
Consumer preferences for electric vehicles in Germany  

Anja Schulze Darup
1
 

Montserrat Guillen
2*

 

Xavier Piulachs
2
 

1
 Master Oficial en Economia, UBeconomics, University of Barcelona  

2 
Dept. Econometrics, Riskcenter-IREA, University of Barcelona 

* 
Corresponding author:  

  Montserrat Guillen  

  Dept. Econometrics, Riskcenter-IREA,  

  University of Barcelona. Diagonal, 690, 08034 Barcelona, Spain. 

  Tel: +34934037039  Fax; +34934021821 

  Email: 
 
mguillen@ub.edu. 

 

ABSTRACT: Purpose. Analyze the preference for battery electric vehicles (BEVs) as 

opposed to hybrid electric vehicles (HEVs) or normal combustible vehicles (NCVs) in 

Germany. Design. Survey of 400 respondents who stated their preference for one of the three 

vehicles and considered purchase price, driving range, fuel costs, emissions, refueling 

availability, refueling time, acceleration and policy incentives. Binary and multinomial choice 

logit models are applied. Main findings. We find strong evidence that previous experience of 

driving a BEV and car sharing are significant factors to state a preference for electric cars. 

Other factors such as driving range, purchase price, gender, ecological awareness and 

incentives such as tax exemptions also influence the choice. Originality. The preference for 

BEVs among German customers would increase if granted the opportunity of a driving 

experience and, more intensely when combined with car sharing opportunities. Increasing the 

availability of car sharing of electric vehicles seems an excellent way to penetrate the market. 
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1. Introduction 

 

The European Union has drawn up a roadmap to work towards a competitive low-carbon 

economy by 2050. To achieve this, the European Commission has set itself an ambitious 

ecological goal for 2020, namely, that the average emission of carbon dioxide (CO2) from the 

EU’s fleet of new vehicles should not exceed 95 grams per kilometer (European Union, 

2012). There is a clear need to adopt a new mobility concept through a slowly substitution of 

so-called normal combustion vehicles (NCVs), i.e. equipped with a gasoline or diesel motor. 

The German Government, for example, approved a national development plan for electro-

mobility in 2009 to minimize emissions. One million of electric vehicles (EVs) should be on 

the German roads by 2020 (Federal Government, 2009), that is, the sum of hybrid electric 

vehicles (HEVs) and battery electric vehicles (BEVs). With just 6,051 BEVs registered in 

2013 and 25,502 in 2016, Germany remains in the initial phases of this plan (Federal Motor 

Vehicle Transport Authority, 2013b and 2016). To ensure successful market penetration and 

implementation of BEVs, and thus achieve the policy goals of the European Union and the 

German Government, it is clearly of interest to understand the factors influencing consumer 

preferences for BEVs and, ultimately, their purchasing decisions. The total number of 

passenger vehicles (Personenkraftwagen / PKW) registered in Germany exceeds 45,8 million, 

which is the official figure in 2017. The sale of electric vehicles (EVs) has remained sluggish in 

Germany despite discounts introduced and granted to buyers of green cars. In 2016, there were 

less than 80,000 electric cars on German roads. Plans to increase the number of electric vehicles 

by 2020 also serve as Germany’s self-imposed deadline for cutting the nation’s emissions by 40 

percent. 

 

The analysis conducted here includes initially the research approach taken by Hackbarth and 

Madlener (2013), who also examined the potential demand for EVs in Germany. Our analysis 

is the first to address potential demand for EVs since the first BEVs produced by a German 

car manufacture have become available, and consequently consumers have probably had the 

opportunity to experience it firsthand. Such introduction of the first mass-produced German 

BEVs might have a significant influence on purchase decisions of German consumers, as the 

market share of the current stock of vehicles in Germany is dominated by domestic brands 

with a 65% quota (Federal Motor Vehicle Transport Authority, 2014 and 2016). Our 

contribution to the literature confirms the findings of Jensen et al. (2013) for the Danish 

market that having experienced an electric vehicle has a significant influence on the 

preference for this type of car. We also find that the influence of having experienced an 
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electric car is true even when controlling for indicators of environmental awareness of the 

decision maker and the use of car sharing opportunities. 

 

Options chosen by consumers, when the vehicle attributes in the baseline choice set are 

modified, allow us to identify the factors driving their preferences. We can then examine 

which of these attributes results in people preferring a NCV to an EV, while a multinomial 

logit model shows which attributes influence the respondents’ preference for a NCV, an HEV 

or a BEV. In particular, there are two main aims to be carried out in this study: 

 

1) To use discrete choice models, both binary and multinomial, to find out the determinants 

(socio-demographic factors and preferences) of the probability of using EVs 

 

2) To understand how changes in a set of specific attributes impact on the preferences for 

electric vehicles. It will allow us to understand where the government should focus its policy. 

 

The rest of this paper is organized as follows. Section 2 summarizes research conducted to 

date on demand for EVs. Section 3 describes the survey design. Section 4, the methodology 

and model specifications are presented. In section 5, the results of the discrete choice models 

are examined. Finally, in section 6 conclusions are presented and further lines of research are 

discussed. 

 

2. Background 

 

The earliest papers examining consumer demand for EVs were published in the early eighties 

in response to the oil crisis a decade earlier. Beggs et al. (1981) and Calfee (1985) were the 

first to estimate potential demand for EVs using discrete choice models. Table 1 shows these 

and subsequent papers employing econometric models and reports the number and categories 

of the attributes included in their respective choice sets. Note that analyses of purchase price, 

driving range and acceleration are included in almost every study, while a new attribute, 

which of “emissions”, was mostly introduced after 2000. With growing ecological awareness, 

this last attribute may be a good indicator as to why consumers might opt for an EV. 

Likewise, parameters as recharging time, fuel availability and recharging possibilities were 

introduced in the choice sets when the industry succeeded in making these technological 

advances for BEVs. Interestingly, Table 1 shows how studies of demand for EVs have 

evolved over time from the concerns raised by the oil crisis to those about the risks of global 

warming and the fear of the restrictions imposed by finite oil reserves. For instance, Dagsvik 
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et al. (2002) noted the importance of purchase price and driving range for the full 

competitiveness of EV’s, but later Heffner et al. (2007) concluded that concerns for social 

identity and the desire to support innovative technology also influence vehicle purchase 

decisions. Lane and Potter (2007) reported that personal values, beliefs, norms and knowledge 

all affect consumer concerns and serve in our understanding of pro-environmental purchasing 

decisions. Recently, Hackbarth and Madlener (2013) found that consumers with greater 

ecological awareness appear to be willing to pay a higher purchase price for more 

ecologically friendly vehicles. 

 

Table 1 

Electric vehicle studies adopting an econometric choice model approach. 

Electric vehicle studies adopting an econometric choice model approach. 

Study Econometric 

Model 

 Attributes Included  Findings 

Beggs et al. 

