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1 Introduction

The computation of the leading quantum corrections to the Newtonian gravitational poten-
tial is an old topic that was already discussed by Radkowski and Schwinger half a century
ago [1, 2]. These calculations have been used as a testing ground for the effective field the-
ory description of quantum gravity [3, 4], in the sense that such corrections are necessary
consequences of any theory of quantum gravity, independently of its high-energy completion.
More recently [5, 6, 65], these quantum corrections have also been used to probe the pictures
that emerge from the AdS/CFT correspondence [7, 8] and the Randall-Sundrum braneworld
scenario [9]. The quantum-corrected Newtonian potential including loops of different fields
is by now known for free scalar, spinor and vector fields [5, 10–13], and for the more com-
plicated case of graviton fields [3, 4, 14–20]. In all these cases, the correction to the 1/r
Newtonian potential is given by terms that go like `2Pl/r

3, where `Pl is the Planck length,
with a coefficient that depends on the type of matter loop considered.

One way to compute these quantum corrections is to follow the path taken for the
quantum corrections to the Coulomb potential, which are usually computed from the non-
relativistic limit of the scattering amplitude of two charged electrons [21]. In a similar
way, the leading quantum corrections to the Newtonian potential may be inferred from the
non-relativistic limit of the scattering amplitude of two heavy particles at rest by graviton
exchange [1, 3, 4]. An alternative way, however, is to derive these leading corrections from
the effective field equations for the linearized metric perturbations that couple to a given
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field. The procedure in this case is to compute first the graviton self-energy up to one-loop
order in the given field, which is needed for the effective field equations, and then compute
the gravitational response to a massive point source [5, 10, 13]. As Park and Woodard
have recently pointed out [13], this method not only emphasizes the similarity with the
classical calculation and allows for the possibility of studying the response to dynamical
sources, but is also much easier in practice. Furthermore, it can also be used on non-trivial
curved backgrounds such as cosmological ones including de Sitter space, where scattering
amplitudes are not even well defined [22]. However, to obtain real and causal effective
field equations one should calculate using the Schwinger-Keldysh or in-in formalism [23–25],
which is also necessary to avoid problems with the in-out formalism that appear in curved
spacetimes [26–28].

In this work, we compute the leading corrections to the gravitational potentials on a
de Sitter background, with the quantum effects coming from loops of conformal matter (such
as the massless, conformally coupled scalar, massless fermions, or photons). This is done
in accordance with the second method described, fixing a static point mass source in the
Poincaré patch of de Sitter space and solving the effective field equations for linearized met-
ric perturbations coupling both to the quantum matter and the point mass. These equations
are derived from an “in-in” or closed-time-path (CTP) renormalized effective action, which
guarantees both causal equations and the proper renormalization of the usual field theoretic
UV divergences, such that no further renormalization needs to be done in the field equations.
To suppress the contribution from graviton loops (i.e., self-interaction of the metric pertur-
bations) which are difficult to handle consistently both from a theoretical and a calculational
viewpoint, but which in general arise in the effective action, we work to leading order in a
1/N -expansion, where N is the number of conformal fields that couple to the gravitational
field. We furthermore neglect the backreaction of the point mass on the de Sitter back-
ground, which would give contributions comparable with the ones from graviton loops. A
useful technical device is the decomposition of the metric perturbations according to their
transformation properties under rotations and translations on the spatially flat slices into
scalar, vector and tensor perturbations, which are independent to the order that we are in-
terested in. The static point mass, our source to probe the Newtonian potential, only couples
to one of the scalar perturbations and we can thus ignore vectors and tensors, simplifying
our calculation. A second simplification comes about by expressing the effective action using
the gauge-invariant Bardeen potentials [29], which halves the number of independent fields
since the gauge-dependent parts of the metric perturbation drop out.

There is interest in doing this calculation on a de Sitter background, because de Sitter
spacetime plays a very important role in cosmology. Even if we expect corrections that are at
present too small to be observable, it is important to test perturbative quantum field theory
and its interaction with metric perturbations, both quantized and classical, beyond tree level.
Quantum corrections to the gravitational potentials on de Sitter have also been studied by
Wand and Woodard [30] for the case of photons, and by Park, Prokopec and Woodard [31] for
massless, minimally coupled scalars, and their results and the present calculation are steps
in this direction.

The paper is organized as follows: in section 2, we derive the effective action for the
coupled quantum system point mass — metric perturbations — conformal fields, perform
the decomposition of the metric perturbations and express the effective action using the two
Bardeen potentials. In section 3, we derive the effective field equations for these potentials,
and show the classical and quantum contributions to these equations. In section 4, we
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proceed to solve the equations, study the flat-space limit and compare with previous works.
Section 5 comprises the discussion, while a lengthy calculation of a non-local integral and
some technical parts are delegated to the appendices. We use the “+++” convention of
ref. [32], units such that c = ~ = 1, and define κ2 ≡ 16πGN with Newton’s constant GN.
Greek indices range over spacetime, while Latin ones are purely spatial.

2 Effective action

To study the effect of conformal fields on the Newtonian potential in a de Sitter back-
ground, we solve the effective field equations which generalize the Poisson equation 4φ(x) =
4πGNmδ

3(x) for a point source of mass m, where 4 is the flat space Laplacian. These
equations can be derived from an effective action Seff, which includes the quantum radiative
corrections due to loops of conformal fields, and which can be obtained by integrating out
these matter fields from the bare action S. We thus consider a bare action of the form

S = SG + SM + SCT + SPP , (2.1)

where

SG =
1

κ2

∫ (
R̃− 2Λ

)√
−g̃ dnx (2.2)

is the Einstein-Hilbert gravitational action for a metric g̃µν including a positive cosmological
constant Λ,

SPP = −m
2

∫
g̃µν(x)

∫
dzµ(τ)

dτ

dzν(τ)

dτ
δ4(x− z(τ)) dτ d4x (2.3)

is the action for a point particle of mass m with four-position zµ(τ) and normalized four-
velocity g̃µν(z(τ))(dzµ/ dτ)(dzν/ dτ) = −1, SM is the action for conformal matter, e.g., free
massless, conformally coupled scalar fields φ̃

SM = −1

2

∫ [(
∇̃µφ̃

)(
∇̃µφ̃

)
+ ξ(n)R̃φ̃2

]√
−g̃ dnx (2.4)

with the conformal coupling ξ(n) = (n− 2)/[4(n− 1)], and SCT are counterterms quadratic
in the curvature tensors which are needed for renormalization. We use dimensional regular-
ization and renormalization, and correspondingly our bare action is taken in n dimensions.

2.1 The in-in formalism

To obtain real and causal field equations, one has to use the Schwinger-Keldysh/closed-
time-path/in-in formalism [23–25], instead of the usual flat-space in-out formalism. In the
de Sitter spacetime, the in and out states are orthogonal to each other for an arbitrary
small interaction [26, 27], and it has been emphasized that in-out perturbation theory is
thus inadequate since it presupposes at least some overlap between these vacuum states.
This may be illustrated by a free scalar field theory with mass

√
m2

1 +m2
2, treating m2

2 as a
perturbation of the theory with mass m1. When resumming all diagrams, in-out perturbation
theory gives completely wrong results, while the in-in theory recovers the true (free) theory
with the correct mass

√
m2

1 +m2
2 [28]. (For a discussion of the necessity of the in-in formalism

in the context of corrections to the Newtonian potential, see [13].) In the in-in formalism,
one doubles the number of fields (which are distinguished by a subscript “+”/“−”), where
the “+” fields correspond to the usual in-out formalism, while the “−” fields enter the path
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integral with the complex conjugate action. One then enforces equality of both fields at some
final time T that must be larger than all times of interest (and may be sent to future infinity),
and integrates over all types of fields.

