the experimentation are detailed in 

Table 1. Gypsum and water (without PCM) is used to quantify the variation of properties once 

PCM is added into the material, therefore, regular gypsum is used as reference material. 

 

Table 1. Nomenclature and sample formulations (percentages in weight.) 

TYPE ABBREVIATION GYPSUM (%) PCM (%) WATER (%) 

Reference REF 60 0 40 

Suspension RT-21 + 

Gypsum 
S 50 10 40 

Impregnation RT-21 + 

Gypsum 
I 54 10 36 

Microencapsulated 

Micronal ® DS5008 + 

Gypsum 

M 45.5 10 44.5 

 

3. Methodology 

 

The European standard UNE-EN 13279-2 [22] states minimum requirements for gypsum 

coatings used in buildings as higher densities than 600 kg/m3, minimum compression strengths 

of 2 N/mm2, and minimum flexural strength of 1N/mm2. The first part of the study consist on 

verify that gypsum achieves these requirements once PCM is added using different inclusion 

methods. Furthermore, authors consider that there are other important physical and thermal 

properties that can condition the usage of gypsum with PCM as inner coating in buildings like 

porosity, water vapour absorption, velocity of water absorption in low pressure (especially in 

wet rooms, as bathrooms or not conditioned areas), dynamic modulus of elasticity, flexural and 

compressive strength, thermal transmittance, thermal conductivity and heat capacity.  

 

As it is well known, the addition of paraffin wax worsens fire response of materials [23]. For 

this reason, an external thin layer of gypsum without PCM is added into gypsum with PCM. 

Then, multi-layered gypsums are tested in order to check if it acts correctly as fire barrier 

material. To reach this goal, a fire reaction test is used (dripping test) that consists of calculating 

the number of ignitions/extinctions and the duration of flame when a heating source is applied. 

This test demonstrates the self-extinguishing capability of materials. 
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3.1. Physical characterization 

 

Authors consider that the methodology used in UNE 1936:2006 Standard [24] to calculate 

apparent porosity and bulk density can be very useful for gypsum materials. In [24], bulk 

density and apparent porosity are calculated following Eq. 1 and Eq. 2, respectively, where ρb is 

bulk density [kg/m3], ρ0 is apparent porosity [%], md is the sample dry mass [g], ms is sample 

saturated mass [g], mh is the mass sample covered with water [g], and  ρrb is the water mass 

[kg/m3]. 

௕ߩ ൌ
݉ௗ

݉௦ െ݉௛
ൈ  ௥௛ Eq. 1ߩ

௢ߩ ൌ
݉௦ െ ݉ௗ

݉௦ െ݉௛
ൈ 100 Eq. 2 

 

On the other hand, authors consider that the behaviour of gypsum with PCM against the 

presence of vapour or water is mandatory in inner coatings; however, there is no standardized 

methodology to evaluate these properties. For this reason, an adaptation of the following 

building materials standards is done and consistent results are successfully achieved.   Vapour 

permeability is evaluated in a climatic chamber with constant temperature (20 ± 5 ºC) and 

humidity (50 ± 5%) in different ambient conditions, 20% (with NaOH) and 83% (with Na2SO4) 

of relative humidity. This test is also an adaptation of UNE-EN 1015-19 Standard [25] that has 

the aim of creating different pressures between inner and outer samples containers, which tend 

to balance by absorbing vapour water. Moreover, the amount of water (in cm3) that the material 

is able to absorb per minute in low pressure conditions is determined by Karsten tube 

penetration test (RILEM Test Method II.4 [26]). RILEM Test Method allows measuring the 

water diffusion rate through porous materials such as gypsum. Three repetitions of each 

experiment are analysed to determine the physical properties of each gypsum type. 

 

Each inclusion method (microencapsulation, suspension and impregnation) distributes PCM 

differently, so that, FT-IR (Fourier Transform Infrared Spectroscopy) technique is used to 

evaluate the PCM distribution within the gypsum hardened matrix. Results obtained will show 

which PCM inclusion method is the most appropriate to achieve as much homogeneous 

distribution of PCM as possible.   

 

In this case, a PCM concentration pattern regression was calculated through DSC (Differential 

Scanning Calorimetry) measurements. To achieve this linear regression, different concentrations 

of paraffin have been measured by DSC (Figure 1.b) and the DSC result of pure PCM (Figure 

1.a) is related with the DSC signal obtained for each one with different PCM concentration. On 
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Rc = 
ி௖

ଵ଺଴଴
 Eq. 5 

 

3.3. Thermal properties 

 

RT-21 and Micronal DS5008 have similar enthalpies and melting temperatures, however, PCM 

distribution as well as microcapsules material can affect thermal properties; hence a thermal 

characterization is required.  