(1981) 

Ranked Logit  Purchase Price, Driving Range, 

Acceleration, Top Speed, Operating Costs, 

Fuel Costs, Seating Capacity, Air 

Conditioning and Warranty 

Results indicate considerable 

dispersion in individual 

coefficients for the choice 

model. 

Calfee (1985) Disaggregate 

MNL 

 Purchase Price, Driving Range, Top Speed, 

Operating Costs and Number of Seats 

Great diversity in individual 

trade-offs among attributes, 

with range and top speed 

generally being highly valued 

Bunch et al. 

(1993) 

MNL and Nested 

Logit 

Purchase price,  Driving range, Fuel Costs, 

Acceleration, Fuel Availability, Pollution, 

Dedicated versus Multi-Fuel 

Range between refueling and 

fuel costs are important 

attributes. 

Ewing and 

Sarigöllü 

(1998) 

MNL  Purchase Price, Driving Range, 

Acceleration, Fuel Costs, Repair and 

Maintenance Costs, Commuting Costs, 

Recharging Time and Commuting Time 

Differential commuting costs 

and times for cleaner vehicles 

have modest effects on 

vehicle choice. 

Brownstone et 

al. (2000) 

Joint Mixed Logit 

Model of Stated 

and Revealed 

Preferences 

Purchase Price, Driving Range, Top Speed, 

Acceleration, Home Refueling Costs, 

Service Station Fuel Costs, Home Refueling 

Time, Service Station Availability, Tailpipe 

Emissions, Vehicle Size, Vehicle Type and 

Luggage Space 

There are advantages of 

merging SP and revealed 

preference (RP) data. RP data 

appear to be critical for 

obtaining realistic body-type 

choice. 

Potoglou and 

Kanaroglou 

(2007) 

Nested Logit 

Model 

 Purchase Price, Acceleration, Annual Fuel 

Cost, Annual Maintenance Cost, Fuel 

Availability, Pollution Level, Vehicle Size 

and Incentives 

Reduced monetary costs, 

purchase tax relieves and low 

emissions rates would 

encourage households to 

adopt a cleaner vehicle. 

Hidrue et al. 

(2011) 

Latent Class 

Random Utility 

Model 

Purchase Price, Driving Range, 

Acceleration, Fuel Costs, Recharging Time 

and Pollution 

Willingness to pay ranged 

from $6000 to $16,000 for 

electric vehicles with the 

most desirable attributes. 

Achtnicht et 

al. (2012) 

Standard Logit 

Model 

 Purchase Price, Engine Power, Fuel Costs, 

Fuel Availability and Emissions 

Failure to expand the 

availability of alternative fuel 

stations represents a 

significant barrier. 

Hackbarth and 

Madlener 

(2013) 

Mixed Logit 

Model 

 Purchase Price, Driving Range, Fuel Costs, 

Refueling Time, Battery Recharging Time, 

Fuel Availability, Emissions and Policy 

Incentives 

German car buyers are 

reluctant to buy alternative 

fuel vehicles. 
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In addition to these studies, a considerable number of papers have adopted a qualitative 

approach to their analysis of the factors influencing the consumers’ purchase decision. These 

studies conduct interviews or literature reviews to determine buyer profiles and in order to 

include characteristics not covered in the quantitative literature. Table 2 provides a summary 

of papers that adopt behavioral, sociological, psychological and managerial approaches, 

revealing that personal ecological awareness is as much a factor as the technical capabilities 

of electric cars. Massiani (2014) identified certain limitations in stated preference (SP) 

surveys for EVs and alternative fuel vehicles (liquefied petroleum gas, compressed natural 

gas, biofuels, hydrogen, etc.), and recommends the inclusion of several other relevant 

dimensions, including garage ownership, second vs. first car, and refueling conditions. He 

also points out that studies often neglect transitory technologies (the plug-in hybrid), which 

are important elements in the diffusion of EVs. 

 

Table 2 

Electric vehicle studies adopting a qualitative approach. 
 

Study Methodology 
Car Type(s) and 

Country 
Aim 

Heffner et al. 

(2007) 

Ethnographic Interviews and 

Semiotic Theory 

HEV 

USA 

Analysis of the influences of 

recognized social meanings and 

personal meanings on vehicle 

purchase and use 

Lane and Potter 

(2007) 

Literature Review of 

Consumer Attitudes/Roger’s    

Innovation Diffusion Model 

EV 

UK 

Study of key factors influencing 

consumers’ adoption and 

effective use of low-carbon 

products and systems at different 

phases of the adoption diffusion 

process 

Daziano and Chiew 

(2012) 

Literature Review of Past 

Studies and 

Proposal of a General 

Demand Model 

NCV and EV 

USA 

Development of a discrete 

vehicle-purchase choice model 

with endogenous latent 

explanatory variables for 

analyzing the new scenario of 

low-emission alternatives 

Bohnsack et al. 

(2014) 

Qualitative Analysis EV 

Several 

Countries 

Influence of incumbent and 

entrepreneurial firms’ path 

dependencies on evolution of EV 

business models 

Massiani  (2014) Literature Review of Past 

Studies and Comment 

Points to Improve SP Surveys 

Design 

EV 

Several 

Countries 

Analysis of how most of the SP 

surveys are fit for purpose but 

there are ways to improve them 

 

  

Jensen et al. 

(2013) 

Joint Hybrid 

Choice Model 

Purchase Price, Driving Range, 

Acceleration, Fuel Costs, Charging 

Possibilities, Battery Lifetime, Emissions 

Individuals’ preferences 

change significantly after a 

real experience with an 

electric vehicle 
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Only a few studies have shown that experience of driving a BEV car can change consumer 

preferences. A two-wave stated preference experiment conducted in Denmark by Jensen et al. 

(2013) found that after driving an EV, major changes are recorded in preferences based on the 

attributes of driving range, top speed, fuel cost, battery life and charging in city centers and 

train stations. In line with other studies, environmental concerns had a positive effect on the 

preference for BEVs both before and after the test period. Recently, Bühler et al. (2014) in a 

six-month field trial involving 79 participants who were given the opportunity to drive a BEV 

in the Berlin metropolitan area, showed that experience can significantly change perception of 

BEVs.  

 

Daziano and Chiew (2012) stressed that to understand the market penetration of EVs it is 

essential to model the consumer purchase decision. Recent studies have some limitations, 

Ziegler et a (2012) only focuses on prospective buyers, Schneidereit et al. (2015) and Plötz et 

al. (2015) only analyze early adopters and Gnann et al. (2015) claim that there is a great deal 

of uncertainty in the market evolution of plug-in EVs.  Our study adds to the existing body of 

research because we compare preferences for conventional, hybrid and electric cars and 

control for consumers with experience of driving an EV and of car sharing schemes. The 

importance of car sharing is recognized by many authors like Danielis and Rotaris (2017) and 

-Kos-Łabȩdowicz and Urbanek (2017), among many others.  