The effective action Seff results from functionally integrating over the matter fields

eiSeff[g̃±] ≡
∫

eiS[g̃+,φ̃+]−iS[g̃−,φ̃−]δ(φ̃+(T )− φ̃−(T ))Dφ̃± , (2.5)

where S is the full bare action of eq. (2.1). Defining

Sloc ≡ SG + SPP + SCT , (2.6)

which is the part of the bare action S that only depends on the metric, and is thus not
affected by the integration over the matter fields, we obtain

eiSeff[g̃±] = eiSloc[g̃+]−iSloc[g̃−]

∫
eiSM[g̃+,φ̃+]−iSM[g̃−,φ̃−]δ(φ̃+(T )− φ̃−(T ))Dφ̃± . (2.7)

The functional integral now gives a non-local term that we write in the form eiΣ[g̃±], such
that the effective action has the form

Seff

[
g̃±
]

= Sloc

[
g̃+
]
− Sloc

[
g̃−
]

+ Σ
[
g̃±
]
. (2.8)

Since Σ is divergent as n → 4, the counterterms in SCT must be chosen to cancel these
divergences in order to obtain a finite result for Seff in the limit n→ 4.

For free matter fields, the above amounts to a one-loop calculation in a fixed gravita-
tional background. As explained in the introduction, in addition to the quantum correction
to the Newtonian potential arising from matter fields, there is also a contribution from gravi-
tons. To obtain this contribution from an effective action, one would have to split the metric
g̃µν into a background metric and perturbations, and then functionally integrate also over
the metric perturbations. However, we only want to consider quantum corrections due to
conformal matter, and thus must suppress the contribution from graviton loops. This can
be consistently done in a 1/N -expansion, where one considers N matter fields and rescales
the gravitational constant κ2 → κ̄2 ≡ κ2/N with κ̄ held fixed. For interacting matter fields,
one also has to rescale the coupling to obtain a well-defined 1/N -expansion, e.g., holding
λ̄ ≡ Nλ fixed for a λ(φ2)2 interaction in an O(N) model [33]. While both the matter action
SM including all matter interaction vertices and the tree-level part of the purely gravitational
action Sloc then scale proportional to N , graviton-graviton interaction vertices (and thus the
contribution from graviton loops) are suppressed by powers of 1/N . In the limit N →∞, the
functional integral can thus be performed in a saddle-point approximation, which includes
tree-level terms for the gravitons and all matter loops. In order not to overload the formulas,
we will not do this explicitly here but simply restrict to the tree-level terms for the metric
perturbations, which are of second order (see refs. [34, 35] for more details).

In general, while powerful methods are known to calculate the necessary counterterms
SCT (i.e., the divergent part of Σ) for arbitrary backgrounds g̃ (such as the heat kernel
expansion [36]), the calculation of the finite parts of Σ is a hard task. Even for free matter
fields, in general it is not possible to find explicit expressions. One important exception is the
case of conformal matter in a conformally flat background (including metric perturbations),
i.e., where the metric is of the form

g̃µν ≡ a2gµν ≡ a2 (ηµν + hµν) , (2.9)

– 4 –
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where a(xµ) is a conformal factor (depending, in general, on all coordinates), ηµν is the flat
Minkowski metric and hµν is the metric perturbation. It is then possible to calculate the
effective action Seff (2.8) to an arbitrary order in the perturbation hµν , but we restrict to
second order and neglect graviton loops as explained in the last paragraph.

2.2 Conformal theories in conformally flat backgrounds

For the metric (2.9), the explicit calculation of Σ has been done by Campos and Verdaguer [37,
38] for the case of a massless, conformally coupled scalar (2.4), and the necessary counterterms
are given by

SCV
CT [g̃] =

µ̄n−4

2880π2(n− 4)

∫ (
R̃αβγδR̃αβγδ − R̃αβR̃αβ

)√
−g̃ dnx , (2.10)

where µ̄ is the renormalization scale; the cosmological constant, the Einstein-Hilbert term
and the square of the Ricci scalar do not get renormalized. In fact, as also explained in
refs. [35, 39], the result for a general conformal theory is essentially the same. In general, the
counterterms are given in the minimal subtraction (MS) scheme by [40]

SMS
CT [g̃] =

µ̄n−4

n− 4

∫ (
bC̃2 + b′Ẽ4

)√
−g̃ dnx , (2.11)

where C̃2 ≡ C̃αβγδC̃αβγδ with the n-dimensional Weyl tensor C̃αβγδ defined in equation (A.4),
and where Ẽ4 is the four-dimensional Euler density defined in equation (A.5). The constants
b and b′ are the exact same coefficients that appear in the trace anomaly in front of the square
of the Weyl tensor and the Euler density, and depend on the theory under consideration. For
N0 free massless, conformally coupled scalar fields, N1/2 free, massless Dirac spinor fields and
N1 free vector fields we have [40]

b =
N0 + 6N1/2 + 12N1

1920π2
, (2.12a)

b′ = −
N0 + 11N1/2 + 62N1

5760π2
. (2.12b)

(In the literature, also a = −(4π)2b′ and c = (4π)2b are used, which we do not employ to
avoid confusion with the scale factor a.) In the conformally flat case, the functional integral
in (2.5) can be performed by rescaling the scalar matter as φ̃ = a1−n/2φ and working in flat
space. Since we are working with conformal matter where the bare action is invariant under
a rescaling, we have

SM

[
g̃, φ̃
]

= SM[g, φ] (2.13)

and thus also
Σ
[
g̃±
]

= Σ
[
g±
]
, (2.14)

but the counterterms contained in SCT are not so simply related. That is, while in the sum

Σ
[
g±
]

+ SCT

[
g+
]
− SCT

[
g−
]

(2.15)

the counterterms cancel the divergences of Σ as n→ 4 such that the limit is finite, we want
to calculate

Σ
[
g̃±
]

+ SCT

[
g̃+
]
− SCT

[
g̃−
]

= Σ
[
g±
]

+ SCT

[
g+
]
− SCT

[
g−
]

+
(
SCT

[
g̃+
]
− SCT

[
g+
])
−
(
SCT

[
g̃−
]
− SCT

[
g−
])
.

(2.16)

– 5 –



J
C
A
P
0
3
(
2
0
1
6
)
0
1
5

Since also in flat space the counterterms cancel the divergences of Σ as n → 4, the terms
in the last line do not diverge, but also do not vanish. They therefore give a finite contri-
bution to the effective action, which can be calculated using the conformal transformations
given in appendix B. This is the way how the correct trace anomaly arises in dimensional
regularization [41].

For the counterterms in the MS scheme (2.11), we use eqs. (B.5) and (B.6) to obtain

lim
n→4

(
SMS

CT [g̃]− SMS
CT [g]

)
=

∫ [ (
bC2 + b′E4

)
ln a− 4b′Gµνa−2(∇µa)(∇νa)

+ 2b′a−4
(
(∇a)2 − 2a∇2a

)
(∇a)2

]√
−g d4x

(2.17)

with ∇2 = ∇µ∇µ, and where we defined the abbreviation

(∇a)2 ≡ (∇µa)(∇µa) . (2.18)

For a single massless, conformally coupled scalar where b = 1/(1920π2) and b′ = −b/3
according to eq. (2.12), this gives

bC̃2 + b′Ẽ4 =
1

2880π2

(
R̃αβγδR̃αβγδ − R̃αβR̃αβ

)
+

n− 4

2880π2

(
3

4
C̃2 − 3

4
Ẽ4 +

1

12
R̃2

)
+O

(
(n− 4)2

)
,

(2.19)

such that the scheme used in refs. [37, 38] differs by a finite renormalization from the MS
scheme:

SMS
CT = SCV

CT +
1

3840π2

∫ (
C̃2 − Ẽ4 +

1

9
R̃2

)√
−g̃ d4x . (2.20)

While the integral of Ẽ4 is a topological invariant in four dimensions and thus does not
contribute to the dynamics, and the finite renormalization of the square of the Weyl tensor
can be absorbed simply into a redefinition of the renormalization scale µ̄ in the explicit result
for the effective action Seff given in refs. [37, 38], the finite renormalization of the square of
the Ricci scalar must be taken into account when we generalize the result for Seff to general
conformal theories.