 

Thermal transmittance, thermal conductivity and heat capacity are analysed following the 

methodology used in [30] where samples of 19 x 19 x 2.5 cm are tested and assuming a relative 

error of 8%. Thermal transmittance is calculated using a thermal gradient in steady-state 

conditions following Eq. 6 where, Tdown and Tup are surface temperatures of the sample [ºC] and, 

ሶ௦௔௠௣௟௘ݍ ⁄ܣ  is the measured heat flux across the sample [W/m2]. 

 

Usample = 
௤ሶೞೌ೘೛೗೐

஺
൉

ଵ

்೏೚ೢ೙ି ೠ்೛
 Eq. 6 

 

Thermal conductivity is calculated as a function of thermal transmittance using Eq. 7 where, 

Usample is the thermal transmittance [W/m2·ºC] and e is the thickness of the sample [m]. 

 

k = ௦ܷ௔௠௣௟௘ ൈ ݁ Eq. 7 

 

Furthermore, average heat capacity of samples can be calculated using Eq. 8 where, qacc amount 

of heat accumulated in the sample [J], msample is the sample mass [kg], Ti and Tf are sample 

surface temperatures [°C] at the beginning and the end of the experiment, respectively: 

 

Cpsample = 
௤ೌ೎೎

௠ೞೌ೘೛೗೐	ሺ்௙ି்௜ሻ
 Eq. 8 

 

3.4. Fire characterization 

 

One of the key points of the study is to improve the behaviour of gypsum with PCM paraffin 

wax in case of fire. The strategy to avoid flaming consists on adding an external thin layer of 

gypsum without PCM because it is a low tech and cheap solution without extra environmental 

impact. The aim of the test is to find the minimum proper thicknesses of external gypsum layer 

without PCM to behave as real fire barrier. 
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Dripping test [31] was carried out in order to determine the time to ignition when an electrical 

radiator used as a fire source is placed 3 cm above a sample and it is taken away and put back 

after each ignition and extinction. Thereby, the number of combustions and the extent time 

average of the combustion are other parameters extracted from this test that provide information 

about fire propagation. 

 

Samples of 70 x 70 x 18 mm are placed on a metallic grid bellow a heat source of 500 W and 

are tested during 5 minutes. 

 

4. Results and discussion 

 

Apparent porosity represents the percentage of interconnected and external pores of a material. 

However, information about size and distribution is not provided in this test. As expected, bulk 

density decreases when apparent porosity increases, and conversely, lower porosities increase 

bulk density (see Figure 3). Results are evaluated taking REF as the reference material (gypsum 

without PCM) and they show that the addition of 10% in weight of microencapsulated PCM 

(M) increases the apparent porosity around 6%. In contrast, the addition of RT-21 paraffin wax 

decreases the apparent porosity 4% and 6% using suspension (S) and impregnation (I) methods, 

respectively. In type M, microencapsulated PCM acts as an aggregate and it interferes in the 

gypsum hydration. In gypsum without PCM, hydration is a continuous process; however, the 

addition of microencapsulated PCM changes this behaviour in a non-continuous process that 

generates porosity. On the other hand, paraffin wax replace air in gypsum pores (especially by 

impregnation process where paraffin wax is forced to fill in gypsum pores), so that, porosity is 

reduced [32]. Bulk density of S type is lower than REF because 10% in weight of gypsum is 

replaced by paraffin wax (see Table 1), which has lower density. In contrast, I bulk density is 

higher because paraffin wax is impregnated after the curing process of gypsum. 
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5. Discussion 

Apparent porosity is decreased by the addition of non-encapsulated RT-21 by both methods. In 

contrast, the addition of microencapsulated PCM increases apparent porosity. 

Microencapsulated PCM acts as an aggregate and it changes porosity structure, however, non-

encapsulated PCM paraffin wax fills gypsum pores.  

 

Water vapour permeability of gypsum is directly related with apparent porosity: higher apparent 

porosity means higher permeability and, therefore, moisture condensation can be avoided. On 

the other hand, water absorption velocity in low pressure conditions is decreased by the addition 

of non-encapsulated PCM. This behaviour could be because paraffin is acting as a water 

repellent material and because porosity is lower than gypsum without PCM. In contrast, 

microencapsulated PCM slowly increases water absorption velocity because the material has 

higher porosity. In general, the addition of PCM slows down the velocity of water absorption if 

results are compared with the reference material but, they also show a linear trend which means 

that samples were not saturated in 30 min. Moreover, it is important to remark that water 

absorption is directly related with porosity, whose structure is different in the three cases. For 

this reason, further studies to quantify and demonstrate porosity structure are needed to verify 

water absorption behaviour.  