 

3. Survey design 

 

The data were collected in a nationwide online-based survey between March and April 2014 

conducted among German residents. The survey was designed to compare consumer 

preferences for either EVs, on the one hand, or NCVs, on the other, and included a stated 

choice experiment. Of the original 471 surveys conducted, 71 were discarded as they were 

incomplete. Consequently, a total of 400 respondents – the only restriction being that they had 

to be a holder of a driver’s license – completed all the questions on the survey. Mmails and 

social media were used to contact respondents, but a control of the quota was thoroughly 

established so that the sample of respondents does not deviate from the socio-demographic 

structure of the German population. Participation was voluntary. We cannot discard that non-

response could have introduced some bias, but given that the topic does not contain questions 

that may be considered intrusive, we believe that this non-response-bias would be non-

existent. Non-response was low compared to this kind of email surveys as most of the 

contacts accepted to participate in the survey. The invitation letter contained the purpose our 
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research and the fact that it was part of a pure research project with no involvement of third 

parties or publicity was very positively appreciated by the participants. Our approach seemed 

to be attractive to the respondents who understood that there was no conflict of interest in the 

request for participation. 

 

The average sample age of 43 is similar to that of the German population, while the average 

income distribution is also similar to the German nationwide average income (Federal 

Statistical Office, 2014). However, the highly educated are overrepresented. The gender ratio 

provides a close match with actual statistics for German car owners, with every third car in 

Germany being owned by a woman (Federal Motor Vehicle Transport Authority, 2013b).  

 

Table 3 summarizes all the study variables used in our models. Fuel type was chosen as the 

dependent variable in the choice models and the NCV always serves as the baseline category. 

 

 

 

 

 

Table 3  

Definition of the study variables. 
 

Variable Definition 

NCV Equals 1 if the chosen car’s fuel type is a normal combustion vehicle and 0 

otherwise 

HEV Equals 1 if the chosen car’s fuel type is a hybrid vehicle and 0 otherwise 

BEV Equals 1 if the chosen car’s fuel type is a battery electric vehicle and 0 

otherwise 

Electric Car Experience Equals 1 if the respondent has driven an electric car before completing the 

questionnaire and 0 otherwise 

Urban Drivers (> 60% City 

Traffic) 

Equals 1 if the respondent’s reported annual share of trips in cities exceeds 

60% of all trips and 0 otherwise 

Gender Equals 1 if the respondent is male and 0 if female 

Number of Cars Number of cars owned by the household (to a maximum of 4, even if the 

respondent owns more vehicles) 

Income Equals 1 if the respondent’s monthly household net income is below 2,000 €, 

2 if 2,001-3,000 €, 3 if 3,001-4,000 €, 4 if 4,001-5,000 €, 5 if 5,001-6,000€ 

and 6 if more than 6,001 € 

Residence Equals 1 if the respondent lives in the city center, 2 if resident in the city but 

not in the center and 3 if resident in a rural area 

Size of Household Number of members in the household (maximum 5) 

Children in Household Number of children in the household (maximum 3) 

Importance Car Size Size of the car (1 = Not at all important to 5 = Very important) 

Importance Ecological Car Ecologically friendly car (1 = Not at all important to 5 = Very important) 
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Importance Purchase Price Purchase price (1 = Not at all important to 5 = Very important) 

Importance Fuel Costs Fuel cost (1 = Not at all important to 5 = Very important) 

Importance Refueling 

Availability 

Fuel availability (1 = Not at all important to 5 = Very important) 

Importance Driving Range Driving distance range with one full tank (1 = Not at all important to 5 = Very 

important) 

Importance Engine Power Engine power (1 = Not at all important to 5 = Very important) 

Importance Fuel Type Fuel type (1 = Not at all important to 5 = Very important) 

Importance Refuel Time Refueling time (1 = Not at all important to 5 = Very important) 

Importance Tax Reduction Car tax and insurance cost (1 = Not at all important to 5 = Very important) 

Consuming Green Electricity Consumption of green energy (1 = It does not apply to me at all to 5 = It 

applies to me completely) 

Turn off/Stand-by Devices Turn off preferred to stand-by functions (1 = Not at all important to 5 = Very 

important) 

Using Car Sharing Equals 1 if the respondent is a user of car sharing groups and 0 otherwise 

 

The survey comprised four parts. In the first part, respondents were asked about their car 

ownership, possible future car purchasing decisions and driving behavior including the 

percentage of their car mileage driven on certain road types (e.g. urban driving), vehicle fuel 

type and vehicle size. As earlier questions may influence how people respond to subsequent, 

questions order was taken random in each case in order to avoid a potential bias response. In 

the second part, a baseline choice set followed by six additional choice sets were presented to 

measure the influence of various car attributes on the choice process (see below for details). 

We have analyzed multiple scenarios, finally considering changes in the purchase price, 

driving range, fuel availability, refueling time and free parking options for electric cars. In the 

third part, respondents were asked how much importance they attached to various car 

attributes in a priority matrix so as to measure the influence of each personal opinion on the 

eventual purchase decision. Based on existing studies, the priority matrix comprised the 

following car attributes: prestige of the brand, vehicle segment, ecological awareness, 

purchase price, engine power, driving distance range, car tax, insurance costs, fuel type, 

availability and cost. In addition, questions regarding environmental awareness were included 

to provide a profile of the ecological opinions held by each respondent. The fourth part 

comprised a number of socio-demographic and socio-economic questions, regarding 

household characteristics, educational level, age and income.  

 

The central part of this survey corresponds to the stated preference (SP) discrete-choice 

experiment. The baseline set of choices in relation to the three types of car is shown in Table 

4. This baseline choice set reflects a real market scenario in which the attributes of each 

typology are taken from the manufactures’ product descriptions as revealed preference (RP) 
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data. The vehicle attributes of the VW Golf are taken as being representative of NCVs, those 

of the Toyota Prius as being representative of HEVs and those of the BMWi3 for BEVs. This 

design provides a choice set that is closer to reality (in terms of price and vehicle models) and 

so is better equipped to distinguish the impact of the individual attributes on the purchase 

decision. By making use of so-called pivot style SP data, where real-world attribute levels are 

used as pivot (e.g., Hess and Rose, 2009), it is possible to avoid two problems: first, if only 

RP data are included in the choice sets, problems of multicollinearity may arise; and, second, 

if only SP data are included in the choice sets, the estimated effects appear implausible as 

many real market attributes are missing. In order to avoid these two problems, we opted to 

merge SP and RP data in the choice sets (Brownstone et al, 2000). In the six additional choice 

sets presented, mostly one attribute level of the BEV alternative at a time is modified in order 

to capture the influence of that attribute on the respondent’s choice of car.  

 

The different attributes and levels provided for in the variations to the baseline choice set, 

which are presented in the Appendix, measure the influence of the retail purchase price, 

driving range, fuel availability, refueling time and free parking policy on the decision to opt 

for an electric car. The NCV values are taken as reference level for each characteristic. 