As explained above, the counterterms cancel the divergences in Σ such that Seff is
finite as n → 4. Including an arbitrary finite coefficient β for the square of the Ricci
scalar, we obtain the effective action for general conformal theories by comparing formu-
las (2.8), (2.6), (2.16), (2.17) and (2.20) with the result of refs. [37, 38]. The effective action
is then given by

Seff

[
g̃±
]

= Sloc,ren

[
a, g+

]
− Sloc,ren

[
a, g−

]
+ Σren

[
g±
]
, (2.21)

where Sloc,ren[a, g+] is the renormalized, finite part of the local action Sloc (2.6), given by

Sloc,ren[a, g] ≡ 1

κ2

∫ (
a2R− 6a∇2a− 2Λa4

)√
−g d4x+

∫ (
bC2 + b′E4

)
ln a
√
−g d4x

+
β

12

∫ (
R− 6a−1∇2a

)2√−g d4x− 4b′
∫
Gµνa−2(∇µa)(∇νa)

√
−g d4x

+ 2b′
∫
a−4

[
(∇a)2 − 2a∇2a

]
(∇a)2√−g d4x+ SPP , (2.22)
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and Σren is the renormalized, finite part of the non-local term Σ, which reads

Σren

[
g±
]
≡ 2b

∫∫
C+
µνρσ(x)C−µνρσ(y)K(x− y) d4x d4y

+ b

∫∫
C+
µνρσ(x)C+µνρσ(y)K+(x− y; µ̄) d4x d4y

− b
∫∫

C−µνρσ(x)C−µνρσ(y)K−(x− y; µ̄) d4x d4y

(2.23)

with the kernels K given by their Fourier transforms

K(x) ≡ −iπ

∫
Θ(−p2)Θ(−p0)eipx d4p

(2π)4
, (2.24a)

K±(x; µ̄) ≡ 1

2

∫ [
− ln

∣∣∣∣ p2

µ̄2

∣∣∣∣± iπΘ(−p2)

]
eipx d4p

(2π)4
. (2.24b)

This result is valid in the MS renormalization scheme (2.11), where the renormaliza-
tion scale µ̄ is chosen such that there is no term proportional to C2 in the local part of the
renormalized effective action Sloc,ren (2.22) (except for the term involving ln a coming from
the conformal transformation). However, the effective action is invariant under the renor-
malization group [42] and cannot depend on the renormalization scale µ. Thus, for all values
of µ 6= µ̄, an additional term of the form c

∫
C2 d4x appears in Sloc,ren, with a coefficient c

which depends on the renormalization scale. Noting that the renormalized Seff only depends
on µ̄ through Σren (2.23), and that the µ̄-dependent part of the kernels K reads

1

2

∫ [
− ln

1

µ̄2

]
eipx d4p

(2π)4
= δ4(x− x′) ln µ̄ , (2.25)

the dependence of Seff on µ̄ is given by

b ln µ̄

[∫
C+
µνρσC

+µνρσ d4x−
∫
C−µνρσC

−µνρσ d4x

]
. (2.26)

Adding the term c(µ)
∫
C2 d4x to Sloc,ren, we then can determine the dependence of c on µ

by demanding that dSeff[g̃±] / dµ = 0, which gives

c(µ) = c(µ0)− b ln
µ

µ0
(2.27)

for some reference scale µ0 (e.g., the Hubble scale H). While we will employ µ̄ in the following
to shorten the formulas [since by definition of the MS scheme c(µ̄) = 0], we will restore the
finite coefficient c in the final results, i.e., perform the replacement

b ln µ̄→ b lnµ+ c(µ) . (2.28)

The above result for the renormalized effective action is valid for general conformally
flat backgrounds. However, we are interested in cosmological applications, and thus special-
ize to spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) backgrounds where the
conformal/scale factor a(η) appearing in the metric (2.9) only depends on the conformal time
η, and the metric (2.9) reads

g̃µν = a2(η)gµν = a2(η) (ηµν + hµν) . (2.29)

From now on, a prime denotes a derivative with respect to conformal time, and we define
the Hubble parameter H by

H ≡ a′

a2
. (2.30)
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2.3 Metric perturbations

The expression (2.21) for the effective action is valid to second order in metric perturbations
around the FLRW background (2.29), and using the expansions from appendix A one can
obtain the explicit form in terms of the perturbation. It is convenient to decompose the
metric perturbation in irreducible components according to their transformation properties
under spatial rotations and translations (with respect to the FLRW background), given by

h00 = 2s1 , (2.31a)

h0k = vT1
k + ∂ks2 , (2.31b)

hkl = hTT
kl + 2∂(kv

T2
l) + 2

(
∂k∂l −

δkl4
3

)
s3 + 2δkls4 , (2.31c)

where 4 = ∂k∂k, the two vectors vTi
k are transverse, ∂kv

Ti
k = 0, and the tensor hTT

kl is
transverse and traceless, ∂kh

TT
kl = hTT

kk = 0 (since the spatial metric is the identity, we do
not make a distinction between lower and upper indices). Under an infinitesimal coordinate
transformation xµ → xµ + δxµ = xµ + ξµ, we have

δhµν = a−2La2ξ

(
a2ηµν

)
= 2∂(µξν) − 2Haηµνξ0 , (2.32)

where the indices of ξµ are raised and lowered with the flat metric. For the irreducible
components (2.31), this change reads

δs1 = ξ′0 +Haξ0 , δs2 = ξ0 +
∂k
4
ξ′k , (2.33a)

δs3 =
∂k
4
ξk , δs4 =

1

(n− 1)
∂kξk −Haξ0 , (2.33b)

δvT1
k = ξ′k −

∂k∂l
4

ξ′l , δvT2
k = ξk −

∂k∂l
4

ξl , (2.33c)

δhTT
kl = 0 . (2.33d)

Note that here we only consider perturbations and gauge transformations of finite extent
(or sufficiently rapid decay at spatial infinity), such that the inverse of the Laplace operator
(with vanishing boundary conditions) is well defined. We see that from these components we
can form two gauge-invariant scalars, the Bardeen potentials [29]

ΦA ≡ s1 − (s2 − s′3)′ −Ha(s2 − s′3) , (2.34a)

ΦH ≡ s4 −
1

3
4s3 +Ha(s2 − s′3) (2.34b)

and one gauge-invariant vector

Vk ≡ vT1
k − vT2′

k , V0 ≡ 0 , (2.35)

while the tensor part hTT
kl is automatically gauge invariant. The remaining components can

be arranged into a vector Xµ defined by

X0 = s′3 − s2 , (2.36a)

Xk = ηkl
(
vT2
l + ∂ls3

)
, (2.36b)
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which has the simple gauge transformation

δXµ = ξµ . (2.37)

Thus the metric perturbation can be written in the form [43, 44]

hµν = hinv
µν + a−2La2X

(
a2ηµν

)
= hinv

µν + 2∂(µXν) − 2HaηµνX0 ,
(2.38)

where the gauge-invariant part

hinv
µν ≡ 2δ0

µδ
0
ν (ΦA + ΦH) + 2ηµνΦH + 2δ0

(µVν) + hTT
µν (2.39)

with hTT
0µ ≡ 0 does not change under infinitesimal coordinate transformations.