 

Results of FT-IR spectroscopy show that distribution of PCM is homogeneous, with standard 

deviations of 0.29, 0.38 and 0.31 for M, S and I, respectively. It is important to remark that 

percentage of PCM was fixed before the curing process in M and S types, so that, FT-IR test 

shows different results to those expected (10% in weight of PCM). Percentages of PCM results 

are higher because some water is lost during the curing process. Furthermore, in the M type the 

percentage is even lower than S type because 10% in weight of Micronal® is composed by 

paraffin wax and polymer in the microcapsules. Finally, I was impregnated once the hardening 

process was finished and the addition of 10% in weight of PCM can be more accurate. 

However, it is very difficult to impregnate exactly 10% in weight of PCM because it mostly 

depends on different parameters such as the porosity of the sample. 

 

MOE longitudinal as well as transversal are directly related to mass samples. Moreover, flexural 

strength results are also related with MOE achieving the lower results in M type followed by S 

type. In contrast, MOE and flexural strength are improved in I type. On the other hand, the 

addition of PCM in all cases reduces compressive strength.  

 

The addition of microencapsulated PCM shows the best thermal response, decreasing the 

thermal conductivity and increasing the heat capacity. The addition of non-encapsulated PCM 
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increases both properties, especially using the impregnation process. By using impregnation 

process, density of material is increased and porosity is reduced which penalizes thermal 

transmittance but improves heat capacity. 

 

Finally, fire behaviour was first tested without a passive fire protection layer. All the gypsum 

samples containing PCM showed high number of short ignitions. Paraffinic PCM releases 

flammable gases when it is exposed to high temperatures. However, the disappearance of the 

flame when the heating source is removed shows self-extinguish behaviour. The first ignition 

time is shown at 15 s for I type, followed by M (25 s) and S (48 s). By the addition of 2.5 mm of 

gypsum without PCM as external layer, a successful fire protection was achieved in M and S 

types. In contrast, I type needs 5 mm of gypsum fire barrier to obtain the same results. 

 

6. Conclusions 

 

Three different methods (microencapsulated, suspended and impregnated) are used to add 10% 

in weight of PCM into gypsum E-35. The effectiveness against fire of a thin layer of gypsum 

without PCM as fire protection has been tested in this study. Furthermore, materials have been 

physically, mechanically and thermally characterized. 

 

Taking into account physical characterization, the addition of non-encapsulated PCM decreases 

apparent porosity but worsens water vapour permeability. Otherwise, water absorption velocity 

in low pressure conditions decreases because paraffin wax fills gypsum pores reducing porosity. 

Whereas the addition of microencapsulated PCM increases apparent porosity and water 

absorption velocity in low pressure conditions, permeability against water vapour is slightly 

increased because microencapsulated PCM acts as an aggregate changing and increasing 

porosity structure of gypsum. 

 

MOE and flexural strength decrease by the addition of microencapsulated PCM and suspension 

paraffin wax. However, impregnation process increases both results. Compressive strength is 

adversely affected by the addition of PCM. 

 

Mapping FT-IR results shows a homogeneous distribution of PCM regarding all gypsum types 

and inclusion methods here studied, with standard deviation between 16 points in each material 

of 0.29, 0.38 and 0.31 in M, S and I, respectively. 

 

Heat capacity of gypsum is improved by the addition of 10% in weight of PCM achieving the 

highest results by impregnation method. In contrast, thermal conductivity is only decreased by 
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the addition of microencapsulated PCM due to the effect of microcapsules which are made with 

polymeric material. The addition of microencapsulated PCM shows the best thermal response, 

decreasing thermal conductivity and increasing the heat capacity.  

 

The addition of gypsum without PCM as fire protection acts as a successful fire barrier coating 

in gypsum with 10% in weight of PCM. M and S types need 2.5 mm of fire-barrier coating 

while I type needs 5 mm. 

 

The three PCM inclusion methods here studied are three appropriate solutions to add PCM in a 

matrix gypsum material. Thermal properties are improved and the negative effect of adding 

paraffin wax PCM into a gypsum matrix against flame can be easily reduced by the addition of 

a thin gypsum layer. 
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Figure captions 

Figure 1. a) DSC results obtained for pure PCM; b) DSC results obtained for each sample under study; c) FT-IR 

spectrogram obtained for each sample under study. 

Figure 2. Scheme of gypsum samples (19 x 19 x 2.5 cm) with PCM mapping 

Figure 3. Bulk density and apparent porosity of gypsum types 

Figure 4. Water vapour permeability in 20% (NaOH) and 83% (Na2SO4) relative humidity conditions 

Figure 5. Water absorption in low pressure conditions 

Figure 6. Dynamic modulus of elasticity and mass 

Figure 7. Mapping PCM distribution a) M, b) S, and c) I 

Figure 8. Temperature profile inside samples (left) and accumulated heat profile (right) 

Figure 9. Fire response of gypsum with PCM with and without fire retardant (0.5 - 2.5 – 5 mm) a) M gypsum, b) S 

gypsum, and c) I gypsum. 

 

 