 

 

 
Table 4 

Baseline set of choices of the questionnaire: The so-called real case scenario. 

Characteristic Normal combustion 

vehicle (NCV) 

Hybrid electric  

vehicle (HEV) 

Battery electric  

vehicle (BEV) 

Purchase Price 23700 € 26800 € 34950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 190 km 

Fuel Availability 100% 100% 14% 

Refueling Time 5 min 5 min 420 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No  No Yes 

Free Parking No No No 

Note that the other choice sets are presented in Tables S1 to S6 (Appendix). 

Each choice set in the SP discrete-choice experiment contains nine attributes for each of the 

three vehicles – BEVs, HEVs and NCVs. The first attribute is the purchase price (in euros) 

taken from the manufacturers’ product descriptions. The second is the fuel cost (in euros per 

100 km) based on the fuel consumption reported in the manufacturers’ product descriptions 

and the price for petrol and electricity in 2014. The third is carbon dioxide emissions (%CO2), 



 

 

10 

where the baseline value of the emissions is set at 100% for NCVs, and then compared to 

absolute emissions of the HEVs and BEVs (although there certainly arise emissions during 

electricity generation, they are considered negligible for BEVs). The fourth is the driving 

range of the car calculated as the distance (km) that can be covered with one full tank or 

battery. In the case of the fifth attribute (fuel availability) we consider the network of petrol 

stations for NCVs as being accessible from anywhere in Germany. Thus, we use the number 

of petrol stations as the baseline for making a comparison with the number of public charging 

points for BEVs. In Germany in 2014, 14,622 petrol stations were in full operation, while 

only 2,033 public charging stations had been installed for EVs (Energie Informationsdienst, 

2014, and German Association of Energy and Water Industry, 2013). As such, fuel 

availability provided by the public network for charging EVs stands at 14%. The sixth 

attribute is the refueling time (minutes), that is, the time it takes to refill the tank or recharge 

the battery of the respective vehicles. The seventh attribute is the vehicle’s acceleration time 

(seconds) from 0 to 100 km/h as stated in the manufacturers’ product descriptions. Finally, the 

last two attributes are related to public policy incentives. We include, on the one hand, the 

existing motor vehicle tax exemption for electric cars and, on the other hand, the possibility of 

a free parking policy for electric cars, which might be introduced in Germany to support its 

new mobility concept.  

 

4. Methodological approach and model specification 

 

Discrete choice models use econometric tools to make probabilistic statements about the 

occurrence of a ‘choice event’, where a preference is identified by a discrete set of additional 

choices. The primary aim is to study the influence of a range of both vehicle attributes and 

socio-economic factors on the potential buying decision. For this purpose, we can apply either 

a classical logistic regression model for binary choices or a multinomial logit model (MNL) 

for more than two alternatives.  

 

In general, discrete choice models can be motivated by a so-called random utility model, so 

for the 𝑖-th respondent the utility function of option 𝑗 ∈ {1, … , 𝐽} is given by equation (1): 

 

𝑈𝑖𝑗 = 𝒛𝑖𝑗
′ 𝜽 + 𝜀𝑖𝑗 .                                                   (1) 

 

Therefore, the utility is divided in two parts. On the one hand, the utility provides a systematic 

and measureable component 𝒛𝑖𝑗
′ 𝜽, where 𝒛𝑖𝑗

′ = [𝒙𝑖𝑗, 𝒘𝑖] contains information about the vehicle 
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attributes 𝒙𝑖𝑗 of the choice j and the specific characteristics 𝒘𝑖 of the respondent i, such as 

their socio-demographic and socio-economic factors as well as the opinions they hold. On the 

other hand, there is a random component 𝜀𝑖𝑗, so that we assume that each 𝜀𝑖𝑗 are independent 

and identically distributed under a univariate extreme value distribution, so that individual 𝑖 

chooses a particular alternative 𝑗 ∈ {1, … , 𝐽} in order to maximize his or her utility 𝑈𝑖𝑗: 

 

𝑃(𝑈𝑖𝑗 > 𝑈𝑖𝑘) = 1 for all other 𝑘 ≠ 𝑗 .             (2) 

 

In developing the baseline choice model, three assumptions need to be introduced in order to 

estimate the individual choice models: 

 

1) The model exhibits independence-from-irrelevant alternatives, i.e., IIA axiom. Thus, the 

ratio of the probabilities of choosing one alternative (e.g., a NCV) over another (e.g., an 

HEV) should not be affected by the presence/absence of another alternative (a BEV) in 

the choice set. 

 

2) The probability of a particular alternative being chosen must be greater than zero for all 

possible alternative sets, i.e., positivity axiom. 

 

3) The random elements 𝜀𝑖𝑗 in the utility function are independent across alternatives and 

identically distributed.  

 

Overall, in discrete choice models, the extreme value type 1 (EV1, also called Gumbel) 

distribution is often applied. As exposed in equation (3), the EV1 cumulative distribution for 

each unobserved random component of utility is 

 

𝐹(𝜀𝑖𝑗) = exp {− exp  (−𝜀𝑖𝑗)} ,             (3) 

 

and the variance is 𝜋2/6, so we are implicitly normalizing the scale of utility. Applying 

equation (3), we are able to integrate out the operational component in order that we might 

develop a discrete choice model that is based only on the utility parameters associated with 

each attribute in the observed component of the random utility expression of equation (1) 

(Louviere et al., 2000). 
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4.1. Binary logistic regression 

 

For the 𝑖-th consumer, 𝑖 = 1, … , 𝑛 , we want to estimate the probability 𝜋𝑖 of choosing a NCV 

instead of opting for an EV. Consequently, we have a binary output variable 𝑌𝑖 which takes a 

value of 1 for an EV option (either HEV or BEV) and 0 for NCV.  

 

Such probability is given in equation (4) by the binary logistic model,  

 

𝜋𝑖 = 𝑃𝑟𝑜𝑏(𝑌𝑖 = 1) =
exp (𝒛𝑖1

′ 𝜽)

exp(𝒛𝑖0
′ 𝜽) + exp (𝒛𝑖1

′ 𝜽)
=

exp (𝒙𝑖1
′ 𝜷 + 𝒘𝑖

′𝜶)

exp(𝒙𝑖0
′ 𝜷 + 𝒘𝑖

′𝜶) + exp (𝒙𝑖1
′ 𝜷 + 𝒘𝑖

′𝜶)
 ,            (4)  

 

where the set of parameters 𝜷 reflects the impact of changes in 𝒙𝑖𝑗
′  on the probability, and the 

vector 𝜶 fulfills the same task regarding 𝒘𝑖
′. 

 

4.2. Multinomial logistic regression 

 

The MNL is simple to estimate and has a closed-form specification. Moreover, the MNL is 

usually robust to the violation of strong behavioral assumptions if we have a rich and highly 

disaggregated dataset for the attributes of the alternatives and agents. This is especially true if 

the choosing behavior is independently and identically distributed among the alternatives in 

the choice set (Louviere et al., 2000). 