2.4 The in-in effective action

We now insert the decomposition (2.38) into the effective action Seff. Since we only want
to calculate the corrections to the Newtonian potential due to quantum effects, we neglect
the backreaction of the point particle on the metric, and consequently only expand the point
particle action SPP of eq. (2.3) to first order in perturbations. For the same reason, the
background equations of motion — the semiclassical Einstein equations — must not take
into account the presence of the point particle. These equations are obtained by taking a
variational derivative of the effective action with respect to the “+” perturbation and setting
it to zero afterwards, which for the FLRW background (2.29) reads

δSeff[a, h±]

δh+
µν

∣∣∣∣
h±=0

= 0 . (2.40)

Since the quantum state of the matter fields which appear in the functional integral (2.7)
depends on the background metric, one must find a self-consistent solution to these equations,
which in the general case may be very hard. In our case, the conformal matter fields are in
the conformal vacuum state, and the semiclassical Einstein equation (2.40) determines the
scale factor a(η). For the effective action (2.21), ignoring SPP as explained above, we obtain

a(η) = − 1

Hη
(2.41)

with the Hubble parameter H defined in eq. (2.30) determined in terms of the cosmological
constant Λ (and vice versa). Generalizing the result from ref. [34] to a general conformal
theory, this is

Λ = 3H2
(
1 + b′κ2H2

)
, (2.42)

with constant H. Thus, the quantum-corrected background is a de Sitter spacetime, albeit
with a slightly different radius as compared to the classical one.

Expanding now the point particle action to first order, we obtain

SPP = SPP[a, g]− 1

2

∫
a2hµνT

µν√−g d4x+O
(
h2
)
, (2.43)

where

Tµν =
m√
−g

∫
dzµ

dτ

dzν

dτ
δ4(x− z(τ)) dτ (2.44)
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is the stress tensor of the point particle. Considering a particle at rest at the origin, we have

dzµ

dτ
= δµ0 a

−1 , (2.45)

which is normalized with the background metric

a2ηµν
dzµ

dτ

dzν

dτ
= −1 , (2.46)

and thus

Tµν = ma−6(η)δµ0 δ
ν
0

∫
δ(η − z0(τ)) dτδ3(x) . (2.47)

In this case, we have
dτ2 = a2(η) dη2 , (2.48)

such that ∫
δ(η − z0(τ)) dτ =

∫
a(η)δ(η − z0(τ)) dη = a(η) (2.49)

and (see also ref. [45])
Tµν(η,x) = ma−5δµ0 δ

ν
0δ

3(x) . (2.50)

It can be easily checked that this stress tensor satisfies the correct covariant conservation law

∇(0)
µ Tµν = 0, where the covariant derivative ∇(0)

µ is the one associated to the background

metric g
(0)
µν ≡ a2ηµν . Inserting the explicit expression (2.50) back into the expansion (2.43)

and using the decomposition (2.38), the linear part reads

− m

2

∫
ah00δ

3(x) d4x = −m
∫
aΦAδ

3(x) d4x−m
∫
a(X ′0 +HaX0)δ3(x) d4x . (2.51)

Recalling the definition of the Hubble parameter (2.30), the second term can be written as a
total derivative

a(X ′0 +HaX0) = (aX0)′ , (2.52)

and does not contribute to the effective action. To the lowest order we are working, the
coupling is thus gauge-invariant, and the results we will obtain have a direct physical meaning.
Moreover, we see that the point particle at rest only couples to scalar perturbations. We
can therefore ignore the vector and tensor perturbations, since their equations of motion will
not change from the source-free case treated in ref. [39] and they do not contribute to the
gravitational potential of our point particle. For the scalar part of Sloc,ren [referring to the
scalar part with a superscript (S)], we then obtain after a long but straightforward calculation
using the relation (2.42), the expansions from appendix A and the decomposition (2.38) the
following expression:

S
(S)
loc,ren = −m

∫
aΦAδ

3(x) d4x− 2

κ2

∫
a2
(
3 + 10b′κ2H2 + 6βκ2H2

) (
Φ′H +HaΦA

)2
d4x

− 2

κ2

∫
a2
(
1 + 6b′κ2H2 + 2βκ2H2

)
ΦH4 (ΦH − 2ΦA) d4x

+
4b

3

∫
4 (ΦA + ΦH)4 (ΦA + ΦH) ln a d4x

+
β

3

∫ [
3
(
Φ′H +HaΦA

)′
+ 9Ha

(
Φ′H +HaΦA

)
+4 (ΦA − 2ΦH)

]2
d4x . (2.53)

– 10 –



J
C
A
P
0
3
(
2
0
1
6
)
0
1
5

Furthermore, for the renormalized non-local part Σren (2.23) we obtain the expansion

Σ(S)
ren =

8b

3

∫∫ [
4Φ+

A(x) +4Φ+
H(x)

]
K(x− y)

[
4Φ−A(y) +4Φ−H(y)

]
d4x d4y

+
4b

3

∫∫ [
4Φ+

A(x) +4Φ+
H(x)

]
K+(x− y; µ̄)

[
4Φ+

A(y) +4Φ+
H(y)

]
d4x d4y

− 4b

3

∫∫ [
4Φ−A(x) +4Φ−H(x)

]
K−(x− y; µ̄)

[
4Φ−A(y) +4Φ−H(y)

]
d4x d4y .

(2.54)

This result can be checked by comparing with the expression given in ref. [35]. There, N
free, conformally coupled scalar fields were treated such that b = 3/2α and b′ = −α/2 with
α = N/(2880π2) (although later on the generalization of the results, but not the action, to
general conformal theories was made), and the gauge choice taken in this work corresponds
to making a gauge transformation such that

Xk = 0 , X0 = (Ha)−1ΦH . (2.55)

The relation between the Bardeen potentials and the scalars φ and ψ employed by ref. [35]
is then given by

ΦH = κHaψ , ΦA = κ

(
1

2
φ− ψ′ −Haψ

)
. (2.56)

3 Field equations

The effective field equations are obtained by taking a functional derivative of the effective
action Seff[a, h±] with respect to the “+” fields and setting both types of fields to be equal,

δSeff[a, h±]

δh+

∣∣∣∣
h+=h−=h

= 0 . (3.1)

As explained above, since the particle at rest only couples to scalar perturbations, we ignore
the vector and tensor parts of the effective action. Relatively simple equations are then

obtained by taking δS
(S)
eff /δΦA = 0, which gives

4ΦH − 3Ha
(
Φ′H +HaΦA

)
− κ2H2S1[ΦA,ΦH] =

κ2

4a
mδ3(x) (3.2)

with

S1[ΦA,ΦH] = −6b′4ΦH + 10b′Ha
(
Φ′H +HaΦA

)
+

1

2
β(Ha)−2

[
(∂η + 3Ha)4− 3Ha

(
∂2
η − 2H2a2

)] (
Φ′H +HaΦA

)
+

1

6
β(Ha)−24

(
3Ha∂η − 3H2a2 −4

)
(2ΦH − ΦA) + β4ΦA

− 2

3
b(Ha)−24

∫
4 (ΦA + ΦH) (x′)

(
H(x− x′; µ̄) + δ4(x− x′) ln a

)
d4x′ ,

(3.3)

and δS
(S)
eff /δΦA + δS

(S)
eff /δΦH = 0, which gives

4ΦA + 3
(
Φ′H +HaΦA

)′
+ 3Ha

(
Φ′H +HaΦA

)
− κ2H2S2[ΦA,ΦH] =

κ2

4a
mδ3(x) (3.4)
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with

S2[ΦA,ΦH] = −6b′4ΦA − 10b′ (∂η +Ha)
(
Φ′H +HaΦA

)
− 12βHa

(
Φ′H +HaΦA

)
− 1

2
β(Ha)−2

(
4− 3∂2

η + 12Ha∂η − 12H2a2
)

(∂η + 3Ha)
(
Φ′H +HaΦA

)
+

1

6
β(Ha)−24

(
−81∂2

η + 12Ha∂η +4
)

(2ΦH − ΦA) + 2β4ΦA

− 4

3
b(Ha)−24

∫
4 (ΦA + ΦH) (x′)

(
H(x− x′; µ̄) + δ4(x− x′) ln a

)
d4x′ .