 

The decision makers are faced with three alternative vehicles and, on the basis of their 

underlying preferences, they choose the option that maximizes their utility. In our MNL 

model, therefore, the individual chooses between an NCV, a BEV and an HEV. The 

alternative opted for is defined as the respondent’s dependent variable. In models with 

unordered multiple choices, random utility models serve as the basis for developing the 

probability estimations (Greene, 2011).  

 

Let 𝑌𝑖 denote a random variable which indicates the choice made by the 𝑖-th respondent, 𝑖 =

1, … , 𝑛 , who faces with J options, we obtain equation (5), which is defined as the conditional 

logit model or more often labeled as the multinomial logit model,  

 

𝑃𝑟𝑜𝑏(𝑌𝑖 = 𝑗) =
exp (𝒛𝑖𝑗

′ 𝜽)

∑ exp(𝒛𝑖𝑘
′ 𝜽)

𝐽
𝑘=1

=
exp (𝒙𝑖𝑗

′ 𝜷 + 𝒘𝑖
′𝜶)

∑ exp(𝒙𝑖𝑘
′ 𝜷 + 𝒘𝑖

′𝜶)
𝐽
𝑘=1

 ,                                                                 (5)  
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where 𝑛 is the number of respondents and J is the total number of alternatives in the choice 

set. In the following section we use equation (5) to estimate with which are major socio-

economic contributing factors to buy an NCV, a BEV or an HEV, thereby enabling to study 

the different profiles of the buyers. Note that after redefining the vector of explanatory 

variables, we can use the alternative model specification that is often used in practice, in 

which there is a different vector of parameters for every choice alternative except for that of 

the baseline. This is precisely the notation that we use in the results section. 

 

For the MNL model, we expect ecologically aware consumers to be more likely to buy an 

electric car (an HEV or a BEV). If, however, consumers attach great importance to driving 

range, refueling time, purchase price and fuel availability, they are likely to opt for an NCV 

and so these explanatory variables will take a negative sign in the model. If consumers are 

more sensitive to fuel costs and value the tax advantages provided by a BEV, we assume that 

they will be more likely to prefer a BEV. In line with Jensen et al. (2013), who studied the 

stability of consumer preferences and attitudes before and after driving an electric car and 

found a significant switch in individual preferences, we expect the ‘electric car experience’ 

variable to present a positive sign (more likely to buy a BEV) in our model. 

 

In order to apply the MNL model we first need to test that the IIA assumption is fulfilled. 

Hausman and McFadden (1984) suggest three possibilities for testing whether the 

independence of irrelevant alternatives is given: a Hausman specification test, a Wald test and 

a likelihood ratio test for the IIA applied in the appropriate nested logit model (NL). Here, we 

applied a Hausman specification test. The results of the estimated nested logit model and the 

Hausman test are available from the authors on request. Given that we are unable to reject the 

null hypothesis (𝐻0: IIA axiom is valid) at the 5% level of significance, the multinomial logit 

model is applied here. 

 

5. Results 

 

5.1. Modeling the customers preferences 

 

We analyze the factors influencing the decision to purchase an electric car. First, the results of 

a binary outcome model are examined in order to study the impact on the choice between an 

NCV and an EV (thus combining the hybrid and battery electric vehicles into one group). 

Second, the multinomial logistic model is applied to define the attributes of the cars that 
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significantly influence the decision to purchase either a battery or hybrid electric car in 

comparison to an NCV. 

 

Results for binary choice models 

 

The results from the binary outcome models tested are summarized in Table 5. These models 

are based on the decisions of the respondents to the baseline choice set presented in Table 4. 

In the first logit model only socio-economic and socio-demographic factors are included. The 

ecological awareness factors are added in the second logit model. The third model is extended 

to include the importance attached to the vehicle attributes, while the fourth model includes 

only certain attributes so as to measure their impact on the decision to prefer either an NCV or 

an EV. Prior driving experience of a BEV is not included in these models because the 

category EV includes both HEVs and BEVs. 

 

 

 

 

 

 

 

 

 

 

Table 5 

Parameter results from binary logistic regression. The dependent variable is the choice of electric vehicle (hybrid 

and battery electric cars combined) vs. normal combustion vehicles (baseline level). 
 

Variable Model 1 Model 2 Model 3  

Constant  1.717  1.414  1.189  

Gender -0.164 -0.102  0.012  

Age -0.068 -0.096 -0.106  

AgeSquared  0.001  0.001  0.001  

Residence  0.045  0.048  0.056  

Income  0.036  0.075  0.099  

Number of Cars -0.334 ** -0.266 * -0.172  

Size of Household  0.089  0.080  0.022  

Children in Household -0.068 -0.117 -0.196  

Importance Car Size      -      -  0.092  

Importance Ecological Car      -      -  0.291 **  

Importance Purchase Price      -      - -0.321 **  

Importance Fuel Costs      -      -  0.124  

Importance Refueling 

Availability 
     -      -  0.094  

Importance Engine Power      -      - -0.227 **  

Importance Refuel Time      -      -  0.203  

Importance Tax Reduction      -      -  0.041  

Consuming Green 

Electricity 
     -  0.166 **  0.121 *  

Turn off/Stand-by Devices      -  0.206 **  0.186 **  

n 400 400 400  

AIC 552.802         541.697         534.019          
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BIC 588.725 585.603 609.856  

Likelihood Ratio     8.776  23.881  47.559  

p-Value
 

    0.362    0.008  < 0.001  
 
* Significant at 10%, ** Significant at 5% and *** Significant at 1%. 

 

In the first model, the socio-economic factor of the number of cars in a household has a 

statistically significant influence at the 5% level. This impact remains even when the 

ecological awareness factors are introduced. In the second model, a consumer who uses green 

electricity in the household is more likely to have a strong environmental awareness, and 

therefore to prefer an EV. If the respondent tends to turn off all electric devices rather than 

use the more wasteful stand-by function, the probability of choosing an EV also increases 

significantly. In the third model, the number of cars in the household does not have a 

significant influence on the choice decision. However, this extended model reveals the impact 

of specific car attributes; thus, customers who attach great importance to the ecological 

attributes of a car, including low fuel consumption and low CO2 emissions, are more likely to 

prefer an EV. By contrast, those who consider the price and the power of a car’s engine to be 

more important are more likely to choose an NCV. In this third model the influence of socio-

economic factors disappears because of the introduction of the importance of the cars’ 

attributes.  

 

 

Results for multinomial choice models 

 

We further develop the choice structure with the application of a multinomial logit model. In 

this way, we are able to estimate the choice probabilities of consumers preferring a BEV, an 

HEV or an NCV and to measure the influences of the regressors on the decision to choose a 

particular car type. Once again, this model is based on the baseline choice set in Table 4.  

 

Table 6 shows the results for the specification of the MNL model, which contains the 

importance consumers attach to the power of the engine. We assume NCV as being the 

baseline category. Overall, MNL model 1 provides a better fit than MNL model 2: the AIC 

and BIC are both smaller and the likelihood ratio statistic is higher. Therefore, we opt to apply 

MNL model 1 in the illustrative examples. 

 

The driving range of the BEV is clearly a major disadvantage and one that has a significant 

impact on the consumers’ buying decision. The consumer that attaches an increasing degree 
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of importance to the driving range is less likely to buy a BEV, preferring an NCV with a 

driving range that is seven times greater.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Multinomial logit regression of choice between hybrid electric vehicle (HEV), battery electric vehicle (BEV) 

and normal combustion vehicle (NCV, baseline category). 

 
 

Variable MNL Model  

Constant HEV 2.1886  

Income HEV 0.1068  

Gender HEV -0.1620  

Age HEV    -0.1320**  

AgeSquared HEV  0.0013*  

Urban Drivers (>60% City 

Traffic) HEV 

    -

0.7237*** 
 

Number of Cars HEV   -0.3408**  

Importance Ecological Car 

HEV 
   0.3073**  

Importance Driving Range HEV 0.1768  

Importance Fuel Cost HEV 0.2063  

Importance Engine Power HEV    -0.2477**  

Importance Purchase Price HEV  -0.3022*  

Importance Refuel Time HEV     0.3217**  

Importance Tax Reduction HEV -0.0498  

Consuming Green Electricity 

HEV 
 0.1083  

Electric Car Experience HEV 0.4517  

Constant BEV -1.3466  

Income BEV -0.0163  

Gender BEV   -0.8035*  

Age BEV -0.1028  
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AgeSquared BEV 0.0014  

Urban Drivers (> 60% City 

Traffic) BEV 
-0.0285  

Importance Ecological Car BEV  0.2127  

Importance Driving Range BEV  -0.4060*  

Number of Cars BEV 0.1963  

Importance Fuel Cost BEV 0.4337  

Importance Engine Power BEV 0.0713  

Importance Purchase Price BEV    -0.5542**  

Importance Refuel Time BEV -0.1481  

Importance Tax Reduction BEV   0.3804*  

Consuming Green Electricity 

BEV 
0.1677  

Electric Car Experience BEV 
      

1.3488*** 
 

NCV – Baseline Category  -  

n 400  

AIC 
725.99

51 
 

BIC 
853.72

19 
 

Likelihood Ratio 
92.079

9 
 

p-Value 0.0000  
    
* Significant at 10%, ** Significant at 5% and *** Significant at 1%. 

 

A further attribute influencing the purchasing choice is a vehicle’s eco-friendliness. A 

consumer that prefers a car with low CO2 emissions and low fuel consumption is more likely 

to buy an HEV than an NCV. The power of the car’s engine also has an impact on the 

consumer choice decision – the greater the importance attached to this attribute the more 

likely the consumer is to opt for an NCV. Interestingly, even though the choice sets show the 

acceleration of the HEV to be faster than that of the NCV, respondents continue to associate 

greater engine power with the NCVs. This serves to confirm that the introduction of EVs in 

Germany remains in a penetration phase, with consumers largely unaware of the potential of 

EVs. Additionally, the importance attached to the refueling time is another attribute 

influencing a consumer’s decision, with respondents being more likely to choose an HEV 

than an NCV as they attach an increasing degree of importance to refueling time. Hackbarth 

and Madlener (2013) failed to find a statistical significance for this relationship, although they 

did not analyze this attribute separately for each EV. Here, we find a statistically significant 

and positive influence in favor of hybrid vehicles. 

 

Women, rather than men, are more likely to buy a BEV than an NCV ceteris paribus. In our 

data set, fuel costs and the type of fuel are on average more important for women. Similarly, 

on average, women attach greater importance to owing an eco-friendly vehicle. Finally, 

women tend to have more of their driving in urban areas. All these factors would seem to 

have an influence on why a woman is more likely to buy an EV. Age, on the other hand, has a 



 

 

18 

non-constant effect on the decision to purchase an HEV. Age HEV and age-squared HEV are 

both statistically significant. Therefore, we can compute when the probability of deciding in 

favor of an HEV is lowest using the following formula 
𝑑𝑦

𝑑𝑥
= 𝛽𝑎𝑔𝑒 + 2𝛽𝑎𝑔𝑒2𝑥 and set it equal to 

0 in order to obtain the minimum point  𝑥1 = −
𝛽𝑎𝑔𝑒

2𝛽𝑎𝑔𝑒2
. Thus, a consumer is least likely to 

purchase an HEV at the age of 51; while respondents younger and older than 51 are more 

likely to buy a hybrid car than an NCV.  

 

Driving habits also influence the buying decision. As expected, drivers with experience of 

driving an electric car are more likely to prefer a BEV than an NCV. This finding coincides 

with the results of Jensen et al. (2013), who stress that EV experience makes respondents re-

evaluate not only the characteristics of a BEV, but also those of an NCV. The interesting 

result here is that ecological awareness measured as proximity to green electricity seems to 

have no impact on the vehicle preference decision once the electric car experience is included 

in the model.  

 

Besides the MNL model considered, a second model was also initially suggested, in which the 

influence of using car sharing was taken into consideration as an additional attribute. 

However, from Table S7 it is evident that the number of people currently using car sharing in 

each of the three categories is very small, and therefore there is not a large enough sample 

size to allow conclusions about car sharing to be drawn. 

 

5.2. Main attributes to assess the preferences for EVs 

 

In the baseline choice set, 167 respondents (41.8%) opted for a conventional NCV, 194 

(48.5%) for an HEV and 39 (9.8%) for a BEV. Summary statistics are provided in the 

Appendix (Table S7).  

 

Table 7 reports the switching in the respondents’ purchase decisions as changes were made in 

these original attributes. Thus, we can analyze the impact on a respondent’s decision when an 

attribute is enhanced. For instance, it appears that a better purchase price and improved fuel 

availability have a fairly weak effect in terms of getting the respondent to switch from a NCV 

or HEV to a BEV. In contrast, respondents switch their choice significantly if the electric 

car’s driving range is increased or its recharging time is reduced. However, the final choice 

set – the combination of a reduction in price and in refueling time, a more extensive charging 

network, an increase in the driving range and the introduction of free parking for BEVs – 
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convinces most respondents to switch their original choice (i.e., that opted for in the baseline 

set of choices). Specifically, in the baseline choice set (Table S7 of Appendix) a total of 361 

citizens opted for NCV or HEV, whereas in the final choice set 121 respondents changed their 

choices from a NCV to a BEV, and 167 changed their choices from a HEV to a BEV. It 

represents that finally 288 respondents out of 400 (72.0%) changed their choices from a NCV 

or HEV to a BEV. 

 

Table 7 

Respondents switching choice with the change in attribute from the baseline set of choices to a new choice set in 

the following sequence order: NCV to HEV or BEV and HEV to BEV. The EV is the union of BEV and HEV. 