(3.5)

Here, the kernel H is a particular combination of the kernels K defined in eq. (2.24), given by

H(x− x′; µ̄) ≡ K(x− y) +K+(x− y; µ̄) . (3.6)

Later on it will be convenient to have its spatial Fourier transform

H̃(η − η′,p; µ̄) ≡
∫
H(x− x′; µ̄) e−ip(x−x′) d3x , (3.7)

which has been calculated in ref. [34]. It reads

H̃(η − η′,p; µ̄) = cos
[
|p|(η − η′)

]
d-lim
ε→0

[
Θ(η − η′ − ε)

η − η′
+ δ(η − η′) (ln(µ̄ε) + γ)

]
, (3.8)

where γ is the Euler-Mascheroni constant, and the notation “d-lim” means that the limit
ε→ 0 is to be taken in the sense of distributions, i.e., after integration with a test function.

While these equations involve only the two Bardeen potentials, each of those has two
different contributions. The first one is given by the classical response of the gravitational field
to a test particle, which in the flat-space limit reduces to the classical Newtonian potential,
and which comes from the Einstein-Hilbert gravitational action SG of eq. (2.2). The second
contribution is the one we are really interested in, which incorporates the quantum effects
due to the vacuum polarization of conformal matter, and which is sourced by the classical
contribution. This contribution is suppressed by a factor of κ2, as can be seen from the
explicit form (2.53) of the effective action, where the quantum contributions (the terms
which involve b, b′ or β) are of order κ0, while the Einstein-Hilbert term is of order κ−2. We
thus split the Bardeen potentials into a classical and a quantum contribution

ΦA/H = Φcl
A/H + κ2Φqu

A/H , (3.9)

and from (3.2) and (3.4) obtain the equations

4Φcl
H − 3Ha

(
Φcl′

H +HaΦcl
A

)
=
κ2

4a
mδ3(x) , (3.10a)

4Φcl
A + 3

(
Φcl′

H +HaΦcl
A

)′
+ 3Ha

(
Φcl′

H +HaΦcl
A

)
=
κ2

4a
mδ3(x) (3.10b)

for the classical and

4Φqu
H − 3Ha

(
Φqu′

H +HaΦqu
A

)
= H2S1

[
Φcl

A,Φ
cl
H

]
(3.11a)

4Φqu
A + 3

(
Φqu′

H +HaΦqu
A

)′
+ 3Ha

(
Φqu′

H +HaΦqu
A

)
= H2S2

[
Φcl

A,Φ
cl
H

]
(3.11b)
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for the quantum contribution. On the right-hand side of eqs. (3.11), the source terms S1

and S2 in principle should involve the full Bardeen potentials (3.9), including the quantum
corrections. However, these terms are of order κ4, and do not contribute to the order we are
working.

Let us quickly make a comment about the flat-space limit: taking a = 1 and H = 0
in eqs. (3.10), and using that κ2 = 16πGN, the Bardeen potential Φcl

H satisfies the standard
Poisson equation. Since its solution is time-independent, the second equation then also
reduces to the same Poisson equation for Φcl

A, which then in the Newtonian limit gives the
correct Newtonian potential.

4 Solutions

Since the equations (3.10) and (3.11) are coupled, we first have to find a linear combination
which allows to solve for one of the Bardeen potentials. Taking a time derivative ∂η of the
left-hand side of eq. (3.10a) and adding Ha times the left-hand side of eq. (3.10b) one obtains

4
(

Φcl′
H +HaΦcl

A

)
= 0 , (4.1)

and the analogue combination for the quantum contribution reads

4
(
Φqu′

H +HaΦqu
A

)
= H2∂η S1

[
Φcl

A,Φ
cl
H

]
+H3aS2

[
Φcl

A,Φ
cl
H

]
. (4.2)

Once these are solved, we can substitute the solutions back into eqs. (3.10) and (3.11) and
solve for the individual Bardeen potentials.

4.1 The classical contribution

As said before, we consider only metric perturbations which decay sufficiently rapidly at
spatial infinity, such that the inverse of the Laplace operator (with vanishing boundary
conditions) is well defined. The solution of equation (4.1) is then given by

Φcl′
H +HaΦcl

A = 0 , (4.3)

and substituting into eqs. (3.10) we obtain

4Φcl
H = 4Φcl

A =
κ2

4a
mδ3(x) . (4.4)

Inverting the Laplacian and using the well-known formula

41

r
= −4πδ3(x) (4.5)

with r = |x|, we obtain the solution

Φcl
H = Φcl

A = − κ2m

16πar
= −GNm

ar
. (4.6)

This solution also fulfils equation (4.3), as can be easily checked. Since ar is the physical
distance on equal-time hypersurfaces, the result is time-independent for a fixed distance. We
thus conclude that classical systems bound by their own gravitational attraction do not “feel”
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the expansion of the universe (at least in the test particle approximation), a result which
has been known for a long time [46]. However, recent studies show that this is only true
for an exact de Sitter background [47–49], and Wang and Woodard [30] and Park, Prokopec
and Woodard [31] find a time dependence of the gravitational potentials due to quantum
corrections even in exact de Sitter space. It thus remains to check whether the quantum
corrections have an explicit dependence on the scale factor a other than the combination ar.

4.2 The quantum contribution

Before we can solve eqs. (4.2) and (3.11), we must first calculate the source terms S1 and
S2 defined in eqs. (3.3) and (3.5), which depend on the classical solution (4.6). Using that
Φcl

H = Φcl
A [according to eq. (4.6)] to replace all occurences of Φcl

A by Φcl
H, and simplifying

terms using the relation (4.3), it is not even necessary to substitute the concrete solution,
and we obtain

S1

[
Φcl

A,Φ
cl
H

]
= −6b′4Φcl

H−
β + 8b ln a

6(Ha)2
42Φcl

H−
4b

3(Ha)2
4
∫
4Φcl

H(x′)H(x−x′; µ̄) d4x′ (4.7)

and

S2

[
Φcl

A,Φ
cl
H

]
= −6b′4Φcl

H +
β − 16b ln a

6(Ha)2
42Φcl

H −
8b

3(Ha)2
4
∫
4Φcl

H(x′)H(x− x′; µ̄) d4x′ .

(4.8)
To completely determine the source terms, we need to calculate the non-local term∫

4Φcl
H(x′)H(x− x′; µ̄) d4x′ =

κ2

4
m

∫
δ3(x′)a−1(x′)H(x− x′; µ̄) d4x′

≡ κ2

4a
mI(x; µ̄) .

(4.9)

This term depends on the entire past history and on the initial state of the coupled quantum
system consisting of matter fields and metric perturbations (here in the form of the Bardeen
potentials). However, it does not depend on the future history, as it would for the usual
in-out formalism. This can be seen from the explicit form of the kernel H in eq. (3.8) that
vanishes whenever η′ > η. We thus see the in-in formalism explicitly at work here, which
guarantees causal evolution equations [23–25]. It remains to specify the initial state.

In general, the vacuum |0〉 of the free theory (the Bunch-Davies vacuum in de Sitter
spacetime) is modified by interactions. In our case, the perturbation hµν is really the ex-

pectation value 〈Ω| ĥµν |Ω〉 of the field operator ĥµν in the interacting vacuum state Ω of
the coupled quantum system [50, 51]. Starting with an initial state at finite time η0, and
assuming that the vacuum |0〉 of the free theory has at least some overlap with the vacuum
|Ω〉 of the interacting theory (since otherwise perturbation theory would be meaningless),
the corrections to |0〉 can be calculated in perturbation theory, and need to be included
in the functional integral (2.5) for the effective action (see refs. [52–54] for a discussion in
the cosmological setting). In Minkowski space, these corrections are also present, but there
exists a simple prescription to generate them automatically: by tilting the time integration
slightly into the imaginary direction, the interaction is adiabatically switched off for early
times η0 → −∞. Starting with the free vacuum at the infinite past but evolving with the
full interacting Hamiltonian, one selects in this way a fully interacting ground state as the
state of lowest energy of the full Hamiltonian, i.e., the interacting vacuum [21]. For a time-
dependent Hamiltonian, which does not have a ground state, this approach only works under
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certain conditions (namely, when the behaviour of the free-field modes is dominated at early
times by the same oscillatory behaviour as in Minkowski space), where it selects an adiabatic
vacuum state. In the Poincaré patch of de Sitter space these conditions are fulfilled, and the
proper iε prescription to select the adiabatic interacting vacuum at early times consists in
the replacement

η → η(1∓ iε) (4.10)

for the “+” resp. “−” fields. One can then take the limit η0 → −∞ after performing the
time integrations and obtains a finite result. Since the kernel H(x− x′; µ̄) appearing in the
non-local term is a mixture of loop corrections from “+” and “−” fields, this iε prescription
is not straightforward to implement. By carefully following the computations of refs. [37, 38]
and the spatial Fourier transforms calculated in ref. [34], one sees that the effect of the iε
prescription is to multiply the spatial Fourier transform of the kernel H̃(η − η′,p; µ̄) by a
factor exp [−iε|p|(η − η′)].

For this choice of the initial state, the integral I(x; µ̄) is calculated in appendix C, and
only depends on r but not on conformal time η, such that the sources reduce to

S1

[
Φcl

A,Φ
cl
H

]
= −6b′4Φcl

H −
β + 8b ln a

6(Ha)2
42Φcl

H −
b

3(Ha)2

κ2

a
m4I(r; µ̄) (4.11)

and

S2

[
Φcl

A,Φ
cl
H

]
= −6b′4Φcl

H +
β − 16b ln a

6(Ha)2
42Φcl

H −
2b

3(Ha)2

κ2

a
m4I(r; µ̄) . (4.12)

Using again the relation (4.3), equation (4.2) then reads

4
(
Φqu′

H +HaΦqu
A

)
=

2

3
(β − 2b+ 2b ln a)Ha−142Φcl

H +
1

3
bHa−2κ2m4I(r; µ̄) . (4.13)

Applying the inverse Laplace operator to obtain an expression for Φqu′
H + HaΦqu

A , we can
substitute it into eqs. (3.11) to obtain

4Φqu
H = 2H2

(
β − 2b− 3b′ + 2b ln a

)
4Φcl

H −
1

6
(β + 8b ln a) a−242Φcl

H

+ bH2a−1κ2mI(r; µ̄)− 1

3
ba−3κ2m4I(r; µ̄)

(4.14)

and

4Φqu
A = 2H2

(
β − 4b− 3b′ + 2b ln a

)
4Φcl

H +
1

6
(β − 16b ln a) a−242Φcl

H

+ bH2a−1κ2mI(r; µ̄)− 2

3
ba−3κ2m4I(r; µ̄) .

(4.15)

Again, to obtain explicit expressions one only has to apply the inverse Laplace operator, and
substitute the result (4.6) for Φcl

H and (C.22) for I(r; µ̄) from the appendix, which reads

I(r; µ̄) = −4 ln (eγµ̄r)

4πr
. (4.16)

The result is a well-defined distribution in three spatial dimensions, including the origin
r = 0. However, for very small r the test particle approximation breaks down (since there the
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particle’s own gravitational field is strong and we cannot neglect the backreaction anymore),
and we thus restrict to r > 0. There are some local terms supported at the origin [e.g., the
terms involving 42Φcl

H in eqs. (4.14) and (4.15)] which then do not contribute. Furthermore,
we can use

4 ln r

r
= − 1

r3
(r > 0) , (4.17)

and it follows that

Φqu
H = −H2

(
β − 2b− 3b′

) κ2m

8πar
− bH2κ2m

ln (eγµ̄ar)

4πar
− b

3

κ2m

4πa3r3
(4.18)

and

Φqu
A = −H2

(
β − 4b− 3b′

) κ2m

8πar
− bH2κ2m

ln (eγµ̄ar)

4πar
− 2b

3

κ2m

4πa3r3
. (4.19)

Note that the terms containing ln a, which came from the purely local part of the renormalized

effective action Sloc,ren of eq. (2.22) [resp. S
(S)
loc,ren of eq. (2.53)], have combined with the terms

ln r coming from the non-local part Σren of eq. (2.23) [resp. Σ
(S)
ren of eq. (2.54)].

4.3 The flat-space limit

The flat-space limit is given by taking a = 1 and H = 0. In this limit, all terms but the last
disappear from the solutions (4.18) and (4.19), and we obtain

ΦH = Φcl
H + κ2Φqu

H = − κ
2m

16πr

(
1 +

4b

3

κ2

r2

)
(4.20)

and

ΦA = Φcl
A + κ2Φqu

A = − κ
2m

16πr

(
1 +

8b

3

κ2

r2

)
. (4.21)

Since ΦA gives the Newtonian potential V (r) in the Newtonian limit, let us give a more
explicit expression for it for the case of free fields, where the coefficient b is given in equa-
tion (2.12). Substituting also κ2 = 16πGN, we get

V (r) = −GNm

r

(
1 +

N0 + 6N1/2 + 12N1

45π

GN

r2

)
, (4.22)

which is exactly the value computed in flat space by reconstructing the potential from scat-
tering data and effective field equations [3–5, 10–13, 13–20].

4.4 Comparison with previous results

Wang and Woodard [30] have calculated corrections to the gravitational potentials in de Sitter
space in the case of photons. Using the values of b and b′ for this case (2.12), we obtain

ΦH = − κ2m

16πar

[
1 +

κ2

120π2a2r2
+
κ2H2

40π2

(
19

12
+ 80π2β + ln (eγµ̄ar)

)]
(4.23)

and

ΦA = − κ2m

16πar

[
1 +

κ2

60π2a2r2
+
κ2H2

40π2

(
7

12
+ 80π2β + ln (eγµ̄ar)

)]
. (4.24)

We can then compare with the results of ref. [30], using that they made a gauge choice
such that their h00 is equal to ΦA and their hij is equal to δijΦH. While we agree on both
the coefficient of the term which survives in the flat-space limit (in the first line) and the
coefficient of the term involving ln r, there are also some differences, which we list for clarity:
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1. Wang and Woodard choose β = 0 for the arbitrary multiple of the square of the Ricci
scalar.

2. The numerical coefficient of the quantum correction (19/12 for ΦH and 7/12 for ΦA) is
equal to 1 and 0 in their result, respectively.

3. They choose the renormalization scale µ̄ to be equal to e−γH.

One physical difference to our calculation is the choice of the initial state, which Wang and
Woodard take to be at η0 = 1/H, while we take an adiabatic initial interaction vacuum state
for η0 → −∞. This difference in initial states may be responsible for the difference in finite
parts of our results, but checking it explicitly is extremely involved and outside the scope of
this work. However, one expects that corrections due to the initial state quickly redshift for
late times, as η → 0 (a→∞), which has been confirmed in concrete calculations [55]. In the
late-time limit, the finite parts are subdominant with respect to the logarithmic term, and
our calculations completely agree on this term.

Let us finally comment on an observation which gives us confidency in our result. The
background de Sitter metric in the Poincaré patch

ds2 = (−Hη)−2
(
−dη2 + dx2

)
(4.25)

is invariant under the rescaling

x→ λx , η → λη (4.26)

with constant λ > 0. Up to a global factor of λ−2, this is also true for the effective field
equations (3.2) and (3.4). The invariance is easily checked for all terms except the non-local
one, which is invariant if the combination H(x− x′; µ̄) + δ4(x− x′) ln a rescales with a factor
of λ−4. We thus calculate using the Fourier transform (3.8)

H(x− x′; µ̄) + δ4(x− x′) ln a =

∫ [
H̃(η − η′,p; µ̄) + δ(η − η′) ln a

]
eip(x−x′) d3p

(2π)3

= lim
ε→0

∫ [
cos
[
|p|(η − η′)

] Θ(η − η′ − ε)
η − η′

+ δ(η − η′) (ln(µ̄aε) + γ)

]
eip(x−x′) d3p

(2π)3
.