The total of respondents is n = 400. 
 

Choice set 
Do not 

switch (%) 

NCV to 

HEV (%) 

NCV to 

BEV (%) 

HEV to 

BEV (%) 

Switch 

order (%) 

Switch to 

BEV (%) 

Switch to 

EV (%) 

Choice set 1: The same price for all 

alternatives 
222 (55.5) 79 (19.7) 44 (11.0) 53 (13.3) 2 (0.5) 97 (24.3) 176 (44.0) 

Choice set 2: Increased recharging 

availability (improved network) for 

BEVs  

228 (57.0) 29 (7.3) 63 (15.7) 79 (19.7) 1 (0.3) 142 (35.5) 171 (42.7) 

Choice set 3: Free parking for BEVs 234 (58.5) 13 (3.3) 68 (17.0) 83 (20.7) 2 (0.5) 151 (37.8) 164 (41.0) 

Choice set 4: Shorter refueling time 

for BEVs 
165 (41.2) 16 (4.0) 87 (21.8) 130 (32.5) 2 (0.5) 217 (54.3) 233 (58.3) 

Choice set 5: Higher driving range for 

BEVs 
133 (33.3) 18 (4.5) 99 (24.8) 150 (37.5) 0 (0.0) 249 (62.3) 267 (66.8) 

Choice set 6: Combination of 

attributes for BEVs (reduced price 

and recharging time, increased driving 

range and free parking policy) 

98 (24.5) 11 (2.8) 121 (30.2) 167 (41.8) 3 (0.7) 288 (72.0) 299 (74.8) 

In the baseline choice set, 167 respondents (41.8%) for a NCV, 194 (48.5%) opted for an HEV, and 39 (9.8%) for a BEV. 

 

We note the importance of a reduction in the price of HEVs and BEVs, since 74.8% of the 

400 respondents initially choosing an NCV switched their preference to an HEV or a BEV 

when the price was reduced. Other monetary incentives that influence consumer choice are 

the public policies that reduce the motor vehicle tax on BEVs and offer the possibility of free 

parking for BEVs. For example, Table 7 (third row, last column) shows that 164 of 

respondents (41%) initially opting for an NCV would switch to a EV if free parking was 

introduced. 

 

 

6. Conclusions 

 

We have examined consumer preferences for electric vehicles by estimating choice models, 

determining consumer profiles and examining preference shifts based on discrete choice data 

from Germany. Our research is based on a sample of individuals who participated in a 
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discrete choice experiment, among whom one in four respondents had previously driven a 

BEV vehicle. 

 

We identify eight main categories influencing consumer preferences: (i) the purchase price 

and operational costs, including fuel and car tax charges; (ii) range anxiety, including driving 

distance, and refueling time; (iii) pro-environmental preferences, such as eco-friendly car 

attributes and the consumption of green electricity; (iv) the drivability of the car, including the 

power of the car’s engine; (v) car ownership characteristics, including the number of cars in a 

household; (vi) socio-demographic characteristics, such as gender and age; and, finally, (vii) 

driving habits, such as being primarily an urban driver; and (viii) having had prior experience 

of driving an EV. 

 

Having previous experience of an electric car appears to be of special interest for the 

successful implementation of the new mobility concept represented by EVs. Yet, it seems that 

consumers in Germany continue to underestimate the power and drivability of EVs as they 

lack firsthand experience driving cars fitted with this new technology. This conclusion seems 

to confirm the findings reported by Jensen et al. (2013) regarding the switch in preferences 

recorded after gaining driving experience in a BEV and those of Bühler et al. (2014) 

regarding the change in perception of BEVs. These variables need to be taken into 

consideration in future research projects and should form part of the core of feasible policy 

options. For example, Bakker and Trip (2013) recommend organizing test-drive events in 

conjunction with car dealerships and introducing BEVs in car-sharing fleets. 

 

Our findings regarding the impact of such factors as the purchase price, driving range, 

ecological awareness indicators and public policy incentives are in line with the conclusions 

drawn by previous studies. However, the influence of being primarily an urban driver is 

reversed, but this might be caused by spurious correlation as urban driver consumers tend to 

be younger. We also find a statistical significance on the stated preference of the respondent’s 

age, the number of cars in the household, gender and refueling time. Having previous 

experience of driving an EV is crucial for enhancing the preference for electric cars when 

other factors are taken into account.  

 

Bohnsack et al. (2014) already analyzed different business models for sustainable 

technologies in order to increase the attractiveness of electric vehicles as they seek to 

penetrate mainstream markets. One possibility is the introduction of car-sharing programs in 
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cities with BEVs to avoid the high costs of leasing a battery and also to gain market share of 

new BEV drivers. The combination of Bohnsack et al. (2014) market penetration strategy for 

BEVs with car-sharing companies, and our finding that experience of driving an EV increases 

the probability of choosing a BEV, seems to be in line with the claim that membership of a 

car-sharing fleet could increase the likelihood of purchasing a BEV. Moreover, given that the 

profile of a car-sharing member is that of a young individual, the car industry has the 

opportunity to convince possible future purchasers of the advantages of this new mobility 

concept and thus bind new customers. 

 

Overall, although electric vehicles face supply-side barriers, including certain vehicle 

attributes that can be improved and a deficient recharging infrastructure, German consumers 

are persuaded by new BEV technology once they have tested it. At this point, similar 

behaviors are expected in other European countries.  
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APPENDIX 

 

The following tables are supporting information that can be made available electronically as 

additional material. 

 
Table S1 

Choice Set 2: Same price for each car 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 23700 € 23700 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 190 km 

Fuel Availability 100% 100% 14% 

Refueling Time 5 min 5 min 420 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No No 

 

 

Table S2 

Choice Set 3: Increasing recharging availability for battery electric vehicles 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 26800 € 34950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 190 km 

Fuel Availability 100% 100% 100% 

Refueling Time 5 min 5 min 420 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No No 

 

 

Table S3 

Choice Set 4: Free parking for battery electric vehicle 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 26800 € 34950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 190 km 

Fuel Availability 100% 100% 14% 

Refueling Time 5 min 5 min 420 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No Yes 
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Table S4 

Choice Set 5: Shorter refuel time for battery electric vehicle 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 26800 € 34950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 190 km 

Fuel Availability 100% 100% 14% 

Refueling Time 5 min 5 min 30 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No No 

 

 

Table S5 

Choice Set 6: Higher driving range for battery electric vehicle 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 26800 € 34950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 750 km 

Fuel Availability 100% 100% 14% 

Refueling Time 5 min 5 min 420 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No No 

 

 

Table S6 

Choice Set 7: A combination of improved attributes for battery electric vehicles 

(decreasing price and recharging time, increasing driving range and free parking 

policy) 