(4.27)

We now perform the rescaling (4.26), as well as p → p/λ and ε → λε. The combinations
|p|(η − η′), p(x− x′) and aε then do not change, while

Θ(η − η′ − ε)
η − η′

→ Θ[λ(η − η′ − ε)]
λ(η − η′)

= λ−1 Θ(η − η′ − ε)
η − η′

(4.28)

and
δ(η − η′)→ δ[λ(η − η′)] = λ−1δ(η − η′) . (4.29)

The integration over p furnishes another factor λ−3, and since the limit λε → 0 is the same
as ε→ 0, we indeed obtain the required scaling

H[λ(x− x′); µ̄] + δ4[λ(x− x′)] ln
a

λ
= λ−4

[
H(x− x′; µ̄) + δ4(x− x′) ln a

]
. (4.30)

Our results (4.6), (4.18) and (4.19) only depend on the invariant combination r̂ = ar =
−r/(Hη), and thus preserve this scale invariance.
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5 Discussion

We have calculated the correction to the gravitational potentials (the Bardeen variables) in
de Sitter space, due to the loop effects of conformal matter. Our results are valid for arbitrary
conformal field theories, even strongly interacting ones, and depend on the parameters b and
b′ which appear in the trace anomaly (given by eq. (2.12) for free theories, but generally
taking different values for interacting theories). The result has the correct flat-space limit,
and manifestly preserves the invariance under constant scaling of the coordinates, which is
a symmetry of the underlying de Sitter space. However, it differs from other recent cal-
culations, and the cause of the discrepancy is currently unclear. An important difference
with the correction to the Newtonian potential on a flat background is that here the leading
quantum corrections also depend on the renormalized parameters appearing in front of the
term quadratic in the curvature tensors of the gravitational action, which were needed to
cancel the UV divergences due to the matter loops. In principle, one could thus measure
these parameters by measuring the Newton potential, even if this is at present outside of
experimental reach.

We can rewrite our result in a more suggestive form by reintroducing ~ and c, and ex-
pressing the result using the Planck length `Pl =

√
~GN/c3, the gravitational/Schwarzschild

radius `S = 2GNm/c
2 and the physical distance on equal-time hypersurfaces r̂ ≡ ar. More-

over, we consider arbitrary values of the renormalization scale µ, and thus make the replace-
ment (2.28), which gives

ΦA = − `S
2r̂

[
1− 128πb

3

`2Pl

r̂2
− 32π`2PlH

2
(
β − 4b− 3b′ + 2c(µ) + 2b ln (eγµr̂)

) ]
(5.1)

and

ΦH = − `S
2r̂

[
1− 64πb

3

`2Pl

r̂2
− 32π`2PlH

2
(
β − 2b− 3b′ + 2c(µ) + 2b ln (eγµr̂)

) ]
. (5.2)

Just like the classical potentials (4.6), also the quantum corrections are time-independent
when expressed in terms of the physical distance r̂. The terms in the first line are the
“de Sitterized” version of the known flat space results. Since they are of the form (`Pl/r̂)

2,
they are only important at very short distances, where the test particle approximation may
break down. The terms in the second line are much more interesting. While the factor `2PlH

2

is extremely small at present times, during inflation it is small but appreciable, and it is con-
ceivable that the logarithmic growth of the last term at large distances r̂ could overcome this
smallness and have potentially observable effects. However, this growth may be an artifact
of perturbation theory. A well-known example is the infrared growth of loop corrections in
massless, minimally coupled φ4 theory in de Sitter space, which can be resummed using a va-
riety of different methods [56–60]. The non-perturbative result does not grow in the infrared,
but shows strongly non-Gaussian correlations [56–63]. We thus find it prudent to say that
our results (5.1) and (5.2) are valid as long as `2PlH

2 ln r̂ � 1. To order `2Pl, to which we are
working, we can combine the logarithm with the tree-level result into a modified power-law

− `S
2r̂

[
1− 64πb`2PlH

2 ln r̂
]

= − `S

2r̂1+64πb`2PlH
2

+O
(
`4Pl

)
. (5.3)

Thus, since b > 0 (which can be seen for free theories from eq. (2.12), and follows for general
interacting theories from unitarity [64]) the potential decays faster at large distances, which
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we can interpret as a shielding of the gravitational attraction due to quantum corrections.
Furthermore, the effect depends on the Hubble scale, and is larger for larger H. Of course,
there is also a constant correction of the overall strength which depends on the unknown
coefficient β and the renormalization-scale dependent c(µ), and this can be either negative
or positive.

As was emphasized already previously, solving the effective field equations is a much
simpler way to obtain the quantum corrections than reconstructing the potential from scat-
tering data. In our opinion, the method presented in this work is even simpler than existing
calculations using effective field equations [13, 30, 31]. First, “one effective action fits all”:
while the calculation of the effective action involves little more than calculating the gravi-
ton self-energy (including renormalization), it can be used to study a variety of effects, and
the effective action (2.21) has been used to study semiclassical stability of de Sitter space-
time [39], and to derive corrections to the tensor power spectrum [34] and to the curvature
tensor correlators [35]. Second, since the effective action is gauge-invariant it can be expressed
using only gauge-invariant variables, which provides a non-trivial check on the correctness
of the calculations. This has two further advantages in the case treated here. On one hand,
it reduces the number of differential equations from four to two (since two of the scalars
appearing in the decomposition of the metric perturbations (2.31) are pure gauge), which
shortens the calculation. On the other hand, this makes manifest that these equations are
constraint equations, and that only spatial Laplacians need to be inverted [which is evident
from the concrete expressions (3.2), (3.4)]. Taken together, these facts considerably reduce
the amount of calculations that need to be done: apart from purely algebraic manipulations,
the only hard problem was the calculation of the non-local integral (4.9).
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A Metric expansion

Given the perturbed metric gµν and expanding through quadratic order in the metric per-
turbation we have

gµν = ηµν + hµν ,

gµν = ηµν − hµν + hµσh
νσ +O

(
h3
)
,

h = ηµνhµν ,

√
−g = 1 +

1

2
h+

1

8
h2 − 1

4
hµνh

µν +O
(
h3
)
,

(A.1)
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where indices are raised and lowered with the unperturbed metric ηµν , i.e. we regard hµν as
a tensor field in flat space. For the Christoffel symbols we get

Γαµν =
1

2
Sαµν −

1

2
hασS

σ
µν +O

(
h3
)
,

Sαµν ≡ ∂µhαν + ∂νh
α
µ − ∂αhµν .

(A.2)

The calculation of the curvature tensors can be done straightforwardly and we obtain

Rαβγδ = ∂[γS
α
δ]β − hασ∂[γS

σ
δ]β −

1

2
ηµνη

ασSµσ[γS
ν
δ]β +O

(
h3
)
,

Rαβ =
1

2
(∂µS

µ
αβ − ∂α∂βh)− hνµ∂[νS

µ
β]α −

1

2
ηµνη

γδSνδ[γS
µ
β]α +O

(
h3
)
,

R =
(
∂µ∂νh

µν − ∂2h
)

+ hµν
(
∂ν∂µh+ ∂2hµν − 2∂ν∂

σhµσ
)

− 1

4
(2∂σh

νσ − ∂νh) (2∂τhντ − ∂νh) +
1

4
(3∂γhµδ − 2∂µhγδ)

(
∂γhµδ

)
+O

(
h3
)
.

(A.3)

where ∂2 = ηµν∂µ∂ν and ∂µ = ηµν∂ν .
The n-dimensional generalization of the Weyl tensor is given by

Cαβγδ = Rαβγδ −
4

(n− 2)
R

[α
[γ δ

β]
δ] +

2

(n− 1)(n− 2)
Rδα[γδ

β
δ] , (A.4)

and the four-dimensional Euler density is given by

E4 = RαβγδRαβγδ − 4RαβRαβ +R2 . (A.5)

For the square of the Weyl tensor we obtain the useful formula

CαβγδCαβγδ = RαβγδRαβγδ −
4

n− 2
RαβRαβ +

2

(n− 1)(n− 2)
R2 , (A.6)

and thus the four-dimensional Euler density can be written also as

E4 = CαβγδCαβγδ − 4
n− 3

n− 2
RαβRαβ +

n(n− 3)

(n− 1)(n− 2)
R2 . (A.7)

B Conformal transformation

Under the conformal transformation

g̃µν = a2gµν (B.1)

the Christoffel symbols transform as

Γ̃αµν = Γαµν + a−1
(
δαµδ

σ
ν + δαν δ

σ
µ − gµνgασ

)
∂σa , (B.2)

and the curvature tensors become

R̃αβγδ = Rαβγδ − 2a−2δα[γgδ]β(∇a)2 + 4a−2gατδσ[γgδ][τ
[
a∇β]∇σa− 2(∇β]a)(∇σa)

]
(B.3a)

R̃µν = Rµν − (n− 2)a−1∇µ∇νa+ 2(n− 2)a−2(∇µa)(∇νa)

− gµν
[
(n− 3)a−2(∇a)2 + a−1∇2a

] (B.3b)

a2R̃ = R− (n− 1)
[
2a−1∇2a+ (n− 4)a−2(∇a)2

]
, (B.3c)
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where ∇µ is the covariant derivative associated with gµν , ∇2 = ∇µ∇µ, and where we used
the notation

(∇a)2 ≡ (∇µa)(∇µa) . (B.4)

The Weyl tensor (A.4) does not change under a conformal transformation and we have

C̃αβγδ = Cαβγδ , (B.5)

but for the Euler density we obtain

anẼ4 = an−4E4 +∇µEµ − 4(n− 3)(n− 4)Gµνan−6(∇µa)(∇νa)

+ (n− 2)(n− 3)(n− 4)an−8(∇a)2
[
(5− n)(∇a)2 − 2a∇2a

] (B.6)

with

Eµ ≡ 4(n− 2)(n− 3)an−7(∇µa)
(
a∇2a+ (n− 4)(∇a)2

)
− 2(n− 2)(n− 3)∇µ

[
an−6(∇a)2

]
+ 8(n− 3)Gµνan−5∇νa ,

(B.7)

using that 2∇αGαβ = 2∇αRαβ −∇βR = 0.

C Calculation of the non-local term

In this appendix, we calculate the integral from equation (4.9). Performing a Fourier trans-
form, we get

I(x; µ̄) = a(η)

∫
a−1(η′)δ3(x′)H(x− x′; µ̄) d4x′ =

∫ [∫
η′

η
H̃(η − η′,p; µ̄) dη′

]
eipx d3p

(2π)3

≡
∫
Ĩ(η,p; µ̄)eipx d3p

(2π)3
. (C.1)

We now insert the Fourier transform (3.8) of the kernel H(x− x′; µ̄), and include the iε pre-
scription to select an interacting vacuum state as explained in subsection 4.2. In order not to
confuse the two parameters ε (one coming from the proper definition of the distribution (3.8)
and one selecting the adiabatic interacting vacuum state), we denote the prescription param-
eter by δ, and obtain

Ĩ(η,p; µ̄) = lim
ε→0

e−δ|p|η
∫

eδ|p|η
′ η′

η
cos
[
|p|(η − η′)

]
×
[

Θ(η − η′ − ε)
η − η′

+ δ(η − η′) (ln(µ̄ε) + γ)

]
dη′ ,

(C.2)

with δ > 0. The second part including the δ distribution is of course easily solved; for the
other one we introduce an initial time η0, express the cosine with exponentials and obtain

Ĩ(η,p; µ̄) = e−δ|p|η lim
ε→0

[
<e
∫ η−ε

η0

η′

η

ei|p|(η−η′)+δ|p|η′

η − η′
dη′ + ln(µ̄ε) + γ

]
. (C.3)

We then decompose
η′

η

1

η − η′
=

1

η − η′
− 1

η
(C.4)
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and use the indefinite integral∫
eax

x− x0
dx = eax0 [Ein[a(x− x0)] + ln(x− x0)] (C.5)

to obtain

Ĩ(η,p; µ̄) = <e

[
Ein [(i− δ)|p|(η − η0)] + ln(η − η0)− e−(i−δ)|p|(η0−η)

η(i− δ)|p|

]

+ lim
ε→0

[
<e

[
−Ein [(i− δ)|p|ε]− ln(ε) +

e(i−δ)|p|ε

η(i− δ)|p|

]
+ e−δ|p|η (ln(µ̄ε) + γ)

]
.

(C.6)

The terms in the first line depend on η0 and must be absorbed in initial state corrections if
δ = 0. We choose the iδ prescription to select an interacting vacuum state, and thus take
first η0 → −∞ and then δ → 0. Since

Ein [(i− δ)|p|(η − η0)] ∼ −γ − ln [−(i− δ)|p|(η − η0)]

+ e(i−δ)|p|(η−η0)

[
1

−(i− δ)|p|η0
+O

(
η−2

0

)]
,

(C.7)

the first line gives taking first the limit η0 → −∞ holding δ > 0 fixed, and then δ → 0

− γ − ln |p| . (C.8)

For small argument, Ein vanishes, and thus the limits ε → 0 and δ → 0 can be easily taken
for the second line. Summing the terms from both lines, in total we obtain the extremely
simple result

Ĩ(η,p; µ̄) = ln
µ̄

|p|
. (C.9)

It remains to perform the inverse Fourier transform. For this, it is convenient to calculate
the integral

J(x) ≡
∫
|p|−2 ln |p|eipx d3p

(2π)3
=

1

2π2
lim
ε→0

∫ ∞
0

e−εp ln p
sin(pr)

pr
dp (C.10)

with r = |x|, and then recover the needed inverse Fourier transform in the form

I(x; µ̄) =

∫
ln

µ̄

|p|
eipx d3p

(2π)3
= ln µ̄ δ3(x) +4J(x) . (C.11)

We first integrate by parts once to obtain∫ ∞
0

e−εp ln p
sin(pr)

pr
dp =

1

2r

∫ ∞
0

e−εp sin(pr)
∂ ln2 p

∂p
dp

= − 1

2r

∫ ∞
0

e−εp[r cos(pr)− ε sin(pr)] ln2 p dp

= =m
[
ε− ir

2r

∫ ∞
0

e−(ε−ir)p ln2 p dp

]
.

(C.12)
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We then write

ln2 p = lim
h→0

(
ph − 1

h

)2

= lim
h→0

p2h − 2ph + 1

h2
(C.13)

and use that for <e a < 0 and b ≥ 0 we have∫ ∞
0

eappb dp =
Γ(b+ 1)

(−a)b+1
(C.14)

to obtain∫ ∞
0

e−(ε−ir)p ln2 pdp = lim
h→0

1

h2

[
Γ(1 + 2h)

(ε− ir)1+2h
− 2

Γ(1 + h)

(ε− ir)1+h
+

1

ε− ir

]
. (C.15)

The Γ function expansion

Γ(1 + αh) = 1− γαh+
6γ2 + π2

12
α2h2 +O

(
h3
)

(C.16)

then gives ∫ ∞
0

e−(ε−ir)p ln2 p dp =
[γ + ln(ε− ir)]2 + π2/6

ε− ir
(C.17)

and thus ∫ ∞
0

e−εp ln p
sin(pr)

pr
dp =

1

2r
=m [γ + ln(ε− ir)]2 . (C.18)

We can now take the limit ε→ 0 to get

ln(ε− ir) = ln r − iπ

2
+O(ε) (C.19)

and

J(x) = −γ + ln r

4πr
. (C.20)

Note that this is a well-defined distribution in three spatial dimensions. Using the well-known
identity

41

r
= −4πδ3(x) , (C.21)

we then obtain from equation (C.11)

I(x; µ̄) = −4 ln (eγµ̄r)

4πr
, (C.22)

which also is a well-defined distribution.
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