Characteristic NCV HEV BEV 

Purchase Price 23700 € 26800 € 26950 € 

Fuel Cost per 100 km 7.00 € 6.50 € 3.50 € 

CO2 Emissions 100% 75% 0% 

Driving Range 1447 km 1154 km 750 km 

Fuel Availability 100% 100% 100% 

Refueling Time 5 min 5 min 30 min 

Acceleration 0 up to 100 km/h 11.5 sec 10.4 sec 7.2 sec 

No Motor Vehicle Tax  No No Yes 

Free Parking No No Yes 
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Table S7 

Number of responses and percentage preferences in the baseline choice set for the three different vehicles  

 

 Characteristic NCV HEV BEV Total 

Gender         

 Woman 64 40.76% 77 49.04% 16 10.19% 157 100.00% 

 Man 103 42.39% 117 48.15% 23 9.47% 243 100.00% 

          

Residence         

 City center 62 48.44% 58 45.31% 8 6.25% 128 100.00% 

 Other 105 38.60% 136 50.00% 31 11.40% 272 100.00% 

          

Income         

 Below 2,000 € 25 39.06% 33 51.56% 6 9.38% 64 100.00% 

 2,001-3,000 € 38 38.00% 53 53.00% 9 9.00% 100 100.00% 

 3,001-4,000 € 48 45.71% 45 42.86% 12 11.43% 105 100.00% 

 4,001-5,000 € 29 50.88% 22 38.60% 6 10.53% 57 100.00% 

 5,001-6,000 € 14 36.84% 23 60.53% 1 2.63% 38 100.00% 

 Above 6,000 € 13 36.11% 18 50.00% 5 13.89% 36 100.00% 

          

Urban Driver         

 Mostly urban driver 58 50.00% 47 40.52% 11 9.48% 116 100.00% 

 

Less than 60% city driving on 

average 
109 38.38% 147 51.76% 28 9.86% 284 100.00% 

          

Number of Cars         

 0 23 30.67% 46 61.33% 6 8.00% 75 100.00% 

 1 78 43.82% 87 48.88% 13 7.30% 178 100.00% 

 2 55 44.00% 54 43.20% 16 12.80% 125 100.00% 

 3 9 50.00% 5 27.78% 4 22.22% 18 100.00% 

 4 or More 2 50.00% 2 50.00% 0 0.00% 4 100.00% 

          

Size of Household         

 1 30 41.67% 37 51.39% 5 6.94% 72 100.00% 

 2 73 40.56% 87 48.33% 20 11.11% 180 100.00% 

 3 28 40.58% 31 44.93% 10 14.49% 69 100.00% 

 4 24 45.28% 27 50.94% 2 3.77% 53 100.00% 

 5 or More 12 46.15% 12 46.15% 2 7.69% 26 100.00% 

          

Children in Household         

 0 126 40.38% 156 50.00% 30 9.62% 312 100.00% 

 1 19 47.50% 15 37.50% 6 15.00% 40 100.00% 

 2 17 48.57% 17 48.57% 1 2.86% 35 100.00% 

 3 or More 5 38.46% 6 46.15% 2 15.38% 13 100.00% 

         

Importance Driving Range         

 1 Not at all important 5 45.45% 3 27.27% 3 27.27% 11 100.00% 

 2 6 26.09% 10 43.48% 7 30.43% 23 100.00% 

 3 49 47.57% 43 41.75% 11 10.68% 103 100.00% 

 4 67 44.37% 75 49.67% 9 5.96% 151 100.00% 

 5 Very important 40 35.71% 63 56.25% 9 8.04% 112 100.00% 

          

Importance Purchase Price         

 1 Not at all important 2 50.00% 1 25.00% 1 25.00% 4 100.00% 

 2 5 41.67% 5 41.67% 2 16.67% 12 100.00% 

 3 25 34.25% 37 50.68% 11 15.07% 73 100.00% 

 4 59 38.31% 84 54.55% 11 7.14% 154 100.00% 

 5 Very important 76 48.41% 67 42.68% 14 8.92% 157 100.00% 

          

Importance Tax Reduction         

 1 Not at all important 8 53.33% 5 33.33% 2 13.33% 15 100.00% 

 2 19 39.58% 25 52.08% 4 8.33% 48 100.00% 
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 3 49 42.24% 55 47.41% 12 10.34% 116 100.00% 

 4 65 42.21% 81 52.60% 8 5.19% 154 100.00% 

 5 Very important 26 38.81% 28 41.79% 13 19.40% 67 100.00% 

          

Importance Ecological Car         

 1 Not at all important 4 36.36% 3 27.27% 4 36.36% 11 100.00% 

 2 13 59.09% 9 40.91% 0 0.00% 22 100.00% 

 3 51 58.62% 30 34.48% 6 6.90% 87 100.00% 

 4 64 44.44% 74 51.39% 6 4.17% 144 100.00% 

 5 Very important 35 25.74% 78 57.35% 23 16.91% 136 100.00% 

          

Importance Refuel Time         

 1 Not at all important 9 45.00% 4 20.00% 7 35.00% 20 100.00% 

 2 22 48.89% 19 42.22% 4 8.89% 45 100.00% 

 3 61 44.53% 64 46.72% 12 8.76% 137 100.00% 

 4 61 41.22% 75 50.68% 12 8.11% 148 100.00% 

 5 Very important 14 28.00% 32 64.00% 4 8.00% 50 100.00% 

          

Using Green Electricity         

 1 Does not apply to respondent 52 53.61% 38 39.18% 7 7.22% 97 100.00% 

 2 18 42.86% 21 50.00% 3 7.14% 42 100.00% 

 3 21 52.50% 18 45.00% 1 2.50% 40 100.00% 

 4 11 40.74% 14 51.85% 2 7.41% 27 100.00% 

 5 Does apply to respondent 65 33.51% 103 53.09% 26 13.40% 194 100.00% 

          

Importance of Turn off/Stand-By         

 1 Not at all important 20 50.00% 18 45.00% 2 5.00% 40 100.00% 

 2 27 60.00% 16 35.56% 2 4.44% 45 100.00% 

 3 33 47.14% 29 41.43% 8 11.43% 70 100.00% 

 4 49 38.89% 68 53.97% 9 7.14% 126 100.00% 

 5 Very important 38 31.93% 63 52.94% 18 15.13% 119 100.00% 

          

Electric Car Experience         

 

Have driven a battery electric 

vehicle before 
31 31.00% 51 51.00% 18 18.00% 100 100.00% 

 

Have not driven a battery 

electric vehicle before 
136 45.33% 143 47.67% 21 7.00% 300 100.00% 

          

Using Car Sharing         

 Is user of a car sharing group  140 43.48 % 154 47.83% 28 8.70% 322 100.00% 

 

Is not user of a car sharing 

group 
 27 34.62 %  40 51.28% 11 14.10%  78 100.00% 

          

Age (mean) 42.65  41.29  47.79  42.58  
 
Some importance attributes not found to have a significant influence in the choice preference models are not 

reported. 

 


